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Rejoinder:

Microarrays, Empirical Bayes

and the Two-Groups Model

Bradley Efron

The Fisher—Neyman—Pearson theory of hypothesis
testing was a triumph of mathematical elegance and
practical utility. It was never designed, though, to han-
dle 10,000 tests at once, and one can see contempo-
rary statisticians struggling to develop theories appro-
priate to our new scientific environment. This paper is
part of that effort: starting from just the two-groups
model (2.1), it aims to show Bayesian and frequen-
tist ideas merging into a practical framework for large-
scale simultaneous testing.

False discovery rates, Benjamini and Hochberg’s in-
fluential contribution to modern statistical theory, is the
main methodology featured in the paper, but I really
was not trying to sell any specific technology as the
final word. In fact, the discussants offer an attractive
menu of alternatives. It is still early in the large-scale
hypothesis testing story, and I expect, and hope for, ma-
jor developments in both theory and practice.

The central issue, as Carl Morris makes clear, is the
combination of information from a collection of more
or less similar sources, for example from the expres-
sion levels of different genes in a microarray study.
Crucial questions revolve around the comparability and
relevance of the various sources, as well as the proper
choice of a null distribution. Technical issues such as
the exact control of Type I errors are important as well,
but, in my opinion, have played too big a role in the
microarray literature. The discussions today are an ap-
pealing mixture of technical facility and big-picture
thinking. They are substantial essays in their own right,
and I will be able to respond here to only a few of the
issues raised.

I once wrote, about the jackknife, that good sim-
ple ideas are our most precious intellectual commodity.
False discovery rates fall into that elite category. The
two-groups model is used here to unearth the Bayesian
roots of Benjamini and Hochberg’s originally frequen-
tist construction. In a Bayesian framework it is natural
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to focus on local false discovery rates, fdr(z), rather
than the original tail area version Fdr(z). My apologies
to Professor Benjamini for seeming to suggest that fdr
is more immune than Fdr to correlations between the
z-values. All false discovery rates are basically ratios
of expectations, and as such remain relatively unbiased
in the face of correlation. It is only the proof of the
exact Fdr control property that involves some form of
independence.

In the same spirit, I have to disagree that Fdr pro-
duces more reproducible results than fdr. Both meth-
ods operate at the mercy of an experiment’s power, and
low-power situations, such as the prostate cancer study,
are certain to produce highly variable lists of “signifi-
cant” cases. (At this point, let me repeat my plea for a
better term than “significant” for the cases found to be
nonnull, a dubious nomenclature even in classical set-
tings, and definitely misleading for large-scale testing.)

As suggested by Figure 2, there is no great concep-
tual difference between fdr and Fdr, nor have I found
much difference in applications. Table 1 says some-
thing about their comparative estimation accuracy. As
Professor Cai suggests, the statistician can combine the
two, using Fdr to select a reportable list of nonnull can-
didates, and fdr to differentiate the level of certainty
within the list. Here the two roles reflect Benjamini’s
distinction between decision theory and inference, that
is, between making a firm choice of nonnull cases and
providing an estimate of just how nonnull they are.

As an enthusiastic collector of reasons to distrust the
theoretical null distribution, I am happy to add pres-
election of cases to the list. Professor Benjamini cor-
rectly points out the dangers of this practice—among
other things, it deprives the statistician of crucial ev-
idence about the null distribution. If questioning the
theoretical null seems heretical, it is worth remember-
ing similar questions arising in classical ANOVA ap-
plications, for instance whether to use o2 (error) or
o2 (interaction) in assessing the main effects of a two-
way table. I share Benjamini’s preference for finding
the “right” theoretical null, but that is the counsel of
perfection, often unattainable in examples like the ed-
ucation data.
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Questions of exchangeability play a key role in large-
scale hypothesis testing, as emphasized in Professor
Morris’s nice essay. The answer to “Which problems
should be tested together?” is not always “All the ones
the investigator put on my desk.” A paper written after
this article, “Simultaneous inference: When should hy-
pothesis testing problems be combined?” (Efron, 2008)
attacks this problem without conquering it. As Mor-
ris points out, covariates like school size in the educa-
tion example may undercut exchangeability—the non-
null z-values for larger schools might lie farther away
from 0. My paper suggests how to incorporate covari-
ates into an efficient fdr analysis.

In this paper, only the paragraph following that
of (3.10) has anything to say about exchangeability.
(Notice that the local fdr puts less strain on exchange-
ability than tail-area Fdr since only the cases near some
particular value z are considered together.) For the ed-
ucation example we might be willing to accept ex-
changeability for the null z;’s, from simple binomial
calculations, though not for the nonnull cases. The in-
terpretation of the equivalent of “2.68/17” in the para-
graph following (3.10) could thus be modified in a
Bayesian way to assign greater nonnull probability to
the larger schools.

Morris’ Section 3 is especially pertinent. His for-
mula for p(u|z) is related to my discussion of the
Benjamini—Yekutieli False Coverage Rate method in
Section 7, particularly (7.2)—(7.4). Originally I had
hoped to develop an empirical Bayes method for esti-
mating such models, but the effort foundered on prac-
tical difficulties involving the perils of deconvolution.

Section 6 on the “one-group model” is the ugly duck-
ling of the current paper, but it bears on some impor-
tant points raised in the discussion. Figure 7 concerns
a fuzzy version of simultaneous hypothesis testing,
where, as in Morris’ hospital example, the usual single-
point null hypotheses seem unequal to the task. The
development from (6.6) onwards, particularly (6.12),
bears on the possibility of nonnormal null distributions,
and is about as far as I can go in answering Professors
Rice and Spiegelhalter’s penultimate question.

With g(u) a normal distribution, model (6.1) returns
us to the realm of Stein estimation, the scene of my
happy collaborations with Carl Morris. I continue to
be surprised at how much harder bumpy, nonnormal
models like (7.1) are to deal with. James—Stein esti-
mation works fine with, say, N = 10 component prob-
lems, while the Robbins’ form of empirical Bayes ap-
propriate to (7.1) seems to require hundreds or thou-
sands. The information calculations in Efron (2008)

reinforce this gloomy assessment. Maybe I am trying
to be overly nonparametric in constructing the empir-
ical Bayes Fdr estimates, but it is hard to imagine a
generally satisfactory parametric formulation for (6.1).
Or perhaps it is just that hypothesis testing is more de-
manding than estimation.

Rice and Spiegelhalter propose an attractive algo-
rithm: rather than modeling the marginal density f(z)
as in (3.6), they suggest directly modeling fdr(z). The
resulting Huber form for f(z) has a pleasant appear-
ance, and I was relieved to see their results agreeing
with mine.

The Rice—Spiegelhalter model involves only two
free parameters, k, and kp, as opposed to seven in (3.6).
I doubt that two will be enough to cover a general
range of applications, but would be happy to be proved
wrong. For example, it might sometimes be necessary
to have different exponential rates of decay in the two
tails, rather than forcing them to be the same. [Perhaps
I am just trying to lob the “ad hoc” accusation back into
Rice and Spiegelhalter’s court. Equations (3.4)—(3.6)
describe a standard Poisson regression model; users of
locfdr can select the degree of the regression, seven be-
ing only the default.] In any case, the direct modeling
of fdr(z) is a promising new route of attack.

“Efficiency” in Professor Cai’s essay is what I called
“power” in Section 3, a somewhat neglected aspect of
multiple testing that now seems to be attracting atten-
tion. My diagnostic E farM, (3.9), is trying to estimate
the power parameter

1 — /fnr(z) - fi(z) dz,

where fnr(z) is the “local false nondiscovery rate” 1 —
fdr(z), to use Cai’s terminology. See Efron (2007).

Usually f/d\r(z) declines monotonically as we move
away from z = 0 in either direction, so that in each
tail f/d\r(zi) orders evidence against the null in the same
way as the p-value, p;. The ordering can be differ-
ent, however, if we try to compare evidence across the
two tails. Cai’s results, with Sun, show that it is better
to define the decision boundary in terms of fdr-values
than p-values, for example by fdr(z;) < 0.2 rather than
using a p-value cutoff. This nicely reinforces the util-
ity of the Bayesian quantity fdr(z) (2.7) for frequentist
decision-theoretic calculations.

Jin and Cai have a quite different method for em-
pirical null estimation, based on Fourier analysis. This
moves in the opposite direction from Rice and Spiegel-
halter, more nonparametric rather than less, and again
seems to give good estimates.
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Large-scale statistical inference blurs the line be-
tween Bayesians and frequentists: Bayesian informa-
tion accumulates, and cannot be ignored, but the ac-
cumulation itself favors the use of frequentist tactics.
The definition of “empirical Bayes,” if there is one, lies
somewhere in the realm of Bayesian—frequentist coop-
eration. Morris points out that this broad-sense defini-
tion of empirical Bayes was too wide for Robbins, and
maybe for him too, but it is probably enough for the
methodological goals of this paper.

My thanks go to the discussants, and also to the ed-
itor Ed George for organizing a session on this lively
topic.
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