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SOME RESULTS ON 2n−m DESIGNS OF RESOLUTION IV WITH
(WEAK) MINIMUM ABERRATION

BY HEGANG H. CHEN AND CHING-SHUI CHENG1

University of Maryland and University of California, Berkeley

It is known that all resolution IV regular 2n−m designs of run size N =
2n−m where 5N/16 < n < N/2 must be projections of the maximal even
design with N/2 factors and, therefore, are even designs. This paper derives
a general and explicit relationship between the wordlength pattern of any
even 2n−m design and that of its complement in the maximal even design.
Using these identities, we identify some (weak) minimum aberration 2n−m

designs of resolution IV and the structures of their complementary designs.
Based on these results, several families of minimum aberration 2n−m designs
of resolution IV are constructed.

1. Introduction. Fractional factorial designs, especially those with two-level
factors, have a long history of successful use in scientific investigations and indus-
trial experiments. A 2−mth fraction of a 2n factorial design, consisting of 2n−m

distinct combinations, is referred to as a 2n−m fractional factorial design. Such a
design is called regular if it can be constructed by using a defining relation. How
to choose a good fractional factorial design is an important issue. Minimum aber-
ration (MA), introduced by Fries and Hunter (1980), has become the most popular
criterion for selecting fractional factorial designs.

For a regular fractional factorial design D, each interaction that appears in
the defining relation is called a defining word, and the resolution of the de-
sign is defined as the length of the shortest defining word. For each posi-
tive integer i, let Ai(D) be the number of defining words of length i. Then,
the resolution is equal to the smallest i such that Ai(D) > 0. The vector
W(D) = (A1(D),A2(D), . . . ,An(D)) is called the wordlength pattern of D.
The minimum aberration criterion chooses a design by sequentially minimizing
A1(D),A2(D),A3(D), . . . . A 2n−m design with maximum resolution Rmax is
said to have weak minimum aberration if it has the minimum number of words
of length Rmax. A two-level regular design is called even if all its defining words
are of even length. Throughout this paper, we denote the run size 2n−m by N .
It is well known that there is a unique (up to isomorphism) resolution IV design
with n = N/2. This design is even and has the property that every even design
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is its projection onto a certain subset of factors [see Chen and Hedayat (1998b)].
For this reason, we call the resolution IV design with n = N/2 the maximal even
design.

Chen (1998) studied the connection between wordlength patterns and projec-
tions of 2n−m designs and showed that minimum aberration designs have good pro-
jection properties. Meanwhile, Cheng, Steinberg and Sun (1999) provided some
insight into minimum aberration, and justified this criterion by demonstrating that
it is a good surrogate for some model-robustness criteria. In recent years, there has
been much progress in the construction of MA fractional factorial designs. Each
regular 2n−m design of resolution III or higher can be constructed by choosing n

factors from the saturated regular design of resolution III, which has N −1 factors.
The N − 1 − n factors that are not chosen form another design called the comple-
mentary design. Chen and Hedayat (1996) and Tang and Wu (1996) established
identities relating the wordlength pattern of a design to that of its complementary
design. These identities can be used to help construct MA designs by choosing
appropriate complementary designs. This approach is very useful when the com-
plementary designs have a small number of factors. Chen and Hedayat (1998a)
have identified all minimum aberration 2n−m designs whose complementary de-
signs have fewer than 64 factors.

When n ≤ N/2, the complementary design theory developed by Chen and He-
dayat (1996) and Tang and Wu (1996) is not useful, since, in this case, the com-
plementary design has more factors than the original design. Thus, an alterna-
tive theory is needed. Maximal even designs are known to be MA for n = N/2.
When n < N/2, MA designs must be of resolution IV or higher. Recent results
in the literature of projective geometry [Bruen, Haddad and Wehlau (1998) and
Bruen and Wehlau (1999)], as summarized in Chen and Cheng (2004) and Chen
and Cheng (2006), showed that all regular 2n−m designs of resolution IV with
5N/16 < n < N/2 are projections of the maximal even design. Therefore, for
5N/16 < n < N/2, one can also construct an MA design by appropriately delet-
ing a subset of factors from the maximal even design. Thus, it is useful to de-
velop a corresponding complementary design theory for maximal even designs, as
Chen and Hedayat (1996) and Tang and Wu (1996) did for saturated designs of
resolution III. Butler (2003) employed this idea to classify MA 2n−m designs of
resolution IV.

The objective of this article is to establish an explicit complementary design
theory for maximal even designs and to further investigate minimum aberration
2n−m designs with 5N/16 < n < N/2. In Section 2, after introducing some tech-
nical tools, we derive combinatorial identities that relate the wordlength pattern of
a 2n−m even design and that of its complement in the maximal even design. These
identities have explicit forms, so that the wordlength pattern of an even design
can be readily calculated from that of its complement in the maximal even design.
Using these results, we identify some weak minimum aberration designs of reso-
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lution IV and the structures of their complementary designs in Section 3. A lower
bound on the minimum number of words of length four is derived in Section 4.
Finally, several families of minimum aberration 2n−m designs of resolution IV are
constructed in Section 5.

2. Some technical tools and results. Let D be a 2n−m regular fractional fac-
torial design of resolution III or higher. Following the notation in Chen and He-
dayat (1996), the treatment combinations in D can be represented as row vectors
as follows:

D = {x : x = vBn,v ∈ Vn−m},(1)

where Bn is an (n − m) × n matrix of rank n − m over the finite field GF(2)

and Vn−m is the (n − m)-dimensional vector space over GF(2). The matrix Bn

is called the factor representation of D. Let k = n − m and N = 2k . Then, each
column of Bn can be identified with a point of PG(k − 1,2), where PG(k − 1,2)

is the projective geometry of dimension k − 1 over GF(2). So, a regular fractional
factorial design as in (1) is determined by a set of n points of PG(k − 1,2), say
T = {a1, . . . ,an}. When n = N − 1, we obtain the saturated regular design of
resolution III by choosing all the N − 1 points of PG(k − 1,2). For n < N − 1,
T can also be obtained by deleting N − 1 − n points from PG(k − 1,2). Without
loss of generality, we can represent the N − 1 points of PG(k − 1,2) as

a1, . . . ,an︸ ︷︷ ︸
T

,an+1, . . . ,aN−1︸ ︷︷ ︸
T

,(2)

where T = {an+1, . . . ,aN−1} consists of the points in PG(k − 1,2) \ T . Let D

and D be the two fractional factorial designs corresponding to T and T , respec-
tively. We call D the complementary design of D in the saturated regular design
of resolution III.

In the above geometric representation, it can be shown that a maximal even de-
sign corresponds to the complement of a (k − 2)-dimensional projective geometry.
Specifically, let F be a set of N/2 − 1 points that is itself a PG(k − 2,2). Then,
F gives the factor representation of a maximal even design, and F = {a,a+F } for
any a ∈ F . We also point out that there is a one-to-one correspondence between the
points in F and those in a (k − 1)-dimensional Euclidean geometry over GF(2),
an EG(k − 1,2). If D is an even design, then, since it must be a projection of the
maximal even design, its corresponding T can be considered as a subset of F . In
this case, PG(k − 1,2) in (2) can be further partitioned into three parts,

PG(k − 1,2) = {a1, . . . ,an︸ ︷︷ ︸
T

,an+1, . . . ,an+N/2−1︸ ︷︷ ︸
F

,an+N/2, . . . ,aN−1︸ ︷︷ ︸
T̃

}.(3)
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The vectors in the k-dimensional linear space generated by the rows of (3) can be
displayed as an N × (N − 1) matrix

{c1, . . . , cn︸ ︷︷ ︸
D

, cn+1, . . . , cn+N/2−1︸ ︷︷ ︸
DF

cn+N/2, . . . , cN−1︸ ︷︷ ︸
D̃

}.(4)

We call D̃ the complementary design of D in the maximal even design, while
D = DF ∪ D̃ is its complement in the saturated regular design of resolution III.
Note that D̃ is also an even design and that both D and D̃ are of resolution IV or
higher.

As pointed out earlier, when n < N/2, D has more factors than D; therefore, in
this case, the results of Chen and Hedayat (1996) and Tang and Wu (1996) do not
help alleviate the complexity of identifying MA 2n−m designs. On the other hand,
when 5N/16 < n < N/2, since the MA designs must be even, in view of (4),
one can construct D via D̃. Butler (2003) studied the relationship between the
wordlength patterns of D and D̃ in terms of the moments of their design matri-
ces. However, no explicit identities linking these wordlength patterns are avail-
able.

Employing techniques of Chen and Cheng (1999), we now derive explicit com-
binatorial identities that govern the relationship between the wordlength pattern of
a regular 2n−m even design D and that of its complement D̃ in the maximal even
design. Such identities play an important role in classifying (weak) MA designs in
Section 3.

For any positive integer n, the Krawtchouk polynomial is defined by

Pi(j ;n) =
i∑

s=0

(−1)s
(

j

s

)(
n − j

i − s

)
, i = 0,1,2, . . . .

As in Chen and Cheng (1999), we define

αr(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2r

((
2r − 2

s

)
+ Ps(2r−1;2r − 2)(2r−1 − 1)

− Ps(2r−1 − 1;2r − 2)2r−1
)
,

for s = 2, . . . ,2r − 2,

1, for s = 1,

(5)

γr(s) = 1

2r

((
2r − 1

s

)
+ Ps(2

r−1;2r − 1)(2r − 1)

)
(6)

for s = 0, . . . ,2r − 1.

Since D and D̃ in (4) are even designs, Ai(D) = Ai(D̃) = 0 for all odd i. Using
Theorem 1 of Chen and Cheng (1999), we can prove the following theorem, which
links the wordlength patterns of D and D̃. The detailed proof can be found in the
Appendix.
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THEOREM 1. Let D and D̃ be a pair of complementary regular 2n−m even
designs as in (4). Then,

A2u(D) = C2u + C2u,0 + γ2u + A2u(D̃)

+
u−1∑
l=1

(2u−1−2l∑
t=1

C2u,t+2lαk−1(t) + αk−1
(
2(u − l)

))
(7)

×
((

2k−1 − n

2l

)
− A2l(D̃)

)

+
u−1∑
l=2

(2u−1−2l∑
t=1

C2u,t+2lγk−1(t) + γk−1
(
2(u − l)

) + C2u,2l

)
A2l(D̃)

for u = 2, . . . , [n/2], where αk−1(s) and γk−1(s) are defined in (5) and (6),
respectively, γ2u = ∑2u

s=3 I[s≤2k−1−1]γk−1(s), Ci = 2−k(Pi(0;n) − Pi(2k−1;n)),

Cij = (−1)i−[(i−j)/2]( n−2k−1

[(i−j)/2]
)

and [x] is the largest integer less than or equal
to x.

By noting from (7) that

A2u(D) = A2u(D̃) + lower order terms,

we have the following result.

COROLLARY 1. For 5N/16 < n < N/2, a regular 2n−m design has minimum
aberration if and only if it is even and its complementary design in the maximal
even design has minimum aberration among all (N/2 − n)-factor even designs.

This result was also obtained in Butler (2003) by comparing the design mo-
ments.

In the following section, we will use the identities in (7) to further investigate
the structures of (weak) minimum aberration designs of resolution IV.

Xu and Cheng (2008) developed a general complementary design theory for
doubling that can be applied to the case where n ≤ 5N/16. In this case, MA de-
signs are projections of designs other than maximal even designs where, unlike the
case 5N/16 < n < N/2 studied here, wordlength patterns of the complementary
designs alone are no longer sufficient to characterize minimum aberration projec-
tions.

3. Weak minimum aberration 2n−m designs of resolution IV. In this sec-
tion, we focus on weak minimum aberration 2n−m designs with 5N/16 < n <

N/2. First, an explicit relationship between A4(D) and A4(D̃) is derived.
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From Theorem 1, we have

A4(D) = A4(D̃) + C4 + C4,0 + γk−1(3) + γk−1(4)
(8)

+ (
1 + αk−1(2)

)(
2k−1 − n

2

)
.

The following corollary results from simplification of (8).

COROLLARY 2. For each regular 2n−m even design D,

A4(D) = A4(D̃) +
((

n

4

)
−

(
2k−1 − n

4

))/
(2k−1 − 3).(9)

From Corollary 2, we have the following result.

THEOREM 2. For any regular 2n−m even design D of resolution IV,

A4(D) ≥
((

n

4

)
−

(
2k−1 − n

4

))/
(2k−1 − 3).(10)

If the complementary design D̃ in (4) has resolution at least VI, then D achieves
the lower bound for A4(D) in Theorem 2, and is a weak minimum aberration
design. Let M6(k) be the maximum number of factors that can be accommodated
in an even fractional factorial design of resolution at least VI and run size N = 2k .
Then, for N/2 −M6(k) ≤ n ≤ N/2, the lower bound in (10) can be attained, and a
weak minimum aberration design can be constructed as the complement of an even
fractional factorial design of resolution at least VI in the maximal even design.
There is no explicit formula for M6(k), but some upper bounds on M6(k) can be
derived from coding theory.

It is well known that the concepts of fractional factorial designs, wordlength
pattern, resolution and defining relation have their counterparts in the context of
linear codes. See MacWilliams and Sloane (1977) for basic concepts in algebraic
coding theory. Let the defining words of a fractional factorial design be represented
by binary row vectors. A regular 2n−m fractional factorial design can be considered
as an [n,n−m] linear code, which is the null space of the m×n matrix whose rows
are the m independent defining words. Then, the defining relation of the design can
be considered as its dual code, which is the [n,m] linear code generated by the m

independent defining words. It follows, from the Varshamov lower bound in coding
theory [Huffman and Pless (2003), page 87], that M6(k) must satisfy the following
inequality: (

x − 1
1

)
+

(
x − 1

2

)
+

(
x − 1

3

)
+

(
x − 1

4

)
≤ 2k − 1.(11)

For example, M6(6) = 7, and, for k = 6, the maximum value of x satisfying in-
equality (11) is also 7.
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Let [n, t, d] be a binary linear code with minimum distance d . Given a [n, t, d]
code with odd d , we can obtain an even [n + 1, t, d + 1] code by appending a 0 to
every codeword of even weight and a 1 to every codeword of odd weight. The new
code is called the extended code. Obviously, extended codes are even. BCH codes
are a family of multiple-error-correcting codes that were discovered by Bose, Ray-
Chauhuri and Hocquenghen. From page 586 of MacWilliams and Sloane (1977),
there exist BCH codes with parameters [2r ,2r −2r,5] and [2r +2[(r+1)/2]−1,2r +
2[(r+1)/2] − 2r − 2,5]. This implies the existence of the extended codes [2r +
1,2r − 2r,6] and [2r + 2[(r+1)/2],2r + 2[(r+1)/2] − 2r − 2,6], which can be used
to construct weak minimum aberration designs. We have the following theorem.

THEOREM 3. Let D∗ be a weak minimum aberration 2n−m design and k =
n − m. If k is odd and 2k−1 − 2(k−1)/2 − 1 ≤ n ≤ 2k−1, or k is even and 2k−1 −
2(k−2)/2 −2[k/4] ≤ n ≤ 2k−1, then A4(D

∗), the minimum number of words of length
four, is

A4(D
∗) =

((
n

4

)
−

(
2k−1 − n

4

))/
(2k−1 − 3).(12)

PROOF. Here, we only consider the case of even k. The case of odd k can
be handled similarly. Let k = 2r + 2 and n∗ = 2r + 2[(r+1)/2] = 2(k−2)/2 + 2[k/4].
Since the extended BCH code [2r + 2[(r+1)/2],2r + 2[(r+1)/2] − 2r − 2,6] exists,
the maximum resolution of an even 2n∗−(n∗−k) design is at least VI. Therefore,
the maximum resolution of a complementary design D̃ in (4) is at least VI if the
number of factors is greater than or equal to 2k−1 −2(k−2)/2 −2[k/4]. Equation (12)
follows from Corollary 2.

A weak minimum aberration design attaining (12) can be obtained by first con-
structing the even design with an extended BCH code as its defining relation, and
then taking its complement in the maximal even design.

From Theorem 3, for k = 6, equality (12) holds if 26 ≤ n ≤ 32. Since
M6(6) = 7, (12) also holds for n = 25. However, even if M6(k) can be determined,
the cases 5N/16 < n < N/2 − M6(k) are not covered by Theorem 3. For k = 6,
the maximum resolution of a complementary design D̃ is IV when 20 < n < 25.
For those n and k that are not covered by Theorem 3, we will derive in the next
section a lower bound on the minimum number of words of length four by using
MacWilliams identities and linear programming techniques. Before doing that, we
first examine the structure of the complementary design D̃ when D has minimum
aberration.

Let T and T̃ , respectively, be the factor representations of D and D̃ in (4).
A word of length four in the defining relation of D corresponds to a linearly depen-
dent quadruple of points of T . From Corollary 2, A4(D) is minimized if and only
if A4(D̃) is minimized; that is, T̃ must contain the minimum number of linearly
dependent quadruples. Let M be an m-subset of PG(k − 1,2). The rank of M , de-
noted as rank(M), is defined as the maximum number of independent points of M .
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The following theorem indicates that, for a minimum aberration even design, the
factor representation T̃ of its complementary design must have maximum rank.

�

THEOREM 4. Let M be an m-subset of PG(k − 1,2) containing the minimum
number of linearly dependent quadruples among all m-subsets of PG(k − 1,2).
Then, M must have maximum rank.

PROOF. Let M = {a1, . . . ,am}. If rank(M) is less than k, say, rank(M) =
r < k [i.e., M ⊆ PG(r − 1,2)], then PG(k − 1,2) \ PG(r − 1,2) is not empty.
Let {a1,a2,a3,a4} be a linearly dependent quadruple of points in M . Since
a1 = a2 + a3 + a4, rank(M \ {a1}) = r . Let a ∈ PG(k − 1,2) \ PG(r − 1,2) and
M ′ = {a} ∪ M \ {a1}. Obviously, rank(M ′) = r + 1 > r = rank(M), and the num-
ber of linearly dependent quadruples in M ′ is at least one less than that in M . This
is a contradiction. �

4. A lower bound on the minimum number of words of length four. From
Theorem 4, if a resolution IV even design D has minimum aberration, then its
complementary design D̃ must have the maximum rank. To study minimum aber-
ration designs for 5N/16 < n < N/2−M6(k), we assume that D and D̃ have rank
n − m.

As discussed in Section 3, a regular 2n−m design D can be considered as an
[n,n − m] linear code, and the wordlength pattern of D, {Ai(D)}, is the same as
the weight distribution of the dual code. Let {A′

i (D)} be the weight distribution
of D. MacWilliams identities in coding theory [MacWilliams and Sloane (1977)]
provide a fundamental relationship between {Ai(D)} and {A′

i (D)},

Ai(D) = 2m−n
n∑

j=0

Pi(j ;n)A′
j (D)(13)

for i = 0, . . . , n, where Pi(j ;n) is a Krawtchork polynomial.
Karpovsky (1979) derived another version of MacWilliams identities,

Ai(D) = 1

i!(Si − Ci),(14)

where Si = 2m−n ∑n
j=0(n − 2j)iA′

j (D) and Ci is a constant.
For i = 4, C4 = n(3n − 2). From (14), we have

A4(D) = 1

4!
(

2m−n
n∑

j=0

(n − 2j)4A′
j (D) − n(3n − 2)

)
.(15)

Since D contains the vector 1 = (1, . . . ,1), we have A′
0(D) = A′

n(D) and
A′

j (D) = A′
n−j (D). For simplicity, let

xj =
{

A′
j (D), for j = 1, . . . , [(n − 1)/2],

1
2A′

j (D), for j = n/2, if n is even.
(16)
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Replacing A′
j (D) by (16), we can express equation (15) as

A4(D) = n4

12 ∗ 2n−m
− 3n2 − 2n

24
+ 1

12 ∗ 2n−m

[n/2]∑
j=1

(n − 2j)4xj .(17)

In (14), C2 = n; thus, we have

A2(D) = 1

2!
(

2m−n
n∑

j=0

(n − 2j)2A′
j (D) − n

)
.(18)

Also, it is not difficult to see that
n∑

j=0

A′
j (D) = 2n−m.(19)

Since A′
0(D) = 1 and A2(D) = 0, the following equations result from replacing

A′
j (D) with (16) in (18) and (19), respectively:

[n/2]∑
j=1

xj = 2n−m−1 − 1 and
[n/2]∑
j=1

(n − 2j)2xj = (2n−m−1 − n)n.(20)

Thus, we can formulate a linear programming (LP) problem for bounding the min-
imum of A4(D). The LP problem is to find a vector (x1, . . . , x[n/2]) that minimizes

f
(
x1, . . . , x[n/2]

) = n4

12 ∗ 2n−m
− 3n2 − 2n

24
(21)

+ 1

12 ∗ 2n−m

[n/2]∑
j=1

(n − 2j)4xj ,

subject to the linear constraints (20).
Based on the fact that the function f in (21) assumes its minimum at an extreme

point [see Gass (1985)], we derive the following theorem, whose proof can be
found in the Appendix.

THEOREM 5. When 5N/16 < n < N/2−M6(k), for any 2n−m even design D

of resolution IV,

A4(D) ≥ LB(n,n − m)

= n4

12 ∗ 2n−m
− 3n2 − 2n

24
(22)

+ n2(2n−m−1 − n)2

(2n−m−1 − 1) ∗ 12 ∗ 2n−m
.
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TABLE 1
The minimum # of A4 and their lower bounds

for 64-run designs

n Lower bound minA4

21 203 204
22 249 250
23 302 304
24 364 365

Similarly, a lower bound for A4(D̃) is LB(N/2 − n,n − m). From Theorem 5
and Corollary 2, we have the following theorem

THEOREM 6. When 5N/16 < n < N/2−M6(k), for any 2n−m even design D

of resolution IV,

A4(D) ≥ max
{

LB(N/2 − n,n − m)

+
((

n

4

)
−

(
2k−1 − n

4

))/
(2k−1 − 3),LB(n,n − m)

}
.

As discussed in Section 3, for k = 6, Theorem 3 does not cover the cases 20 <

n < 25. In these cases, lower bounds on A4(D) can be obtained from Theorem 6.
Table 1 compares the lower bounds to the actual minimum values of A4.

We can see that the lower bounds are very tight. For k = 7, Theorem 3 covers
the cases 55 ≤ n ≤ 64, and the lower bounds on A4(D) can be derived from The-
orem 6 for 40 < n < 55. The following table compares those bounds to the actual
minimum values of A4 obtained from Block and Mee (2005).

From Table 2, it appears that the bound is consistently close to the actual mini-
mum. The biggest gap occurs at n = 41.

In principle, the techniques developed in this section can be generalized to other
wordlengths. However, the complexity of the associated linear programming prob-
lems may vary with respect to different lengths.

5. Complementary designs of some MA 2n−m even designs. Chen and He-
dayat (1996) showed that, in the general setting (2), the complement of an MA
design in a regular saturated design of resolution III must have minimum rank.
Thus, in general, the complementary designs of MA designs in regular saturated
designs of resolution III have the same structure as long as they have the same
number of factors, regardless of the run size. In contrast, we have shown in Sec-
tion 3 that the complement of an MA even design of resolution IV in the maximal
even design must have maximum rank. A consequence is that such complemen-
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TABLE 2
The minimum # of A4 and their lower bounds

for 128-run designs

n Lower bound minA4

54 5181 5182
53 4795 4797
52 4431 4433
51 4089 4091
50 3766 3770
49 3463 3466
48 3179 3180
47 2912 2915
46 2662 2665
45 2428 2430
44 2210 2214
43 2007 2009
42 1818 1822
41 1643 1648

tary designs have different structures when the run sizes are different even if they
have the same number of factors. This makes the cataloging of complementary de-
signs of MA even designs more difficult. However, for small numbers of factors,
we can still derive the structures of the complementary designs of some MA even
designs.

For n < N/2, as pointed out in Section 2, the points of T and T̃ in (3) together
can be considered to form a Euclidean geometry EG(k − 1,2),

EG(k − 1,2) = {a1, . . . ,an︸ ︷︷ ︸
T

,b1, . . . ,bñ︸ ︷︷ ︸
T̃

},(23)

where ñ = N/2 − n is the number of factors of the complementary design deter-
mined by T̃ , and b1, . . . ,bñ are the ñ points an+N/2, . . . ,aN−1 in (3).

For ñ ≤ k, the factor representation T corresponds to an MA design if T̃ is such
that

T̃ = {ñ independent points of EG(k − 1,2)}.
In other words, an even design whose complement in the maximal even design
contains ñ independent columns has minimum aberration.

For ñ = k + 1, when ñ is even, the complementary design of an MA design is a
2ñ−1 design of resolution ñ, and when ñ is odd, the complementary design of an
MA design is a 2ñ−1 design of resolution ñ − 1.

For ñ = k + 2, without loss of generality, let the k points {b1, . . . ,bk} in (23) be
independent points of EG(k − 1,2), and k = 3m + r , where 0 ≤ r < 3. A factor
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representation T̃ that corresponds to the complementary design of an MA design
is

T̃ = {b1, . . . ,bk, c,d},
where, for r = 0, c and d are defined as

c = b1 + b2 + · · · + b2m−1, d = bm+1 + bm+2 + · · · + b3m + c;
for r = 1,

c = b1 + b2 + · · · + b2m+1, d = bm+1 + bm+2 + · · · + b3m+1;
for r = 2,

c = b1 + b2 + · · · + b2m+1, d = bm+1 + bm+2 + · · · + b3m+2 + c.

For ñ = k + 3, following the notation in Chen and Wu (1991), let the defining
relation of the complementary design of an MA design be

I = B7B6B4B3 = B7B5B4B2 = B6B5B4B1.

Let ñ = 7m + r , 0 ≤ r ≤ 6. These Bi divide the ñ letters into seven approximately
equal blocks.

For r = 0,1,

Bi = (im − m + 1)(im − m + 2) · · · (im), i = 1, . . . ,7.

For r = 2,

Bi = (im − m + 1)(im − m + 2) · · · (im), i = 2, . . . ,7,

B1 = 1 · 2 · · ·m(7m + 1)(7m + 2).

For r = 3,

Bi = (im − m + 1)(im − m + 2) · · · (im)(7m + i), i = 1,2,

Bj = (jm − m + 1)(jm − m + 2) · · · (jm), j = 3,4,6,7,

B5 = (4m + 1)(4m + 2) · · ·5m(7m + 3).

For r = 4,

Bi = (im − m + 1)(im − m + 2) · · · (im)(7m + i), i = 1,2,3,4,

Bj = (jm − m + 1)(jm − m + 2) · · · (jm), j = 5,6,7.

For r = 5,

Bi = (im − m + 1)(im − m + 2) · · · (im)(7m + i), i = 1,2,3,

Bj = (jm − m + 1)(jm − m + 2) · · · (jm), j = 5,6,7,

B4 = (3m + 1)(3m + 2) · · ·4m(7m + 4)(7m + 5).
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For r = 6,

Bi = (im − m + 1)(im − m + 2) · · · (im)(7m + i), i = 1,2,3,4,

Bj = (jm − m + 1)(jm − m + 2) · · · (jm), j = 6,7,

B5 = (4m + 1)(4m + 2) · · ·5m(7m + 5)(7m + 6).

For example, the complementary design of the 28−2 design defined by I = 1237 =
345678 (k = 6) is an MA 224−18 design. Similarly, the complementary design
of the 29−2 design defined by I = 123458 = 345679 (k = 7) is an MA 255−48

design.

APPENDIX: PROOFS

Note that, in (3), PG(k − 1,2) is partitioned into three parts, one of which is
itself a projective geometry. Such a partition also arises in the blocking of fractional
factorial designs as studied in Chen and Cheng (1999). A key result there is useful
for proving Theorem 1.

Following the notations in Chen and Cheng (1999), let DB(2n−m : 2r ) be a 2n−m

design in 2r blocks of size 2n−m−r (r < n − m). Then, DB(2n−m : 2r ) can be
viewed as a 2(n+r)−(m+r) design, where the factors are divided into n treatment
factors and r blocking factors. For a blocked design DB(2n−m : 2r ), let Ai,0(DB)

[resp., Ai,1(DB)] be the number of treatment defining words (resp., block defin-
ing words) containing i treatment letters. Since Chen and Cheng (1999) only
considered designs in which none of the treatment main effects is aliased with
other main effects or confounded with blocks, it was assumed that A1,0 = A0,1 =
A2,0 = A1,1 = 0. The two vectors Wt(DB) = (A3,0(DB),A4,0(DB), . . .) and
Wbt(DB) = (A2,1(DB),A3,1(DB), . . .) together are called the split wordlength
pattern of DB .

The set {D,DF } in (4) can be viewed as the design D divided into 2k−1

blocks, denoted as DB(2n−m : 2k−1). The set {D̃,DF } in (4) represents the de-
sign D̃ in 2k−1 blocks, denoted as DR . The blocked design DR is called the
blocked residual design of DB . The wordlength pattern of D in (4) corre-
sponds to Wt(DB) = (A4,0(DB),0,A6,0(DB), . . .) of the blocked design DB .
Similarly, the wordlength pattern of its complementary design D̃ is the same as
Wt(DR) = (A4,0(DR),0,A6,0(DR), . . .) of the blocked residual design DR . Chen
and Cheng (1999) showed that, in general, Ai,0(DB) can be written in terms of the
split wordlength pattern of DR . The following result is Theorem 1 of Chen and
Cheng (1999).

THEOREM 7. Let {Ai1,b(DB)} and {Ai1,b(DR)} be the split wordlength pat-
terns of a blocked design DB(2n−m : 2r ) and its blocked residual design DR , re-
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spectively. Then,

Ai,0(DB) = Ci + Ci0 +
i∑

s=3

I[s≤2r−1]γr(s)

+
i−1∑
s=2

(
i−1−s∑
t=1

Ci,t+sI[t≤2r−2]αr(t)

+ (−1)iI[i−s≤2r−2]αr(i − s)

)
As,1(DR)

(24)

+
i−1∑
s=2

(
i−1−s∑
t=1

Ci,t+sI[t≤2r−2]γr(t)

+ (−1)iI[i−s≤2r−2]γr(i − s)

)
As,0(DR)

+
i∑

s=3

Ci,s

(
As,0(DR) + I[s>2r ]As−2r+1,0(DR)

)
for i = 3, . . . , n, where Cij = (−1)i−[(i−j)/2]( n−2k−1

[(i−j)/2]
)
, Ci = 2−k[Pi(0;n) −

Pi(2k−1;n)], [x] is the largest integer less than or equal to x and I[·] is the in-
dicator function that takes the value 1 or 0 depending on whether condition [·] is
true or not.

Note that the term
∑i

s=3 I[s≤2r−1]γr(s) is missing from Theorem 1 of Chen and
Cheng (1999), which is an error.

PROOF OF THEOREM 1. In (24), I[t≤2r−2] = I[i−s≤2r−2] = 1 and I[s>2r ] = 0
when r = k − 1. The blocked residual design DR determined by {D̃,DF } in (4)

has A3,0(DR) = 0, A2,1(DR) = (2k−1−n
2

)
, A3,1(DR) = 0, A4,0(DR) + A4,1(DR) =(2k−1−n

4

)
, A5,0(DR) = 0, A5,1(DR) = 0, etc. Therefore,

As,1(DR) =
⎧⎨⎩

(
2k−1 − n

s

)
− As,0(DR), if s is even,

0, if s is odd.
(25)

Since D in (4) is an even design, the subscript of Ai(D) can be denoted as i = 2u,
where u = 2, . . . , [n/2]. Let γ2u = ∑2u

s=3 I[s≤2k−1−1]γk−1(s). Similarly, let s = 2l

where l = 1,2, . . . , u − 1 and replace {A2l,1(DR)} in (24) by (25); then, we obtain
equation (7). �
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PROOF OF THEOREM 5. Let

h
(
x1, . . . , x[n/2]

) =
[n/2]∑
j=1

(n − 2j)4xj .(26)

To minimize (21) is equivalent to finding the minimum of (26). From Chap-
ter 3 of Gass (1985), h(x1, . . . , x[n/2]) assumes its minimum at an extreme point
x = (0, . . . ,0, xl,0, . . . ,0, xg,0, . . . ,0), where xl and xg are nonnegative and are
subject to the linear constraints (20); that is,

xl + xg = 2n−m−1 − 1 and
(27)

(n − 2l)2xl + (n − 2g)2xg = (2n−m−1 − n)n.

The solution to (27) is

xl = (2n−m−1 − 1)(n − 2g)2 − (2n−m−1 − n)n

(n − 2g)2 − (n − 2l)2 ,

(28)

xg = (2n−m−1 − 1)(n − 2l)2 − (2n−m−1 − n)n

(n − 2g)2 − (n − 2l)2 .

Plugging (28) into (26), we have

h
(
x1, . . . , x[n/2]

)
= h(l, g)

(29)

= (n − 2l)4[(2n−m−1 − 1)(n − 2g)2 − (2n−m−1 − n)n]
(n − 2g)2 − (n − 2l)2

+ (n − 2g)4[(2n−m−1 − n)n − (2n−m−1 − 1)(n − 2l)2]
(n − 2g)2 − (n − 2l)2 .

The function (29) assumes its minimum at the point (l∗, g∗) that satisfies the equa-
tions

∂h(l, g)

∂l
= 0,

∂h(l, g)

∂g
= 0.

The minimum of function (29) is achieved at

l∗ = 1 + 1

2

(
n −

√
(2n−m−1 − n)n

(2n−m−1 − 1)

)
,

g∗ = 1

2

(
n −

√
(2n−m−1 − n)n

(2n−m−1 − 1)

)
.

Thus, the minimum value of (29) is (2n−m−1 − n)2n2/(2n−m−1 − 1). Replacing
the minimum value in (21), we obtain the inequality (22). �
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