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1. Introduction

The analysis of phenomena, which evolve over time is a common problem to
many fields like engineering, physics, biology, statistics, economics and finance.
A time varying system can be represented through a dynamic model, which
is constituted by an observable component and an unobservable internal state.
The hidden states (or latent variables) represent the information we want to
extrapolate from the observations.

In time series analysis, many approaches have been used for the estimation of
dynamic models. The seminal works of Kalman (1960) and Kalman and Bucy
(1960) introduce filtering techniques (the Kalman-Bucy filter) for continuous
valued, linear and Gaussian dynamic systems. Maybeck (1982) motivates the use
of stochastic dynamic systems in engineering and examines the estimation prob-
lems for state space models, in both a continuous and a discrete time framework.
In economics, Harvey (1989) studies the state space representation of dynamic
structural models and uses Kalman filter for hidden states filtering. Hamilton
(1989) analyzes nonlinear time series models and introduces a filter (Hamilton-
Kitagawa filter) for discrete time and discrete valued dynamic systems with a
finite number of states.

In this paper, the online data processing problem is considered. In these sit-
uations, as pointed out by Liu and Chen (1998), Markov Chain Monte Carlo
(MCMC) samplers are much too time demanding. To overcome this difficulty,
some sequential Monte Carlo techniques have been recently developed.
Doucet et al. (2001) provide the state of the art on these methods. They discuss
both applications and theoretical convergence of the algorithms.

The contribution of this work is the comparison of three types of regularized
particle filters - the regularized Sequential Importance Sampling (SIS), the reg-
ularized Sampling Importance Resampling (SIR) and the regularized Auxiliary
Particle Filter (APF) - when the model parameters are unknown. The online es-
timation of model parameters is a difficult task Kitagawa (1998); Storvik (2002);
Berzuini and Gilks (2001); Fearnhead (2002); Djuric et al. (2002); Storvik (2002);
Andrieu and Doucet (2003); Doucet and Tadic (2003); Polson et al. (2002). We
consider here the Bayesian paradigm and the regularization (see Chen and Haykin
(2002)) approach of Oudjane (2000); Liu and West (2001); Musso et al. (2001);
Rossi (2004) based on a kernel approximation in the parameter-augmented state
space. We also discuss the initialization of the filtering procedure.
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This work is structured as follow. Section 2 introduces the general represen-
tation of a Bayesian dynamic model and presents the Stochastic Volatility (SV)
model. Section 3 reviews some regularized particle filters, presents their applica-
tion to the stochastic volatility model and discusses some methodological issues.
Finally, Section 4 gives the results.

2. Bayesian dynamic models

We introduce the general formulation of a Bayesian dynamic model and show
some fundamental relations for Bayesian inference on it. Our definition of dy-
namic models is general enough to include the models analyzed in Kalman
(1960), Hamilton (1994), Carter and Kohn (1994), Harrison and West (1989)
and in Doucet et al. (2001). Throughout this work, we use a notation similar to
that one commonly used in particle filter literature (see Doucet et al. (2001)).

We denote by {x;; t € N}, x;, € X C R"=, the hidden states of the system, by
{y+; t € No}, yr € Y C R™, the observable variables and by {0,; t € N}, 6, €
O C R"¢, the parameters of the model. We denote by x¢.; = (X0, . .., x¢) the col-
lection of hidden states up to time ¢ and with x_; = (x0, ..., X¢—1, X¢41, - -, XT)
the collection of all hidden states without the ¢-th element. We use the same
notations for the observable variables and parameters.

The Bayesian state space representation of a dynamic model is given by:

vi ~ p(yelxe, 00 y1:6-1) measurement density ,
(x¢,0;) ~ p(x¢,0¢]%0:0—1,00:0—1,Y1:6—1) transition density ,
xo ~ p(x0|6o) initial density
6y ~ w(09) prior density ,
fort=1,...,T.

In the following we suppose that
P(Xt, 0¢[%0:¢—1,00:0—1,Y1:0-1) = D(Xt, Ot Xt —1,0; 1) -

We also assume that the parameters are constant over time: the transition den-
sity of the parameters is then dg, ,(0;) with initial value 8y = 0, J,(y) denotes
the Dirac’s mass centered in x.

In that case, the joint transition of hidden states and parameters is:

p(Xt, 0t|Xt71; otfl) = p(Xt|Xt71, Ot)lset,l (ot) .

Let us denote by z; = (x¢, 8;) the parameter-augmented state vector and by
Z the corresponding augmented state space. For such models, we are interested
in the prediction and filtering densities which are given by:

p(zey1ly1e) = /p(xt+1|xta0t+1)59t(0t+1)p(zt|Y1:t)dZta (2.1)
Z

p(Yt+1|Zt+1, Y1:t)p(Zt+1|Y1:t) (2 2)
P(yet1ly1:t)

P(Zet1|Y1e41) =
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Due to the high number of integrals that must be solved, previous densities may
be difficult to evaluate with general dynamics. Some Monte Carlo simulation
methods, such as particle filters, allow us to overcome these difficulties.

As an example, let us consider the SV model. Two of the main features of
the financial time series are time varying volatility and clustering phenomena in
volatility. SV models widely used in finance have been introduced, in order to
account for these features. Let y; be the observable variable with time varying
volatility and z; the stochastic log-volatility process. An example of SV model is:

wlee ~ N(0,¢")
x|Ti—1,0 ~ N(a+¢$t71,02)
wl0 ~ N (0,0%/(1- )
0 ~ =(0)

where 0 = (a, log((1+¢)/(1—¢)),log(c?)). The choice of 7(8) will be discussed
in Section 3.5. Figure 1 shows two simulated paths of 3, and x;. The paths cor-
respond to different parameter settings, which can be usually found in financial
applications. The first one is: & = 0, ¢ = 0.99 and 02 = 0.01 and corresponds
to the case the data are sampled at a daily frequency. The second one is: a = 0,
¢ =0.9 and 02 = 0.1, and corresponds to a weekly sampling frequency.

In the next section, we deal with the problem of parameter and states joint
estimation in a kernel-regularized sequential Monte Carlo framework.
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Fic 1. Simulated paths for x¢ (red line) and y; (black line). Upper plot: daily dataset (a =0,
¢ = 0.99 and 02 = 0.01). Bottom plot: weekly dataset (=0, ¢ = 0.9 and o2 = 0.1).
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3. Regularized particular filters

For making inference on the Bayesian dynamic model given in Section 2 in an
online data processing context, MCMC algorithms are much too time demand-
ing. Sequential importance sampling and more advanced sequential Monte Carlo
algorithms called Particle Filters (Doucet et al., 2001) represent a promising al-
ternative. The main advantage in using particle filters is that they can deal with
nonlinear models and non-Gaussian innovations. In contrast to Hidden Markov
Model filters, which work on a state space discretized to a fixed grid, parti-
cle filters focus sequentially on the higher density regions of the state space.
This feature is common to one of the early sequential methods, the Adaptive
Importance Sampling algorithm due to West (1992, 1993).

Different particle filters exist in the literature and different simulation ap-
proaches like rejection sampling, MCMC and importance sampling, can be used
for the construction of a particle filter. In this work, we present some kernel-
regularized particle filters, which combine the importance sampling reasoning
with a suitable modification of the importance weights. The regularization ap-
proach we use is the same than the one of Liu and West (2001) and Musso et al.
(2001). This approach relies upon a kernel-based reconstruction of the empirical
filtering densities which produces a systematic modification of the true impor-
tance weights.

3.1. Regularized SIS

Let us start from the non-regularized SIS. We assume that at iteration ¢ > 0 a
properly weighted particle set {x?,0!, ~/}N |, approximating the filtering den-
sity p(x¢, 0¢]y1.¢), is available. The empirical distribution corresponding to this
approximation is:

N
PN (X0, 01ly10) = D V0 00 (%1, 02) (3.1)

=1

The particles set, {x}, 0,7/} |, can be viewed as a random discretisation of the
state space X x © with associated probability weights {7}~ ,. Thanks to this
discretisation, it is possible to approximate the prediction and filtering densities
given in (2.1) and (2.2):

N
PN (Xe1,0crlyre) = Y ip(xiga|x}, 0111)06: (0141),
1=1
N . .
PN (Xe415 O |yreen) o< D Vip(Ver[Xep1, 0er1)p(xes1[%}, 0141)0g: (0141) -
1=1

The goal is now to obtain N particles {x}, 1,0} 1,7i,;}N, from the filtering
density in (2.2). It is proposed to sample (x},,8; ) according to the impor-
tance density q(-|x}, 8}, y1..+1). The importance weight of particle (x,;, 6} ;)
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is then calculated using the recursive formula:

i iP(Yt+1|X§+1a91+1)p(xi+1|xia 1+1)59;’( t+1)
Vi+1 XVt 7 i i i
Q(XtJrla 0t+1 Ixi, 07,y 41)

(3.2)

The choice of an optimal importance density q(:|x}, 8%, y,11), that is, a den-
sity which minimizes the variance of the importance weights is discussed in
Pitt and Shephard (1999) and Crisan and Doucet (2000). In many cases, it is
not possible to use this optimal importance density as the weight updating asso-
ciated to this density does not admit a closed-form expression. In that case, the
transition density of the parameter-augmented state vector represents a natural
alternative for the importance density. Indeed, the transition density represents
a sort of prior at time ¢ for the parameter-augmented state vector (xi_, 6}, ;).

In our case, due to the presence of the Dirac point mass in the numerator of
the weights it is impossible to modify over the filtering iterations the particle
values for the parameters. In practice due to the loss of particle diversity in the
parameter space, the weights will tend to zeros and of course stay zero forever,
so we are facing a problem of degeneracy of the empirical filtering distribution.
This scenario motivates particle filtering methods known as regularized particle
filters. In order to avoid the degeneracy problem and to force the exploration of
the parameter space toward regions which are not covered by the prior distribu-
tion, Liu and West (2001) and Musso et al. (2001) propose to use a regularized
version of the filtering density. This approach results in the modification of the
weights in (3.2) and the definition of a new set of weights:

Wi wip(Yt+1|Xf&+1a 0, )p(x; 41 [x5, 01 1)Ky (011 — (ab] + (1 — a)by))
t+1 t : . —
‘I(Xiﬂa 91+1 X}, 0%, yiq1)

where a € [0, 1] is shrinkage factor, 8; is the empirical mean over the particle
set at the time t and Kj,(y) = h~¢K(y/h) is a regularization kernel, K being a
positive function defined on R™® and h a positive smoothing factor (bandwidth).

The modification of the importance weights defined in (3.2) results from two
steps. The first one is the regularization of the empirical density in (3.1) by a
kernel estimator:

N
P (%4, 0i|y1:) = Zwiisxg (x1)Kn (6 — (a8 + (1 —a)by)) .
1=1

The second one is the application of an importance sampling argument to the
approximated filtering density:

N
PR (X1, Oralyresn) = D wip(yea|Xer1, Or41)p(Xes[x}, 0e11)
i=1
X Kh (0t+1 — (CLO; + (1 — Cl,)ét)) .
The convergence results associated with this type of approximation are re-

called in (Doucet et al., 2001), Musso et al. (2001) and Oudjane (2000). Under
some regularity conditions on the kernel, when the number of particles increases
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to infinity, the regularized empirical density converges to the right one for vari-
ous criteria. For instance, we have pﬁ — 2 P.

Thanks to this approximation, the regularization kernel becomes the natural
choice for the parameters proposal distribution. Thus, we sample (x},4, 6, )
according to:

q(xe411x7, 0r 11, yi41) K (0r41 — (a8; + (1 —a)8y)) .

In that case, we have:

W o Wb p(Yt+1|Xi+1, 0i+1)p(xi+1|xi, 0i+1)
t+1 t : e .
Q(Xhl |}, 0§+1a Yit1)

In Algorithm 1, we give a pseudo-code representation of this method.

Algorithm 1. - Regularized SIS Particle Filter -
- At time t = to, fori=1,..., N, simulate zj, ~ p(zs,) and set w; =1/N
At time to <t <T — 1, given {x}, 0L, W}, fori=1,...,N:

1. Simulate 0, ~ K, (Or41 — (a@! + (1 — a),))

2. Simulate Xy ~ q(Xe41/x}, 0141, Yer1)

. . xi,,,0° xi,, |xt, 6!
3. Update the weights: wi,, o w] p(yes1] tJirl tjl)f)( ir1lxt6i41) '
Q(Xt+1|xta 011, Vis1)

Let us consider the SV model presented in Section 2.

Given the initial weighted random sample {xiO,Oio,wio}il, where 6;, =
(v, log((1+64,)/(1—=01,)), log(07, ), if we use the transition density as proposal
distribution for the hidden states, the regularized SIS performs the following

steps, for tg <t <T —1andfori=1,...,N:

(i) Simulate OiJrl ~ j\/(a@i—i—(l —a)ét,h2‘/t) where V, and 0, are,
respectively, the empirical covariance matrix and the
empirical mean, a € [0,1] and h% = (1 —a?),

(ii) simulate z},, ~ N (aj,, + ¢j 2}, (0?)

(ii) Update the weights as follow

1+1) ’

. . 1 . .
Wy O Wy €Xp {—5 [Yis10xp (—2p41) + Ti4a) } :

In the following we call SIS the previous scheme.

3.2. Regularized SIR

As it is well known in the literature (see for example Arulampalam et al. (2001)),
basic SIS algorithms have a degeneracy problem. After some iterations the em-
pirical distribution degenerates into a Dirac’s mass on a single particle. This is
due to the fact that the variance of the importance weights is non-decreasing
over time (see Doucet et al. (2000)). In order to solve this degeneracy problem,
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Gordon et al. (1993) introduce the SIR algorithm. This algorithm belongs to a
wider class of bootstrap filters. At each iteration, a resampling step is used to
generate a new set of particles. After this resampling step, the weights of the
resampled particles are uniformly distributed over the particle set.

In the initial SIR, the resampling step is done at each iteration of the algo-
rithm. This systematic resampling can introduce extra Monte Carlo variations,
see Liu and Chen (1998). This can be reduced be doing resampling only when
the Effective Sample Size (ESS) is small. The ESS measures the overall efficiency
of an importance sampling algorithm. The ESS is a function of the coefficient
of variation of the importance weights. At iteration ¢, the empirical ESS is:

N

N N 2 N
1+Nz<w§—]\]lzwi> /(Zwé)
i=1 i=1 i=1

In Algorithm 2, we give a pseudo-code representation of this method.

ESS; =

3 -

Algorithm 2. - Regularized SIR Particle Filter -
- At time t = to, fori=1,..., N, simulate zj, ~ p(zs,) and set w; =1/N
- At time tg <t <T — 1, given {x},0%, Wwi}N,, fori=1,...,N:

1. Simulate 0, ~ K, (Op41 — (a@! + (1 — a)6y))

2. Simulate Xf&+1 ~ q(Xpy1[x5, é;rla Yi+1) _ _
s ~1 s .o~
tp(yt+1 |X§+1a 0t+1)p(xi+l X}, 0t+1)

i . Y

_ _ Q(X§+1|X§a 0t_+1a Yt_+1) _

4. If ESSs1 < K, simulate {x},, 01+1_}ij\;1 Jrom {x 4, 01+1,w§+1}ij\;1
(Multinomial resampling) and set wi,, = 1/N.

3. Update the weights: wiJrl X w

Let us consider the SV model presented in Section 2. Given the initial weighted
. . N

random sample {x@o, 010,(.«)@0}1.:1, if we use the transition density as proposal

distribution for the hidden states, the regularized SIR performs the following

step, fortg <t <T —1and fort=1,...,N:

(i) Simulate OiJrl ~ J\/(a@i—l— (1 —a)8,;,h?V;) where V; and 6, are
the empirical covariance matrix and the empirical mean
respectively and a € [0,1] and h* = (1 —a?),

(ii) simulate zf , ~ N (af,, + ¢i 2l (0?)

(ii) Update the weights

1+1) ’

. . 1 . .
Wiyq OC Wy exp {—5 [yt2+1 exp{—Ti;q1 ) + xiﬂ] } )

. ; N
(v) If ESSi41 < k, simulate zj; ~ > w€+15zz+l(zt+1) and set
wij,, =1/N.
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If kK = N, the resampling step is done all the time. In that case, we call SIR
the previous scheme. The value of k < N should be calibrated depending on the
problem. After some numerical experiments, we have found that a good value
for k is kK = 0.9 x N. In that case, the resampling step is done at regular time
intervals and we called SIR-r the resulting algorithm.

3.3. Regularized APF

Due to the resampling step, the basic SIR algorithm produces a progressive im-
poverishment (loss of diversity) of the information contained in the particle set.
To overcome this difficulty, many solutions have been proposed in the literature.
We refer to the APF due to Pitt and Shephard (1999) and to the regularized
APF algorithm due to Liu and West (2001). In order to avoid the resampling
step, the APFs use the particle index (auxiliary variable) to select most rep-
resentative particles in the proposal of the new particles. The regularized joint
distribution of parameter-augmented state vector and the particle index is:

PR (X1, 01,8 y1:41) < P(Yerr [Xes1, Ori1)p(Xes1]x), 6))
X Kh (0t+1 — (0101 + (1 — Cl,)ét)) U}z .

A sample approximating that distribution can be obtained by using the pro-
posal:

Q(Xi}la 01+1aji|}’t+1) = p(xi+1|xg a01+1)
X Kn (01 — (a0] +(1- a)0:))a(j'|ye+1)

where _ y y .
q(7'[ye41) < D(Yerrlppy, mi g )wi

i

1l 41 and m{ll are evaluated using the initial particle set. Therefore, the im-
portance weight of particle (x} 1,0, ;") is:

P(yes|xii1,0511)

p(YtJrl |N§+1, ngrl)

In Algorithm 3 we give a pseudo-code representation of the regularized APF.

i
Wit

Algorithm 3. - Regularized Auziliary Particle Filter -
- At timet = to, fori=1,..., N, simulate z;, ~ p(z,) and set wi, = 1/N
- At time tg <t < T — 1, given {x},0;,wi}N  fori=1,... N:
1. Simulate j° ~ q(jly1441) with j € {1,..., N} (Multinomial sam-
pling) where ,u{Jrl = E(xy41]%], 0{) and m{Jrl =TE(0,,1]6)
2. Simulate ), ~ K, (Or41 — (CLO{I +(1-0a)8y))
3. Simulate X} | ~ p(xt+1|x{i, 0;.,)
P(yer1|xi1,041)

p(}’t+1|,ug+1, miﬂ)

4. Update particles weights: wiJrl x
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We can say that, in the APF, the selection step is done before simulating the
hidden states. This selection depends on the current value of the observable.
Therefore:

e the APF is a standard way to construct a proposal distribution for the
hidden states that depends on the current value of the particle;

e as we will see after, to use this selection step and the transition distribution
as proposal distribution for the hidden states, results in a good proposal
distribution.

When applied to the SV model and given the initial weighted random sample
{2} ,6] i O}j\il the regularized APF performs the following steps, for tg < t <
T—1andfori=1,...,N:

s y . N .
(i) Simulate j' ~ q(j) oc Yp_; wEN (Yerlpfy1)0k(j) where iy, =
ko.k k
t Ty g, )

(ii) Simulate 6, NN(CLO{ + (1 —a)8;,h?V;) where V; and 6, are
the empirical variance matrix and the empirical mean
respectively and a € [0,1] and h* = (1 —a?),

(iii) Simulate x), ., ~ N (ziq1|afy + ¢ @) (02);1) ,

(iv) Update the weights

Wiqq X €Xp {—5 |:y?+1 (eXP{—th} - eXP{—Hiﬂ}) + T — 1“‘%+1:| } .

Note that, following Pitt and Shephard (1999), one could alternatively use in
the selection step a value of uf' ; based on the Taylor expansion of the likelihood
at time ¢t + 1. The parameter a is fixed following the usual optimal criterion.

3.4. Proposal distributions

In the APF algorithm the proposal distribution q(xi_ 1,8}, ,j'|yi+1) depends
on the current value of the observable variable. The information coming from
y¢+1 could help to improve the filtering procedure and is not used in the current
version of the SIS and SIR algorithms. Thus, instead of the transition density
p(Xt41, Ory1|xt, 01), we suggest for SIS and SIR algorithms an alternative pro-
posal distribution which depends on the current value of the observable.

For the SV model at hand we resort to the approach proposed by Shephard
and Pitt (1997) for building the proposal distribution of a M.-H. algorithm for
the hidden states of a similar SV model.

We consider the quadratic Taylor expansion of the term exp(—z;) which
appears in the conditional density (see also Celeux et al. (2006)):

p($t|$1:t71,y1:t, a, ¢, 02) S

exp {—L(xt —a— (bxt,l)Q -

N~

952 (z¢ + y7 exp(—xy)) } : (3.3)
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Let my = a + ¢x4—1, then the second-order Taylor approximation about my
allows us to approximate the second term in Equation 3.3 as:

(3.4)

that is proportional to the density of a Gaussian distribution with mean:

1 1 1\ /1 1 !
(o= ot eplm+mo) = 3 ) (5 + prewt-m)) 69

and variance:

(% + %y? exp(—mt)> B : (3.6)

The use of this Gaussian distribution as proposal defines new SIS and SIR
algorithms which will be respectively denoted by SIS-p and SIR-p.

3.5. Initialization of the filters

The initialization represents a crucial step in applying particle filters in pres-
ence of unknown parameters. Classically, in the Bayesian paradigm, if the prior
distribution of the parameters is proper, this distribution is used to initialize
the filters (that corresponds to the case tg = 0). If the prior distribution is
improper, we have to start the filter with an initial set of ¢y observations, such
that the posterior distribution is well defined and to chose an importance sam-
pling distribution to create a first properly weighted sample. This choice could
be delicate. Indeed, even if the regularized particle filters have some theoretical
stability properties with respect to the initial step, in our simulation experi-
ments, we observed that a bad initialization can lead to poor performances in
terms of filtering and parameters estimation. The initialization of particle filters
in presence of unknown parameters have not yet been discussed in the literature.

To avoid the difficulty presented above, whatever the prior distribution is,
we propose to initialize the filters with ¢y > 0 observations and to use a long
MCMC run to create a sample with uniform weights:

{Xioa Oi[)’ I/N}i]il .

For the Stochastic Volatility model, we consider the case with no prior infor-
mation on the process of interest, that is a noninformative case. In this setting,
we use an improper prior distribution that does not depend on any hyper-
parameters. For the parameters 32, ¢ and o2, we assume the prior

7T(62a (ba 02) X 1/(06)}1(71,1)(@5) y
where (32 = e,
That gives:
m(0) = m(log(6%),log((1 + ¢)/(1 — ¢)), log(c?)) = 7(61, 02, 03)
exp(61/2 + 02 +03/2)/ (1 — exp(62))?.
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This noninformative prior distribution has been introduced by Celeux et al.
(2006): the parameter ¢ is constrained in the open interval (—1,1) (in order to
impose the usual stationarity condition) and Jeffrey-like priors are used for the
variance parameters 3% and 2. For such an improper prior distribution, the
posterior distribution is well-defined when the number of observations is greater
than 2.

For the SV model, given the initial set of ¢ty > 2 observations and the prior
presented above, we obtain the following full conditional distributions:

Gl ~ IG (iy?exp(—xt)/% (to—l)/2>,

t=1

o2~ IG (Z(xt —pxi_1)%/2 + 23(1 — ¢?), (to — 1)/2> )

t=2
to—1 to
m(p|--) o« (1—¢>)Y2exp <_¢2 > af - 2¢me1> /20%L(—1 4+1)(9),
t=2 t=2

m(xe] ) o exp {—% ((xt —a—¢xpq)*—

(T2 — a — pxy)?) — % (2 +v7 eXP(—xt))} :

The full conditional distributions of ¢ and x; are not conventional and the
standard Gibbs does not apply. We propose to use the Metropolis-Hastings
within Gibbs algorithm studied in Celeux et al. (2006). A detailed description
of the proposal distributions for ¢ and z; can be found in Celeux et al. (2006). In
that paper, the authors compare this MCMC scheme to an iterated importance
sampling one. Note that one could alternatively use this iterated importance
sampling algorithm to create a first weighted sample for the filters.

In our experiments we focus on the performances of the filters when there are
well initialized. To this aim we use tg = 100 observations in the initialization
step.

4. Simulation results for the SV model

In this section, we compare the regularized particle filters discussed in Section 3.
First, in order to introduce some basic facts that characterize the behavior of
the filters, we study their performances on the basis of single-run experiments.
Secondly, we carried out a wider set of experiments based on multiple runs for
a lot of different parameter settings.

4.1. Single-run results

The results of a typical run of the regularized SIS on the synthetic dataset in
Figure 1, with NV = 10,000 particles and ¢y = 100 for the Gibbs initialization,
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kernel density estimates of the posteriors based on a long MCMC run (red line) and the
regqularized APF empirical posteriors (histograms).

are given in Figures 2-5. We can see (first row of the left chart in Figure 2) that
after a few iterations the filtered log-volatility does not fit well to the true log-
volatility. The poor performance of the regularized SIS is due to the fact that the
empirical posterior of the states and parameters degenerates into a Dirac’s mass
after a few iterations. The ESSs in the right chart of Figure 3 show that the reg-
ularized SIS degenerates after 30 iterations in both the daily and weekly cases.

We measure sequentially the filtering performance of the regularized SIS by
evaluating the cumulated root mean square error (RMSE). It measures the
distance between the true and the filtered states and is defined as:

=

1 t
RMSEt — ; Z(iu - Zu)Q} 9
u=1
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where z; is the filtered state, which also includes the parameter sequential es-
timates. The cumulative RMSEs stabilize rapidly over time in both daily and
weekly datasets (see upper and bottom plots in the left chart of Figure 3).

We apply the regularized SIR-r-p and APF with N = 10,000 and ¢t = 100
to the weekly and daily datasets of Figure 1 and obtain the results given in
Figures 2-5. The regularized SIR-r-p and APF outperform the regularized SIS in
terms of effective sample sizes and cumulated RMSEs. The effective sample sizes
can detect the degeneracy in the particle weights, but are not useful to determine
the presence of another form of degeneracy, that is the absence of diversity in
the particle values. The histogram of the empirical filtering distribution allows
us to detect this second form of degeneracy.

As our work deals with the sequential estimation of the parameters, we focus
now on the parameters posteriors. In both the daily and the weekly cases the
empirical posterior of the regularized SIS and SIR-r-p degenerates into a Dirac’s
mass, while the regularized APF posterior does not degenerate.

We report in the right chart of Figure 3 the histograms of the regularized
APF posteriors and the approximate posteriors (continuous line) based on a
long MCMC run. We use the same Metropolis-Hastings within Gibbs algorithm
that we apply in the initialization step of the filters. Note that the regularized
APF is not affected by the strong degeneracy which characterizes instead the
other filters. In particular we note that in the regularized SIR-r-p algorithm, the
degeneracy of the empirical posterior appears after few iterations. See Figures 4
and 5 for a comparison of the regularized SIR-r-p and APF along the iterations.

4.2. Multiple-run results

To confirm the single-run results, we consider a lot of different parameter settings
and compare some performances of the seven regularized algorithms: SIS, SIS-p,
SIR, SIR-p, SIR-r, SIR-r-p and APF. For each parameter setting we generate
50 independent datasets.

We first compare the algorithms in terms of hidden states filtering. We use the
cumulative RMSEs at the last iteration of the filters. Naturally, the cumulative
RMSEs are estimated by averaging the RMSEs over the 50 independent runs.
The results are summarized in Table 1. Figures 6 and 7 show the evolution of
the cumulative RMSEs over the filters iterations for the 50 datasets generated
with the two most interesting parameter settings: the weekly setting (o = 0,
¢ =0.9 and 02 = 0.1) and the daily setting (o = 0, ¢ = 0.99 and o2 = 0.01).

All the results show that the regularized SIR-r-p and APF outperform the
other algorithms. Moreover, the regularized APF sensibly outperforms the reg-
ularized SIR-r-p for relatively small values of o2, i.e. 0.1 and 0.01, over different
values of the persistence parameter ¢. In a context of high volatility persistence
(i.e. ¢ equal to 0.9 or 0.99), the difference between the performances of the two
algorithms decreases as o2 increases.

We then compare the algorithms in terms of parameter estimation. As mea-
sure of performances, we use the mean square errors for the parameters «, ¢
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At the last iteration of the filters, cumulative root mean square errors estimates using the

50 independent runs

Root Mean Square Error (for a = 0)

Grid on ¢
(¢,0%) SIS SIS-p SIR SIR-p SIR-r SIR-r-p APF
(0.1,0.1) 0.72933 0.51180 0.32873 0.34046 0.35047 0.35129 0.33251
(0.3,0.1) 0.91218 0.58701 0.37109 0.36331 0.34601 0.35111 0.35193
(0.5,0.1) 0.84856  0.66223 0.39764 0.38378 0.36792 0.38284 0.36264
(0.7,0.1) 0.88831 0.68257 0.44713 0.43600 0.48886  0.44521 0.41832
(0.9,0.1) 1.09917 0.84238 0.64995 0.63394 0.61935 0.63096 0.57241
(0.99,0.1) 1.19800 1.11601 1.04905 0.90219 0.84267 0.76512 0.76991
(0.1,0.01) 0.84167 0.56347 0.16680 0.14070 0.19127 0.17083 0.12650
(0.3,0.01) 0.84654  0.56747 0.18419 0.17122 0.19963 0.16366 0.13955
(0.5,0.01) 0.84801 0.61379 0.17655 0.17236 0.17964 0.17130 0.15395
(0.7,0.01) 0.85362 0.72914 0.19182 0.23104 0.25719 0.22406 0.17383
(0.9,0.01) 0.86194 0.77001 0.26563  0.25503 0.27645 0.26479 0.23717
(0.99,0.01) | 1.06134 0.81632 0.59902 0.58653 0.57693 0.63302 0.44511
Grid on o2
(¢,02%) SIS SIS-p SIR SIR-p SIR-r SIR-r-p APF
(0.9,0.01) 0.86194 0.77001 0.26563  0.25503 0.27645 0.26479 0.23717
(0.9,0.1) 1.09917 0.84238 0.64995 0.63394 0.61935 0.63096 0.57241
(0.9,0.3) 1.31495 1.2636  0.90018 0.88380 0.92874 0.87206 0.86916
(0.9,0.5) 1.53640 1.41958 1.08581 1.08485 1.11529 1.09327 1.09150
(0.9,0.7) 1.73480 1.53763 1.41561 1.39923 1.32798 1.39163 1.31295
(0.9,0.9) 1.91470 1.80927 2.04841 2.00359 2.08913 1.91549 1.55934
(0.99,0.01) | 1.06134 0.81632 0.59902 0.58653 0.57693 0.63302 0.44511
(0.99,0.1) 1.19800 1.11601 1.04905 0.90219 0.84267 0.76512 0.76991
(0.99,0.3) 1.52260 1.30912 1.15329 1.08760 1.00661 1.12514 1.05234
(0.99,0.5) 1.70912 1.68504 1.50314 1.43112 1.34881 1.41008 1.49683
(0.99,0.7) 2.01121 1.90713 1.81290 1.75030 1.73903 1.81161 1.68995
(0.99,0.9) 2.30941 2.30941 2.10651 2.09197 2.01498 2.12914 1.97058

TABLE 2

At the last iteration of the filters, mean square errors estimates using 50 independent runs

Daily Data (o =0, ¢ = 0.99 and o2 = 0.01)
6 SIS SIS-p SIR SIR-p SIR-r SIR-r-p APF
« 0.09140 0.00773 0.01154 0.01021 0.00726 0.01234 0.00201
(0.10115)  (0.00831)  (0.01196)  (0.00974)  (0.00868)  (0.01321)  (0.00247)
o) 0.70080 0.71982 0.14037 0.19391 0.14196 0.12992 0.01051
(0.42131)  (0.43980)  (0.11816)  (0.15843)  (0.12097)  (0.12567)  (0.00721)
o2 0.88194 0.87814 0.00668 0.00670 0.00662 0.00677 0.00572
(0.07652)  (0.08774)  (0.00097)  (0.00061)  (0.00075)  (0.00020)  (0.00158)
Weekly Data (o =0, ¢ = 0.9 and o2 = 0.1)
6 SIS SIS-p SIR SIR-p SIR-r SIR-r-p APF
« 0.00317 0.00401 0.00571 0.00493 0.00555 0.00737 0.00054
(0.00462)  (0.00493)  (0.00814)  (0.00753)  (0.01027)  (0.01074)  (0.00067)
o) 0.52602 0.54642 0.04975 0.07910 0.04520 0.06314 0.00124
(0.40102)  (0.41621)  (0.07248)  (0.07592)  (0.07975)  (0.08494)  (0.00174)
o2 0.70171 0.70212 0.00017 0.00009 0.00010 0.00009 0.00009
(0.05895)  (0.05756)  (0.00011)  (0.00008)  (0.00004)  (0.00005)  (0.00007)

and o? at the last iteration of the filters. For each parameter setting, the mean
square errors has been estimated using 50 independent runs of the filters. Table 2
gives the results. The regularized APF clearly outperforms the other filters.
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FiG 6. Datly datasets: average cumulative root mean square errors between the true and the
filtered log-volatility (red line) using 50 independent runs. The grey area represents the area
between mazimum and minimum cumulative root mean square errors.

5. Conclusion

In this work we illustrate the kernel regularization technique for particle filters
and deal with the online parameter estimation problem. While the regularized
APF has been already used for parameter estimation, the regularized versions
of SIS and SIR have not been considered to that aim. We focus on the joint
estimation of the states and parameters and compare some algorithms on a
Bayesian nonlinear model: the Bayesian SV model. As we expected, we find
evidence of the degeneracy of two different regularized SIS. Finally, we find
that, in terms of parameter estimation, the regularized APF outperforms all
the others schemes.
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the filtered log-volatility (red line). The grey area represents the area between mazimum and
minimum cumaulative root mean square errors.
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