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INTRODUCTION

The authors suggest an interesting way to measure
the fraction of missing information in the context of
hypothesis testing. The measure seeks to quantify the
impact of missing observations on the test between two
hypotheses. The amount of impact can be useful infor-
mation for applied research. An example is, in genet-
ics, where multiple tests of the same sort are performed
on different variables with different missing rates, and
follow-up studies may be designed to resolve missing
values in selected variables.

In this discussion, we offer our prospective views on
the use of relative information in a follow-up study.
For studies where the impact of missing observations
varies greatly across different variables and where the
investigators have the flexibility of designing studies
that can have different efforts on variables, an optimal
design may be derived using relative information mea-
sures to improve the cost-effectiveness of the follow-
up.

Using the simple motivation example in their paper,
we examine the estimation of relative information by
RI1 and RI0 in terms of unbiasedness and variabil-
ity, and discuss issues that require further research. Al-
though the relative information measure developed in
their paper estimates the mean impact of the missing
data, the actual impact may be highly variable when the
amount of information in the observed data is moderate
or small, which makes the estimated mean relative in-
formation a less reliable prediction of the actual impact
of missing observations. For this reason, we suggest a
simple way to estimate the variability of relative infor-
mation between complete data and observed data in the
simple motivation example. Further investigation is re-
quired in incorporating these variability estimates into
the optimal design of follow-up studies.

Department of Statistics, Columbia University, New York,
New York, USA (e-mail: tzheng@stat.columbia.edu;
slo@stat.columbia.edu).

RELATIVE INFORMATION AND FOLLOW-UP
STUDY DESIGNS

Missing values can occur for many reasons and can
have different effects on a given test. Nicolae, Meng
and Kong pointed out that the impact of missing val-
ues (in terms of relative information) on a test may not
be as simple as the “face value” of n0/n, where n0 is
the number of observed values and n is the number of
individuals (n − n0 is then the number of missing val-
ues). Therefore, a more accurate estimation of the in-
formation gain due to the resolution of missing values
is important for the design of follow-up studies.

Given an existing data with n individuals (with miss-
ing values), if n1 additional independent samples are
collected (possibly with the same missing rate) to ex-
pand this data set, it is intuitive to assume that the ratio
of information in the original data and the expanded
data is approximately n/(n + n1). Now consider a test
on the existing data with n individuals that has some
missing values (say, n0 observed values). The rela-
tive information is estimated to be 80%, meaning that
if the data used for this test is “resolved” to become
complete, the expected log likelihood ratio is about
1/80% = 125% of the observed log likelihood ratio.
To achieve the same level of information by adding
new independent observations, one would need to col-
lect a sample of additional n1 = n × 25% individuals.
In many situations, resolving missing values, if possi-
ble, turns out to be much cheaper than collecting data
on additional samples. In Section 2 of the NMK pa-
per, an example was given on genotyping ambiguity
in genetic linkage analysis (meaning that the exact in-
heritance vectors needed for the lod score computation
cannot always be derived given the genotypes observed
on the individuals). Here, let Yob be current data with
unambiguous genotypes. For a follow-up study, a re-
searcher can decide between (1) increasing the den-
sity of genetic markers on the observed individuals to
resolve the ambiguities and (2) increasing the sample
size by genotyping more independent individuals on
the same set of markers for the previously observed
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individuals. If we denote the two potential expanded
data sets as Yco,m and Yco,i with m and i standing for
markers and individuals, we can compute the fraction
of information between Yob and Yco,m, and between Yob
and Yco,i , potentially using RI1 and RI0 proposed in
the NMK paper. Comparing these two measures of rel-
ative information, the researcher can then decide which
option (increasing markers or increasing individuals) is
cost-efficient for the inferential task at hand.

In practice, one would need to consider such com-
parison at multiple variables simultaneously. Here we
consider a simple example. Let {Y1, . . . , YM} be the
variables studied. For Yi , n0,i values are observed on
n individuals. In a follow-up study n1,i missing values
can be resolved at Yi . At Yi , the relative information
(say, RI1) is a function of n1,i , the observed lod score
lodob,i and the observed m.l.e. To evaluate the overall
information gain due to these additional observations,
we suggest an expression similar to that of (19) in the
NMK paper1:

RI1
−1

(n1,1, . . . , n1,M)
(1)

=
∑M

i=1 lodob,iRI1(n1,i )
−1

∑M
i=1 lodob,i

.

A possible way to yield an optimal design would be
to select values of 0 ≤ n1,i ≤ n − n0,i to maximize the
information gain while controlling for a fixed cost. Dif-
ferences in design may involve varying setup costs that
may depend on, for example, the number of nonzero
n1,i such as that in genotyping studies. Once such a
cost function can be fully specified, linear program-
ming can be used to obtain the optimal design. If the
n1,i ’s in the optimal design identified take similar val-
ues on i = 1, . . . ,M , this may suggest a design that
collects data on n1 new independent individuals and
takes measurements on the same M variables as in the
original data.

Another advantage of the likelihood ratio-based
evaluation of information used by Nicolae, Meng and
Kong is that one can evaluate the potential informa-
tion gain conditioning not only on the observed data
at the current concerned variable but also on some as-
sociated variables, through a model-based calculation.
Similar model-based strategies have been commonly
used for imputing missing genotypes in genetic stud-
ies. Such consideration may introduce more compli-
cated design questions than the computation in (1) but
may also bring better efficiency.

1Equation (19) in the original paper is to combine relative infor-
mation measures from several studies, while (1) here is to evaluate
relative overall information of multiple variables.

THE “EMPIRICAL” FRACTION OF INFORMATION
AND ITS VARIABILITY

Using the simple motivation example in Section 1 of
the NMK paper, we consider the relation between the
empirical observed data log likelihood ratio (lod score)
and the “random” complete data log likelihood ratio
(lod score). We offer relationships between the pro-
posed fraction of information and the distribution of
the “empirical” ratio. The “empirical” ratio is the ac-
tual random gain due to additional observations, while
the estimation of relative information and the possi-
ble optimal design derived are intended to approximate
this random outcome.

In Figure 1, we plot the joint distribution of the lod
scores under the observed data and the complete data,
with missing percentage being 80%. The distribution
is evaluated under three true values of the probability
of success with n0 = 800 and n = 1000. To obtain a
realistic evaluation, we use the traditional definition of
the likelihood ratio test (or the lod score) where the
ratio is evaluated between the maximum likelihood es-
timate given current data (observed or complete) and
the value in the null hypothesis.

We first notice the positive correlation between the
complete data statistic and the observed data statistic.
Gray broken lines in Figure 1 give reference lines for
empirical or “random” ratio between the complete data
lod score (or log LR statistic) and observed lod score.
The estimated RI1 (which coincides with r = n0/n)
corresponds to a line going through the center of the
joint distribution (almost exactly), indicating it is a
good estimate for the expected ratio (or fraction of in-
formation) regardless of the values of the observed lod
score.

For a small departure (say, p = 0.55) from the null
hypothesis (p0 = 0.5), the LR test does not have great
power and the test statistics distribute close to zero. The
contour of the distribution intersects with lines whose
ratio values are shown to go as high as 13. This is nat-
ural given the observed data statistic can become very
small due to chance and create a highly variable ratio.
For values that are far away from the null hypothesis,
the estimated RI1 becomes more precise.

As illustrated above and in Figure 1, the unobserved
random missing values make the relative “empirical”
information a random quantity. It is instructive to eval-
uate the amount of variation in the complete data lod
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FIG. 1. Distribution of log likelihood ratio test statistics (or lod scores) given observed data and complete data. The contour plots display
the joint distribution of the log likelihood ratio test statistics given the observed data and the complete data. Given n0 = 800 and n = 1000,
the ratio between the complete data log LR and the observed data log LR is expected to be n/n0 = 1.25. In each contour plot, a dotted line
is plotted to indicate the y = 1.25x line. The gray broken lines display y = rx with r varying and provide reference for the empirical ratio of
the complete data log LR and the observed data log LR.

score. It is easy to obtain for the simple binomial ex-
ample that

var[lod(p1,p2;Yco)|Yob,p]
(2)

= (n − n0)p(1 − p)

[
log

p1

p2
− log

1 − p1

1 − p2

]2

.

Consider a null hypothesis that specifies the proba-
bility of success as p0 and let p be the true parameter
value. Let RIy(Yco, Yob;p,p0) be the empirical frac-
tion of information regarding the difference between p

and p0, for a set of Yco with only Yob observed (or the
ratio of the lod scores between p and p0 derived using
the observed data and the potential complete data). It is
easy to see that RI−1

y is a more natural relative infor-
mation ratio to use for evaluating overall relative infor-
mation in (1) and identifying optimal follow-up design.
From similar computation in (2), RI−1

y , conditioning
on Yob, has an expectation

ERI−1
y

= 1 + (n − n0)

[
p log

p

p0
+ (1 − p) log

(1 − p)

(1 − p0)

]

· (lod(p,p0;Yob))
−1

and variance

varRI−1
y = (n − n0)p(1 − p)

[
log

p

p0
− log

1 − p

1 − p0

]2

· (lod (p,p0;Yob)
2)−1.

In practice, we may substitute p with p̂ob and have

̂ERI−1
y estimated by RI−1

1 . Figure 2 gives the es-
timated standard deviation of RI−1

y with probability
density curves under different true values of p. When
the true value is close to the null hypothesis p0, RI−1

y

is highly variable, which will make the simple estimate
of RI−1

1 as an estimated expectation of RI−1
y a unre-

liable prediction of RI−1
y . A procedure incorporating

both ̂ERI−1
y = RI−1

1 and an estimated standard error
of RI−1

y should be considered to address the design
issues similar to that of (1).

IN SUMMARY

The paper by Nicolae, Meng and Kong provides in-
teresting evaluation strategies for relative information
discerning two hypotheses contained in observed data.
Such measures support the quantification of possible
information gain that can be brought by additional
observations, which can be used to optimally design
follow-up efforts. The measures RI1 and RI0 deserve
more research for further understanding. More impor-
tantly, theory and practice should be incorporated to
provide design suggestions that utilize relative infor-
mation such as RI1 and corresponding variability mea-
sures.
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FIG. 2. Estimated standard deviation of RI−1
y . For sample size n = 100,1000, we plot the estimated standard deviation of RI−1

y against
the observed number of successes x0. Density curves of observed number of successes x0 under different true p values are plotted.
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