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FIXED-DOMAIN ASYMPTOTIC PROPERTIES OF TAPERED
MAXIMUM LIKELIHOOD ESTIMATORS
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When the spatial sample size is extremely large, which occurs in many
environmental and ecological studies, operations on the large covariance ma-
trix are a numerical challenge. Covariance tapering is a technique to alleviate
the numerical challenges. Under the assumption that data are collected along
a line in a bounded region, we investigate how the tapering affects the as-
ymptotic efficiency of the maximum likelihood estimator (MLE) for the mi-
croergodic parameter in the Matérn covariance function by establishing the
fixed-domain asymptotic distribution of the exact MLE and that of the ta-
pered MLE. Our results imply that, under some conditions on the taper, the
tapered MLE is asymptotically as efficient as the true MLE for the microer-
godic parameter in the Matérn model.

1. Introduction. With the advancement of technology, large amounts of data
are routinely collected over space and/or time in many studies in environmental
monitoring, climatology, hydrology and other fields. The large amounts of corre-
lated data present a great challenge to the statistical analysis and may render some
traditional statistical approaches impractical. For example, in the maximum likeli-
hood or Bayesian inference, the inverse of an n × n covariance matrix is involved,
where the sample size n may be in hundreds of thousands or even larger. Invert-
ing the large covariance matrix repeatedly is a great computational burden if not
impractical, and some approximation to the likelihood is necessary.

Covariance tapering is one of the approaches to approximating the covari-
ance matrix and, therefore, the likelihood. Let the second order stationary
Gaussian process X(t), t ∈ R

d have mean 0 and an isotropic covariance func-
tion K(h; θ, σ 2), where σ 2 is the variance of the process and θ is the parame-
ter that controls how fast the covariance function decays. Given n observations
Xn = (X(t1), . . . ,X(tn))′, the log-likelihood is

ln(θ, σ 2) = −n

2
log 2π − 1

2
log[det Vn(θ, σ 2)] − 1

2
X′

n[Vn(θ, σ 2)]−1Xn,(1.1)

where Vn(θ, σ 2) denotes the covariance matrix of Xn. The idea of tapering is to
keep the covariances approximately unchanged at small distance lags and to reduce
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the covariances to zero at large distances. To implement the idea, let Ktap be an
isotropic correlation function of compact support; that is, Ktap(h) = 0 if h ≥ γ for
some γ > 0. Then, the tapered covariance function K̃ is the product of K and Ktap,

K̃(h; θ, σ 2) = K(h; θ, σ 2)Ktap(h),(1.2)

and the tapered covariance matrix is a Hadamard product Ṽn = Vn(θ, σ 2) ◦ Tn,
where Tn has the (i, j)th element as Ktap(‖ti −tj‖). The tapered covariance matrix
has a high proportion of zero elements and is, therefore, a sparse matrix. Inverting
a sparse matrix is much more efficient computationally than inverting a regular
matrix of the same dimension [see, e.g., Pissanetzky (1984), Gilbert, Moler and
Schreiber (1992) and Davis (2006)]. One would use the tapered covariance func-
tion K̃ for spatial interpolation and estimation as if it was the correct covariance
function. For example, the tapered maximum likelihood estimator maximizes the
corresponding log-likelihood

ln,tap(θ, σ 2) = −n

2
log 2π − 1

2
log[det Ṽn] − 1

2
X′

nṼ−1
n Xn.(1.3)

Intuitively, if the taper is sufficiently close to 1 in the neighborhood of the ori-
gin, the tapering would not change the behavior of the covariance function near the
origin. It has long been known that the behavior of the covariance function near
the origin is most important to spatial interpolation. Stein (1988, 1990a, 1990b,
1999a, 1999b) has established rigorous fixed-domain asymptotic theory for spa-
tial interpolation. Applying the general fixed-domain asymptotic theory, Furrer,
Genton and Nychka (2006) showed that appropriate tapering does not affect the
fixed-domain asymptotic mean square error of prediction for Matérn model.

Kaufman, Schervish and Nychka (2008) showed that the parameter in the
Matérn covariance function, which is consistently estimable under the fixed-
domain asymptotic framework, can be estimated consistently by the tapered MLE
with θ fixed. However, it is unknown if the covariance tapering results in any loss
of asymptotic efficiency.

The main objective of this paper is to establish the asymptotic properties, and
particularly the asymptotic distribution of tapered MLE under the fixed-domain as-
ymptotic framework. We now make a few remarks about why we adopt the fixed-
domain asymptotic framework. When the spatial domain is fixed and bounded,
more sample data can be obtained by sampling the domain increasingly densely.
This results in the fixed-domain asymptotic framework. It is known that not all pa-
rameters in the covariance function are consistently estimable [e.g., Zhang (2004)]
under the fixed-domain asymptotic framework. Zhang and Zimmerman (2005) ar-
gued that MLEs of the microergodic parameters are generally consistent but those
of the nonmicroergodic parameters in general converge in distribution to a nonde-
generate distribution. We refer readers to Stein (1999b), page 163, for the definition
of microergodic parameters. In addition, Stein has established asymptotic results
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that show only the microergodic parameters affect the asymptotic mean square
error under the fixed-domain asymptotic framework.

However, there is another asymptotic framework, where more data are sam-
pled by increasing the spatial domain. This is the increasing domain asymptotic
framework. Under mild regularity conditions, MLEs for all parameters are con-
sistent and asymptotically normal [see Mardia and Marshall (1984)]. Therefore,
asymptotic results are quite different under the two asymptotic frameworks. Given
a finite sample, one has to know which asymptotic framework is more appropriate
in order to apply any asymptotic results. Zhang and Zimmerman (2005) provided
some guideline on this through both theoretical and numerical studies. Their results
show that, for the exponential covariance function, the fixed-domain asymptotic
distribution approximates the finite sample distribution at least as well as the in-
creasing domain asymptotic distribution does. More specifically, for microergodic
parameters, approximations corresponding to the two frameworks perform about
equally well. For the nonmicroergodic parameters, the fixed-domain asymptotic
approximation is preferable. In light of these results, we adopt the fixed-domain
asymptotic framework in this work.

Fixed-domain asymptotic results for estimation are difficult to derive in gen-
eral and there are only few results in literature [see Stein (1990c), Ying (1991,
1993), Chen, Simpson and Ying (2000), Zhang (2004), Loh (2005) and Kaufman,
Schervish and Nychka (2008)]. Existing asymptotic distributions have been es-
tablished only for specific models such as the exponential model for covariance
functions [see Ying (1991, 1993) and Chen, Simpson and Ying (2000)] and a par-
ticular Matérn model with the smoothness parameter ν = 1.5 [see Loh (2005)]. For
the general Matérn model, the fixed-domain asymptotic distribution is not avail-
able even when data are observed along a line. In order to evaluate the efficiency of
the tapered MLE, we establish the fixed-domain asymptotic distribution of MLE
for the microergodic parameter in the general Matérn model [Theorem 5(i)] under
the assumption that data are collected along a line. This result is of interest in its
own right, outside the context of tapering.

It is even more difficult to study asymptotic properties of tapered MLE. In-
deed, we are not aware of any fixed-domain asymptotic distribution established
for tapered MLE. For this reason, we will start with a simple model, the Ornstein–
Uhlenbeck process along a line, which is a stationary Gaussian process with zero
mean and an exponential covariance function, and has Markovian properties. Due
to the Markovian properties, the inverse of the covariance matrix can be given in
closed form and is a band matrix. Therefore, for this model, it is not necessary to
approximate the likelihood function. However, this simple model serves as a start-
ing point in the study of covariance tapering and provides insight into the more
general settings, which we will study subsequently.

Although spatial data are usually collected over a spatial region, there are situ-
ations when data are collected along lines. One example is the International H2O
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project, where measurements of meteorological data were collected by surface sta-
tions and aircraft along three flight paths that are along straight lines and transect
the varied environmental conditions of the southern Great Plains [see Weckworth
et al. (2004), LeMone et al. (2007) and Stassberg et al. (2008)]. Ecological data
are sometimes collected along line transects as well.

The main results for the Ornstein–Uhlenbeck process are presented in Section 2.
For the microergodic parameter in the Ornstein–Uhlenbeck process, we establish
the asymptotic distribution of tapered MLE. In Section 3, we present the main
results for a Gaussian stationary process having a Matérn covariogram. We put all
proofs in Appendices A and B.

2. Exponential model. We assume the underlying process X(t), t ∈ [0,1] is
Gaussian that has a mean 0 and an isotropic exponential covariogram K(h) =
σ 2 exp(−θh). Such a process is known as the Ornstein–Uhlenbeck process, which
has a Markovian property that will be exploited in our proof.

The exponential isotropic covariance function is one of the most commonly
used models for spatial data analysis. It follows from Ying (1991) and Zhang
(2004) that both σ 2 and θ are not consistently estimable under the fixed-domain
asymptotic framework, but the product σ 2θ is. Applying the fixed-domain asymp-
totic theory for spatial interpolation, Zhang (2004) showed that it is only this
product, and not the individual parameters σ 2 and θ , that asymptotically affects
the interpolation. Therefore, it is important to estimate this product well. In this
section, we establish the asymptotic properties of the tapered MLE of this prod-
uct. For simplicity of argument, we will maximize the likelihood function over
(θ, σ 2) ∈ J = [a, b] × [w,v] for some constants 0 < a ≤ b and 0 < w ≤ v and
do not require that J contains the true parameter value (θ0, σ

2
0 ). However, we do

assume that θ0σ
2
0 ∈ {θσ 2, (θ, σ 2) ∈ J }; that is, there exists a pair (θ, σ 2) in J such

that θσ 2 = θ0σ
2
0 .

The following two assumptions are made throughout this section:

(A1) The process is observed at points tk,n ∈ [0,1], k = 1, . . . , n, with 0 ≤ t1,n <

t2,n < · · · < tn,n ≤ 1, and suppose that n�k,n is bounded away from 0 and ∞,
where �k,n = tk,n − tk−1,n, k = 2, . . . , n. We also assume that tn,n → 1 and
t1,n → 0 as n → ∞.

(A2) Ktap(h;γ ) is an isotropic correlation function such that Ktap(h;γ ) = 0 if
h ≥ γ , where γ ∈ (0,1) is a constant. Moreover, Ktap(h;γ ) has a bounded
second derivative in h ∈ (0,1) and K ′

tap(h;γ ) = ch + o(h) as h → 0+ for
some constant c.

A taper can be any correlation function with compact support, and such corre-
lation functions have been studied in literature [see Wu (1995), Wendland (1995,
1998) and Gneiting (1999, 2002)]. We believe that a large number of compactly
supported correlation functions satisfy assumption (A2). Particularly, a Wendland
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taper is a truncated polynomial and, therefore, satisfies (A2) if the degree of the
polynomial is greater than 3.

We also note that the assumption in (A2) that Ktap has a bounded second deriv-
ative in h ∈ (0,1) can be weakened, so that d2Ktap/dh2 exists at any h ∈ (0, γ ) as
long as the first derivative exists everywhere in (0,1). The weakened condition will
necessarily make the proof longer and, therefore, is not considered in this paper.

Before we state the main results of this section, we need to introduce some no-
tation that will be used throughout this paper. For sequences of real positive num-
bers an and a sequence of real or random numbers bn that may depend on model
parameters, bn = Ou(an) if, for any n, P(|bn| ≤ Man) = 1, for some 0 < M < ∞,
which does not depend on parameters but could be random. That is, bn/an is
bounded uniformly in the parameters. Similarly, we write bn = ou(an) to mean
that, with a probability 1, bn/an converges to 0 uniformly in parameters. The fol-
lowing theorem compares the tapered log-likelihood function with the untapered
one, and their derivatives. This theorem is essential to the establishment of the
asymptotic properties of the tapered MLE to be given in the subsequent theorem.

THEOREM 1. Under the assumptions (A1) and (A2), uniformly in (θ, σ 2) ∈ J

and with P0-probability 1,

ln,tap(θ, σ 2) = ln(θ, σ 2) + ou(n
1/2),(2.1)

∂

∂θ
ln,tap(θ, σ 2) = ∂

∂θ
ln(θ, σ 2) + ou(n

1/2),(2.2)

where P0 is the probability measure corresponding to the true parameter values
σ 2

0 , θ0.

The next theorem establishes the strong consistency and the asymptotic distrib-
ution of the tapered MLE. Comparing the asymptotic distribution of MLE of σ 2

0 θ0
in Ying (1993) and that in the following theorem, we see that the tapered MLE is
asymptotically equally efficient.

THEOREM 2. Assume (A1) and (A2) hold, and let (θ̂n,tap, σ̂
2
n,tap) maximize the

tapered likelihood function over (θ, σ 2) ∈ J . Then, as n → ∞,

P0

(
lim

n→∞ θ̂n,tapσ̂
2
n,tap = θ0σ

2
0

)
= 1,(2.3)

√
n(θ̂n,tapσ̂

2
n,tap − θ0σ

2
0 )

d−→ N(0,2(θ0σ
2
0 )2),(2.4)

where P0 is the probability measure corresponding to the true parameter values
σ 2

0 , θ0.

3. General Matérn model. In this section, we will focus on studying the as-
ymptotics of tapered MLE for a general Matérn model. We assume the underlying
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process is stationary with mean 0 and the following isotropic Matérn covariogram:

K(h;σ 2, θ, ν) = σ 2(θh)ν

	(ν)2ν−1 Kν(θh), h > 0,(3.1)

with unknown σ 2, θ and known ν, where Kν is the modified Bessel function of
order ν [see Abramowitz and Stegun (1967), pages 375 and 376], σ 2 is the co-
variance parameter, θ is the scale parameter and ν is the smoothness parameter.
Further, assume that the process is observed at n sites t1, t2, . . . , tn in a bounded in-
terval D ⊂ R, and write Xn = (X(t1), . . . ,X(tn))

′. Zhang (2004) noted that neither
σ 2 or θ is consistently estimable under the fixed-domain asymptotic framework,
but the quantity σ 2θ2ν is consistently estimable. Furthermore, this consistently es-
timable quantity is more important to prediction than the parameters σ 2 and θ .

The primary focus of this section is to establish the asymptotic distribution of
the estimators for σ 2θ2ν . This is a more difficult problem than in the exponential
case, and we cope with it by considering an easy version of the problem. Following
Zhang (2004), we fix θ at an arbitrarily chosen value θ1 and consider the following
estimators:

σ̂ 2
n = Arg Max ln(θ1, σ

2),(3.2)

σ̂ 2
n,tap = Arg Max ln,tap(θ1, σ

2),(3.3)

where ln(θ1, σ
2) and ln,tap(θ1, σ

2) are the log-likelihood function and the tapered
log-likelihood function, respectively.

We make the following assumption on the spectral density of the taper Ktap(h).
Similar conditions were used in Furrer, Genton and Nychka (2006) and Kaufman,
Schervish and Nychka (2008). Our condition here is stronger, and it is necessary
for our approach to deriving the asymptotic distribution of tapered MLE:

(A3) The spectral density of the taper, denoted by ftap(λ), satisfies for some con-
stant ε > max{1/2,1 − ν} and 0 < M < ∞

ftap(λ) ≤ M

(1 + λ2)ν+1/2+ε
.(3.4)

We note that taper condition (3.4) is satisfied by some well-known tapers. For ex-
ample, Wendland tapers (1995, 1998) have isotropic spectral densities that are con-
tinuous and satisfy gd,k(λ) ≤ M(1 + λ2)−d/2−k−1/2 for some constant M , where
d is the dimension of the domain (d = 1 in this work). Therefore, condition (3.4)
is satisfied if k > max{1/2, ν}. Furrer, Genton and Nychka (2006) gave explicit
tail limits for two Wendland tapers K1(h;γ ) = (1 − h

γ
)4+(1 + 4 h

γ
), γ > 0 and

K2(h;γ ) = (1 − h
γ
)6+(1 + 6 h

γ
+ 35h2

3γ 2 ), γ > 0 (x+ = max{0, x}), and showed that

λ4g1(λ) → 120/(πγ 3) and λ6g2(λ) → 17920/(πγ 5), as λ → ∞, where gi is the
spectral density of Ki (i = 1,2). Therefore, condition (3.4) holds if ν < 1 for ta-
per K1 and ν < 2 for taper K2.
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One important probabilistic tool we will extensively use is the equivalence
of probability measures. The assumption (A3) implies that the tapered covari-
ance function specifies a Gaussian measure that is equivalent to the Gaussian
measure specified by the true covariance function [Kaufman, Schervish and Ny-
chka (2008)]. It readily follows that σ̂ 2

n,tapθ
2ν
1 is a strongly consistent estimator of

σ 2
0 θ2ν

0 [e.g., Kaufman, Schervish and Nychka (2008)].
The main results in this section are the following three theorems. The next theo-

rem is a general result about two equivalent Gaussian measures and is not restricted
to the case of covariance tapering. It will be used to prove the other two theorems.

THEOREM 3. Let X(t), t ∈ R be a stationary Gaussian process having mean
zero and an isotropic covariogram Kj and a continuous spectral density fj under
measure Pj , j = 0,1. Assume the process is observed at t1, t2, . . . in a bounded
interval D, and let Xn = (X(t1), . . . ,X(tn))

′. If

lim inf
λ→∞ f0(λ)|λ|r1 > 0 and lim sup

λ→∞
f0(λ)|λ|r1 < ∞(3.5)

and

h(λ) = f1(λ)

f0(λ)
− 1 = O(|λ|−r2), λ → ∞ for some r2 > 1,(3.6)

then

E0
(
X′

n(V
−1
1,n − V−1

0,n)Xn

) = O(1),(3.7)

where Vj,n is the covariance matrix of Xn given by the covariogram Kj , j = 0,1,
and E0 is the expectation with respect to P0.

We note that condition (3.6) is stronger than the equivalence of the two Gaussian
measures corresponding to the two spectral densities f0 and f1. Indeed, under
condition (3.5), the two Gaussian measures are equivalent if (3.6) holds for some
r2 > 1/2. However, equivalence alone cannot imply (3.7), and we need stronger
conditions than the equivalence of two measures. We will show later that condition
(A3) implies that (3.6) holds, for some r2 > 1, if f0 and f1 represent the spectral
densities of the true and tapered covariograms, respectively.

THEOREM 4. Suppose condition (A3) is satisfied, and the underlying process
is stationary Gaussian having a mean 0 and a Matérn covariance function, and
the sampling locations {t1, t2, . . .} are from a bounded interval. Then, for any fixed
θ1 > 0, with P0-probability 1, uniformly in σ 2 ∈ [w,v],

ln,tap(θ1, σ
2) = ln(θ1, σ

2) + Ou(1),(3.8)

∂

∂σ 2 ln,tap(θ1, σ
2) = ∂

∂σ 2 ln(θ1, σ
2) + Ou(1),(3.9)

where P0 is the probability measure corresponding to the true parameter val-
ues σ 2

0 , θ0, ν.
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Next, we give the asymptotic distributions for both exact MLE and tapered MLE
of the consistently estimable quantity σ 2θ2ν .

THEOREM 5. Assume that the underlying process is stationary Gaussian hav-
ing a mean 0 and a Matérn covariance function with a known smoothness para-
meter ν, and the sampling locations {t1, t2, . . .} are from a bounded interval:

(i) For any fixed θ1,

√
n(σ̂ 2

n θ2ν
1 − σ 2

0 θ2ν
0 )

d−→ N(0,2(σ 2
0 θ2ν

0 )2).(3.10)

(ii) In addition, if the taper satisfies condition (A3),

√
n(σ̂ 2

n,tapθ
2ν
1 − σ 2

0 θ2ν
0 )

d−→ N(0,2(σ 2
0 θ2ν

0 )2).(3.11)

Theorem 5 implies that the covariance tapering does not reduce the asymptotic
efficiency for the Matérn model. In this paper, we are not able to show that (3.11)
remains true if θ1 is replaced by the MLE of θ . Therefore, the results in this the-
orem are not as strong as those in Theorem 2. More work will need to be done to
extend Theorem 2 to the general Matérn case.

We note that asymptotic distributional results about the microergodic parameter
σ 2θ2ν in the general Matérn class have not appeared in literature. Theorem 5(i) is
the first of such results, and its proof requires a novel approach.

4. Discussion. There are some open problems for future research. First, for
the Matérn model, the estimator of σ 2θ2ν is constructed by fixing θ at an arbitrary
value. For a finite sample, common practice is to also estimate θ . It is an interesting
question to see if Theorem 5 still holds for the MLE σ̂ 2θ̂2ν and the tapered MLE
σ̂ 2

n,tapθ̂
2ν
n,tap. Our conjecture is that Theorem 5 can be extended to this case.

The main results in Sections 2 and 3 are for the processes with one-dimensional
index. It is a more interesting problem to study the high-dimensional case. How-
ever, our techniques in Section 3 cannot be extended to obtain analogous asymp-
totic distribution in the high-dimensional case. For example, for a d-dimensional
process, we would need (3.6) to hold for some r2 > d in order for the proof to carry
through. Unfortunately, for the Matérn model, (3.6) cannot hold for any r2 > 2.
The high-dimensional case calls for new techniques for establishing asymptotic
distributions. A referee suggested letting the bandwidth γ vary and go to 0 as n in-
creases to ∞. This is a natural scheme in the fixed-domain asymptotic framework.
We believe that everything in Section 2 carries through if the bandwidth goes to 0
not too fast. When the bandwidth of the taper depends on n, it is not obvious if
our techniques in Section 3 still apply, because the properties of equivalence of
probability measures are no longer directly applicable.
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APPENDIX A: PROOFS FOR SECTION 2

In the sequel, we often suppress n in the subscripts. For example, write tk = tk,n,
�k = �k,n. We will need three lemmas for the proofs of the theorems in Section 2.

LEMMA 1. Let X(t) be the Gaussian Ornstein–Uhlenbeck process, and as-
sume (A1) holds. Denote E(X(ti)|X(tj ), j �= i) = −∑

j �=i bij,n(θ)X(tj ), 1 ≤ i ≤
n, Var(X(ti)|X(tj ), j �= i) = di,n(θ, σ 2), which is written as di for short. Then, for
1 < i < n,

bii−1,n(θ) = −e−θ�i (1 − e−2θ�i+1)

1 − e−2θ(�i+�i+1)
,

(A.1)

bii+1,n(θ) = −e−θ�i+1(1 − e−2θ�i )

1 − e−2θ(�i+�i+1)
,

b12,n(θ) = −e−θ�2, bnn−1,n(θ) = −e−θ�n,
(A.2)

bij,n(θ) = 0 for |i − j | > 1.

In addition, uniformly in (θ, σ 2) ∈ J , 1 < i < n, 1 ≤ j ≤ n,

d1 = 2σ 2θ�2 + Ou

(
1

n2

)
, dn = 2σ 2θ�n + Ou

(
1

n2

)
,

(A.3)

di = 2σ 2θ�i�i+1

�i + �i+1
+ Ou

(
1

n2

)
,

b′
ij,n(θ) = Ou

(
1

n2

)
, b′

1j,n(θ) = Ou

(
1

n

)
,

(A.4)

b′
nj,n(θ) = Ou

(
1

n

)
,

∂

∂θ
d−1
j = Ou(n).

PROOF. Note that E(X(ti)|X(tj ), j �= i) = −∑
j �=i bij,n(θ)X(tj ),1 ≤ i ≤ n

if and only if

Cov
(
X(ti) + ∑

k �=i

bik,n(θ)X(tk),X(tj )

)
= 0 for any j �= i, j = 1, . . . , n.

We therefore prove (A.1) and (A.2) by verifying that

Cov
(
X(ti) + bi,i−1X(ti−1) + bi,i+1X(ti+1),X(tj )

) = 0
(A.5)

for any j �= i,

where we let b10 = bn,n+1 = 0. For i = 1 or n, (A.5) readily follows the stationarity
and the Markovian property of the Ornstein–Uhlenbeck process. For 1 < i < n,
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(A.5) holds, because, if j ≥ i + 1, the left-hand side of (A.5) equals

σ 2e−θ(tj−ti+1)

(
e−θ�i+1 − e−θ�i (1 − e−2θ�i+1)

1 − e−2θ(�i+�i+1)
e−θ(�i+�i+1)

− e−θ�i+1(1 − e−2θ�i )

1 − e−2θ(�i+�i+1)

)
,

which is zero. We can get the similar expression when j ≤ i−1. Therefore, (A.5) is
proved. Since di = E(X(ti) + bi,i−1X(ti−1) + bi,i+1X(ti+1))

2, straightforward
calculation yields

d1 = σ 2(1 − e−2θ�2), dn = σ 2(1 − e−2θ�n),

di = σ 2 (1 − e−2θ�i )(1 − e−2θ�i+1)

1 − e−2θ(�i+�i+1)
, 1 < i < n.

Then, (A.3) follows the Taylor expansion. To establish the properties of the deriv-
atives in (A.4), we repeatedly use the Taylor expansion. Here we only provide a
proof for b′

ij,n(θ) = Ou(1/n2) for 1 < i < n, since all other derivatives can be
proved similarly. Since bij = 0 if |i − j | > 1, we only need to consider j = i − 1
or i + 1.

Write the derivative

b′
ii−1,n(θ) = A/

(
1 − e−2θ(�i+�i+1)

)2
,

where

A = (
�ie

−θ�i − (�i + 2�i+1)e
−θ�i−2θ�i+1

)(
1 − e−2θ(�i+�i+1)

)
− (−e−θ�i + e−θ�i−2θ�i+1)2(�i + �i+1)e

−2θ(�i+�i+1)

(A.6)
= �ie

−θ�i − (�i + 2�i+1)(e
−θ�i−2θ�i+1 − e−3θ�i−2θ�i+1)

− �ie
−3θ�i−4θ�i+1 .

Note that ∣∣∣∣ 1

1 − e−2θ(�i+�i+1)
− 1

2θ(�i + �i+1)

∣∣∣∣
is uniformly bounded and n(�i + �i+1) is bounded away from 0 and ∞ by as-
sumption (A1). Hence, 1/(1 − e−2θ(�i+�i+1)) = O(1/n), and it suffices to show
that A is Ou(1/n4). Using, again, the fact that �i = Ou(1/n) and applying the
Taylor expansion, we get

�ie
−θ�i = �i − θ�2

i + (1/2)θ2�3
i + Ou(1/n4),

− (�i + 2�i+1)(e
−θ�i−2θ�i+1 − e−3θ�i−2θ�i+1)

= −2θ�2
i + 4θ2�3

i + 12θ2�2
i �i+1

− 4θ�i�i+1 + 8θ2�i�
2
i+1 + Ou(1/n4),
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−�ie
−3θ�i−4θ�i+1 = −�i + 3θ�2

i + 4θ�i�i+1 − (9/2)θ2�3
i

− 12θ2�2
i �i+1 − 8θ2�i�

2
i+1 + Ou(1/n4).

All the terms except Ou(1/n4) are canceled out. Therefore, A = Ou(1/n4) and
b′
ii−1,n(θ) = Ou(1/n2). Similarly, we can show b′

ii+1,n(θ) = Ou(1/n2). �

We now introduce the following notations. Let Õn denote a matrix of which the
elements are Ou(1/n) except those in the first and last rows, which are uniformly
bounded; that is, Ou(1). Denote, by Ŏn, the matrix whose (i, j)th element is Ou(1)

if i = 1 or n or i = j , and is Ou(1/n) otherwise. Therefore,

Õn =

⎛
⎜⎜⎜⎜⎝

Ou(1) · · · Ou(1)

Ou(1/n) · · · Ou(1/n)

· · · · · · · · ·
Ou(1/n) · · · Ou(1/n)

Ou(1) · · · Ou(1)

⎞
⎟⎟⎟⎟⎠ ,

Ŏn = Õn +

⎛
⎜⎜⎜⎜⎜⎝

Ou(1)

Ou(1)
. . .

Ou(1)

Ou(1)

⎞
⎟⎟⎟⎟⎟⎠ .

LEMMA 2. Under assumptions (A1) and (A2), uniformly in θ ∈ [a, b]:

(i) V−1
n (Vn ◦ Tn) = In + Õn, V−1

n

∂Vn

∂θ
= Ŏn,

(ii)
∂

∂θ

(
V−1

n (Vn ◦ Tn)
) = Õn,

∂

∂θ

(
V−1

n

∂Vn

∂θ

)
= Ŏn,

(iii) 1 < det
(
V−1

n (Vn ◦ Tn)
) = Ou(1),

(
V−1

n (Vn ◦ Tn)
)−1 = In + Õn,

where In is the n × n identity matrix.

From the definitions of Õn and Ŏn, we have

ÕnŎn = Õn, ŎnÕn = Õn, ÕnÕn = Õn.(A.7)

Then, Lemma 2(i) and (ii) imply

∂

∂θ

(
V−1

n (Vn ◦ Tn)
)−1 = Õn.(A.8)

PROOF OF LEMMA 2. We can assume σ 2 = 1 without loss of any generality,
because all quantities in the lemma do not depend on σ 2. We will repeatedly use
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Lemma 1 and particularly the fact that V−1
n is a band matrix. The proof involves

tedious computation, and we will keep a balance between brevity and clarity.
Several quantities in the lemma are of the form V−1

n (Vn ◦ Q), where Q is an
n × n matrix whose (i, j)th element is �(ti − tj ) for some even function �(t) that
has a bounded second derivative on [−1,0) ∪ (0,1]. If the limits of the derivative
�′(0+) = limt→+ �′(t) and �′(0−) = limt→0− �′(t) exist and are finite, we show
now

V−1
n (Vn ◦ Q) = �(0)In + (

�′(0+) − �′(0−)
)

(A.9)
× diag{Ou(1), . . . ,Ou(1)} + Õn,

where diag(Ou(1), . . . ,Ou(1)) denotes a diagonal n × n matrix with bounded el-
ements. There are immediate corollaries from (A.9). First, it implies V−1

n (Vn ◦
Q) = Ŏn. Second, by taking �(t) = −|t |, we get V−1

n (∂Vn/∂θ) = Ŏn. Last, if
�(t) = Ktap(|t |), then �′(0+) = �′(0−) and V−1

n (Vn ◦ Tn) = In + Õn because
Ktap(0) = 1.

To prove (A.9), let ωij denote the (i, j)th element of V−1
n (Vn ◦ Q). Let bij

be defined in Lemma 1. Hereafter, the parameter and subscript n are suppressed.
Then, it is well known that the (i, j)th element of V−1

n is bij /di . Write bij = 0 if
j < 1 or j > n and t0 = t1, tn+1 = tn. Since bij = 0 if |i − j | > 1,

ωij = d−1
i

i+1∑
k=i−1

bikK(|tk − tj |)�(tk − tj ).(A.10)

For any i > j , and k = i − 1 or i + 1, we have tk − tj ≥ 0. Hence, the Taylor
theorem implies

�(tk − tj ) = �(ti − tj ) + �′(ti − tj )(tk − ti) + �′′(ti − tj + ξ(tk − tj )
)
(tk − ti)

2/2,

for some ξ ∈ (0,1). Since � has a bounded second derivative on (0,1), and tk − ti =
O(1/n), we have

�(tk − tj ) = �(ti − tj ) + �′(ti − tj )(tk − ti) + O(1/n2).(A.11)

Then,

ωij = d−1
i �(ti − tj )

i+1∑
k=i−1

bikK(tk − tj )

(A.12)

+ d−1
i �′(ti − tj )

i+1∑
k=i−1

K(tk − tj )(tk − ti)bik + Ou(1/n),

where we have used d−1
i = Ou(n). Note that d−1

i

∑i+1
k=i−1 bikK(tk − tj ) is the (i, j)

element of D−1
n BnVn = In. Hence, the first summand in (A.12) equals �(0)1{i=j}.
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Similar to the establishment of (A.11), we can show

K(tk − tj ) = K(ti − tj ) + K ′(ti − tj )(tk − ti) + Ou(1/n2).

It follows that, for i > j ,

ωij = d−1
i �′(ti − tj )K(ti − tj )

i+1∑
k=i−1

(tk − ti)bik + Ou(1/n).(A.13)

By utilizing the explicit expressions of bij given in Lemma 1, we can show

i+1∑
k=i−1

(tk − ti)bik = bi,i+1�i+1 − bi,i−1�i

(A.14)

=
{

Ou(1/n2), if 1 < i < n,
Ou(1/n), if i = 1 or n.

Then, for i > j

ωij =
{

Ou(1), if i = 1 or n,
Ou(1/n), if 1 < i < n.

(A.15)

In view of the fact that � is an even function, we can show, similarly, that (A.15)
holds for i < j .

Now, let us consider wii . First, note that

�(ti−1 − ti) = �(0) + �′(0−)(ti−1 − ti) + O(1/n2),(A.16)

�(ti+1 − ti) = �(0) + �′(0+)(ti+1 − ti) + O(1/n2).(A.17)

Since d−1
i

∑i+1
k=i−1 bikK(tk − ti) = 1,

ωii = d−1
i

i+1∑
k=i−1

bikK(tk − ti)�(tk − ti)

= �(0) + d−1
i {bi,i−1K(ti−1 − ti)�

′(0−)(ti−1 − ti)

+ bi,i+1K(ti+1 − ti)�
′(0+)(ti+1 − ti)} + Ou(1/n2).

Since K(h) = K(0) + K ′(0)h + ou(h) as h → 0,

ωii = �(0) + K(0)d−1
i {bi,i−1�

′(0−)(ti−1 − ti) + bi,i+1�
′(0+)(ti+1 − ti)}

+ Ou(1/n2),

which can be rewritten as

ωii = �(0) + �′(0−)K(0)d−1
i

i+1∑
k=i−1

(tk − ti)bik

(A.18)
+ [�′(0+) − �′(0−)]K(0)d−1

i bi,i+1�i+1 + Ou(1/n2).

Then, (A.9) follows from (A.14), (A.15) and (A.18). (i) is therefore proved.
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To prove (ii), we will use the following well-known fact [see, e.g., Graybill
(1983), pages 357 and 358]:

∂

∂θ
V−1

n = −V−1
n

∂Vn

∂θ
V−1

n .(A.19)

Applying Lemma 2(i),

∂

∂θ

(
V−1

n (Vn ◦ Tn)
) = −V−1

n

∂Vn

∂θ
V−1

n (Vn ◦ Tn) + V−1
n

(
∂Vn

∂θ
◦ Tn

)

= −V−1
n

∂Vn

∂θ
(In + Õn) + V−1

n

(
∂Vn

∂θ
◦ Tn

)

= V−1
n

(
∂Vn

∂θ
◦ (Tn − Jn)

)
+ Õn,

which is clearly Õn from (A.9) by taking �(t) = −|t |(Ktap(|t |) − 1) that is differ-
entiable at 0, where Jn is a matrix of all 1’s.

Next, we will show ∂
∂θ

(V−1
n

∂Vn

∂θ
) = Ŏn similarly. Write

∂

∂θ

(
V−1

n

∂Vn

∂θ

)
= −V−1

n

∂Vn

∂θ
V−1

n

∂Vn

∂θ
+ V−1

n

∂2Vn

∂θ2 .(A.20)

By (i), the first term on the right-hand side of (A.20) is ŎnŎn = Ŏn, and the sec-

ond term is Õn, because V−1
n

∂2Vn

∂θ2 = V−1
n (Vn ◦ Q) with �(t) = t2, which has a

continuous second derivative so that (A.9) applies. This completes the proof of
Lemma 2(ii).

Let An = V−1
n (Vn ◦ Tn) and aij denote the (i, j)th element of An. We now

apply a series of column operations, so that An becomes In + �n and each of the
operations retains the determinant of An, where �n is a matrix whose elements
are bounded by M/n for some constant M not depending on θ ; that is, �n(i, j) ≤
M/n. We have shown that An = In + Õn, where elements of Õn are Ou(1/n)

except those that are on the first and last rows that are bounded. We can subtract
from the j th column the first column multiplied by the (1, j)th element of An,
2 < j < n. Then, all elements in the first row are Ou(1/n), except the (1,1)th
element, which is 1 +Ou(1/n) and remains unchanged throughout the operations.
Similarly, we can reduce the elements in the last row to Ou(1/n) except the last
(n,n)th element. Applying the Hadamard inequality [Bellman (1970), page 130],
we can show there exists some constant M such that

det(An) = det(In + �n) ≤ (
(1 + M/n)2 + (n − 1)(M/n)2)n/2

,

which is bounded.
To show A−1

n = In + Õn, we first note that by Oppenheim’s inequality [Mirsky
(1955), page 421], which yields the inequality for the determinant of Hadamard
product of positive definite matrices, det(Vn ◦ Tn) > det(Vn)

∏
1≤i≤n tii where tii
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is the diagonal element of Tn. Therefore, det(An) > 1. We only need to show that
the (i, j)th cofactor

Aij = det(An)1{i=j} + Ou(1/n) + 1{j=1 or j=n}Ou(1).

Similar to proving det(An) = Ou(1), we can show all the (n − 1) by (n − 1)

cofactors are also Ou(1). In addition, Aij = Ou(1/n) for 1 < j < n, i �= j

since it has one row of elements Ou(1/n) and replacing that row with Ou(1)

would yield a bounded determinant. To complete proof of the lemma, it re-
mains to show Aii = det(An) + Ou(1/n),1 < i < n, which is true by Laplace
expansion det(An) = (1 + Ou(1/n))Aii + ∑

j : j �=i aijAij and observing that∑
j : j �=i aijAij = Ou(1/n), for 1 < i < n. �

LEMMA 3. For any θ ∈ [a, b], let Sn(θ), n = 1,2, . . . , be a sequence of
random variables such that E(Sn(θ)) = Ou((logn)r), E[Sn(θ) − ESn(θ)]6 =
Ou((logn)r) uniformly in θ for some constant r > 0. Assume that, with proba-
bility one, Sn(θ) is differentiable with respect to θ and S′

n(θ) = Ou(n
2(logn)r)

uniformly in θ . Then,

sup
θ∈[a,b]

|Sn(θ)| = o(n1/2) a.s.

For the ease of notation, we will suppress the dependence of any quantity on n

and parameters [e.g., bij,n(θ) = bij , di,n(θ, σ 2) = di ], wherever confusion does
not arise, throughout the rest of the paper.

PROOF OF LEMMA 3. Let a = θ0 < θ1 < · · · < θMn = b partition [a, b] into
intervals of equal length, where Mn is the integer part of n3/2+α for some 0 < α <

1/14. Then,

sup
θ∈[a,b]

|Sn(θ)| ≤ max
1≤k≤Mn

|Sn(θk)| + max
1≤k≤Mn

sup
θ∈[θk−1,θk]

|Sn(θk) − Sn(θ)|.(A.21)

Because there exists constant C > 0 such that the sixth central moment of Sn(θ) is
uniformly bounded by C(logn)r ,

P
(

max
1≤k≤Mn

|Sn(θk) − E(Sn(θk))| ≥ n1/2−α
)

≤
Mn∑
k=1

P
(|Sn(θk) − E(Sn(θk))| ≥ n1/2−α)

≤ Mn

C(logn)r

n3−6α
= C(logn)r

n3/2−7α
.

Since 3/2 − 7α > 1 with α < 1/14, it follows from Borel–Cantelli lemma that

max
1≤k≤Mn

|Sn(θk) − E(Sn(θk))| = O(n1/2−α) a.s.
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Since E(Sn(θ)) = O((logn)r) uniformly in θ , and

max
1≤k≤Mn

|Sn(θk)| ≤ max
1≤k≤Mn

|Sn(θk) − E(Sn(θk))| + max
1≤k≤Mn

|E(Sn(θk))|,
then

max
1≤k≤Mn

|Sn(θk)| = O(n1/2−α) a.s.(A.22)

On the other hand, for θ ∈ [θk−1, θk],
|Sn(θk) − Sn(θ)| ≤ sup

θ∈[a,b]
|S′

n(θ)|(θk − θk−1) = Ou(n
1/2−α(logn)r) a.s.

Therefore,

max
1≤k≤Mn

sup
θ∈[θk−1,θk]

|Sn(θk) − Sn(θ)| = o(n1/2) a.s.(A.23)

The proof is completed by combining (A.21), (A.22) and (A.23). �

PROOF OF THEOREM 1. Recall that the tapered and untapered log-likelihoods
are given by (1.3) and (1.1), respectively. The proof of (2.1) consists of direct com-
parisons of the log determinants and the two quadratic forms. First, Lemma 2(iii)
implies that

log[det(Vn ◦ Tn)] = log[det(Vn)] + Ou(1).(A.24)

Define Hn(θ) = (V−1
n (Vn◦Tn))

−1 −In. Then, Hn = Õn by Lemma 2(iii). Because

(Vn ◦ Tn)
−1 = V−1

n + HnV−1
n ,(A.25)

X′
n(Vn ◦ Tn)

−1Xn = X′
nV−1

n Xn + X′
nHnV−1

n Xn.(A.26)

Proof of (2.1) would be completed if, uniformly in (θ, σ 2), with probability 1,

X′
nHnV−1

n Xn = ou(n
1/2).(A.27)

We will apply Lemma 3 to prove (A.27). Define

Sn(θ) = σ 2X′
nHnV−1

n Xn,

and note that Sn(θ) depends on θ but not on σ 2. In view of symmetry of HnV−1
n

by (A.25), we can write

E0Sn(θ) = σ 2 trace{HnV−1
n Vn,0},(A.28)

where hereafter in the proof the expectation is evaluated under the true parameter
σ 2

0 and θ0, and Vn,0 = Vn(θ0, σ
2
0 ). The r th cumulant of X′

nHnV−1
n Xn

κr = 2r−1(r − 1)! trace{HnV−1
n Vn,0}r ,(A.29)

r = 1,2, . . . [see Searle (1971), Theorem 1, page 55].
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Next, we show that

V−1
n (θ, σ 2)Vn(θ0, σ

2
0 ) = Ou(1)In + Õn.(A.30)

Then, it follows from (A.28)–(A.30) and (A.7) that the first moment and the sixth
central moment of Sn(θ) are uniformly bounded, because the sixth central moment
of Sn(θ) is κ6 + 15κ4κ2 + 10κ2

3 + 15κ2
2 , which is uniformly bounded because all

of the four cumulants involved are uniformly bounded.
We now give explicit expression for the elements of V−1

n (θ, σ 2) based on
Lemma 1 and the following well-known result [e.g., Ripley (1981), page 89]:

V−1
n (θ, σ 2) = D−1

n (θ, σ 2)Bn(θ),(A.31)

where Bn(θ) = (bij,n(θ))1≤i,j≤n and Dn(θ, σ 2) = diag{di(θ, σ 2), i = 1, . . . , n}, in
which bij,n(θ), di(θ, σ 2) are defined as in Lemma 1 and bii,n(θ) = 1.

For brevity, we drop the parameters in the matrices and write Bn,0 = Bn(θ0) and
Dn,0 = Dn(θ0, σ

2
0 ). Decompose V−1

n into

V−1
n = D−1

n Bn,0 + D−1
n (Bn,0 − Bn) = A1 + A2.

Then,

A1Vn,0 = D−1
n Bn,0B−1

n,0Dn,0 = D−1
n Dn,0

and the diagonals of D−1
n Dn,0 converge uniformly to (σ 2

0 θ0)/(σ
2θ) by (A.3).

Therefore,

A1Vn,0 = diag(Ou(1), . . . ,Ou(1)).(A.32)

In addition,

A2Vn,0 = Õn uniformly in θ ∈ [a, b].(A.33)

Indeed, the absolute value of the (i, j)th element of A2Vn,0, 1 < i < n is∣∣∣∣∣
n∑

k=1

d−1
i

(
bik,n(θ) − bik,n(θ0)

)
σ 2

0 e−θ0|tk−tj |
∣∣∣∣∣

≤ d−1
i σ 2

0

∑
|k−i|≤1

|bik,n(θ) − bik,n(θ0)|

= Ou

(
1

n

)
,

where the last equality follows from (A.3), (A.4) and the Taylor theorem. Similarly,
we can show the elements on the first and last rows are Ou(1). Hence, (A.30)
follows from (A.32), (A.33) immediately. Last, note that ∂

∂θ
Sn(θ) = Ou(n

2) by
Lemma 2. The conditions of Lemma 3 are satisfied. Therefore,

sup
θ∈[a,b]

Sn(θ) = o(n1/2),(A.34)

which implies (A.27).
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We have now proved (2.1). (2.2) can be proved similarly, and the remaining
proof will be brief. The derivatives of the log likelihood functions can be written
as

∂

∂θ
ln(θ, σ 2) = − trace

{
V−1

n

∂Vn

∂θ

}
+ X′

nV−1
n

∂Vn

∂θ
V−1

n Xn,(A.35)

∂

∂θ
ln,tap(θ, σ 2) = − trace

{
(Vn ◦ Tn)

−1
(

∂Vn

∂θ
◦ Tn

)}
(A.36)

+ X′
n(Vn ◦ Tn)

−1
(

∂Vn

∂θ
◦ Tn

)
(Vn ◦ Tn)

−1Xn.

We first show that the two traces differ by Ou(1). Write An = V−1
n (Vn ◦ Tn). It is

straightforward to verify

(Vn ◦ Tn)
−1

(
∂Vn

∂θ
◦ Tn

)
= A−1

n V−1
n

∂Vn

∂θ
An + A−1

n

∂An

∂θ
.

Then,

trace
{
(Vn ◦ Tn)

−1
(

∂Vn

∂θ
◦ Tn

)}
= trace

{
V−1

n

∂Vn

∂θ

}
+ trace

(
A−1

n

∂An

∂θ

)
,

where the second trace in the right-hand side is clearly uniformly bounded by
Lemma 2. Similarly, we can write

(Vn ◦ Tn)
−1

(
∂Vn

∂θ
◦ Tn

)
(Vn ◦ Tn)

−1

= V−1
n

∂Vn

∂θ
V−1

n + WnV−1
n

for some matrix Wn, which is Õn. Using the exact same technique for deriving
(A.27), we can show

X′
nWnV−1

n Xn = ou(n
1/2).

The proof is complete. �

PROOF OF THEOREM 2. First, for (2.3), it suffices to show that, for any ε > 0,

P0

(
inf

{(θ,σ 2)∈J,|θσ 2−θ̃ σ̃ 2|≥ε}
{ln,tap(θ̃ , σ̃ 2) − ln,tap(θ, σ 2)} −→ ∞

)
= 1,(A.37)

where (θ̃ , σ̃ 2) ∈ J can be any fixed vector such that θ̃ σ̃ 2 = θ0σ
2
0 .

Ying (1991) has shown (A.37) for the log likelihood function ln(θ, σ 2). More
specifically, Ying (1991) showed that, uniformly in (θ, σ 2) ∈ J and |θσ 2 − θ̃ σ̃ 2| ≥
ε, with probability 1,

ln(θ̃ , σ̃ 2) − ln(θ, σ 2) ≥ ηn + Ou(n
1/2+α) for any α > 0

[see the proof of Theorem 1 in Ying (1991), page 289]. Then, (A.37) follows be-
cause of (2.1) in Theorem 1.
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Similarly, we can show (2.4) by using (2.2) and some asymptotic results in Ying
(1991). We can write [see (3.10) and (3.11) in Ying (1991), page 291]

∂

∂θ
ln(θ, σ 2) = σ 2

0 θ0

σ 2θ2

n∑
k=2

W 2
k,n − n

θ
+ Ou(1),

where

Wk,n = X(tk) − e−θ0�kX(tk−1)

σ0
√

1 − e−2θ0�k

.

Note that Wk,n depends only on the true parameters and are i.i.d. N(0,1) for k =
1, . . . , n.

Then, for any (θ, σ 2) ∈ J , we have

σ 2θ2 ∂

∂θ
ln,tap(θ, σ 2) = σ 2

0 θ0

n∑
k=2

(W 2
k,n − 1) − n(σ 2θ − σ 2

0 θ0) + ou(n
1/2)

by Theorem 1. In particular, for (θ, σ 2) = (θ̂n,tap, σ̂
2
n,tap), the left-hand side is zero.

Therefore, we obtain

0 = θ0σ
2
0

n∑
k=2

(W 2
k,n − 1) − n(θ̂n,tapσ̂

2
n,tap − θ0σ

2
0 ) + ou(n

1/2).

Since W 2
k,n, k = 1, . . . , n, are i.i.d. χ2

1 , we have

√
n(θ̂n,tapσ̂

2
n,tap − θ0σ

2
0 ) = θ0σ

2
0 n−1/2

n∑
k=2

(W 02
k,n − 1) + ou(1)

d−→ N(0,2(θ0σ
2
0 )2).

The proof is complete. �

APPENDIX B: PROOFS FOR SECTION 3

We will employ some known properties of equivalent Gaussian measures and
will refer to Ibragimov and Rozanov (1978) frequently. Two measures Pj , j =
0,1 are equivalent if they are absolutely continuous with respect to each other.
Let X(t), t ∈ D be Gaussian stationary under the two equivalent measures Pj ,
where D is a bounded subset in R

d for some d ≥ 1. Let Xn = (X(t1), . . . ,X(tn))′
denote the observations in D, and let pj (x1, . . . , xn) denote the density function
of Xn under measure Pj for j = 0,1. Then, the Radon–Nikodym derivative ρn =
p1(Xn)/p0(Xn) has a limit ρ with P0-probability 1. In addition,

P0(0 < ρ < ∞) = 1, lim
n→∞E0(logρn) = E0(logρ) and

(B.1)
−∞ < E0(logρ) < ∞.
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We refer the readers to Section III.2.1 of Ibragimov and Rozanov (1978) for these
results. It follows that the log-likelihood ratio and its expectation are all bounded.
With P0-probability 1,

logρn = ln,1(Xn) − ln,0(Xn)
(B.2)

= −1

2
log

det V1,n

det V0,n

− 1

2
X′

n(V
−1
1,n − V−1

0,n)Xn = O(1),

E0(logρn) = −1

2
log

det V1,n

det V0,n

− 1

2
E0

(
X′

n(V
−1
1,n − V−1

0,n)Xn

) = O(1).(B.3)

The difference of these two equations yields

X′
n(V

−1
1,n − V−1

0,n)Xn − E0
(
X′

n(V
−1
1,n − V−1

0,n)Xn

) = O(1) a.s.(B.4)

Before we proceed with the proof of the main results in Section 3, we will
establish the following lemmas. For two functions a(x), b(x), we write a(x) �
b(x), x → ∞ if −∞ < lim infx→∞ a(x)/b(x) ≤ lim supx→∞ a(x)/b(x) < ∞.

LEMMA 4. Let f1(λ) be the spectral density corresponding to isotropic
Matérn covariogram K(h;σ 2

1 , θ1) and f̃1(λ) be the spectral density correspond-
ing to the tapered covariance function K̃(h;σ 2

1 , θ1) = K(h;σ 2
1 , θ1)Ktap(h). Under

condition (A3), there exists r > 1 such that

f̃1(λ) − f1(λ)

f1(λ)
= O(|λ|−r ) as |λ| → ∞.(B.5)

PROOF. Using the fact that Fourier transform of product of two functions is
the convolution of their Fourier transforms, we have

f̃1(λ) =
∫

R

f1(x)ftap(λ − x)dx,(B.6)

where ftap is the spectral density corresponding to Ktap. It is seen that f̃1(λ)/f1(λ)

does not depend on σ 2
1 so that we can assume without loss of generality that

σ 2
1 = 1. It suffices to consider the case that λ > 0, because f̃1(λ) is symmetric

about λ = 0. Using
∫
R

ftap(λ − x)dx = 1 and breaking down these integrals over
intervals (−∞, λ − λk] ∪ [λ + λk,+∞) and (λ − λk,λ + λk) for any k ∈ (0,1),
we have

f̃1(λ)

f1(λ)
− 1 =

∫
|λ−x|≥λk f1(x)ftap(λ − x)dx

f1(λ)
−

∫
|λ−x|≥λk

ftap(λ − x)dx

+
∫
|λ−x|<λk (f1(x) − f1(λ))ftap(λ − x)dx

f1(λ)

= T1 + T2 + T3.
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By condition (A3), we have

|T1| ≤ M

(1 + λ2k)ν+1/2+ε

1

f1(λ)

∫
f1(x) dx.

The Matérn spectral density has a closed form

f1(λ) = cθ2ν
1

(θ2
1 + |λ|2)ν+1/2

for c = 	(ν + 1/2)

	(ν)π1/2 .(B.7)

In addition,
∫

f1(λ) dλ = σ 2
1 = 1 is the variance. Then,

|T1| ≤ M(θ2
1 + λ2)ν+1/2

cθ2ν
1 (1 + λ2k)ν+1/2+ε

.(B.8)

Similarly,

|T2| ≤ M

(ν + ε)λ2k(v+ε)
.(B.9)

Since ε > 1/2 and v + ε > 1 by condition (A3), we can choose k to be sufficiently
close to 1, so that both T1 and T2 are O(λ−r ) for some r > 1.

To bound T3, write, for some ξ between λ and x,

f1(x) − f1(λ) = f ′
1(λ)(x − λ) + f ′′

1 (ξ)
(x − λ)2

2
.

Then,

T3 = 1

f1(λ)

(
f ′

1(λ)

∫
|x−λ|<λk

(x − λ)ftap(λ − x)dx

+
∫
|λ−x|<λk

f ′′
1 (ξ)

(x − λ)2

2
ftap(λ − x)dx

)
.

The first term is 0 because the integrand is odd. For the second term, note

0 < f ′′
1 (ξ) = cθ2ν

1 (2ν + 1)

(θ2
1 + ξ2)ν+3/2

(
(2ν + 3)ξ2

θ2
1 + ξ2

− 1
)

≤ cθ2ν
1 (2ν + 3)2

(θ2
1 + ξ2)ν+3/2

.

Therefore, if λ is sufficiently large, for ξ lying between x and λ, where x is in the
interval |x − λ| < λk ,

0 < f ′′
1 (ξ) ≤ cθ2ν

1 (2ν + 3)2

(θ2
1 + (λ − λk)2)ν+3/2

≤ 2cθ2ν
1 (2ν + 3)2

λ2ν+3 .
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Then,

0 < T3 <
(2ν + 3)2(θ2

1 + λ2)ν+1/2

λ2ν+3

∫
(x − λ)2ftap(x − λ)dx.

Condition (A3) implies that x2ftap(x) is integrable. Then, T3 = O(λ−2). The proof
is complete. �

LEMMA 5. For any real number r > 0, there exists ξr(λ) such that

ξr(λ) =
∫

cr(t) exp(−iλt) dt, 0 < |ξr(λ)|2 � |λ|−r , λ → ∞,(B.10)

where cr(t) is square integrable and has a compact support.

PROOF. We only need to show the case 0 < r ≤ 1, because the product of any
functions of the type given by (B.10) belongs to this type, due to the fact that the
Fourier transform of convolution coincides with the product of Fourier transforms.
Let

ξr(λ) =
∫ 1

−1
eiλt |t |r/2−1 dt = 2

∫ 1

0
cos(λt)tr/2−1 dt.

We will show that ξr(λ) satisfies (B.10). We only need to prove it for λ ≥ 0, be-
cause ξr(λ) is symmetric about λ = 0 and ξr(0) > 0. Let u = λt . We can write

ξr(λ) = 2λ−r/2
∫ λ

0
cos(u)ur/2−1 du.

Then, ξr(λ)2 � |λ|−r as λ → +∞, because cos(u)ur/2−1 is integrable for 0 <

r ≤ 1.

Next, we will show ξr(λ) > 0 for any λ > 0. It suffices to show

y(λ) =
∫ λ

0
cos(u)u−δ du > 0,(B.11)

where δ = 1−r/2 ∈ [1/2,1). Note that y ′(λ) = cos(λ)λ−δ and y′′(λ) = − sin(λ)×
λ−δ − δ cos(λ)λ−δ−1. Therefore, the minimum points are {2kπ + 3π/2, k =
0,1, . . .}. So, we only need to show y(2kπ +3π/2) > 0, k = 0,1, . . . by induction.
First, using monotonicity of cos(u), we have

y

(
3π

2

)
=

∫ π/4

0
cos(u)u−δ du +

∫ π/2

π/4
cos(u)u−δ du

+
∫ π

π/2
cos(u)u−δ du +

∫ 3π/2

π
cos(u)u−δ du

(B.12)

≥ cos(π/4)
(π/4)1−δ

1 − δ
+ 1

(π/2)δ

(
1 −

√
2

2

)
− 1

(π/2)δ
− 1

πδ

≥
√

2

2

√
π + 2

π

(
1 −

√
2

2

)
−

√
2

π
− 1√

π
> 0.
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Next, suppose y(2(k − 1)π + 3π/2) > 0, for k ≥ 1, then

y(2kπ + 3π/2) = y
(
2(k − 1)π + 3π/2

)
+

∫ 2kπ+π/2

2kπ−π/2
cos(u)u−δ du +

∫ 2kπ+3π/2

2kπ+π/2
cos(u)u−δ du

= y
(
2(k − 1)π + 3π/2

) +
∫ 2kπ+π/2

2kπ−π/2
cos(u)u−δ du

−
∫ 2kπ+π/2

2kπ−π/2
cos(u)(u + π)−δ du

= y
(
2(k − 1)π + 3π/2

)
+

∫ 2kπ+π/2

2kπ−π/2
cos(u)

(
u−δ − (u + π)−δ)du.

The integral is positive because the integrand is positive. This completes the proof
of Lemma 5. �

PROOF OF THEOREM 3. Write the Cholesky decomposition of V0,n = LL′
for some lower triangular matrix L. Let Q be an orthogonal matrix such that

QL−1V1,nL′−1Q′ = diag{σ 2
1,n, . . . , σ

2
n,n}.

Then,

Q′L′V−1
1,nLQ = diag{1/σ 2

1,n, . . . ,1/σ 2
n,n}.

Taking the trace of both sides, we have

trace(V0,nV−1
1,n) =

n∑
i=1

1/σ 2
k,n.

Hence,

E0
(
X′

n(V
−1
1,n − V−1

0,n)Xn

) = trace(V0,nV−1
1,n) − n =

n∑
k=1

(
1

σ 2
k,n

− 1
)
.

Let en = QL−1Xn. Obviously,

E0ene′
n = In, E1ene′

n = diag{σ 2
1,n, . . . , σ

2
n,n}.(B.13)

Equation (3.7) follows if, for any orthogonal sequence {ηk, k = 1,2, . . .} in
the Hilbert space L2

D(dP0) spanned by X(t), t ∈ D under the covariance in-
ner product corresponding to P0, there exists a constant M > 0 independent of
ηk, k = 1,2, . . . , such that

∞∑
k=1

∣∣∣∣ 1

E1η
2
k

− 1
∣∣∣∣ < M.(B.14)
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One important technique to prove (B.14) is to write, for any s, t ∈ D,

E1X(t)X(s) − E0X(t)X(s) =
∫

R

∫
R

ei(λs−μt)�(λ,μ)dλdμ,(B.15)

where �(λ,μ) is square integrable with respect to Lebesgue measure on R
2. For

any bounded region D, the existence of such a function � and, therefore, the equiv-
alence of P0 and P1, are shown in Ibragimov and Rozanov (1978), page 104, The-
orem 17, under the assumption that the function h(λ) in (3.6) is square integrable.
However, we will show, under the assumption of this lemma that h(λ) is integrable,
� takes a particular form

�(λ,μ) = �1(λ)�2(μ)

∫
T

e−i(λ−μ)ω dω(B.16)

for some functions �j(λ), λ ∈ R such that
∫ |�j(λ)|2/f0(λ) dλ < ∞, j = 1,2,

and a compact interval T that is solely determined by r1 and r2. This particular
form is central to the proof, and we will establish it at the end of this proof. We
now proceed by assuming it is true.

Let dZ0(λ) denote the stochastic orthogonal measure so that X(t) has the spec-
tral representation under measure P0; that is, X(t) = ∫

exp(−iλt) dZ0(λ). Then,
for any η ∈ L2

D(dP0), there is a function φ(λ) such that η = ∫
φ(λ)dZ0(λ) and

E0η
2 = ∫ |φ(λ)|2f0(λ) dλ. We first show

E1η
2 =

∫
|φ(λ)|2f1(λ) dλ,(B.17)

E1η
2 − E0η

2 =
∫ ∫

φ(λ)φ(μ)�(λ,μ)dλdμ.(B.18)

Indeed, the two equations hold for η = X(t) = ∫
exp(−iλt) dZ0(λ) for any t ∈ D

[assuming (B.15) is true]. Consequently, they hold for any linear combination

η =
J∑

j=1

cjX(tj ) =
∫

φ(λ)dZ0(λ)

for any J and t1, . . . , tJ ∈ D, where φ(λ) = ∑J
j=1 cj e

−iλtj .

For any η ∈ L2
D(dP0), we can find a sequence of finite linear combinations

of X(t), t ∈ D, say, ηm, m = 1,2, . . . , such that limm→∞ E0(η − ηm)2 = 0. If
ηm = ∫

φm(λ)dZ0(λ), we have

E0(η − ηm)2 =
∫

|φ(λ) − φm(λ)|2f0(λ) dλ → 0.(B.19)

Then,∫
|φ(λ) − φm(λ)|2f1(λ) dλ =

∫
|φ(λ) − φm(λ)|2f0(λ)

(
1 + h(λ)

)
dλ → 0,
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because h = (f1 − f0)/f0 is bounded. It follows that ηm converges in L2(dP1)

norm to some variable η̃ because E1(ηl −ηm)2 = ∫ |φl(λ)−φm(λ)|2f1(λ) dλ → 0
as l,m → ∞. Then,

E1η̃
2 = lim

m→∞E1η
2
m = lim

m→∞

∫
|φm(λ)|2f1(λ) dλ =

∫
|φ(λ)|2f1(λ) dλ.

Since L2 convergence implies convergence in probability, we have ηm → η̃ in
probability P1. On the other hand, ηm → η in probability P0 and, consequently,
in probability P1, due to the equivalence of the two probabilities. Then, we must
have P1(η = η̃) = 1 and E1η

2 = E1η̃
2. We have proved (B.17). To show (B.18),

note that ∣∣∣∣
∫ ∫

φm(λ)φm(μ)�(λ,μ)dλdμ −
∫ ∫

φ(λ)φ(μ)�(λ,μ)dλdμ

∣∣∣∣
≤

∫ ∫ ∣∣(φm(λ) − φ(λ)
)
φm(μ)

∣∣|�(λ,μ)|dλdμ(B.20)

+
∫ ∫ ∣∣(φm(μ) − φ(μ)

)
φ(λ)

∣∣|�(λ,μ)|dλdμ,

where the first term tends to zero, because Cauchy–Schwarz inequality implies its
square is bounded by

|T |2
∫

|φm(λ) − φ(λ)|2f0(λ) dλ

∫
|φm(μ)|2f0(μ)dμ

×
∫ |�1(λ)|2

f0(λ)
dλ

∫ |�2(μ)|2
f0(μ)

dμ → 0

by (B.19) and square integrability of �1(λ)/
√

f0(λ), where and hereafter |T |
stands for the length of finite interval T . Similarly, we can show the second term
in (B.20) also tends to zero. Therefore, (B.18) is now proved by taking the limit of
E1η

2
m − E0η

2
m and

∫∫
φm(λ)φm(μ)�(λ,μ)dλdμ.

Applying (B.18) to the orthonormal sequence ηk = ∫
φk(λ) dZ0(λ), k = 1,

2, . . . , we have

E1η
2
k − 1 =

∫ ∫
φk(λ)φk(μ)

∫
T

e−i(λ−μ)ω dω�1(λ)�2(μ)dλdμ

=
∫
T

A1,k(ω)A2,k(ω)dω,

where Aj,k(ω) = ∫
φk(λ) exp(iλω)�j (λ) dλ. Since (3.6) and continuity of fj im-

ply that f1(λ) > Cf0(λ) for some constant C > 0, we have E1η
2
k > CE0η

2
k = C

and, therefore,

|1/E1η
2
k − 1| ≤ |E1η

2
k − 1|/C ≤ (1/2C)

2∑
j=1

∫
T

|Aj,k(ω)|2 dω.

In view that Aj,k(ω) is the inner product of the two integrable functions
φk(λ)f0(λ)1/2 and exp(iλω)�j (λ)/f0(λ)1/2 in L2(dλ), and that φk(λ)f0(λ)1/2,
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k = 1,2, . . . , is an orthonormal sequence in L2(dλ) [because E0ηlηk = ∫
φl(λ) ×

φk(λ)f0(λ) dλ], we have, by Bessel’s inequality,
∞∑

k=1

|Aj,k(ω)|2 ≤
∫

|�j(λ)|2/f0(λ) dλ < ∞.

It follows that
∞∑

k=1

|E1η
2
k − 1| ≤ (1/2C)

2∑
j=1

∫
T

∞∑
k=1

|Aj,k(ω)|2 dω

≤ (|T |/2C)

2∑
j=1

∫
|�j(λ)|2/f0(λ) dλ < ∞.

We just need to show (B.15) and (B.16) to complete the proof. We will employ the
following well-known properties of Fourier transform. For any square integrable
functions (with respect to Lebesgue measure) ϕj (λ), λ ∈ R

d , there are square in-
tegrable functions aj (t), t ∈ R

d such that

ϕj (λ) =
∫

Rd
exp(−iλ′t)aj (t) dt, j = 1,2.

Furthermore,

ϕ1(λ)ϕ2(λ) =
∫

Rd
exp(−iλ′t)(a1 ∗ a2)(t) dt,(B.21)

∫
Rd

exp(iλ′t)ϕ1(λ)ϕ2(λ) dλ = (2π)d(a1 ∗ a2)(t),(B.22)

where all the equalities are in the L2(dλ) sense, and a1 ∗a2 is the convolution; that
is,

a1 ∗ a2(t) =
∫

Rd
a1(s)a2(t − s) ds.

By Lemma 5, there exists a continuous and square integrable function ξj (λ)

(j = 1,2) such that

ξj (λ) =
∫

cj (t) exp(−iλt) dt, 0 < |ξj (λ)|2 � |λ|−rj , λ → ∞,(B.23)

for some square integrable function cj (t) that has a compact support [i.e., cj (t)

is 0 outside a compact set].
Let ξ(λ) = (f0(λ) − f1(λ))/|ξ1(λ)|2. Then, ξ(λ) is square integrable by the

assumption of the theorem and the properties of ξ1(λ). Therefore, we can write,
for some square integrable function c(t), ξ(λ) = ∫

exp(−iλt)c(t) dt . Furthermore,
for all s, t ,

E0X(s)X(t) − E1X(s)X(t) =
∫

eiλ(s−t)(f0(λ) − f1(λ)
)
dλ

(B.24)
=

∫
eiλ(s−t)ξ(λ)|ξ1(λ)|2 dλ,
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which we will denote by b(s, t). By (B.21),

|ξ1(λ)|2 =
∫

exp(−iλt)

(∫
c1(z)c1(z − t) dz

)
dt.

Applying (B.22) to ξ(λ) and |ξ1(λ)|2, we get

b(s, t) = 2π

∫
R

c(w)

∫
R

c1(z)c1
(−(s − t − w − z)

)
dzdw

(B.25)
= 2π

∫
R2

c(u − v)c1(s − u)c1(t − v) dudv,

which holds for all s, t ∈ R. If we restrict s, t to the compact set D, the inte-
gral (B.25) is an integral over a compact set, say, � × �. This is because c1 is 0
outside a compact interval.

Next, we write c(t) as a convolution of two functions. For this purpose, we write
ξ(λ) = ξ2(λ)ξ3(λ). Then, ξ3(λ) so defined is square integrable from assumptions
and (B.23) and, therefore, can be written as

ξ3(λ) =
∫

exp(−iλt)c3(t) dt.

Then, c = c2 ∗ c3 and, consequently,

c(u − v) =
∫

c2(x)c3(u − v − x)dx =
∫

c2(u − ω)c3(ω − v) dω.(B.26)

Since we are only interested in b(s, t) for s, t ∈ D and, consequently, only in-
terested in c(u−v) for u, v ∈ �, we will restrict both u, v to the interval �, so that
the second interval in (B.26) is an integral on a finite interval, say, T , because c2
has a compact support. Define the bivariate function

a(u, v) =
∫
T

c2(u − ω)c3(ω − v) dω, u, v ∈ R,

which is square integrable because

|a(u, v)|2 ≤ |T |
∫
T

|c2(u − ω)|2|c3(ω − v)|2 dω

and both c2 and c3 are square integrable. In addition, for u, v ∈ �, we have, from
(B.26),

a(u, v) = c(u − v).

We therefore have shown that, for s, t ∈ D,

b(s, t) = 2π

∫
R2

a(u, v)c1(s − u)c1(t − v) dudv.

Note that the integral is a convolution of functions of (u, v). Applying (B.22), we
get

2πb(s, t) =
∫

exp
(
i(λs + μt)

)
ϕ1(λ,μ)ϕ2(λ,μ)dλdμ,



FIXED-DOMAIN ASYMPTOTICS FOR TAPERED MLE 3357

where

ϕ1(λ,μ) =
∫

R2
a(u, v)e−i(uλ+vμ) dudv,

ϕ2(λ,μ) =
∫

R2
c1(u)c1(v)e−i(uλ+vμ) dudv.

Clearly,

ϕ2(λ,μ) = ξ1(λ)ξ1(−μ).

Now,

ϕ1(λ,μ) =
∫

R2
a(u, v)e−i(uλ+vμ) dudv

=
∫
T

∫
R2

c2(u − ω)c3(ω − v)e−i(uλ+vμ) dudv dω

=
∫
T

∫
R2

c2(x)c3(−y)e−i((x+ω)λ+(y+ω)μ) dx dy dω

=
∫
T

(∫
R2

c2(x)e−ixλc3(−y)e−iyμ dx dy

)
e−i(λ+μ)ω dω

= ξ2(λ)ξ3(−μ)

∫
T

e−i(λ+μ)ω dω.

Hence,

b(s, t) = 1

2π

∫
R2

ei(λs+μt)ξ1(λ)ξ2(λ)ξ1(−μ)ξ3(−μ)

∫
T

e−i(λ+μ)ω dω dλdμ

= 1

2π

∫
R2

exp
(
i(λs − μt)

)
�1(λ)�2(μ)

∫
T

exp
(−i(λ − μ)ω

)
dωdλdμ

for �1(λ) = ξ1(λ)ξ2(λ) and �2(μ) = ξ1(μ)ξ3(μ). Clearly,
∫ |�j(λ)|2/f0(λ) dλ <

∞ by the assumption of the theorem, (B.23) and the square-integrability of ξ2
and ξ3. The proof is complete. �

PROOF OF THEOREM 4. Let σ 2
1 be such that σ 2

1 θ2ν
1 = σ 2

0 θ2ν
0 , and let Pj be

the probability measure under which the process has a Matérn covariogram with
parameters (θj , σ

2
j ) for j = 0,1. Then, P0 ≡ P1 by Theorem 2 in Zhang (2004).

Consequently, we only need to show that (3.8) and (3.9) hold, almost surely, with
respect to P1.

Let f1(λ) = f1(λ; θ1, σ
2
1 ) be the spectral density under measure P1 and f2(λ)

the corresponding tapered spectral density as defined in Lemma 4, from which we
see that, for some constant c > 0,∫

|λ|>c

∣∣∣∣f2(λ) − f1(λ)

f1(λ)

∣∣∣∣
2

dλ < ∞,
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which is a sufficient condition for the equivalence of the measures P1 and P2
where P2 is the measure corresponding the tapered spectral density f2.

Let Vj,n, j = 1,2, be the covariance matrix corresponding to the spectral den-
sities fj that depend on σ 2

1 and θ1 and do not depend on σ 2. For any σ 2, we have

ln,tap(θ1, σ
2) − ln(θ1, σ

2)
(B.27)

= − log(det V2,n/det V1,n) − σ 2
1

σ 2 X′
n(V

−1
2,n − V−1

1,n)Xn.

Split it into three additive terms as follows:[
− log

det V2,n

det V1,n

− E1
(
X′

n(V
−1
2,n − V−1

1,n)Xn

)]
(B.28)

+
(

1 − σ 2
1

σ 2

)
E1

(
X′

n(V
−1
2,n − V−1

1,n)Xn

)

− σ 2
1

σ 2

[
X′

n(V
−1
2,n − V−1

1,n)Xn − E1
(
X′

n(V
−1
2,n − V−1

1,n)Xn

)]
(B.29)

= I1 + I2 − I3.

Because P1 ≡ P2, the first term is bounded as we discussed previously in (B.3).
Similarly, by (B.2), the third term I3 is bounded uniformly in σ 2 ∈ [w,v], almost
surely. The second term I2 is also bounded uniformly in σ 2 ∈ [w,v] because, by
Theorem 3,

E1
(
X′

n(V
−1
2,n − V−1

1,n)Xn

) = O(1).(B.30)

Therefore (3.8) is proved. To show (3.9), first observe

∂

∂σ 2 ln,tap(θ1, σ
2) − ∂

∂σ 2 ln(θ1, σ
2) = −σ 2

1

σ 4 (X′
nV−1

2,nXn − X′
nV−1

1,nXn),(B.31)

which can be rewritten as

σ 2
1

σ 4

[
X′

n(V
−1
2,n − V−1

1,n)Xn − E1
(
X′

n(V
−1
2,n − V−1

1,n)Xn

)]
(B.32)

− σ 2
1

σ 4 E1
(
X′

n(V
−1
2,n − V−1

1,n)Xn

)
.

Then, (3.9) immediately follows (B.4) and Theorem 3. �

PROOF OF THEOREM 5. As σ 2
1 = σ 2

0 (θ0/θ1)
2ν , we only need to show

√
n

(
σ̂ 2

n

σ 2
1

− 1
)

d−→ N(0,2),(B.33)

√
n

(
σ̂ 2

n,tap

σ 2
1

− 1
)

d−→ N(0,2).(B.34)
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Let Vj,n be the covariance matrix of Xn corresponding to parameter values
(θi, σ

2
i ), j = 0,1. Write V1,n = σ 2

1 R1,n, where R1,n is the correlation matrix. First,
we note that σ̂ 2

n has a closed form express

σ̂ 2
n = 1

n
X′

nR−1
1,nXn(B.35)

that can be derived straightforwardly from the maximization. Then,

√
n

(
σ̂ 2

n

σ 2
1

− 1
)

= √
n

(X′
nR−1

1,nXn

σ 2
1 n

− 1
)

(B.36)

= (
1/

√
n
)(

X′
n(V

−1
1,n − V−1

0,n)Xn

) + √
n

(X′
nV−1

0,nXn

n
− 1

)
.

Since V−1/2
0,n Xn consists of i.i.d. N(0,1) variables, X′

nV−1
0,nXn is the sum of i.i.d.

variables having a χ2
1 distribution. The central limit theorem implies that the sec-

ond term in (B.36) converges in distribution to N(0,2).
Equation (3.10) in Theorem 5 follows if the first term is shown to be bounded

almost surely with respect to P0. In view of (B.4), if suffices to show that

E0
(
X′

n(V
−1
1,n − V−1

0,n)Xn

) = O(1).

To this end, we only need to verify that conditions of Theorem 3 are satisfied. The
Matérn spectral density (B.7) satisfies, as λ → ∞,

0 < f (λ; θi, σ
2
i ) ∼ |λ|−(2ν+1).(B.37)

Moreover, in view of σ 2
0 θ2ν

0 = σ 2
1 θ2ν

1 ,

h(λ) = f1(λ)

f0(λ)
−1 =

(
θ2

0 + λ2

θ2
1 + λ2

)ν+d/2

−1 =
(

1+ θ2
0 − θ2

1

θ2
1 + λ2

)ν+d/2

−1,(B.38)

where fi(λ) stands for f (λ; θi, σ
2
i ), i = 0,1. Using the Taylor expansion, we can

get

h(λ) ∼ |λ|−2.

Hence, (3.10) is proved.
Next, we derive the asymptotic distribution of the tapered MLE σ̂ 2

n,tap. Similar

to σ̂ 2
n , the tapered MLE σ̂ 2

n,tap takes the closed form

σ̂ 2
n,tap = 1

n
X′

nR̃−1
1,nXn,

where R̃1,n is the tapered correlation matrix corresponding to R1,n. It follows
(3.10) in Theorem 4 that

X′
nR̃−1

1,nXn − X′
nR−1

1,nXn = O(1).



3360 J. DU, H. ZHANG AND V. S. MANDREKAR

Then,

σ̂ 2
n,tap = 1

n
X′

nR−1
1,nXn + O(1/n) = σ̂ 2

n + O(1/n).

It follows immediately that σ̂ 2
n,tap and σ̂ 2

n have the same asymptotic distribution.
The proof is complete. �
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