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EFFICIENT RANDOMIZED-ADAPTIVE DESIGNS
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Response-adaptive randomization has recently attracted a lot of atten-
tion in the literature. In this paper, we propose a new and simple family
of response-adaptive randomization procedures that attain the Cramer–Rao
lower bounds on the allocation variances for any allocation proportions, in-
cluding optimal allocation proportions. The allocation probability functions
of proposed procedures are discontinuous. The existing large sample theory
for adaptive designs relies on Taylor expansions of the allocation probability
functions, which do not apply to nondifferentiable cases. In the present paper,
we study stopping times of stochastic processes to establish the asymptotic
efficiency results. Furthermore, we demonstrate our proposal through exam-
ples, simulations and a discussion on the relationship with earlier works, in-
cluding Efron’s biased coin design.

1. Introduction. Scientific and clinical investigations often demand that a
new intervention or treatment be compared against a control group. Randomiza-
tion is the preferred way of assigning participants to the control and the treatment
groups. In some clinical trials, response-adaptive randomization procedures are de-
sirable for ethical and efficiency reasons [Hu and Rosenberger (2006)]. The three
main components of response-adaptive randomization are allocation proportion,
efficiency (power), and variability.

The development of response-adaptive randomization and optimal allocation
proportion was briefly reviewed in the introduction of Hu and Zhang (2004). In
this paper, we denote optimal allocation proportions as allocation proportions that
are derived from certain optimality criteria (see examples in Section 2). The is-
sue of efficiency or power was discussed by Hu and Rosenberger (2003), who
showed that the efficiency is a decreasing function of the variability induced by
the randomization procedure for any given allocation proportion. More recently,
Hu, Rosenberger and Zhang (2006) showed that there was an asymptotic lower
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bound on the variability of response-adaptive designs. A response-adaptive design
that attains this lower bound will be said to be first-order efficient. Most response-
adaptive randomization procedures in the literature are not first-order efficient. The
only exception that is known to us is the drop–the-loser rule [Ivanova (2003)], but
its applications are limited to urn allocation proportion (not generally optimal) and
binary responses [see Hu, Rosenberger and Zhang (2006) for details].

In this paper, we address the open problem of finding an efficient and random-
ized procedure that can adapt to any desired allocation proportion (including op-
timal allocation proportions). Specifically, we propose a new family of efficient
randomized-adaptive designs (ERADE) that is easy to implement in practice for
both discrete and continuous responses. Under some mild conditions, we obtain
the asymptotic normality and strong consistency of both the allocation proportions
and the estimators of population parameters. Our results provide a solid foundation
for the efficient randomized-adaptive designs and the related statistical inferences
based on such designs. Several advantages of the procedure are also demonstrated
through examples.

In the literature, asymptotic properties of adaptive designs are studied under
continuous and differentiable allocation probability function by using Taylor ex-
pansion. When the allocation probability function is discrete, the commonly used
techniques do not work anymore. The allocation probabilities of the ERADEs are
discrete functions. In this paper, we overcome the difficulties of discontinuity by
introducing a stopping time of a martingale process. This may provide a novel
direction to study the properties of adaptive designs with discrete probability func-
tions. Efron’s biased coin design [Efron (1971)] is a special case of ERADE for
balancing two treatments. Rosenberger and Lachin [(2002), page 49] showed, by
simulation, that Efron’s biased coin design is more efficient than adaptive biased
coin designs proposed by Wei (1978) and Smith (1984). The asymptotic results in
this paper show the efficiency of Efron’s biased coin design theoretically.

The paper is organized as follows. In Section 2, we propose a simple family
of response-adaptive randomization procedures with some important asymptotic
properties. They are shown to attain the Cramer–Rao lower bound on the alloca-
tion variabilities. The efficient procedures are derived for several commonly used
optimal allocation proportions. In Section 3, we conduct a simulation study to ex-
amine the properties of the proposed designs. Section 4 demonstrates the potential
value of the ERADE through a careful analysis of the ECMO trials. We conclude
the paper with several remarks and potential further research directions in Sec-
tion 5. Technical details are given in the Appendix.

2. Efficient randomized-adaptive designs. We first describe the framework
for the randomized-adaptive designs.
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General framework. We consider two-treatment clinical trials. Suppose that
the patients come to the clinical trial sequentially and respond to treatments with-
out delay. After the first m patients are being assigned to treatments and the re-
sponses observed, the (m + 1)th patient will be assigned to treatment 1 with prob-
ability pm+1 and treatment 2 with probability 1 − pm+1. The probability pm+1
may depend on both the treatments assigned to and the responses observed of the
previous m patients. Let Xm,k be the result of the mth assignment (i.e., Xm,k = 1
if the mth patient is assigned to treatment k, and 0 otherwise). We assume that
the patient responses with each treatment are i.i.d. with the probability distribution
indexed by θk ∈ Rd (k = 1,2). The cases of d = 1 (for binary response) or d = 2
(for normally distributed response) are typical.

Let Nm,k = ∑m
j=1 Xj,k be the number of patients assigned to treatment k in

the first m patients. We assume that the desired allocation proportion of patients
assigned to each treatment is a function of � = (θ1, θ2) [see Rosenberger et al.
(2001) for a related discussion]. More specifically, the goal of allocation is to have
Nm,1/m → v = ρ(�), where ρ(·) :Rd×2 → (0,1) is an allocation proportion.

We further assume that the parameter estimate θ̂m,k of θk based on an m-patient
study has the Bahadur-type representation

θ̂m,k = N−1
m,k

m∑
j=1

Xj,kξ j,k + o(N
−1/2
m,k ) as m → ∞(2.1)

for some i.i.d. sequences of random variables {ξ j,k, j = 1, . . .}, where ξm,k is the
response or a function of the response of the mth patient on treatment k.

In most applications, the response distributions belong to an exponential family.
Then, we take θk = E[ξ1,k], where ξ1,k are the natural sufficient statistics, and
θ̂m,k is the average of the observed sufficient statistics. In practice, we may start
with �0 = (θ0,1, θ0,2) as an initial estimate of � and use

θ̂m,k =
∑m

j=1 Xj,kξ j,k + θ0,k

Nm,k + 1
(2.2)

to ensure a well-defined estimator even when no patients are assigned to treat-
ment k. The initial estimate �0 is a guessed value of � or an estimate of � from
early trials.

Efficient randomized-adaptive design (ERADE). To start, we assign m0 (usu-
ally m0 = 2) subjects to each treatment by using restricted randomization. Assume
that m (m ≥ 2m0) subjects have been assigned in the trial, and their responses are
observed. Let �̂m be the estimator defined in (2.1) based on the m observations,
and ρ̂m = ρ(�̂m). Then, our proposed ERADE assigns the (m + 1)th patient to
treatment 1 with probability

pm+1 =
⎧⎨⎩

αρ̂m, if Nm,1/m > ρ̂m,
ρ̂m, if Nm,1/m = ρ̂m,
1 − α(1 − ρ̂m), if Nm,1/m < ρ̂m,

(2.3)
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where 0 ≤ α < 1 is a constant that reflects the degree of randomization. See Re-
marks 2.1 and 3.1 for details of choosing α.

It is important to note that the allocation probability in (2.3) is a discrete func-
tion. In the literature, allocation probability functions are generally continuous and
differentiable [Hu and Rosenberger (2006)], which allows for Taylor expansions
in the asymptotic analysis. We have to use a different approach to establish the
asymptotic properties in the Appendix.

EXAMPLE 1 (Efron’s biased Coin design). To balance patients in two treat-
ment groups (with ρ = 1/2 as the target), our proposed ERADE assigns the
(m + 1)th patient to treatment 1 with probability

pm+1 =
⎧⎨⎩

α/2, if Nm,1/m > 1/2,
1/2, if Nm,1/m = 1/2,
1 − α/2, if Nm,1/m < 1/2.

(2.4)

The special case of α = 2/3 is Efron’s biased coin design [Efron (1971)].

REMARK 2.1. Efron’s biased coin design played a very important role in the
randomization literature. This idea has been developed further by Pocock and Si-
mon (1975), among others, for randomization procedures that depend on prog-
nostic variables. However, it is difficult to study its asymptotic properties because
the allocation probability is not a continuous function. To overcome the theoreti-
cal difficulty, Wei (1978) and Smith (1984) proposed adaptive biased coin designs
and generalized biased coin designs by using continuous allocation probability.
Burman (1996) introduced the expected p-value deficiency to evaluate the perfor-
mance of a given design. Based on Burman’s studies, it is reasonable to choose
α between 0.4 and 0.7. Also, Baldi Antognini and Giovagnoli (2004) modified
Efron’s procedure by using more flexible forms of probability functions.

EXAMPLE 2 (Binary response). In the case of binary response, we denote
P1 = 1 − Q1 and P2 = 1 − Q2, which are the success probabilities of treatments
1 and 2, respectively, and ξj,k (j = 1, . . . ,m and k = 1,2) as the corresponding
responses. If Xj,k is the treatment assignment indicator of j th patient, as defined
in the general framework, then the natural choices of parameter estimates are

P̂m,k =
∑m

j=1 Xj,kξj,k + 0.5

Nm,k + 1
, k = 1,2.

To target ρ(P1,P2) as the allocation proportion, let ρ̂m = ρ(P̂m,1, P̂m,2). Then,
the ERADE assigns the (m + 1)th patient to treatment 1 with probability pm+1, as
defined in (2.3). We now list three specific allocation proportions:

(i) The urn allocation proportion, given in Zelen (1969), Wei and Durham
(1978) and Ivanova (2003),

v1 = ρ(P1,P2) = (1 − P1)/(2 − P1 − P2);(2.5)
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(ii) The optimal allocation proportion discussed in Rosenberger et al. (2001),

v2 = ρ(P1,P2) = √
P1/

(√
P1 + √

P2
);(2.6)

(iii) The Neyman allocation proportion discussed by Jennison and Turnbull
(2000),

v3 = ρ(P1,P2) = √
P1Q1/

(√
P1Q1 + √

P2Q2
)
.(2.7)

EXAMPLE 3 (Gaussian response). We compare two treatments with responses
ξ1 ∼ N(μ1, τ

2
1 ) and ξ2 ∼ N(μ2, τ

2
2 ), respectively. Let ξj,k , Xj,k and Nm,k be de-

fined as in Example 2. Then, the maximum likelihood estimates are

μ̂m,k =
∑m

j=1 Xj,kξj,k

Nm,k

and τ̂ 2
m,k =

∑m
j=1 Xj,k(ξj,k − μ̂m,k)

2

Nm,k

, k = 1,2.

One can show that the MLEs satisfy the Bahadur-type representation in (2.1). We
can target any given allocation proportion ρ(μ1,μ2, τ1, τ2) by using its estimator,
ρ̂m = ρ(μ̂m,1, μ̂m,2, τ̂m,1, τ̂m,2), and the ERADE assigns the (m + 1)th patient to
treatment 1 with probability pm+1 as defined in (2.3). Three specific examples are
as follows:

(i) The optimal allocation proportion given by Zhang and Rosenberger (2006),

v4 = ρ(μ1,μ2, τ1, τ2) = τ1
√

μ2

τ1
√

μ2 + τ2
√

μ1
,(2.8)

when both μ1 and μ2 are nonnegative;
(ii) The Neyman allocation proportion used by Jennison and Turnbull (2000),

v5 = ρ(μ1,μ2, τ1, τ2) = τ1

τ1 + τ2
;(2.9)

(iii) The DA-optimal allocation proportion (Gwise, Hu and Hu, 2008),

v6 = ρ(μ1,μ2, τ1, τ2) = τ
4/3
1

τ
4/3
1 + τ

4/3
2

.(2.10)

REMARK 2.2. In Example 2, v2 and v3 are optimal allocation proportions,
where v2 is based on minimizing the expected number of treatment failures for
fixed variance of Wald test [Rosenberger et al. (2001)], and v3 is based on mini-
mizing the variance of the Wald test [Jennison and Turnbull (2000)]. Also, v1 is
not an optimal allocation proportion, but it is the limiting proportion of the play–
the-winner rule [Zelen (1969)] and the randomized play–the-winner rule [Wei and
Durham (1978)]. In Example 3, v4, v5 and v6 are optimal allocation proportions
from different optimal criteria.
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By the results of Hu and Rosenberger (2003), the asymptotic properties, es-
pecially the asymptotic variance of the allocation, play an important role in the
efficiency of the design. Now, we turn to the asymptotic properties of the proposed
ERADE. First, we state two conditions.

CONDITION A. In the Bahadur-type representation (2.1), θk = Eξ1,k and
E‖ξ1,k‖2 < ∞ (k = 1,2).

CONDITION B. The proportion function y → ρ(y) :Rd×2 → (0,1) is a con-
tinuous function and is twice differentiable at � with ρ(�) = v.

These two conditions are mild, and they are satisfied by all the allocation func-
tions discussed in Examples 1–3. We now state the main asymptotic properties of
the ERADE with the notation Vk = Var(ξ1,k) (k = 1,2), and

V = diag
(

1

v
V1,

1

1 − v
V2

)
and σ 2 =

(
∂ρ

∂y

∣∣∣∣
�

)′
V

∂ρ

∂y

∣∣∣∣
�

.

THEOREM 2.1. Under Conditions A and B, we have, as n → ∞,

|Nn,1 − nρ̂n| = oP

(√
n
)

and
(2.11)

|Nn,1 − nρ̂n| = O
(√

n log logn
)

a.s.

Further, we have
√

n(�̂n − �)
D→ N(0,V),(2.12)

√
n(Nn,1/n − v)

D→ N(0, σ 2),(2.13)

�̂n − � = O
(√

n−1 log logn
)

a.s.

and

Nn,1 − nv = O
(√

n log logn
)

a.s.(2.14)

By Theorem 2.1 and the result of Hu, Rosenberger and Zhang (2006), we see
that the proposed ERADE is indeed asymptotically efficient, so long as the parame-
ter estimate �̂n is efficient. Let Ik be the Fisher information matrix for parameter
θk (k = 1,2). Then, the efficiency result is formally summarized in the following
theorem.

THEOREM 2.2. Under Conditions A and B, if Var(ξ1,k) = I−1
k , then the as-

ymptotic variance of Nn,1/
√

n for the ERADE attains the Cramer–Rao lower
bound (

∂ρ

∂y

∣∣∣∣
�

)′
diag

(
(vI1)

−1,
(
(1 − v)I2

)−1)∂ρ
∂y

∣∣∣∣
�

.(2.15)
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If the response distributions belong to the exponential family, Theorem 2.2 es-
tablishes the efficiency of the ERADE for any α ∈ [0,1). It also explains why
Efron’s biased coin design works well for balancing two treatments (ρ = 1/2).

REMARK 2.3. Property (2.11) is a key component in the asymptotic analysis
of the sample proportion Nn,1/n. It shows that the sample proportion can be ap-
proximated by an estimator ρ̂n of the target proportion ρ. In the literature, where
the allocation probability is generally a continuous and differentiable function of
ρ̂n and /or of the current sample proportion, the asymptotic properties of adap-
tive designs have been obtained by using Taylor expansion [cf., Wei (1978), Smith
(1984) and Hu and Zhang (2004) among many others]. In those cases, the sample
proportion cannot be well (efficiently) approximated by ρ̂n; therefore, the alloca-
tion variabilities do not attain the Cramer–Rao lower bound. When the allocation
probability function is discrete, different techniques are needed and different as-
ymptotic properties expected. We shall prove (2.11) by defining a stopping time
of a martingale process to show that the difference between the sample proportion
and the estimated target proportion in our model is small.

EXAMPLE 1 (Continued). Because ρ = 1/2 is a constant, the lower bound
is 0. That is,

√
n(Nn,1/n−1/2) → 0 in probability. Therefore, Efron’s biased coin

design is a higher order approximation to balance two treatments. This explains
the fact that Efron’s biased coin design provides better balanced results than the
adaptive biased coin design [Wei (1978)] and the generalized biased coin design
[Smith (1984)].

EXAMPLE 2 (Continued). Both Conditions A and B are satisfied for binary
response and the three allocations defined in (2.5), (2.6) and (2.7). By Theorem 2.1,
we have, for the three allocations in (2.5), (2.6) and (2.7),

√
n(Nn,1/n − vi)

D→ N(0, σ 2
i ), i = 1,2,3

with

σ 2
1 = Q1Q2(P1 + P2)

2

(2 − P1 − P2)3 ,(2.16)

σ 2
2 = Q2P

1.5
1 + Q1P

1.5
2

4
√

P1P2(
√

P1 + √
P2)3

(2.17)

and

σ 2
3 = [P1Q1)]1.5(1 − 2P2)

2 + [P2Q2]1.5(1 − 2P1)
2

4
√

P1Q1P2Q2[√P1Q1 + √
P2Q2]3

.(2.18)

By Theorem 2.2, the variances in (2.16), (2.17) and (2.18) attain the Cramer–
Rao lower bounds in their respective allocations.



2550 F. HU, L.-X. ZHANG AND X. HE

EXAMPLE 3 (Continued). By using ξ∗
k = (ξk, (ξk − μk)

2)′ as the responses,
the conditions of Theorems 2.1 and 2.2 are satisfied. Thus, for the three allocations

in (2.8), (2.9) and (2.10), we have
√

n(Nn,1/n − vi)
D→ N(0, σ 2

i ) (i = 4,5,6) with

σ 2
4 = τ1τ2

√
μ2

√
μ1

2(τ1
√

μ2 + τ2
√

μ1)2 ,(2.19)

σ 2
5 = τ1τ2

2(τ1 + τ2)2(2.20)

and

σ 2
6 = 8(τ1τ2)

4/3

9(τ
4/3
1 + τ

4/3
2 )2

.(2.21)

These variances in (2.19), (2.20) and (2.21) attain the Cramer–Rao lower bounds
in their respective allocations.

REMARK 2.4. In Theorem 2.1, the sample proportion Nn,1/n converges to v

(target proportion) at the rate of n−1/2. The asymptotic results in Theorems 2.1
and 2.2 do not depend on α. This is because the allocation probability is a discrete
function and the first order approximation does not depend on α. In practice, we
need to choose a suitable α. We will discuss this in next section.

3. Simulation study. We conducted Monte Carlo simulations to examine the
finite sample performance of the proposed ERADE. As shown by Hu and Rosen-
berger (2003), the efficiency (power) of a randomized design is a decreasing func-
tion of the variability of the design, so the variability of the allocation propor-
tions is the main criterion in our investigation. We compared the doubly adaptive
biased coin design (DBCD) of Hu and Zhang (2004), the drop–the-loser (DL)
rule of Ivanova (2003), the randomized player–the-winner (RPW) rule of Wei and
Durham (1978) and our proposed ERADE with α = 1/2 or 2/3. Here, we use
α = 1/2 or 2/3, based on Burman’s studies of Efron’s biased coin design. Note
that the DL rule and the RPW rule apply only to binary responses by targeting the
urn allocation proportion, which is not optimal. On the other hand, the ERADE
applies to all types of responses and can be used to target any desired allocation
proportion.

CASE 1. The data were generated from the binary responses based on Exam-
ple 2. First, we consider the urn allocation proportion in (2.5), and the results are
given in Table 1. By Hu and Rosenberger (2003), the RPW rule has much higher
variability than the DBCD, so we do not include the results of the former here. For
the ERADE, m0 = 2 and α = 1/2 or α = 2/3 are considered. For the DL rule, we
start with 5 type 1 balls, 5 type 2 balls and 1 type 0 ball. For the DBCD, we use
the allocation function of Hu and Resenberger (2003), with γ = 2. The results in
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TABLE 1
Results for Case 1. Simulated and theoretical allocation proportions (Nn,1/n) are given for

different designs with their variances nvar(Nn,1/n) given in the parentheses. The target allocation
proportion is v1 = (1 − P2)/(2 − P1 − P2). The simulation used 1000 trials of n = 100

ERADE with
DBCD with

γ = 2ERADE and DL α = 1/2 α = 2/3 DL

P1, P2 Asymptotic Simulated Simulated Simulated Asymptotic Simulated

0.9, 0.7 0.75 (0.75) 0.72 (0.69) 0.72 (0.73) 0.64 (0.39) 0.75 (0.94) 0.74 (0.91)
0.9, 0.6 0.80 (0.48) 0.78 (0.49) 0.77 (0.51) 0.69 (0.34) 0.80 (0.61) 0.78 (0.58)
0.9, 0.5 0.83 (0.32) 0.81 (0.34) 0.80 (0.36) 0.73 (0.24) 0.83 (0.42) 0.81 (0.39)
0.9, 0.3 0.88 (0.16) 0.85 (0.17) 0.85 (0.18) 0.79 (0.14) 0.88 (0.22) 0.86 (0.21)
0.8, 0.8 0.50 (10.00) 0.50 (0.75) 0.50 (0.82) 0.50 (0.51) 0.50 (1.25) 0.50 (1.16)
0.8, 0.7 0.60 (0.72) 0.59 (0.65) 0.59 (0.63) 0.57 (0.43) 0.60 (0.91) 0.60 (0.80)
0.8, 0.6 0.67 (0.52) 0.66 (0.52) 0.65 (0.49) 0.62 (0.35) 0.67 (0.67) 0.66 (0.63)
0.7, 0.5 0.63 (0.35) 0.62 (0.35) 0.62 (0.36) 0.60 (0.30) 0.63 (0.47) 0.62 (0.45)
0.7, 0.3 0.70 (0.21) 0.69 (0.20) 0.69 (0.23) 0.68 (0.18) 0.70 (0.29) 0.69 (0.28)
0.6, 0.4 0.60 (0.24) 0.60 (0.24) 0.59 (0.25) 0.59 (0.23) 0.60 (0.34) 0.60 (0.31)
0.5, 0.5 0.50 (0.25) 0.50 (0.22) 0.50 (0.23) 0.50 (0.21) 0.50 (0.35) 0.50 (0.33)
0.5, 0.2 0.62 (0.13) 0.61 (0.13) 0.61 (0.15) 0.61 (0.13) 0.62 (0.20) 0.61 (0.20)
0.4, 0.3 0.54 (0.13) 0.54 (0.13) 0.54 (0.13) 0.54 (0.13) 0.54 (0.21) 0.54 (0.20)
0.2, 0.2 0.50 (0.06) 0.50 (0.06) 0.50 (0.06) 0.50 (0.07) 0.50 (0.13) 0.50 (0.12)

Table 1 are based on 1000 simulated trials with sample size 100. From Table 1,
we see that the ERADEs with α = 1/2 and α = 2/3 performed better than other
two procedures in general. The DBCD had larger variances than other procedures.
Both the ERADE and the DBCD attained the target allocation proportion quite
accurately, and the simulated variance agreed with their corresponding asymptotic
variances quite well, except P1 = P2 = 0.80. When P1 and P2 were large and dif-
ferent, the DL rule did not converge to the target allocation proportion as fast as
other procedures. However, its finite-sample variances were much smaller than the
corresponding asymptotic variances. When both P1 and P2 were small, both the
DL rule and the ERADE performed well.

CASE 2. When the target allocation is the optimal allocation proportion in
(2.6), the DL rule no longer applies. The comparison between the ERADE and the
DBCD are given in Table 2. Both designs converged well to the optimal allocation
proportion, but the ERADE performed better with much smaller variability. Simi-
lar numerical results were obtained for the Neyman allocation proportion in (2.7),
which are not reported here. We also considered the cases with sample sizes 50
and 200, but only to reach the same conclusions.

REMARK 3.1. It is easy to see that α is related to the randomness of the de-
sign. When α is smaller, the ERADE is more determined and could have smaller
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TABLE 2
Results for Case 2 with the target allocation proportion v2 = √

P1/(
√

P1 + √
P2). Simulated and

theoretical allocation proportions (Nn,1/n) are given for different designs with their variances
nvar(Nn,1/n) given in the parentheses. The simulation used 1000 trials of n = 100

ERADE with
DBCD with

γ = 2ERADE α = 1/2 α = 2/3

P1, P2 Asymptotic Simulated Simulated Asymptotic Simulated

0.9, 0.7 0.53 (0.02) 0.53 (0.02) 0.53 (0.03) 0.53 (0.07) 0.53 (0.07)
0.9, 0.6 0.55 (0.03) 0.55 (0.03) 0.55 (0.04) 0.55 (0.08) 0.55 (0.08)
0.9, 0.5 0.57 (0.04) 0.57 (0.04) 0.57 (0.06) 0.57 (0.09) 0.57 (0.11)
0.9, 0.3 0.63 (0.09) 0.64 (0.12) 0.63 (0.13) 0.63 (0.15) 0.64 (0.18)
0.8, 0.8 0.50 (0.02) 0.50 (0.02) 0.50 (0.03) 0.50 (0.07) 0.50 (0.07)
0.8, 0.7 0.52 (0.02) 0.52 (0.03) 0.52 (0.03) 0.52 (0.08) 0.52 (0.08)
0.8, 0.6 0.54 (0.03) 0.54 (0.04) 0.53 (0.04) 0.54 (0.09) 0.54 (0.09)
0.7, 0.5 0.54 (0.05) 0.54 (0.05) 0.54 (0.06) 0.54 (0.10) 0.54 (0.12)
0.7, 0.3 0.60 (0.09) 0.60 (0.12) 0.60 (0.13) 0.60 (0.16) 0.61 (0.21)
0.6, 0.4 0.55 (0.07) 0.55 (0.08) 0.55 (0.09) 0.55 (0.13) 0.55 (0.15)
0.5, 0.5 0.50 (0.06) 0.50 (0.07) 0.50 (0.08) 0.50 (0.13) 0.50 (0.14)
0.5, 0.2 0.61 (0.17) 0.62 (0.19) 0.61 (0.22) 0.61 (0.25) 0.62 (0.30)
0.4, 0.3 0.54 (0.12) 0.53 (0.14) 0.54 (0.16) 0.54 (0.19) 0.54 (0.25)
0.2, 0.2 0.50 (0.25) 0.50 (0.28) 0.50 (0.33) 0.50 (0.35) 0.50 (0.48)

variability. To study this, we have run simulations (both Cases 1 and 2) for α = 1/8,
1/4, 1/2, 2/3 and 3/4 with different sample sizes n = 50, 100 and 200. We found
that the simulated results of α = 1/8 and 1/4 are very similar to the results of
α = 1/2 in terms of allocation proportion and its variability. The ERADE with
α = 3/4 has a slightly larger variability than others. Therefore, it is reasonable to
recommend choosing α between 0.4 and 0.7. This agrees with Burman’s (1996)
study of biased coin designs.

REMARK 3.2. The simulated results in Tables 1 and 2 are based on binary
responses from Example 2. We have also conducted some Monte Carlo simula-
tions based on continuous responses from Example 3. We considered the doubly
adaptive biased coin design (DBCD with γ = 2) of Hu and Zhang (2004) and our
proposed ERADEs with α = 1/2 and 2/3. We obtained similar results as reported
in Table 2 with sample size n = 100. All designs converged well to the target allo-
cation proportion, but the ERADE performed better with smaller variability.

4. Analysis of ECMO trials, where ERADE would make a difference. Ex-
tracorporeal membrane oxygenation (ECMO) is an external system for oxygenat-
ing the blood based on techniques used in cardiopulmonary bypass technology
developed for cardiac surgery. In the literature, there are three well-documented
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clinical trials on the evaluation of the clinical effectiveness of ECMO. These are
the Michigan ECMO study [Bartlett et al. (1985)], the Boston ECMO study [Ware
(1989)] and the UK ECMO trial [UK Collaborative ECMO Trials Group (1996)].
The Boston ECMO study is based on a two-stage design, so we restrict our discus-
sion to the other two studies here.

In the Michigan ECMO study, the randomized player–the-winner rule was used
to allocate patients to two treatments. Out of 12 patients, only one infant received
conventional therapy. The first infant was assigned to ECMO and survived. The
second was assigned to conventional therapy and died. Ten subsequent infants
were randomized to ECMO and all survived. This trial provided very little infor-
mation about survival rates in the same population treated with conventional ther-
apy, because only one infant was assigned to the conventional therapy. It turned
out that this patient was the most severely ill patient in the study. The high vari-
ability of the randomized player–the-winner rule was responsible for the failure of
the Michigan ECMO study.

The UK ECMO trial used randomized allocation with equal proportions, and
there were 93 patients in the ECMO and 92 in the conventional treatment for a
total of 185. Prior to discharge from hospital, there were 28 deaths in the ECMO
treatment and 54 deaths in the conventional treatment. We will use P1 = 65/93
and P2 = 38/92 as the estimated success probabilities of the ECMO and the con-
ventional treatment, respectively. Taking those values as the success probabilities,
we discuss what will happen if the ERADE is used in such cases. If the urn al-
location is the target allocation, and the ERADE (with α = 1/2, m0 = 2) is used
for treatment allocation, then there will be about 121 patients in the ECMO and
64 patients in the conventional treatment, on average. Based on 10,000 simulated
trials, the variability σ 2 is 0.28, and the expected number of deaths is 74 death, as
compared to 82 in the actual trial. The adaptive design utilizes the better treatment
more often to save lives.

Next, we compare the variability and power of the ERADE and the RPW rule
under the settings of P1 = 65/93 and P2 = 38/92. The expected power under both
designs is 0.969. Because they are randomized procedures, the total number of
patients assigned to the ECMO group is a random variable. Based on the 10,000
simulated trials, we noticed that in 99 percent of the trials under the ERADE there
were more than 52 patients assigned to the conventional treatment group, for a
power of 0.941 or higher. Under the RPW rule, only 39 or fewer patients were
assigned to the conventional treatment in 1 percent of the trials, for a power of
0.904 or less. Also, based on the 10,000 simulated trials, the ERADE always as-
signs more patients to the ECMO group; however, the RPW rule assigned more
patients to the conventional group in 114 trials. The number of patients assigned
to the ECMO group for the ERADE and the RPW are summarized in the box plots
of Figure 1. Even at the sample size 185, we can see the advantage of using the
proposed ERADE over the randomized player–the-winner rule.
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FIG. 1. Box plots for the number of patients assigned to the ECMO group based on 10,000 simu-
lated trials.

In practice, one may modify the RPW by following changes: (i) first assign m0
(say m0 = 2) subjects to each treatment by using restricted randomization; (ii) up-
date the urn based on their (first 2m0 subjects) responses according the RPW rule
(add one same type ball if a success, add one opposite type ball if a failure); (iii) use
the RPW rule after the first 2m0 subjects. For a small size clinical trial (e.g., the
Michigan ECMO study), the proposed modification will reduce the variability of
the RPW rule. For relatively large size trial (e.g., the UK ECMO trial), the modi-
fication with a small m0 (say m0 = 2) will not reduce the variability significantly.
However, the modification with a large m0 is not recommended, because it will
push the RPW rule to balance the allocation proportion. Also, this modification
does not change the asymptotic properties of RPW. It is worthwhile to point out
that urn models usually have much larger asymptotic variability than their corre-
sponding ERADEs (with the same limiting allocation proportion) by comparing
Theorem 2.1 with the results of Bai and Hu (2005) and Zhang, Hu and Cheung
(2006).

5. Conclusion remarks. We have proposed a family of response-adaptive de-
signs that are fully randomized and asymptotically efficient. The ERADE can be
viewed as a generalization of the Efron’s biased coin design for any desired allo-
cation function, which may depend on the unknown parameters. The asymptotic
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properties derived here provide the theoretical foundation for inferences based on
the ERADE. They also help to understand why Efron’s biased coin design is effi-
cient for balanced trials. The examples in Sections 3 and 4 provide a guideline for
the use of the proposed ERADE in practice.

In this paper, we have assumed that the responses in each treatment group are
available without delay. In practice, there is no logistical difficulty in incorporat-
ing delayed responses into the ERADE, provided that some responses become
available during the course of the allocation in the experiment; thus, we can al-
ways update the estimates whenever new data become available. For clinical trials
with uniform (or exponential) patient entry and exponential response times [see,
e.g., Bai, Hu and Rosenberger (2002)], it is easy to verify that both Theorems 2.1
and 2.2 remain true.

In Theorem 2.1, we assumed that the parameter estimate has Bahadur-type rep-
resentation as in (2.1). This representation is usually satisfied in applications (e.g.,
moment estimation, maximum likelihood estimation, estimate based on estimating
equation, etc.). Theorem 2.1 ensures the consistency and asymptotical normality
of the parameter estimate after using ERADE in clinical trial. Baldi Antognini and
Giovagnoli (2005) have considered the properties of maximum likelihood estima-
tion for some other response-adaptive designs. Also, we have focused on ERADE
for two treatments. Recently, Tymofyeyev, Rosenberger and Hu (2007) proposed a
general framework to obtain optimal allocation proportions for comparing two or
more treatments. How to generalize ERADE to K-treatment case is a new research
topic.

In some clinical trials, it is important to take covariates into consideration. To
balance known covariates in two treatment groups, Pocock and Simon (1975) pro-
posed a covariate-adaptive randomization procedure by using Efron’s biased coin
design. Since an important goal of clinical trials is to estimate a treatment effect,
one may assign subjects to treatments according to their covariates for efficiency
[Atkinson (1982)]. In some clinical trials, one may assign subjects to treatments
according to their covariates for ethical reasons [see, e.g., Zhang et al. (2007)].
The ERADE could play an important role in this area; further research beyond the
work in the present paper is clearly needed to account the effect of covariates in
response-adaptive designs.

APPENDIX: PROOFS

To prove the main theorems, we first prove the following lemma.

LEMMA A.1. Suppose {Mn,Fn;n ≥ 1} is a martingale with E|	Mn|2 ≤ C0,
where 	Mn = Mn −Mn−1 and {Fn} is a filter of sigma fields with F1 ⊂ F2 ⊂ · · · .
Then, for any L > 4,

E

[
max
m≤L

|Mn − Mn−m|
]

≤ √
C0L,(A.1)
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E

[
max

m:L≤m≤n

|Mn − Mn−m|
m

]
≤ 3

√
C0/L.(A.2)

PROOF. It is easy to show (A.1). For (A.2), we have

E

[
max

m:L≤m≤n

|Mn − Mn−m|
m

]

≤ ∑
j :log2 L≤j≤log2 n

E

[
max

2j−1≤m≤2j

|Mn − Mn−m|
2j−1

]

≤ ∑
j :j≥log2 L

√
C02j

2j−1 ≤ 3
√

C0/L.
�

PROOF OF THEOREM 2.1. Let Fm = σ(X1,1, . . . ,Xm,1, ξ1, . . . , ξm) be the
sigma field generated by previous m stages. Then, under Fm−1, Xm,1 and ξm are
independent, and E[Xm,1|Fm−1] = pm. Let Mn = ∑n

m=1 	Mm, where 	Mm =
Xm,1 − E[Xm,1|Fm−1]. Then, {	Mm;m ≥ 1} is a sequence of bounded martingale
differences with |	Mm| ≤ 1, and

Nn,1 = Nn−1,1 + pn + 	Mn.

Write

Un =
n−1∑
m=0

αρ̂m + Mn − nρ̂n.

Then,

Nn,1 − nρ̂n ≤ Nn−1,1 − (n − 1)ρ̂n−1 + 	Un

(A.3)
if Nn−1,1 − (n − 1)ρ̂n−1 > 0,

where 	Un = Un −Un−1. Let l = ln = max{m : 2m0 + 1 ≤ m ≤ n,Nm,1 −mρ̂m ≤
0}, where max ∅ = 2m0. According to (A.3),

Nn,1 − nρ̂n ≤ 	Un + 	Un−1 + · · · + 	Ul+1 + Nl,1 − lρ̂l

= Un − Ul + Nl,1 − lρ̂l .

Notice that Nl,1 − lρ̂l ≤ 0 if l ≥ 2m0 + 1, and Nl,1 − lρ̂l ≤ 2m0 if l = 2m0. So, in
either case

Nn,1 − nρ̂n ≤ Un − Ul + 2m0.(A.4)

We will show that

Un − Uln ≤ oP

(√
n
)

and Un − Uln ≤ O
(√

n log logn
)

a.s.(A.5)
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If (A.5) is proved, then

Nn,1 − nρ̂n ≤ oP

(√
n
)

and Nn,1 − nρ̂n ≤ O
(√

n log logn
)

a.s.,

and, by symmetry,

(n − Nn,1) − n(1 − ρ̂n) ≤ oP

(√
n
)
,

(n − Nn,1) − n(1 − ρ̂n) ≤ O
(√

n log logn
)

a.s.

(2.11) is proved according to (A.4) and (A.5).
For proving (A.5), we first show that Nn,1/n → v a.s. If Nn,1 → ∞ (resp.

Nn,2 = n − Nn,1 → ∞), then θ̂n,1 → θ1 (resp. θ̂n,2 → θ2) by Lemma A.4 of Hu
and Zhang (2004). If supn Nn,1 < ∞ [resp. supn(n − Nn,1) < ∞], then the value
of θ̂n,1 (resp. θ̂n,2) will not change when n is large enough. In either case, θ̂n,1 and
θ̂n,2 have finite limits. It follows that there is a u with 0 < u < 1, such that

ρ̂n → u a.s.(A.6)

by the continuity of ρ(·). On the other hand, according to the law of large numbers
for martingales,

Mn = o(n) a.s.(A.7)

Combining (A.6) and (A.7) yields Un ∼ −n(1 − α)u a.s. And then, by (A.4),
(Nn,1/n− ρ̂n)

+ → 0 a.s. Similarly, ((1−Nn,1/n)− (1− ρ̂n))
+ → 0 a.s. It follows

that Nn,1/n − ρ̂n → 0 a.s., which, together with (A.6), implies

lim
n→∞

Nn,1

n
= lim

n→∞ ρ̂n = u a.s.(A.8)

On the other hand, (A.8) implies that Nn,1 → ∞ and n − Nn,1 → ∞. By
Lemma A.4 of Hu and Zhang (2004), again, we have �̂n → � a.s. and

�̂n − � = O

(√
log logn

n

)
a.s.(A.9)

So, the limit u in (A.6) and (A.8) must be v = ρ(�), according to the continuity
of ρ(·).

Now,

Un − Ul = −(n − l)(1 − α)v +
n−1∑
m=l

α(ρ̂m − v) − (n − l)(ρ̂n − v)

+ Mn − Ml + l(ρ̂l − ρ̂n)(A.10)

= (n − l)[−(1 − α)v + o(1)] + Mn − Ml + l(ρ̂l − ρ̂n) a.s.
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Also, according to (2.1) and the fact that Nn,1/n → v a.s., it is easily shown that√
n(�̂n − �) = OP (1). So, we have

ρ̂n − v = ρ(�̂n) − ρ(�) = (�̂n − �)
∂ρ

∂y

∣∣∣∣
�

+ O(‖�̂n − �‖2)(A.11)

= (�̂n − �)
∂ρ

∂y

∣∣∣∣
�

+ OP

(
1

n

)
.(A.12)

From (2.1), it follows that

|l(ρ̂l − ρ̂n)| ≤ Cl‖�̂n − �̂l‖ + OP (1)

≤ C

2∑
k=1

l

Nn,k

∥∥∥∥∥
n∑

m=l+1

Xm,k(ξm,k − θk)

∥∥∥∥∥
+ C

2∑
k=1

l|Nl,k − Nn,k|
Nn,k

∥∥∥∥∥ 1

Nl,k

l∑
m=1

Xm,k(ξm,k − θk)

∥∥∥∥∥ + oP

(√
n
)

= o(1) · (n − l) + C‖Qn − Ql‖ + oP

(√
n
)
,

where Qn,k = ∑n
m=1 Xm,k(ξm,k −θk) and Qn = (Qn,1,Qn,2), k = 1,2. Notice that

{Qn} and {Mn} are both martingales. Notice that, for any 1 ≤ L ≤ n, we have

‖Qn − Ql‖ ≤ (n − l) · max
L≤m≤n

‖Qn − Qn−m‖
m

+ max
m≤L

‖Qn − Qn−m‖.
Now, choose L = L(n) → ∞ with L = o(n). Then, by Lemma A.1,

max
L≤m≤n

‖Qn − Qn−m‖
m

= OP

(√
1/L

) = oP (1)

and

max
m≤L

‖Qn − Qn−m‖ = OP

(√
L

) ≤ oP

(√
n
)
.

It follows that

‖Qn − Ql‖ = oP (1) · (n − l) + oP

(√
n
)
.

Similarly,

|Mn − Ml| = oP (1) · (n − l) + oP

(√
n
)
.

We conclude that

Un − Ul ≤ (n − l)[−(1 − α)v + oP (1)] + |Mn − Ml| + C‖Qn − Ql‖ + oP

(√
n
)

≤ (n − l)[−(1 − α)v + oP (1)] + oP

(√
n
) = oP

(√
n
)
.

The first part of (A.5) is proved. For the second part, notice that

Mn = O
(√

n log logn
)

a.s.
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due to the law of iterated logarithm for martingales, and

n(ρ̂n − v) = O
(√

n log logn
)

a.s.(A.13)

due to (A.9) and (A.11). The second part of (A.5) is proved by (A.10).
Finally, from Lemma 1 of Hu, Rosenberger and Zhang (2006), we have

√
n(�̂n − �)

D→ N(0,V).(A.14)

Together with (2.11) and (A.12), (A.14) yields (2.13). Combining (2.11) and
(A.13) yields (2.14). �
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