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CONSISTENCY OF RESTRICTED MAXIMUM LIKELIHOOD
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In this paper we consider two closely related problems: estimation of
eigenvalues and eigenfunctions of the covariance kernel of functional data
based on (possibly) irregular measurements, and the problem of estimat-
ing the eigenvalues and eigenvectors of the covariance matrix for high-
dimensional Gaussian vectors. In [A geometric approach to maximum likeli-
hood estimation of covariance kernel from sparse irregular longitudinal data
(2007)], a restricted maximum likelihood (REML) approach has been devel-
oped to deal with the first problem. In this paper, we establish consistency
and derive rate of convergence of the REML estimator for the functional
data case, under appropriate smoothness conditions. Moreover, we prove
that when the number of measurements per sample curve is bounded, under
squared-error loss, the rate of convergence of the REML estimators of eigen-
functions is near-optimal. In the case of Gaussian vectors, asymptotic con-
sistency and an efficient score representation of the estimators are obtained
under the assumption that the effective dimension grows at a rate slower than
the sample size. These results are derived through an explicit utilization of the
intrinsic geometry of the parameter space, which is non-Euclidean. Moreover,
the results derived in this paper suggest an asymptotic equivalence between
the inference on functional data with dense measurements and that of the
high-dimensional Gaussian vectors.

1. Introduction. Analysis of functional data, where the measurements per
subject, or replicate, are taken on a finite interval, has been one of the growing
branches of statistics in recent times. In fields such as longitudinal data analysis,
chemometrics and econometrics, the functional data analysis viewpoint has been
successfully used to summarize data and gain better understanding of the problems
at hand. The monographs of Ramsay and Silverman [24] and Ferraty and Vieu [13]
give detailed accounts of the applications of a functional data approach to various
problems in these fields. Depending on how the individual curves are measured,
one can think of two different scenarios: (i) when the curves are measured on a
dense grid; and (ii) when the measurements are observed on an irregular, and typi-
cally sparse, set of points on an interval. The first situation usually arises when the
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data are recorded by some automated instrument, for example, in chemometrics
where the curves represent the spectra of certain chemical substances. The second
scenario is more typical in longitudinal studies where the individual curves could
represent the level of concentration of some substance, and the measurements on
the subjects may be taken only at irregular time points. In the first scenario, that
is, data on a regular grid, as long as the individual curves are smooth, the mea-
surement noise level is low and the grid is dense enough, one can essentially treat
the data to be on a continuum and employ techniques similar to the ones used
in classical multivariate analysis. For example, [14] derive stochastic expansions
of sample PCA when the sample curves are noise-free and measured on a con-
tinuum. However, in the second scenario, the irregular nature of the data and the
presence of measurement noise pose challenges and require a different treatment.
Under such a scenario, data corresponding to individual subjects can be viewed
as partially observed, and noise-corrupted, independent realizations of an under-
lying stochastic process. The estimation of the eigenvalues and eigenfunctions of
a smooth covariance kernel from sparse, irregular measurements has been studied
by various authors, including [17, 26] and [23], among others.

In [23], a restricted maximum likelihood (REML) approach is taken to obtain
the estimators. REML estimators are widely used and studied in statistics. For ex-
ample, the usefulness of REML and profile-REML estimation has been recently
demonstrated in the context of functional linear mixed-effects models by Anto-
niadis and Sapatinas [1]. In [23], it is assumed that the covariance kernel can be
well-approximated by a positive-semidefinite kernel of finite rank r , whose eigen-
functions can be represented by M(≥ r) known orthonormal basis functions. Thus,
the basis coefficient matrix B of the approximant belongs to the Stiefel manifold of
M × r matrices with orthonormal columns. The working assumption of Gaussian-
ity allows the authors to derive the log-likelihood of the observed data given the
measurement times. Then a Newton–Raphson procedure, that respects the geome-
try of the parameter space, is employed to obtain the estimates by maximizing the
log-likelihood. This procedure is based on the formulation of a general Newton–
Raphson scheme on Stiefel manifold developed in [11]. Peng and Paul [23] also
derive a computationally efficient approximate cross-validation score for selecting
M and r . Through extensive simulation studies, it is demonstrated that the REML
estimator is much more efficient than an alternative procedure [26] based on local
linear smoothing of empirical covariances. The latter estimator does not naturally
reside in the parameter space, even though it has been proved to achieve the op-
timal nonparametric convergence rate in the minimax sense under l2 loss, under
the optimal choice of the bandwidth and when the number of measurements per
curve is bounded [15]. Also, in most situations, our method outperforms the EM
approach of [17]. Although the latter estimator also aims to maximize the log-
likelihood, it does not naturally reside in the parameter space either, and thus it
does not utilize its geometry efficiently.
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The superior numerical performance of the REML estimator motivates us to
conduct a detailed study of its asymptotic properties. In this paper, we establish
consistency and derive the rate of convergence (under l2 loss) of the REML estima-
tor when the eigenfunctions have a certain degree of smoothness, and when a stable
and smooth basis, for example, the cubic B-spline basis with a pre-determined set
of knots, is used for approximating them. The techniques used to prove consistency
differ from the standard asymptotic analysis tools when the parameter space is
Euclidean. Specifically, we restrict our attention to small ellipsoids around zero in
the tangent space to establish a mathematically manageable neighborhood around
an “optimal parameter” (a good approximation of the “true parameter” within the
model space). We derive asymptotic results when the number of measurements
per curve grows sufficiently slowly with the sample size (referred as the sparse
case). We also show that for a special scenario of the sparse case, when there is
a bounded number of measurements per curve, the risk of the REML estimator
(measured in squared-error loss) of the eigenfunctions has asymptotically near-
optimal rate (i.e., within a factor of logn of the optimal rate) under an appropriate
choice of the number of basis functions.

Besides the sparse case, we consider two other closely related problems: (i) the
estimation of the eigenvalues and eigenfunctions of a smooth covariance ker-
nel, from dense, possibly irregular, measurements (referred to as the dense case);
and (ii) the estimation of the eigenvalues and eigenvectors of a high-dimensional
covariance matrix (referred to as the matrix case). In the matrix case, we assume
there is preliminary information so that the data can be efficiently approximated
in a lower-dimensional known linear space whose effective dimension grows at
a rate slower than the sample size n. The proofs of the results in all three cases
utilize the intrinsic geometry of the parameter space through a decomposition of
the Kullback–Leibler divergence. However, the matrix case and the dense case are
more closely related, and the techniques for proving the results in these cases are
different in certain aspects from the treatment of the sparse case, as described in
Sections 2 and 3.

Moreover, in the matrix case, we also derive a semiparametric efficient score
representation of the REML estimator (Theorem 3.2), that is given in terms of
the intrinsic Fisher information operator [note that the residual term is not nec-
essarily oP (n−1/2)]. This result is new, and explicitly quantifies the role of the
intrinsic geometry of the parameter space on the asymptotic behavior of the esti-
mators. Subsequently, it points to an asymptotic optimality of the REML estima-
tors. Here, asymptotic optimality means achieving the asymptotic minimax risk
under l2 loss within a suitable class of covariance matrices (kernels). We want to
point out that, in the matrix case, the REML estimators coincide with the usual
PCA estimates, that is, the eigenvalues and eigenvectors of the sample covariance
matrix [19]. In [22], a first-order approximation of the PCA estimators is obtained
by matrix perturbation analysis. Our current results show that the efficient score
representation coincides with this approximation, and thereby gives a geometric
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interpretation to this. The asymptotically optimal rate of the l2-risk of the REML
estimator in the matrix case follows from this representation and the lower bound
on the minimax rate obtained in [22]. Asymptotic properties of high-dimensional
PCA under a similar context have also been studied by [12]. Recently, several
approaches have been proposed for estimating large-dimensional covariance ma-
trices and their eigenvalues and eigenvectors under suitable sparsity assumptions
on the population covariance, for example, [2, 3] and [9].

At this point, we would like to highlight the main contributions of this paper.
First, we have established the consistency and derived the rate of convergence of
REML estimators for functional principal components in two different regimes:
the sparse case and dense case. In [15], it is shown that an estimator of functional
principal component based on a local polynomial approach achieves the optimal
nonparametric rate when the number of measurements per curve is bounded. How-
ever, to the best of our knowledge, no results exist regarding the consistency, or rate
of convergence, of the REML estimators in the functional data context. Second, we
have derived an efficient score representation for sample principal components of
high-dimensional, i.i.d. Gaussian vectors. This involves calculation of the intrin-
sic Fisher information operator and its inverse, and along the line we also provide
an independent verification that the REML estimates under a rank-restricted co-
variance model are indeed the PCA estimates. Third, we expect that the current
framework can be refined to establish efficient score representation of the REML
estimators of the functional principal components, and therefore the results ob-
tained in this paper serve as first steps toward studying the asymptotic optimality
of these estimators. Moreover, results obtained in this paper suggest an asymptotic
equivalence between the inference on functional data with dense measurements
and that of the high-dimensional Gaussian vectors. Finally, our work provides use-
ful techniques for dealing with the analysis of estimation procedures based on
minimization of a loss function (e.g., MLE, or more generally M-estimators) over
a non-Euclidean parameter space for semiparametric problems. There has been
some work on analysis of maximum likelihood estimators for parametric prob-
lems when the parameter space is non-Euclidean (see, e.g., [20]). However, there
has been very limited work for non/semi-parametric problems with non-Euclidean
parameter space. Recently, [5] establish semiparametric efficiency of estimators in
independent component analysis (ICA) problems using a sieve maximum likeli-
hood approach.

The rest of the paper is organized as follows. In Section 2, we present the data
model for the functional principal components, and state the consistency results of
the REML estimators. In Section 3, we describe the model for high-dimensional
Gaussian vectors and derive asymptotic consistency and an efficient score repre-
sentation of the corresponding REML estimators. Section 4 is devoted to giving an
overview of the proof of the consistency result for the functional data case (The-
orems 2.1 and 2.2). Section 5 gives an outline of the proof of consistency in the
matrix case (Theorem 3.1), in particular emphasizing the major differences with
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the proof of Theorem 2.1. Section 6 is concerned with the proof of the score repre-
sentation in the matrix case (Theorem 3.2). Section 7 has a summary of the results
and a discussion on some future works. Technical details are given in the Appen-
dix.

2. Functional data. In this section, we start with a description of the func-
tional principal components analysis, and then make a distinction between the
sparse case and the dense case. We then present the asymptotic results and rel-
evant conditions for consistency under these two settings.

2.1. Model. Suppose that we observe data Yi = (Yij )
mi

j=1, at the design points

Ti = (Tij )
mi

j=1, i = 1, . . . , n, with

Yij = Xi(Tij ) + σεij ,(2.1)

where {εij } are i.i.d. N(0,1), Xi(·) are i.i.d. Gaussian processes on the interval
[0,1] (or, more generally, [a, b] for some a < b) with mean 0 and covariance
kernel �0(u, v) = E[Xi(u)Xi(v)]. �0 has the spectral decomposition

�0(u, v) =
∞∑

k=1

λkψk(u)ψk(v),

where {ψk}∞k=1 are orthonormal eigenfunctions and λ1 > · · · > λr > λr+1 ≥ · · · ≥
0 are the eigenvalues. The assumption that the stochastic process has mean zero
is simply to focus only on the asymptotics of the estimates of eigenvalues and
eigenfunctions of the covariance kernel (i.e., the functional principal components).

Throughout this paper we assume Gaussianity of the observations. We want
to emphasize that Gaussianity is more of a working assumption in deriving the
REML estimators. But it plays a less significant role in asymptotic analysis. For
the functional data case, the only place where Gaussianity is used is in the proof of
Proposition 4.2, and even this can be relaxed by assuming appropriate tail behavior
of the observations. Gaussianity is more crucial in the analysis for the matrix case.
The proofs of Proposition 5.2 and Theorem 3.2 depend on an exponential inequal-
ity on the extreme eigenvalues of a Wishart matrix (based on a result of [10]), even
though we expect the nonasymptotic bound to hold more generally.

In this paper, we are primarily interested in the situation where the design points
are i.i.d. from a distribution with density g (random design). We shall consider
two scenarios, to be referred to as the sparse case and the dense case, respectively.
The sparse case refers to the situation when the number of measurements, mi , are
comparatively small (see B1). The dense case refers to the situation where the mi ’s
are large so that the design matrix (i.e., the matrix of basis functions evaluated at
the time points) has a concentration property (see B1′ and D). In the latter case,
we also allow for the possibility that the design is nonrandom.
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Next, we describe the model space, to be denoted by MM,r := MM,r(φ) (for
1 ≤ r ≤ M), for the REML estimation procedure. The model space MM,r consists
of the class of covariance kernels C(·, ·), which have rank r , and whose eigenfunc-
tions are represented in a known orthonormal basis {φk}Mk=1 of smooth functions.
Furthermore, the nonzero eigenvalues are all distinct. For example, in [23], {φk}Mk=1
is taken to be an orthonormalized cubic B-spline basis with equally spaced knots.
Thus, the model space consists of the elements C(·, ·) = ∑r

k=1 λkψk(·)ψk(·),
where λ1 > · · · > λr > 0, and (ψ1(·), . . . ,ψr(·)) = (φ(·))T B , where B is an M × r

matrix satisfying BT B = Ir , and φ(·) = (φ1(·), . . . , φM(·))T . Note that we do not
assume that �0 belongs to the model space. For the asymptotic analysis, we only
assume that it can be well-approximated by a member of the model space (see con-
dition C and Lemma 2.1). We define the best approximation error of the model as
infC̃∈MM,r (φ) ‖�0 −C̃‖F , where ‖·‖F denotes the Hilbert–Schmidt norm. A rank r

approximation to �0 in MM,r(φ) can be defined as

�∗0(u, v) =
r∑

k=1

λ∗kψ∗k(u)ψ∗k(v)

with λ∗1 > · · · > λ∗r > 0, and

(ψ∗1(t), . . . ,ψ∗r (t)) = (φ(t))T B∗,

where B∗ is an M ×r matrix satisfying BT∗ B∗ = Ir . We refer to {(ψ∗k, λ∗k)}rk=1, or
equivalently, the pair (B∗,�∗), as an optimal parameter, if the corresponding �∗0
is a close approximation to �0 in the sense that the approximation error ‖�0 −
�∗0‖F has the same rate (as a function of M) as the best approximation error.
Henceforth, (B∗,�∗) is used to denote an optimal parameter.

Observe that, under model (2.1), Yi are independent, and conditionally on Ti

they are distributed as Nmi
(0,�i). Here, the mi ×mi matrix �i is of the form �i =

((�0(Tij , Tij ′)))mi

j,j ′=1 + σ 2Imi
. Then the matrix �∗i = 	T

i B∗�∗BT∗ 	i + σ 2Imi

is an approximation to �i , where 	i := [φ(Ti1) : · · · :φ(Timi
)] is an M × mi

matrix. We shall use � to denote interchangeably the r × r diagonal matrix
diag(λ1, . . . , λr) and the r × 1 vector (λ1, . . . , λr)

T . Note that the parameter
(B,�) belongs to the parameter space 
 := SM,r ⊗ R

r+, where SM,r = {A ∈
R

M×r :AT A = Ir} is the Stiefel manifold of M × r matrices with orthonormal
columns. For fixed r and M , the REML estimator of {(ψk, λk)}rk=1 is defined as
a minimizer over 
 of the negative log-likelihood (up to an additive constant and
the scale factor n):

Ln(B,�) = 1

2n

n∑
i=1

tr(�−1
i YiY

T
i ) + 1

2n

n∑
i=1

log |�i |,(2.2)

where �i = 	T
i B�BT 	i + σ 2Imi

.
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2.2. Consistency. We shall present results on consistency of the REML esti-
mators of functional principal components in the two different regimes considered
above, namely, the sparse case (i.e., when the number of measurements per curve
is “small”) and the dense case (i.e., when the number of measurements per curve
is “large”). Throughout this paper, we assume that σ 2 is known, even though [23]
provide estimate of σ 2 as well. This assumption is primarily to simplify the ex-
position. It can be verified that all the consistency results derived in this paper
hold even when σ 2 is estimated. We make the following assumptions about the
covariance kernel �0.

A1 The r largest eigenvalues of �0 satisfy, (i) c1 ≥ λ1 > · · · > λr > λr+1 for
some c1 < ∞; (ii) max1≤j≤r (λj − λj+1)

−1 ≤ c2 < ∞.
A2 The eigenfunctions {ψk}rk=1 are four times continuously differentiable and

satisfy

max
1≤k≤r

∥∥ψ(4)
k

∥∥∞ ≤ C0 for some 0 < C0 < ∞.

SPARSE case. In this case, we only consider the situation when σ 2 is fixed (i.e.,
it does not vary with n). We shall first deal with the case when mi ’s are bounded.
Then we extend our results to the situation when mi ’s increase slowly with sample
size, and are of the same order of magnitude for all i (condition B1). We also
assume a boundedness condition for the random design (condition B2).

B1 The number of measurements mi satisfy m ≤ mi ≤ m with 4 ≤ m and m/m is
bounded by some constant d2 > 0. Also, m = O(nκ) for some κ ≥ 0.

B2 For each i, {Tij : j = 1, . . . ,mi} are i.i.d. from a distribution with density g,
where g satisfies

cg,0 ≤ g(x) ≤ cg,1 for all x ∈ [0,1], where 0 < cg,0 ≤ cg,1 < ∞.(2.3)

Finally, we have a condition on the l2 error for approximating the covariance kernel
in the model space MM,r . Define the maximal approximation error for an optimal
parameter (B∗,�∗) as

βn := max
1≤i≤n

1

mi

‖�i − �∗i‖F .(2.4)

C mβn = O(

√
M logn

n
).

If we use orthonormalized cubic B-spline basis for representing the eigenfunc-
tions, then C follows from A1–A2 and B1–B2, if the covariance kernel is indeed
of rank r :

LEMMA 2.1. If A1–A2 and B1–B2 hold, �0 is of rank r , and we use the
orthonormalized cubic B-spline basis with equally spaced knots to represent the
eigenfunctions, then C holds, if M−1(nm2/ logn)1/9 = O(1).
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Proof of Lemma 2.1 follows from the fact that for a cubic B-spline basis, for suf-
ficiently large M , we can choose (B∗,�∗) such that (i) max1≤k≤r ‖ψk −ψ∗k‖∞ =
O(M−4) (by A1 and A2), and (ii) βn = O(M−4) (see Appendix A.1). This im-
plies that ‖�0 − �∗0‖F = O(M−4). The assumption that the covariance kernel is
of finite rank can be relaxed somewhat by considering the true parameter as a se-
quence of covariance kernels �0,n such that the (r +1)th largest eigenvalue λr+1,n

decays to zero sufficiently fast. Note that in Lemma 2.1, the use of B-spline ba-
sis is not essential. The result holds under the choice of any stable basis (i.e., the
Gram matrix has a bounded condition number) with sufficient smoothness.

We now state the main result in the following theorem.

THEOREM 2.1 (SPARSE case). Suppose that A1–A2, B1–B2 and C hold,
and m is bounded. Suppose further that M satisfies

M−1(n/ logn)1/9 = O(1) and M = o
(√

n/ logn
)

(2.5)

as n → ∞. Then, given η > 0, there exists c0,η > 0 such that for αn =
c0,ησ

√
m2M logn

n
, with probability at least 1 −O(n−η), there is a minimizer (B̂, �̂)

of (2.2) satisfying

‖B̂ − B∗‖F ≤ αn,

‖�̂ − �∗‖F ≤ αn.

Moreover, the corresponding estimate of the covariance kernel, namely, �̂0(u, v) =∑r
k=1 λ̂kψ̂k(u)ψ̂k(v), satisfies, with probability at least 1 − O(n−η),

‖�̂0 − �0‖F = O(αn).

COROLLARY 2.1. Suppose that the conditions of Theorem 2.1 hold. Then the
best rate of convergence holds if M � (n/ logn)1/9, and the corresponding rate
is given by αn � (logn/n)4/9. For estimating the eigenfunctions, this is within
a factor of logn of the optimal rate. The optimal rate over a class C of covari-
ance kernels of rank r satisfying conditions A1–A2, and the random design points
satisfying conditions B1–B2 (with m bounded), is n−4/9.

Notice that, the rate obtained here for the estimated eigenvalues is not optimal.
We expect a parametric rate of convergence for the latter, which can be achieved
by establishing an efficient score representation of the estimators along the line of
Theorem 3.2. The following result generalizes Theorem 2.1 by allowing for mi ’s to
slowly increase with n, and its proof is encapsulated in the proof of Theorem 2.1.
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COROLLARY 2.2. Suppose that, A1–A2, B1–B2 and C hold. Suppose further
that, m and M satisfy

(i) m4M logn = o(n),
(ii) max{m3M5/2(logn)2,m7/2M2(logn)3/2} = o(n),

(iii) M−1(nm2/ logn)1/9 = O(1),
(iv) m2M2 logn = o(n).

(2.6)

Then the conclusion of Theorem 2.1 holds. Also, the best rate is obtained when
M � (nm2/ logn)1/9, and the corresponding αn � m10/9(logn/n)4/9.

Condition (i) is required to ensure that m2α2
n = o(1); condition (ii) is needed

to ensure that the upper bound in (A.12) in Lemma A.2 is o(1); condition (iii)
ensures that C holds; and finally, condition (iv) is used in proving Lemmas A.2,
A.3 and A.4 in the Appendix A.2. A sufficient condition for (2.6) to hold is that
m = O(n1/5) and M � (nm2/ logn)1/9. Notice that the best rate obtained in Corol-
lary 2.2 is not optimal in general. It is near-optimal (up to a factor of logn of the
optimal rate) only when m is bounded above (Theorem 2.1).

DENSE case. This case refers to the scenario where the number of time points
per curve is large, such that min1≤i≤n mi → ∞ sufficiently fast (see condition D
and the corresponding discussion). For simplicity, we assume further that the num-
ber of design points is the same for all the sample curves, which is not essential
for the validity of the results. Denote this common value by m. In terms of the
asymptotic analysis, there is an important distinction between the sparse case and
dense case. For the purpose of further exposition and the proof of the result on
consistency of REML estimator in the dense case, it is more convenient to work
with the transformed data Ỹi = 	iYi . Let �i = 1

m
	i�i	

T
i and Ri = 1

m
	i	

T
i .

Then �i = mRiB�BT Ri + σ 2Ri . Then, a way of estimating {(λk,ψk)}rk=1 is by
minimizing the negative log-likelihood of the transformed data:

L̃n(B,�) = 1

2n

n∑
i=1

tr
(
�−1

i

1

m
ỸiỸ

T
i

)
+ 1

2n

n∑
i=1

log |�i |.(2.7)

Notice that, if Ri ’s are nonsingular for all i, then by direct computation we have
that the negative log-likelihoods for the raw data (2.2) and that of the transformed
data (2.7) differ only by a constant independent of the parameters B and �.
Hence, on the set {Ri are nonsingular for all i}, the estimators obtained by min-
imizing (2.2) and (2.7) are the same. Assumptions B1 and B2 are now replaced
by:

B1′ m = O(nκ) for some κ > 0.
D Given η > 0, there exist constants c1,η, c2,η > 0 such that the event A1,η de-
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fined by

A1,η =
{

max
1≤i≤n

‖Ri − IM‖ ≤ c1,η

√
σ 2

m logn
and

(2.8)

max
1≤i≤n

‖BT∗ RiB∗ − Ir‖ ≤ c2,η

σ 2

m logn

}
has probability at least 1 − O(n−η). Note that A1,η is defined in terms of T :=
{Tij : j = 1, . . . ,m; i = 1, . . . , n} alone. We assume throughout that σ 2 ≤ m (note
that σ 2/m can be viewed as the signal-to-noise ratio). Therefore, for n large
enough, on A1,η, Ri is invertible for all i. The condition D gives concentration
of individual Ri’s around the identity matrix and is discussed in more detail at the
end of this section. Finally, we make an assumption about the maximal approxi-
mation error βn defined through (2.4), which differs slightly from the condition C
in the sparse case.

C′ Given η > 0, there is a constant cη > 0 such that βn ≤ cη
σ 2

m

√
M logn

n
with prob-

ability at least 1 − O(n−η).

A result similar to Lemma 2.1 can be proved to ensure condition C′ when a stable
basis is used.

THEOREM 2.2 (DENSE case). Suppose that A1–A2, B1′, C′ and D hold,
and m ≥ σ 2 > 0. Then, given η > 0, there exists c0,η > 0 such that for αn =
c0,ησ

√
M logn

nm
, with probability at least 1 − O(n−η), there is a minimizer (B̂, �̂)

of (2.7) satisfying

‖(IM − B∗BT∗ )(B̂ − B∗)‖F ≤ αn,

‖BT∗ (B̂ − B∗)‖F ≤
√

m

σ 2 αn,

‖�̂ − �∗‖F ≤
√

m

σ 2 αn.

Further, the corresponding estimated covariance kernel �̂0 defined as �̂0(u, v) =∑r
k=1 λ̂kψ̂k(u)ψ̂k(v) satisfies, with probability at least 1 − O(n−η),

‖�̂0 − �0‖F = O

(√
M logn

n

)
.

The proof of Theorem 2.2 requires a slight refinement of the techniques used in
proving Theorem 3.1 stated in Section 3.2, making heavy use of condition D. To
save space, we omit the proof. Note that the best rate in Theorem 2.2 implicitly de-
pends on conditions C′ and D in a complicated way, which is not the optimal rate
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for estimating the principal components. The optimal rate for l2 risk of the eigen-
functions in this context is conjectured to be of the order max{(σ 2/nm)8/9,1/n},
with the second term within brackets appearing only when r > 1. This can be
verified for the case r = 1 using a refinement of the arguments used in proving
Corollary 2.1.

Discussion of condition D. We shall only consider the setting of an uniform
design either fixed or random. Condition (2.8) clearly requires m to be sufficiently
large, since it gives concentration of individual Ri ’s around the identity matrix. To
fulfil D, we also need some conditions on the basis functions used. Specifically, we
concentrate on the following classes of basis functions. We assume that the basis
functions are at least three times continuously differentiable.

E1 (Sinusoidal basis) max1≤k≤M ‖φk‖∞ = O(1).
E2 (Spline-type basis) (i) For any k ∈ {1, . . . ,M}, at most for a bounded number of

basis functions φl , supp(φk)∩ supp(φl) is nonempty; (ii) max1≤k≤M ‖φk‖∞ =
O(

√
M).

One of the key observations in the case of functional data is that the eigenfunctions
{ψ∗k}rk=1 of the kernel �0∗ (belonging to the model space) have the same degree of
smoothness as the basis {φk}Mk=1, and the functions {ψ∗k}rk=1 and their derivatives
are bounded. Also, notice that, BT∗ RiB∗ = (( 1

m

∑m
j=1 ψ∗k(Tij )ψ∗l(Tij )))

r
k,l=1.

Based on these observations, we present some sufficient conditions for (2.8) to
hold under the uniform design and bases of type E1 or E2. We omit the proof,
which uses Bernstein’s inequality (in the random design case) and the Trapezoidal
rule (in the fixed design case).

PROPOSITION 2.1. Suppose that the basis is of type E1 or E2. In the
case of random, uniform design, (2.8) is satisfied if (M logn)2/σ 2 = O(1), and√

m logn/σ 2 = O(1). In the case of fixed, uniform design, (2.8) holds (with prob-

ability 1) if M2 logn
m

(1 + M5/2

m
)2/σ 2 = O(1), and logn/σ 2 = O(1). Moreover, in

this setting, if the eigenfunctions {ψk}rk=1 vanish at the boundaries, and if the ba-
sis functions are chosen so that they also vanish at the boundaries, it is sufficient

that M7 logn

m7/2 /σ 2 = O(1) and logn
m

/σ 2 = O(1).

Note that two obvious implications of Proposition 2.1 are: (i) m needs to be
rather large; and (ii) σ 2 may need to grow with n, in order that D holds.

REMARK 1. It is to be noted that even though the consistency results for the
functional data problem are proved under a specific choice of the basis for rep-
resenting the eigenfunctions, namely, the (orthonormalized) cubic B-spline basis
with equally spaced knots, this is by no means essential. The main features of this
basis are given in terms of the various properties described in the Appendix A.1.
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The crucial aspects are: (a) the basis is stable; (b) the basis functions have a cer-
tain order of smoothness; and (c) the basis functions have fast decay away from an
interval of length O(M−1) where M is the number of basis functions used. Same
consistency results can be proved as long as those properties are satisfied.

REMARK 2. When m, the number of measurements is bounded, we can relax
condition A2 so that the eigenfunctions are twice continuously differentiable and
with bounded second derivative, and under this assumption we can prove a result
analogous to Theorem 2.1 and Corollary 2.1, with the corresponding optimal rate
of convergence being n−2/5 instead of n−4/9.

3. High-dimensional vector. In this section, we describe a scenario where the
observations are i.i.d. Gaussian vectors, which can be approximately represented
in a known lower-dimensional space (see C′′), where the effective dimensionality
of the observations grows at a rate slower than the sample size. For convenience,
we refer to this setting as the matrix case. It can be seen that besides the proofs of
the results derived in this section sharing a lot of common features with those in
Section 2, these results also suggest an asymptotic equivalence between the dense
case for functional data, and the matrix case. This means that understanding one
problem helps in understanding the other problem. In particular, we conjecture that
the results derived for the Gaussian vectors, such as the efficient score represen-
tation (Theorem 3.2), can be carried over to the functional data case with dense
measurements.

3.1. Model. Suppose that we have i.i.d. observations Y1, . . . , Yn from Nm(0,

�). Assume the covariance matrix � has the following structure:

� = �0 + σ 2Im.

This may be regarded as a “signal-plus-noise” model, with σ 2 representing the
variance of the isotropic noise component. We further assume that �0 has at least r

positive eigenvalues, for some r ≥ 1. The eigenvalues of �0 are given by sλ1 >

· · · > sλr > sλr+1 ≥ · · · ≥ 0, where s > 0 is a parameter representing the “signal
strength” (so that s/σ 2 represents the signal-to-noise ratio). We assume that the
observations can be well represented in a known M-dimensional basis 	 with
M ≤ m (condition C′′). Then the model space MM,r(	) (with r ≤ M ≤ m) is
defined as the set of all m×m matrices � of the form � = s	T B�BT 	+ σ 2Im,
where 	 is an M × m matrix satisfying 		T = IM , B ∈ SM,r and � is r × r ,
diagonal with positive diagonal elements. Note that in order to prove consistency
of the REML estimator, we require that the intrinsic dimension M grows with n

sufficiently slowly. In fact, it has been shown (e.g., in [21]) that, when s/σ 2 =
O(1), M must be o(n) to achieve consistency.

Throughout we assume that σ 2 and s are known. Of course, we can estimate
the eigenvalues of � without any knowledge of s. The unknown parameters of
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the model are B and �. The parameter space is therefore 
 = SM,r ⊗ R
r+. The

estimate (B̂, �̂) of (B,�) is obtained by minimizing over 
 the negative log-
likelihood (up to an additive constant and the multiplicative factor n),

Ln(B,�) = 1

2n
tr

(
�−1

n∑
i=1

YiY
T
i

)
+ 1

2
log |�|.(3.1)

We then set the estimator of the first r eigenvectors of � as �̂ = 	T B̂ .
Similar to the dense case, for asymptotic analysis, it is more convenient to

work with the transformed data Ỹi = 	Yi . Let � = 	�	T = sB�BT + σ 2IM .
Then one can obtain estimates of (B,�) by minimizing over 
 the negative log-
likelihood of the transformed data:

L̃n(B,�) = 1

2n
tr

(
�−1

n∑
i=1

Ỹi Ỹ
T
i

)
+ 1

2
log |�|,(3.2)

which results in the same estimate obtained by minimizing (3.1).

REMARK 3. It is known [19] that, in the setting described above, the REML
estimators of (B,�) coincide with the first r principal components of the sam-
ple covariance matrix of Ỹi = 	Yi , i = 1, . . . , n. On the other hand, based on the
calculations carried out in the Appendix A.4, it is easy to see that the PCA esti-
mators (B̂PC, �̂PC) satisfy the likelihood equations ∇BL̃n(B̂

PC, �̂PC) = 0 and
∇ζ L̃n(B̂

PC, �̂PC) = 0. Thus, our approach provides an independent verification
of the known result that the PCA estimates are REML estimators under the rank-
restricted covariance model studied here.

3.2. Consistency. We make the following assumptions about the covariance
matrix.

A1′ The eigenvalues of �0 are given by sλ1 ≥ · · · ≥ sλm ≥ 0 and satisfy, for
some r ≥ 1 (fixed), (i) c1 ≥ λ1 > · · · > λr > λr+1 for some c1 < ∞;
(ii) max1≤j≤r (λj − λj+1)

−1 ≤ c2 < ∞.
C′′ Assume that there exists (B∗,�∗) ∈ 
 (referred as “optimal parameter”) such

that, the matrix �∗0 = s	T B∗�∗BT∗ 	 is a close approximation to �0 in the

sense that βn := ‖�0 − �∗0‖F = O(σ 2
√

M logn
n

).

Note that C′′ implies that the observation vectors can be closely approximated in
the basis 	.

THEOREM 3.1 (MATRIX case). Suppose that A1′ and C′′ hold, and s ≥ σ 2 >

0. Then given η > 0, there exists c0,η > 0 such that for αn = c0,ησ

√
M logn

ns
, with
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probability at least 1 − O(n−η), there is a minimizer (B̂, �̂) of (3.2) satisfying

‖(IM − B∗BT∗ )(B̂ − B∗)‖F ≤ αn,

‖BT∗ (B̂ − B∗)‖F ≤
√

s

σ 2 αn,

‖�̂ − �∗‖F ≤
√

s

σ 2 αn.

Observe that the rates obtained in Theorem 2.2 and Theorem 3.1 are identical
once we replace m in Theorem 2.2 by s. Thus the number of measurements m in
the dense case is an analog of the signal strength s in the matrix case. This impor-
tant observation suggests an asymptotic equivalence between these two problems.
This is a result of the concentration of the matrices {Ri}ni=1 around IM for the
dense case (condition D). Under the matrix case, the analogs of Ri exactly equal
the identity matrix. Moreover, Theorem 3.1 establishes the closeness of the REML
estimator to the optimal parameter, which serves as an important step toward prov-
ing Theorem 3.2.

3.3. Efficient score representation. When the observations are i.i.d. Gaussian
vectors, we can get a more refined result than the one stated in Theorem 3.1. In
this section, we show that by using the intrinsic geometry, we can get an efficient
score representation of the REML estimator (and hence PCA estimator). In [22],
a first-order approximation to the sample eigenvectors (i.e., PCA estimates) is ob-
tained using matrix perturbation theory [18]. Subsequently, it has also been shown
there that the rate of convergence of l2-risk of PCA estimators is optimal. Here,
we show that the efficient score representation of the REML estimator coincides
with this first-order approximation when the signal-to-noise ratio s/σ 2 is bounded
(Corollary 3.1). Our approach is different from the perturbation analysis. It also
quantifies the role of intrinsic geometry of the parameter space explicitly. Our re-
sult gives an alternative interpretation of this approximation, and consequently, the
score representation points to an asymptotic optimality of the REML (and hence
PCA) estimator.

We first introduce some notation. More details can be found in the Appen-
dix A.4. Let ζ = log� (treated interchangeably as an r × 1 vector and an r × r

diagonal matrix). The the parameter space for (B, ζ ) is 
̃ := SM,r ⊗ R
r . Let

TB := {U ∈ R
M×r :BT U = −UT B} denote the tangent space of the Stiefel man-

ifold SM,r at B . Then the tangent space for the product manifold 
̃ at (B, ζ ) is
TB ⊕ R

r (see Appendix A.5 for the definition of the product manifold and its tan-
gent space).

For notational simplicity, we use θ∗ to denote (B∗, ζ∗) and θ0 to denote (B0, ζ0).
Define L(θ0; θ∗) = Eθ∗L̃n(θ0). Let ∇L̃n(·) and ∇L(·; θ∗) denote the intrinsic gra-
dient of the functions L̃n(·) and L(·; θ∗) with respect to (B, ζ ), respectively. Also,
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let Hn(·) and H(·; θ∗) denote the intrinsic Hessian operator of the functions L̃n(·)
and L(·; θ∗) with respect to (B, ζ ), respectively. Let H−1(·; θ∗) denote the in-
verse Hessian operator of L(·; θ∗). Also, we use HB(·; θ∗) to denote the Hessian
of L(·; θ∗) with regard to B . Notation for Hessian with regard to ζ , and gradients
with regard to B and ζ are defined similarly.

The following result gives the efficient score representation of the REML es-
timator in the situation when σ 2 = 1 and s = 1. The result can be extended via
rescaling to the case for arbitrary σ 2 and s with s ≥ σ 2 > 0, and s/σ 2 being
bounded.

THEOREM 3.2 (Score representation). Suppose that A1′ and C′′ hold with

σ 2 = 1, s = 1, and M = o(na) for some a ∈ (0,1). Let γn = max{
√

M∨logn
n

,βn}.
Then there is a minimizer (B̂, �̂) of the negative log-likelihood (3.2) such that,
with probability tending toward 1,

B̂ − B∗ = −H−1
B (θ∗; θ∗)(∇BL̃n(θ∗)) + O(γ 2

n ),(3.3)

�̂ − �∗ = −�∗H−1
ζ (θ∗; θ∗)(∇ζ L̃n(θ∗)) + O(γ 2

n ).(3.4)

In particular, from this representation, we have, with probability tending toward 1,

‖B̂ − B∗‖F = O(γn),(3.5)

‖�̂ − �∗‖F = O

(√
logn

n
+ γ 2

n

)
.(3.6)

Note that Theorem 3.2 gives the optimal rate of convergence for l2-risk of the
estimated eigenvectors when βn = 0 (i.e., no model bias). This result follows from
the minimax lower bound on the risk obtained by [22]. Note that this lower bound
under the current setting follows essentially from the proof of Corollary 2.1. Also,
when a ≤ 1/2, this result shows that �̂ converges at a parametric rate. Indeed,
the representation (3.4) implies asymptotic normality of �̂ when a ≤ 1/2. In the
derivation of Theorem 3.2 we need to compute the Hessian and its inverse, which
leads to the following representation.

COROLLARY 3.1. Under the assumptions of Theorem 3.2, we have the fol-
lowing representation:

H−1
B (θ∗; θ∗)(∇BL̃n(θ∗)) = [R1S̃B∗1 : · · · : Rr S̃B∗r ],

where B∗j is the j th column of B∗, and

Rj = ∑
1≤i �=j≤r

1

(λ∗i − λ∗j )
B∗iB

T∗i − 1

λ∗j

(IM − B∗BT∗ ),

is the resolvent operator corresponding to �∗ “evaluated at” (1 + λ∗j ).



1244 D. PAUL AND J. PENG

Combining Corollary 3.1 with (3.3), we get a first-order approximation to B̂ ,
which coincides with the approximation for sample eigenvectors obtained in [22].
However, Theorem 3.2 has deeper implications. Since it gives an efficient score
representation, it suggests an asymptotic optimality of the REML estimators in the
minimax sense.

4. Proof of Theorem 2.1. Since σ 2 is fixed and assumed known, without loss
of generality, we take σ 2 = 1. In this section, we give an outline of the main
ideas/steps. The details of the proofs are given in the Appendix A.2. The strat-
egy of the proof is as follows. We restrict our attention to a subset �(αn) of the
parameter space (referred to as the restricted parameter space), which is the image
under exponential map of the boundary of an ellipsoid centered at 0, in the tangent
space of an “optimal parameter.” We then show that with probability tending to-
ward 1, for every parameter value in this restricted parameter space, the value of
the negative log-likelihood is greater than the value of the negative log-likelihood
at the optimal parameter. Due to the Euclidean geometry of the tangent space, this
implies that with probability tending toward 1, there is a local maximum of the
log-likelihood within the image (under exponential map) of the closed ellipsoid.
The key steps of the proof are:

(i) Decompose the difference between the negative log-likelihood at the opti-
mal parameter and an arbitrary parameter in the restricted space as a sum of three
terms a term representing the average Kullback–Leibler divergence between the
distributions, a term representing random fluctuation in the log-likelihood and a
term representing the model bias (4.5).

(ii) For every fixed parameter in the restricted parameter space: (a) provide
upper and lower bounds (dependent on αn) for the average Kullback–Leibler di-
vergence; (b) provide upper bounds for the random term and the model bias term.
In both cases, the bounds are probabilistic with exponentially small tails.

(iii) Use a covering argument combined with a union bound to extend the above
probabilistic bounds on difference between log-likelihoods corresponding to a sin-
gle parameter in �(αn) to the infimum of the difference over the entire �(αn).

The strategy of this proof is standard. However, in order to carry it out we need
to perform detailed computations involving the geometry of the parameter space
such as the structure of the tangent space and the exponential map. Note that, in
the current case the geometry of the parameter space is well understood, so that
there exist an explicit form of the exponential map and a precise description of
the tangent space. This helps in obtaining the precise form of the local Euclidean
approximations around an optimal parameter in the derivations.

4.1. Parameter space and exponential map. We use the following character-
ization of the tangent space TB of the Stiefel manifold SM,r at a point B . Any
element U ∈ TB can be expressed as U = BAU + CU , where AU = −AT

U and
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BT CU = O . We then define the restricted parameter space centered at an optimal
parameter (B∗,�∗) by

�(αn) := {(
exp(1,B∗AU + CU),�∗ exp(D)

)
:AU = −AT

U,

BT∗ CU = O,D ∈ R
r , such that(4.1)

‖AU‖2
F + ‖CU‖2

F + ‖D‖2
F = α2

n

}
.

In the definition of �(αn) and henceforth, we shall treat � and D interchangeably
as an r × 1 vector, and an r × r diagonal matrix. The function exp(t,U) is the
exponential map on SM,r at B∗, mapping a tangent vector in TB∗ to a point on the
manifold. For U ∈ TB∗ and t ≥ 0, it is defined as

exp(t,U) = B∗M(t,U) + QN(t,U),

where [(
M(t,U)

N(t,U)

)]
= exp

(
t

[(
BT∗ U −RT

R O

)])[(
Ir

O

)]
,

where exp(·) is the usual matrix exponential, and QR = (IM − B∗BT∗ )U is the
QR-decomposition. The properties of the map exp(1, ·) that we shall heavily use
in the subsequent analysis (see Appendices A.2 and A.3) are: for U ∈ TB∗ ,

BT∗
(
exp(1,U) − B∗

)
(4.2)

= BT∗ U + O
((‖BT∗ U‖F + ‖(IM − B∗BT∗ )U‖F

)‖U‖F

)
,

(IM − B∗BT∗ ) exp(1,U)
(4.3)

= (IM − B∗BT∗ )U + O
(‖(IM − B∗BT∗ )U‖F ‖U‖F

)
as ‖U‖F → 0. These properties are easily verified by using the definition of the
matrix exponential exp(·), and the Taylor series expansion.

4.2. Loss decomposition. We shall show that, given η > 0, for an appropri-
ate choice of the constant c0,η in the definition of αn (in Theorem 2.1), for large
enough n, we have

P

(
inf

(B,�)∈�(αn)
Ln(B,�) > Ln(B∗,�∗)

)
≥ 1 − O(n−η).(4.4)

From this, it follows immediately that with probability tending toward 1, there is a
local minimum (B̂, �̂) of Ln(B,�) in the set �(αn) defined as

�(αn) = {(
exp(1,B∗AU + CU),�∗ exp(D)

)
:AU = −AT

U,BT∗ CU = O,

D ∈ R
r such that ‖AU‖2

F + ‖CU‖2
F + ‖D‖2

F ≤ α2
n

}
,

which concludes the proof of Theorem 2.1.



1246 D. PAUL AND J. PENG

We start with the basic decomposition:

Ln(B,�) − Ln(B∗,�∗)

= [ELn(B,�) − ELn(B∗,�∗)]
+ [(

Ln(B,�) − ELn(B,�)
) − (

Ln(B∗,�∗) − ELn(B∗,�∗)
)]

(4.5)

= 1

n

n∑
i=1

K(�i,�∗i) + 1

2n

n∑
i=1

tr
(
(�−1

i − �−1
∗i )(Si − �i)

)

+ 1

2n

n∑
i=1

tr
(
(�−1

i − �−1
∗i )(�i − �∗i)

)
,

where Si = YiY
T
i and K(�i,�∗i) equals

1
2 tr

(
�

−1/2
i (�∗i − �i)�

−1/2
i

) − 1
2 log |Imi

+ �
−1/2
i (�∗i − �i)�

−1/2
i |,

which is the Kullback–Leibler divergence corresponding to observation i. Note
that the proofs of Theorems 2.2 and 3.1 share a lot of commonalities with the
sparse case discussed here, in that these proofs depend on the same basic decom-
position of the loss function.

4.3. Probabilistic bounds for a fixed parameter in �(αn). In order to derive
the results in the following three propositions, we need to restrict our attention to an
appropriate subset of the space of the design points T, which has high probability.
Accordingly, given η > 0, we define such a set Aη through (A.6) in Proposition A.1
(in the Appendix A.1). The following proposition gives probabilistic bounds for
the average Kullback–Leibler divergence in terms of αn.

PROPOSITION 4.1. Given η > 0, for every (B,�) ∈ �(αn), there is a set
A

B,�
1,η [depending on (B,�)], defined as

A
B,�
1,η :=

{
d ′
ηα

2
n ≤ 1

n

∑
i=1

K(�i,�∗i) ≤ d ′′
ηm2α2

n

}
(4.6)

for appropriate positive constants d ′
η and d ′′

η (depending on λ1 and r), such that

for n large enough, P(Aη ∩ (A
B,�
1,η )c) = O(n−(2+2κ)Mr−η).

Note that the bound in (4.6) is not sharp when m → ∞, which leads the sub-
optimal rates in Corollary 2.2. The following propositions bound the random term
and the bias term in (4.5), respectively.
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PROPOSITION 4.2. Given η > 0, for each (B,�) ∈ �(αn), there is a set
A

B,�
2,η , defined as

A
B,�
2,η =

{∣∣∣∣∣ 1

2n

n∑
i=1

tr
(
(�−1

i − �−1
∗i )(Si − �i)

)∣∣∣∣∣ ≤ dηmαn

√
M logn

n

}

for some dη > 0, such that, P(Aη ∩ (A
B,�
2,η )c) = O(n−(2+2κ)Mr−η).

PROPOSITION 4.3. Given η > 0, for each (B,�) ∈ �(αn), there is a set
A

B,�
3,η , defined as

A
B,�
3,η =

{∣∣∣∣∣ 1

2n

n∑
i=1

tr[(�−1
i − �−1

∗i )(�i − �∗i)]
∣∣∣∣∣ ≤ dηmαn

√
M logn

n

}

for some constant dη > 0, such that for large enough n, P(Aη ∩ (A
B,�
3,η )c) =

O(n−(2+2κ)Mr−η).

Combining Propositions 4.1–4.3, we obtain that, given η > 0, there is a con-
stant c0,η, such that, for every (B,�) ∈ �(αn),

P
({

Ln(B,�) − Ln(B∗,�∗) ≤ 1
2α2

n

} ∩ Aη

) = O
(
n−(2+2κ)Mr−η)

.(4.7)

4.4. Covering of the space �(αn). To complete the proof of Theorem 2.1,
we construct a δn-net in the set �(αn), for some δn > 0 sufficiently small. This
means that, for any (B1,�1) ∈ �(αn) there exists an element (B2,�2) of the net
[with Bk = exp(1,B∗AUk

+ CUk
) and �k = �∗ exp(Dk), k = 1,2], such that we

have ‖B1 − B2‖2
F + ‖�1 − �2‖2

F ≤ δ2
n. The spaces {A ∈ R

r×r :A = −AT } and
{C ∈ R

M×r :BT∗ C = O} are Euclidean subspaces of dimension r(r − 1)/2 and
Mr − r2, respectively. Therefore, �(αn) is the image under (exp(1, ·), exp(·)) of
a hyper-ellipse of dimension p = Mr − r(r + 1)/2. Thus, using standard con-
struction of nets on spheres in R

p , we can find such a δn-net C[δn], with at most
d1 max{1, (αnδ

−1
n )p} elements, for some d1 < ∞.

If we take δn = (m2n)−1, then from (4.7) using union bound it follows that,
for n large enough,

P

({
inf

(B,�)∈C[δn]Ln(B,�) − Ln(B∗,�∗) >
1

2
α2

n

}
∩ Aη

)
≥ 1 − O(n−η).

This result, together with the following lemma and the fact that P(Aη) ≥ 1 −
O(n−η) (Proposition A.1), as well as the definition of C[δn], proves (4.4). The
proof of Lemma 4.1 is given in the Appendix A.2.

LEMMA 4.1. Let (Bk,�k), k = 1,2, be any two elements of �(αn) satisfying
‖B1 −B2‖2

F +‖�1 −�2‖2
F ≤ δ2

n, with δn = (m2n)−1. Then, given η > 0, there are
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constants d3,η, d4,η > 0, such that the set A4,η := {max1≤i≤n ‖�−1/2
i Si�

−1/2
i −

Imi
‖F ≤ d3,ηm logn} satisfies P(A4,η|T) ≥ 1 − O(n−η−1), for T ∈ Aη; and on

A4,η, we have |Ln(B1,�1) − Ln(B2,�2)| = o(α2
n).

5. Proof of Theorem 3.1. There is essentially only one step where the proof
of Theorem 3.1 differs from that of Theorem 2.1. It involves providing sharper
bounds for the Kullback–Leibler divergence between an “optimal parameter,” and
an arbitrary parameter in the restricted parameter space �̃(αn), an ellipsoid in the
tangent space at the “optimal parameter”:

�̃(αn) =
{(

exp(1,B∗AU + CU),�∗ exp(D)
)

:AU = −AT
U,BT∗ CU = O,

D ∈ R
r such that

σ 2

s
‖AU‖2

F + ‖CU‖2
F + σ 2

s
‖D‖2

F = α2
n

}
.

Note that now the restricted parameter space is the image (under exponential
maps) of an ellipse, whose principal axes can differ substantially depending on
the signal-to-noise ratio s/σ 2. This is crucial for obtaining the sharper bounds for
the Kullback–Leibler divergence [see (A.30)]. As in Section 4, our strategy is to
show that, given η > 0, for an appropriate choice of c0,η, for large enough n, we
have

P

(
inf

(B,�)∈�̃(αn)
L̃n(B,�) > L̃n(B∗,�∗)

)
≥ 1 − O(n−η).

From this, we conclude the proof of Theorem 3.1 using similar arguments as in the
proof of Theorem 2.1.

Define S̃ = 1
n

∑n
i=1 Ỹi Ỹ

T
i , where Ỹi = 	Yi . Then, for an arbitrary (B,�) ∈

�̃(αn), we have the following decomposition:

L̃n(B,�) − L̃n(B∗,�∗)
= [(

L̃n(B,�) − EL̃n(B,�)
) − (

L̃n(B∗,�∗) − EL̃n(B∗,�∗)
)]

(5.1)
= K(�,�∗) + 1

2 tr
(
(�−1 − �−1∗ )(S̃ − �)

)
+ 1

2 tr
(
(�−1 − �−1∗ )(� − �∗)

)
with

K(�,�∗) = 1
2 tr

(
�−1(�∗ − �)

) − 1
2 log |IM + �−1(�∗ − �)|

= 1
2 tr

(
�−1/2(�∗ − �)�−1/2) − 1

2 log |IM + �−1/2(�∗ − �)�−1/2|,
being the Kullback–Leibler divergence between the probability distributions
NM(0,�) and NM(0,�∗), where �−1/2 = (�1/2)−1, and �1/2 is a symmetric,
positive definite, square root of �. The following is an analogue of Proposition 4.1.
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PROPOSITION 5.1. Under the assumptions of Theorem 3.1, there exist con-
stants c′, c′′ > 0 such that, for sufficiently large n,

c′α2
n

(
s

σ 2

)
≤ K(�,�∗) ≤ c′′α2

n

(
s

σ 2

)
(5.2)

for all (B,�) ∈ �̃(αn), where � = sB�BT +σ 2IM and �∗ = sB∗�∗BT∗ +σ 2IM .

The following are analogues of the Propositions 4.2 and 4.3, respectively.

PROPOSITION 5.2. Given η > 0, there exists a constant cη > 0, such that for
each (B,�) ∈ �̃(αn),

P

(∣∣tr((�−1 − �−1∗ )(S̃ − �)
)∣∣ ≤ cη

√
M logn

n

√
s

σ 2 αn

)
≥ 1 − O

(
n−(2+2κ)Mr−η)

.

This proposition can be easily proved using an exponential inequality by [10]
on the fluctuations of the extreme eigenvalues of a Wishart matrix.

PROPOSITION 5.3. There is a constant c > 0 such that, uniformly over
(B,�) ∈ �̃(αn),∣∣tr((�−1 − �−1∗ )(� − �∗)

)∣∣ ≤ ‖�−1 − �−1∗ ‖F ‖� − �∗‖F

≤ c
1

σ 2

√
s

σ 2 αnβn.

Propositions 5.1–5.3 (together with conditions A1′ and C′′) show that, for an
appropriate choice of c0,η, L̃n(B,�) − L̃n(B∗,�∗) ≥ c′α2

n, for some c′ > 0 with
very high probability, for every fixed (B,�) ∈ �̃(αn). The proof of Theorem 3.1
is finished by constructing a δn-net similarly as in Section 4.4 for the sparse case.

6. Proof of Theorem 3.2. The basic strategy of the proof is similar to that in
classical inference with Euclidean parameter space. The main difficulty in present
context lies in dealing with the Hessian operator of the log-likelihood (intrinsic
Fisher information operator) and its inverse. Details of these calculations are given
in the Appendix A.4.

Rewrite the negative log-likelihood (3.2) (up to a multiplicative constant) as

L̃n(B,�) = tr(�−1S̃) + log |�| where S̃ = 1

n

n∑
i=1

Ỹi Ỹ
T
i .(6.1)

By Theorem 3.1, given η > 0, there is a constant c3,η > 0 such that the set

Ã3,η := {‖Û‖2
F + ‖D̂‖2

F ≤ c3,ηα
2
n}
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has probability at least 1 −O(n−η), where αn = c0,η

√
M logn

n
, and (Û , D̂) ∈ TB∗ ⊕

R
r is such that (B̂, �̂) := (exp(1, Û ),�∗ exp(D̂)) is a minimizer of (6.1).
First, by the same concentration bound for singular values of random matrices

with i.i.d. Gaussian entries [10] used in the proof of Proposition 5.2, there exists
c4,η > 0, such that the set

Ã4,η :=
{
‖S̃ − �‖ ≤ c4,η

√
M ∨ logn

n

}
has probability at least 1−O(n−η). It then follows that we can choose an appropri-
ate constant c5,η > 0 such that, on Ã3,η ∩ Ã4,η, ‖∇L̃n(θ∗)‖ ≤ c5,ηγn, where γn =
max{

√
M∨logn

n
,βn} and θ∗ = (B∗,�∗). Next, for any X = (XB,Xζ ) ∈ TB∗ ⊕ R

r ,
define

‖X‖ := [‖XB‖2
F + ‖Xζ‖2

F ]1/2.

Also, let 〈·, ·〉g denote the canonical metric on TB∗ ⊕R
r (see Appendix A.4). Using

the fact that ∇L̃n(θ̂) = 0, where θ̂ = (B̂, �̂), and defining �̂ := (Û , D̂), then on
Ã3,η ∩ Ã4,η, for any X ∈ TB∗ ⊕ R

r with ‖X‖ ≤ 1,

〈−∇L̃n(θ∗),X〉g
= 〈∇L̃n(θ̂) − ∇L̃n(θ∗),X〉g
= 〈Hn(θ∗)(�̂),X〉g + O(‖�̂‖2) + O(γn‖�̂‖)(6.2)

= 〈H(θ∗; θ∗)(�̂),X〉g + 〈[Hn(θ∗) − H(θ∗; θ∗)](�̂),X〉g
+ O(α2

n + αnγn),

where Hn(·)(�̂) and H(·; θ∗)(�̂) are the corresponding covariant derivatives of
L̃n(·) and L(·; θ∗) in the direction of �̂. By simple calculations based on the
expressions in the Appendix A.4, there exists a constant c6,η > 0, such that on
Ã3,η ∩ Ã4,η, ‖Hn(θ∗)(�̂)−H(θ∗; θ∗)(�̂)‖ ≤ c6,ηαnγn. It can be checked using as-
sumptions A1′ and C′′ that the linear operator H−1(θ∗; θ∗) :TB∗ ⊕R

r → TB∗ ⊕R
r ,

is bounded in operator norm (see Appendix A.4). Therefore, using the definition
of covariant derivative and inverse of Hessian, from (6.2) we have, on Ã3,η ∩ Ã4,η,

�̂ = −H−1(θ∗; θ∗)(∇L̃n(θ∗)) + O(αnγn) + O(α2
n).(6.3)

Hence, on Ã3,η ∩ Ã4,η, the bound on ‖�̂‖ can be improved from O(αn) to

‖�̂‖ = O(γnαn + α2
n).(6.4)

We can then repeat exactly the same argument, by using (6.2) to derive (6.3), but
now with the bound on ‖�̂‖ given by (6.4). Since M = O(na) for some a < 1, so
that α2

n = o(γn), this way we get the more precise expression

�̂ = −H−1(θ∗; θ∗)(∇L̃n(θ∗)) + O(γ 2
n ).(6.5)
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Moreover, it can be easily verified that,

∂

∂ζ
∇BL(θ∗; θ∗) := Eθ∗

[
∂

∂ζ
∇BL̃n(θ∗)

]
= 0.

Hence, by (A.41) in the Appendix A.5, the Hessian operator, and its inverse, are
“block diagonal,” on the parameter space (viewed as a product manifold), with
diagonal blocks corresponding to Hessians (inverse Hessians) with regard to B

and ζ , respectively. This yields (3.3) and (3.4) in Theorem 3.2. Also, (3.5) and (3.6)
follow immediately from (6.5).

7. Discussion. In this paper, we have demonstrated the effectiveness of uti-
lizing the geometry of the non-Euclidean parameter space in determining consis-
tency and rates of convergence of the REML estimators of principal components.
We first study the REML estimators of eigenvalues and eigenfunctions of the co-
variance kernel for functional data, estimated from sparse, irregular measurements.
The convergence rate of the estimated eigenfunctions is shown to be near-optimal
when the number of measurements per curve is bounded and when M , the number
of basis functions, varies with n at an appropriate rate (Theorem 2.1 and Corol-
lary 2.1). The technique used in proving Theorem 2.1 is most suitable for dealing
with the very sparse case (i.e., the number of measurements per curve is bounded).
We have also used it to prove consistency for the case where the number of mea-
surements increases slowly with sample size (Corollary 2.2). However, this does
not result in the optimal convergence rate. The latter case is more difficult because
of the complications of dealing with inverses of random matrices (�i) of growing
dimensions. A more delicate analysis, that can handle this issue more efficiently,
is likely to give tighter bounds for the average Kullback–Leibler divergence than
that obtained in Proposition 4.1. Then it may be possible to extend the current
technique to prove optimality of the REML estimators in a broader regime. A vari-
ant of the technique used for proving Theorem 2.1 also gives consistency of the
REML estimator for functional data in a regime of dense measurements, as well
as for a class of high-dimensional Gaussian vectors (Theorems 2.2 and 3.1). In the
latter case, we also derive an efficient score representation (Theorem 3.2), which
involves determining the intrinsic Fisher information operator and its inverse.

Now we present some conjectures we aim to pursue. First, as discussed ear-
lier, based on the score representation, we conjecture the asymptotic optimality
of the REML estimator for the matrix case. Second, we conjecture that there ex-
ists an efficient score representation of the REML estimator in the functional data
problem as well. If so, then this estimator is likely to achieve the optimal nonpara-
metric rate (for a broader regime), and may even be asymptotically optimal. This
may explain the superior numerical performance of the REML estimator observed
by [23]. Third, our results (Theorems 2.2 and 3.1) give a strong indication of an
asymptotic equivalence between two classes of problems: statistical inference for
functional data with dense measurements and inference for high-dimensional i.i.d.
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Gaussian vectors. Finally, in this paper we have not addressed the issue of model
selection. A procedure for selection of M and r , based on an approximate leave-
one-curve-out cross-validation score, has been proposed and implemented in [23].
This approximation is based on a second-order Taylor expansion of the negative
log-likelihood at the estimator and it involves the intrinsic Fisher information op-
erator and its inverse. Therefore, based on the analysis presented here, it is conjec-
tured that the approximate CV score thus defined is asymptotically consistent for
the class of models considered in this paper.

APPENDIX

A.1. Properties of cubic B-spline basis. In many proofs of this paper, we
need to use some properties of the cubic B-spline basis. We state some of them.
More details can be found in [7] and [8]. Let φ̃ = (φ̃1, . . . , φ̃M)T be the (standard)
cubic B-spline basis functions on [0,1] with equally spaced knots. Then, the or-
thonormalized spline functions φ1, . . . , φM are defined through φ(t) = G

−1/2
φ,M φ̃(t),

where Gφ,M := ((
∫

φ̃k(t)φ̃l(t) dt))Mk,l=1, is the Gram matrix of φ̃. It is known
(cf. [6] and [4]) that Gφ,M is an M × M banded matrix, and satisfies,

cφ,0

M
IM ≤ Gφ,M ≤ cφ,1

M
IM for some constants 0 < cφ,0 < cφ,1 < ∞.(A.1)

From this, and other properties of cubic B-splines ([8], Chapter 13), we also have
the following:

S1 supt∈[0,1]
∑M

k=1 φ2
k (t) ≤ cφ,2M for some constant cφ,2 > 0.

S2 For any function f ∈ C(4)([0,1]), we have ‖f − Pφ,M(f )‖∞ = ‖f (4)‖∞×
O(M−4), where Pφ,M(f ) = ∑M

k=1〈f,φk〉φk denotes the projection of f onto
span{φ1, . . . , φM} = span{φ̃1, . . . , φ̃M}.

Note that, property S2 and assumption A2 imply the existence of orthonormal
functions {ψ∗k}rk=1 of the form

(ψ∗1(t), . . . ,ψ∗r (t)) = (ψ∗(t))T = BT∗ φ(t), BT∗ B∗ = Ir ,

which satisfy

max
1≤k≤r

‖ψk − ψ∗k‖∞ ≤ cφ,3M
−4 max

1≤k≤r

∥∥ψ(4)
k

∥∥∞.(A.2)

Using these properties we obtain the following approximation to the important
quantity ‖	i‖, where 	i = [φ(Ti1) : · · · :φ(Timi

)] and ‖ · ‖ denotes the operator
norm. This result will be extremely useful in the subsequent analysis.

PROPOSITION A.1. Given η > 0, there is an event Aη defined in terms of the
design points T, with probability at least 1 − O(n−η), such that on the set Aη,

‖	i‖2 ≤ mcg,1 + √
5c−1

φ,0dη

[
(M3/2 logn) ∨ (

M
√

m logn
)]

(A.3)
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for some constant dη > 0, and cg,1 is the constant in condition B2. Furthermore,
for all T, we have the nonrandom bound

‖	i‖2 ≤ cφ,2mM for all i = 1, . . . , n.(A.4)

PROOF. First, (A.4) follows from the bound S1, since

‖	i‖2 = ‖	T
i 	i‖ = ‖	i	

T
i ‖ ≤ ‖	i‖2

F = tr(	T
i 	i)

=
mi∑

j=1

M∑
k=1

(φk(Tij ))
2 ≤ cφ,2miM ≤ cφ,2mM for all i = 1, . . . , n.

In order to prove (A.3), first write

1

mi

	i	
T
i −

∫
φ(t)(φ(t))T g(t) dt

= G
−1/2
φ,M

[(
1

mi

mi∑
j=1

[φ̃k(Tij )φ̃l(Tij )(A.5)

− E(φ̃k(Tij )φ̃l(Tij ))]
)M

k,l=1

]
G

−1/2
φ,M .

Next, observe that, E[φk(Ti1)φl(Ti1)]2 = ∫
(φ̃k(t))

2(φ̃l(t))
2g(t) dt = 0 for |k −

l| > 3; and is within [cφ,4cg,0M
−1, cφ,5cg,1M

−1], for constants 0 < cφ,4 < cφ,5 <

∞, if |k− l| ≤ 3. Then, using the fact that max1≤k≤M ‖φ̃k‖∞ is bounded, it follows
from Bernstein’s inequality that the set Aη defined as

Aη =
{

T : max
1≤i≤n

max
1≤k,l≤M

∣∣∣∣∣ 1

mi

mi∑
j=1

[φ̃k(Tij )φ̃l(Tij ) − E(φ̃k(Tij )φ̃l(Tij ))]
∣∣∣∣∣

(A.6)

≤ d1,η

(
logn

m

)
∨

√
logn

mM

}
has probability at least 1 − O(n−η), for some constant d1,η > 0. Now, we can
bound the Frobenius norm of the matrix in (A.5) by using (A.1) and (A.6), and
the fact that the matrix has O(M) nonzero elements. Then using (2.3) we de-
rive (A.3). �

A.2. Proofs for the sparse case.

PROOF OF PROPOSITION 4.1. The main challenge in the proof of Proposi-
tion 4.1 is to efficiently approximate the average Kullback–Leibler divergence. We
can express K(�i,�∗i) as

K(�i,�∗i) = 1

2

m∑
j=1

[
λj (R∗i) − log

(
1 + λj (R∗i)

)]
,(A.7)
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where λj (R∗i) is the j th largest eigenvalue of R∗i = �
−1/2
i (�∗i − �i)�

−1/2
i .

Using the inequality ex ≥ 1 + x for x ∈ R [so that each term in the summation
in (A.7) is nonnegative], and the Taylor series expansion for log(1+x) for |x| < 1,
it can be shown that, given ε > 0 sufficiently small (but fixed), there exist constants
0 < c1,ε < c2,ε < ∞ such that for ‖R∗i‖F ≤ ε,

c1,ε‖R∗i‖2
F ≤ K(�i,�∗i) ≤ c2,ε‖R∗i‖2

F .(A.8)

Next, observe that

‖�−1/2
∗i (�i − �∗i)�

−1/2
∗i ‖F

1 + ‖�−1/2
∗i (�i − �∗i)�

−1/2
∗i ‖F

≤ ‖R∗i‖F ≤ ‖�−1/2
∗i (�i − �∗i)�

−1/2
∗i ‖F

1 − ‖�−1/2
∗i (�i − �∗i)�

−1/2
∗i ‖F

,

whenever ‖�−1/2
∗i (�i − �∗i)�

−1/2
∗i ‖F < 1. The proof of Proposition 2.1 can thus

be reduced to finding probabilistic bounds for 1
n

∑n
i=1 ‖�−1/2

∗i (�i −�∗i)�
−1/2
∗i ‖2

F .
One difficulty in obtaining those bounds is in handling the inverse of the ma-

trices �∗i . In order to address that, and some related issues, we use the properties
of the cubic spline basis derived in the Appendix A.1. In the following lemmas
we confine ourselves to the restricted parameter space �(αn), that is, (B,�) ∈
�(αn). �

LEMMA A.1. Under the assumptions of Theorem 2.1 (for mi ’s bounded), or
Corollary 2.2 (for mi ’s increasing slowly with n),

(1 + d1λ1rm)−1‖�i − �∗i‖F ≤ ‖�−1/2
∗i (�i − �∗i)�

−1/2
∗i ‖F

(A.9)
≤ ‖�i − �∗i‖F

for some constant d1 > 0, for all i = 1, . . . , n.

PROOF. From condition A2 and (A.2), it follows that, ∃D1 > 0 such that, for
all M ,

max
1≤k≤r

‖ψ∗k‖∞ ≤ D1 < ∞.(A.10)

This, together with the definition of (B∗,�∗), leads to the following bound on the
eigenvalues of the matrices �∗i :

1 ≤ λmin(�∗i) ≤ λmax(�∗i) ≤ 1 + D1rmiλ∗1 ≤ 1 + d1λ1rm(A.11)

for some d1 > 0, for all i = 1, . . . , n, from which (A.9) follows. �

LEMMA A.2. Under the assumptions of Theorem 2.1 (for mi ’s bounded),
or Corollary 2.2 (for mi ’s increasing slowly with n), given any η > 0, on the
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event Aη defined through (A.6) in Proposition A.1, which has probability at least
1 − O(n−η), for sufficiently large n,

max
1≤i≤n

‖�i − �∗i‖2
F

≤
[
d3,η

(
1 + d1

[(
M3/2 logn

m

)
∨

√
M2 logn

m

])
m2α2

n

]
(A.12)

∧ [d2Mm2α2
n],

where the second bound holds for all T. Here d1, d2, d3,η > 0 are appropriate
constants depending on r and λ1.

PROOF. An upper bound for ‖�i − �∗i‖F is obtained by expressing IM =
B∗BT∗ + (IM − B∗BT∗ ), and then applying the triangle inequality,

‖�i − �∗i‖F = ‖	T
i (B�BT − B∗�∗BT∗ )	i‖F

≤ ‖	T
i B∗(BT∗ B�BT B∗ − �∗)BT∗ 	i‖F

+ 2‖	T
i B∗BT∗ B�BT (IM − B∗BT∗ )	i‖F

+ ‖	T
i (IM − B∗BT∗ )B�BT (IM − B∗BT∗ )	i‖F

≤ ‖	T
i B∗‖2‖BT∗ B�BT B∗ − �∗‖F

(A.13)
+ 2‖	T

i B∗‖‖�‖‖BT (IM − B∗BT∗ )	‖F

+ ‖�‖‖	T
i (IM − B∗BT∗ )B‖2

F

≤ D1rm‖BT∗ B�BT B∗ − �∗‖F

+ √
d4rmλ1‖	T

i (IM − B∗BT∗ )B‖F

× (
1 + (D1rm)−1/2‖	T

i (IM − B∗BT∗ )B‖F

)
for some d4 > 1. For the second inequality we use ‖BT∗ B‖ ≤ 1, and for the last
inequality we use (A.10) and (A.11). Next, by using (A.4), (4.3) and (2.5), we
obtain the (nonrandom) bound

1

m
max

1≤i≤n
‖	T

i (IM − B∗BT∗ )B‖2
F ≤ cφ,2M‖(IM − B∗BT∗ )B‖2

F

(A.14)
≤ cφ,2Mα2

n

(
1 + o(1)

) = o(1).

Then the bound in (A.13) can be majorized by

D1rm‖BT∗ B�BT B∗ − �∗‖F + √
d4rmλ1‖	i‖‖(IM − B∗BT∗ )B‖F

(
1 + o(1)

)
.

Using (A.3) to bound ‖	i‖, from (A.13), and the definition of �(αn) together
with (4.2) and (4.3), we obtain (A.12). �
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LEMMA A.3. Under the assumptions of Theorem 2.1 (for mi ’s bounded), or
Corollary 2.2 (for mi ’s increasing slowly with n), for any given η > 0, there is a
positive sequence ε1,n = o(1) (depending on η), and a constant d1,η > 0, such that

P

[
1

n

n∑
i=1

‖�i − �∗i‖2
F > d1,ηm

2α2
n(1 − ε1,n)

]
≥ 1 − O

(
n−(2+2κ)Mr−η)

,

where κ is as in B1.

PROOF. Let � = B�BT − B∗�∗BT∗ . Observe that, by definition of �(αn)

[(4.1)–(4.3)], for large n,

‖�‖2
F ≤ c∗α2

n (for some constant c∗ > 0).(A.15)

First, consider the lower bound

‖�i − �∗i‖2
F = tr[	T

i �	i	
T
i �	i] ≥

mi∑
j1 �=j2

[(φ(Tij1))
T �φ(Tij2)]2.(A.16)

We will derive an exponential tail bound for 1
n

∑n
i=1

∑mi

j1 �=j2
[(φ(Tij1))

T �φ(Tij2)]2.

Rewriting the term on the extreme right, and using the fact that {Tij }mi

j=1 are i.i.d.
with density g : cg,0 ≤ g ≤ cg,1 (B2), we have, for all i,

E

mi∑
j1 �=j2

[(φ(Tij1))
T �φ(Tij2)]2

= mi(mi − 1) tr(E[φ(Ti1)(φ(Ti1))
T ]�E[φ(Ti2)(φ(Ti2))

T ]�)
(A.17)

∈ (
c2
g,0m(m − 1)‖�‖2

F , c2
g,1m(m − 1)‖�‖2

F

)
∈ (

d ′
1m

2α2
n

(
1 + o(1)

)
, d ′′

1 m2α2
n

(
1 + o(1)

))
for some d ′′

1 ≥ d ′
1 > 0 (whose values depend on cg,0, cg,1 and the constants appear-

ing in A1), where in the last step we use (A.15). The last inequality uses (A.43),
(A.44), the definition of �(αn), and properties (4.2) and (4.3). Notice that, the
variance of

∑mi

j1 �=j2
[(φ(Tij1))

T �φ(Tij2)]2 can be bounded, for sufficiently large n,
as

max
1≤i≤n

Var

(
mi∑

j1 �=j2

[(φ(Tij1))
T �φ(Tij2)]2

)

≤ max
1≤i≤n

E

(
‖�i − �∗i‖2

F

mi∑
j1 �=j2

[(φ(Tij1))
T �φ(Tij2)]2

)

≤ d ′
2M(m2α2

n)
2 =: V1,n,
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where d ′
2 > 0 is some constant. In the above, we obtain the first inequal-

ity by (A.16), and the second inequality by using (A.12) and (A.17). Next,∑mi

j1 �=j2
[(φ(Tij1))

T �φ(Tij2)]2 for i = 1, . . . , n, are independent, and bounded

by K1,n := d4Mm2α2
n, for a constant d4 > 0 [using (A.12)]. Hence, by ap-

plying Bernstein’s inequality, and noticing that K1,n

√
M logn

n
= o(

√
V1,n), and√

V1,n

√
M logn

n
= o(m2α2

n) [by (2.5) or (2.6)], the result follows. �

LEMMA A.4. Under the assumptions of Theorem 2.1 (for mi ’s bounded), or
Corollary 2.2 (for mi ’s increasing slowly with n), for any given η > 0, there is a
positive sequence ε2,n = o(1) and a constant d2,η > 0, such that

P

[
1

n

n∑
i=1

‖�i − �∗i‖2
F < d2,ηm

2α2
n(1 + ε2,n)

]
≥ 1 − O

(
n−(2+2κ)Mr−η)

,(A.18)

where κ is as in B1.

PROOF. From the proof of Lemma A.2, especially the inequalities (A.13)
and (A.14), it is clear that we only need to provide a sharp upper bound for
1
n

∑n
i=1 ‖	T

i (IM − B∗BT∗ )B‖2
F . Let � := (IM − B∗BT∗ )B . Then from (4.3), for n

large enough,

‖�‖2
F ≤ c∗α2

n(A.19)

for some c∗ > 0. Then, using (2.3), for all i,

E‖	T
i (IM − B∗BT∗ )B‖2

F =
mi∑

j=1

tr(E(φ(Tij )(φ(Tij ))
T )��

T
)

(A.20)
≤ cg,1mi tr[��

T ] ≤ cg,1m‖�‖2
F .

Combining (A.20) with (A.19), (A.13) and (A.14), we get, for sufficiently large n,
and some constant C > 0,

1

n

n∑
i=1

E‖�i − �∗i‖2
F ≤ Cm2α2

n.

Next, using (A.4), (A.14) and (A.20) we have

max
1≤i≤n

Var(‖	T
i �‖2

F ) ≤ max
1≤i≤n

E‖	T
i �‖4

F

≤ cφ,2mM‖�‖2
F E‖	T

i �‖2
F

(A.21)
≤ cφ,2cg,1m

2M‖�‖4
F

≤ C′Mm2α4
n(1 + εn) =: V2,n



1258 D. PAUL AND J. PENG

for some positive sequence εn = o(1) and some constant C′ > 0, where in the last
step we used (A.19). Again, using Bernstein’s inequality for 1

n

∑n
i=1 ‖	T

i �‖2
F ,

which is a sum of independent variables bounded by K2,n = cg,1Mmα2
n(1+o(1)),

the result follows [checking that, by (2.5) or (2.6), we have, K2,n

√
M logn

n
=

o(
√

V2,n) and
√

V2,n

√
M logn

n
= o(m2α2

n)]. �

PROOF OF PROPOSITION 4.2. Write, Ri = �
1/2
i (�−1

i − �−1
∗i )�

1/2
i . We can

bound ‖Ri‖F as

‖Ri‖F ≤ ‖�1/2
i �

−1/2
i ‖‖�1/2

i �
−1/2
∗i ‖‖�−1/2

i �
1/2
∗i ‖‖�−1/2

∗i (�i − �∗i)�
−1/2
∗i ‖F

≤ ‖�1/2
i �

−1/2
∗i ‖2‖�−1/2

i �
1/2
∗i ‖2‖�i − �∗i‖F

≤ (1 + ‖�i − �∗i‖)(1 − ‖�i − �∗i‖)−1‖�i − �∗i‖F ,

where the third inequality is due to (A.11) and (A.42). Note that by condition C,
it follows that max1≤i≤n ‖�i − �∗i‖F ≤ Cmβn = o(1) for some constant C > 0.
Therefore, applying (A.12), we observe that for T ∈ Aη with Aη as in (A.6), for
large enough n, ‖Ri‖F ≤ 2‖�i − �∗i‖F . Due to the Gaussianity of the observa-
tions, for any symmetric mi × mi matrix A, the random variable tr(A(Si − �i))

has the same distribution as tr(Di(XiX
T
i − Imi

)), where Di is a diagonal matrix of

the eigenvalues of �
−1/2
i A�

−1/2
i , and Xi ∼ N(0, Imi

) are independent. Therefore,
using an exponential inequality for a weighted sum of independent χ2

1 random
variables, we have, for T ∈ Aη and each (B,�) ∈ �(αn),

PT

[∣∣∣∣∣1

n

n∑
i=1

tr
(
(�−1

i − �−1
∗i )(Si − �i)

)∣∣∣∣∣
≤ d3,η

√
M logn

n

[
1

n

n∑
i=1

‖�i − �∗i‖2
F

]1/2]

≥ 1 − O
(
n−(2+2κ)Mr−η)

for a constant d3,η > 0, where PT denotes the conditional probability given T.
Therefore, using (A.18) we conclude the proof. �

PROOF OF PROPOSITION 4.3. Using Cauchy–Schwarz inequality twice, we
can bound the last term in (4.5), which corresponds to model bias, as∣∣∣∣∣ 1

2n

n∑
i=1

tr
(
(�−1

i − �−1
∗i )(�i − �∗i)

)∣∣∣∣∣
≤ 1

2

[
1

n

n∑
i=1

‖�i − �∗i‖2
F

]1/2[
1

n

n∑
i=1

‖�−1
i − �−1

∗i ‖2
F

]1/2
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≤ 1

2
max

1≤j≤n
‖�j − �∗j‖F

[
1

n

n∑
i=1

‖�−1
i − �−1

∗i ‖2
F

]1/2

≤ 1

2
mβn max

1≤j≤n
‖�−1

j ‖‖�−1
∗j ‖

[
1

n

n∑
i=1

‖�i − �∗i‖2
F

]1/2

,

where in the last step we used (A.42). Thus, the proof is finished by using condi-
tion C, (A.11) and (A.18).

Now, to the complete the proof of Theorem 2.1, we give the details of the cov-
ering argument. �

PROOF OF LEMMA 4.1. Using an expansion analogous to (4.5) and the up-
per bound in (A.8), and applying Cauchy–Schwarz inequality, we have, for some
constants C1,C2 > 0, on A4,η and for T ∈ Aη, for n large enough,

|Ln(B1,�1) − Ln(B2,�2)|

≤ 1

n

n∑
i=1

‖�−1
1,i − �−1

2,i ‖F ‖Si − �i‖F

+ 1

n

n∑
i=1

[C1‖�1,i − �2,i‖2
F + ‖�−1

1,i − �−1
2,i ‖F ‖�i − �2,i‖F ]

≤ max
1≤i≤n

‖�−1
1,i − �−1

2,i ‖F ‖�i‖ max
1≤i≤n

‖�−1/2
i Si�i

−1/2 − Imi
‖F

+ C2 max
1≤i≤n

‖�1,i − �2,i‖2
F

+ max
1≤i≤n

‖�−1
1,i − �−1

2,i ‖F

(
max

1≤i≤n
‖�i − �∗i‖F + max

1≤i≤n
‖�2,i − �∗i‖F

)
≤ d4,η

[
m2δnm logn + m2δ2

n + mδn

(
mβn + √

Mmαn

)]
= o(α2

n).

In the last step, we have used Lemma A.2 (for the last term), the identity (A.42) in
the Appendix A.6, and the fact that ‖�−1

k,i ‖ ≤ 1 (k = 1,2). �

PROOF OF COROLLARY 2.1. The best rate follows by direct calculation.
The near-optimality of the estimator requires proving that, for an appropriately

chosen subclass C of covariance kernels of rank r , we have the following analog
of Theorem 2 of [15]: for any estimator {ψ̂k}rk=1 of the eigenfunctions {ψk}rk=1,
for n sufficiently large,

min
1≤k≤r

sup
�0∈C

E‖ψ̂k − ψk‖2
2 ≥ Cn−8/9(A.22)
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for some C > 0. Here the parameter space C consists of covariance kernels of
rank r with eigenfunctions satisfying A1–A2. Moreover, the random design satis-
fies B1–B2, with m bounded above.

The derivation of the lower bound on the risk involves construction of a fi-
nite, “least favorable” parameter set in C by combining the constructions in [22]
(for obtaining lower bounds on risk in high-dimensional PCA) and [15] (for func-
tional data case). This construction is as follows. Let φ0

1, . . . , φ0
r be a set of or-

thonormal functions on [0,1] which are four times continuously differentiable,
with fourth derivative bounded. Let M∗ � n1/9 be an integer appropriately cho-
sen. Let γ1, . . . , γM∗ be a set of basis functions that are: (i) orthonormal on [0,1],
and orthogonal to the set {φ0

1, . . . , φ0
r }; (ii) are four times continuously differen-

tiable and γj is supported on an interval of length O(M−1∗ ) around the point j
M∗ .

One particular choice for these functions is to let {φ0
k } be the translated peri-

odized scaling functions of a wavelet basis at a certain scale with adequate de-
gree of smoothness, and to let {γj }M∗

j=1 be the set of compactly supported, ortho-
normal, periodized wavelet functions corresponding to the scaling functions. In-
deed, then we can choose M∗ to be an integer power of 2. Note that, such a basis
({φ0

k : 1 ≤ k ≤ r} ∪ {γl : 1 ≤ l ≤ M∗}) has the stability and smoothness property
commensurate with the orthonormalized B-spline basis we are using for deriving
the REML estimators. Next, let λ1 > · · · > λr > 0 be fixed numbers satisfying A1.

Finally, let us define a covariance kernel �
(0)
0 as

�
(0)
0 (s, t) =

r∑
k=1

λkφ
0
k (s)φ

0
k (t), s, t ∈ [0,1].(A.23)

Also, for each fixed j in some index set F0 (to be specified below), define[
ψ

(j)
1 (s) : · · · :ψ(j)

r (s)
] = �̃(s)B

(j)
, s ∈ [0,1],

where �̃(s) = (φ0
1(s), . . . , φ0

r (s), γ1(s), . . . , γM∗(s)) and B
(j)

is an (M∗ + r) × r

matrix with orthonormal columns (to be specified below). Then define

�
(j)
0 (s, t) =

r∑
k=1

λkψ
(j)
k (s)ψ

(j)
k (t), s, t ∈ [0,1],(A.24)

for j ∈ F0. We require that log |F0| � M∗ � n1/9, and ‖B(j) − B
(j ′)‖2

F � n−8/9,

for j �= j ′ and j, j ′ ∈ F0 ∪ {0}. Here B
(0)

is the (M∗ + r) × r matrix of basis
coefficients of �

(0)
0 with columns ek , the kth canonical basis vector in R

M∗+r .
The proof of the minimax lower bound is based on an application of Fano’s

lemma (cf. [25]), which requires computation of the Kullback–Leibler divergence
between two specific values of the parameters. In order to apply Fano’s lemma, we
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need to choose F0 and B
(j)

, j ∈ F0, such that

avej∈F0[
∑n

i=1 EK(�
(j)
i ,�

(0)
i )] + log 2

log |F0| ≈ c ∈ (0,1),(A.25)

where �
(j)
i denotes the covariance of the observation i given {Til}mi

l=1 under the

model parameterized by �
(j)
0 , and E denotes expectation with respect to the de-

sign points T. Under the assumptions on the design points, using the properties of
the basis functions {φ0

k }r=1 and {γk}M∗
k=1, and the computations carried out in the

proof of Proposition 4.1 (in the Appendix A.2), in particular a nonrandom bound
analogous to the second bound appearing in Lemma A.2, it is easy to see that for n

large enough (so that ‖B(j) − B
(0)‖F is sufficiently small), we have

1

n

n∑
i=1

K
(
�

(j)
i ,�

(0)
i

) � 1

n

n∑
i=1

∥∥�(j)
i − �

(0)
i

∥∥2
F .

From this, and the property of the basis used to represent the eigenfunctions, it
follows that

1

n

n∑
i=1

EK
(
�

(j)
i ,�

(0)
i

) � ∥∥B(j) − B
(0)∥∥2

F .(A.26)

The task remains to construct F0 and B
(j)

appropriately so that C0 := {�(j)
0 : j ∈

F0} is in C, for n sufficiently large.
Following the proof of Theorem 2 in [22], we first define M0 = [2M∗

9r
]. Then

define the kth column of B
(j)

as

B
(j)

k =
√

1 − δ2
kek + δk

M∗∑
l=1

z
(j)
kl er+l , k = 1, . . . , r,(A.27)

where z
(j)
kl are appropriately chosen using a “sphere packing” argument (to ensure

that log |F0| � M∗), and take values in {−M
−1/2
0 ,0,M

−1/2
0 }. Moreover, let Sk be

the set of coordinates l such that z
(j)
kl �= 0 for some j ∈ F0. By construction, Sk are

disjoint for different k = 1, . . . , r , and |Sk| ∼ M∗/r . Hence,

ψ
(j)
k =

√
1 − δ2

kφ
0
k + δk

∑
l∈Sk

z
(j)
kl γl, k = 1, . . . , r.(A.28)

Furthermore, by the construction of {z(j)
lk }, ∑

l∈Sk
|z(j)

kl |2 = 1, and for any j �= j ′ the

vectors z(j)
k = (z

(j)
kl )l∈Sk

and z(j ′)
k = (z

(j ′)
kl )l∈Sk

satisfy ‖z(j)
k − z(j ′)

k ‖2 ≥ 1. There-
fore, from (A.27) it follows that the RHS of (A.26) is of the order δ2

k , and hence
in order that (A.25) is satisfied, we need to choose δk ∼ n−4/9 � M−4∗ . It follows
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immediately from (A.28) that (i) the eigenfunctions ψ
(j)
1 , . . . ,ψ

(j)
r are orthonor-

mal, and four times continuously differentiable. Also, since γl is centered around
l/M∗ with a support of the order O(M−1∗ ), it follows that, for only finitely many
l �= l′, the support of γl′ overlaps with the support of γl . Moreover, if γ

(s)
l denotes

the sth derivative of γl , then ‖γ (s)
l ‖∞ = O(M

1/2+s∗ ), for s = 0,1, . . . ,4. Thus,
the choice δk � M−4∗ ensures that, (ii) for each k = 1, . . . , r , the fourth derivative

of ψ
(j)
k is bounded. Hence, by appropriate choice of the constants, we have that

C0 ⊂ C. Finally, arguing as in [22], with an application of the Fano’s lemma we
conclude (A.22). �

A.3. Proof of Proposition 5.1. Using standard arguments, it can be shown
that, given ε > 0 sufficiently small (but fixed), we have constants 0 < c1,ε < c2,ε <

∞ such that for ‖�−1/2∗ (�∗ − �)�
−1/2∗ ‖F ≤ ε,

c1,ε‖�−1/2∗ (�∗ − �)�−1/2∗ ‖2
F ≤ K(�,�∗)

(A.29)
≤ c2,ε‖�−1/2∗ (�∗ − �)�−1/2∗ ‖2

F .

Thus, it suffices to provide tight bounds for ‖�−1/2∗ (� − �∗)�−1/2∗ ‖F . We in-

troduce some notation first. Define, G = σ 2

s
�−1 + Ir , G∗ = σ 2

s
�−1∗ + Ir and

� = B�BT − B∗�∗BT∗ . Then,

�−1 = 1

σ 2

(
IM − B

(
σ 2

s
�−1 + Ir

)−1

BT

)
= 1

σ 2 (IM − BG−1BT )

and

�−1∗ = 1

σ 2 (IM − B∗G−1∗ BT∗ ).

Moreover, due to A1′, there exist constants, c3, c4 > 0, such that

c3

(
σ 2

s

)
≤ σmin(Ir − G−1∗ ) ≤ σmax(Ir − G−1∗ ) ≤ c4

(
σ 2

s

)
.

We express IM − B∗G−1∗ BT∗ as (IM − B∗BT∗ ) + B∗(Ir − G−1∗ )BT∗ . Then we can
express

(σ 2/s)2‖�−1/2∗ (� − �∗)�−1/2∗ ‖2
F = σ 4‖�−1/2∗ ��−1/2∗ ‖2

F

as

tr[(IM − B∗G−1∗ BT∗ )�(IM − B∗G−1∗ BT∗ )�]
= tr[(IM − B∗BT∗ )B�BT (IM − B∗BT∗ )B�BT ]

+ 2 tr[B∗(Ir − G−1∗ )BT∗ B�BT (IM − B∗BT∗ )B�BT ](A.30)
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+ tr[B∗(Ir − G−1∗ )BT∗ �B∗(Ir − G−1∗ )BT∗ �]
= ‖(IM − B∗BT∗ )B�BT (IM − B∗BT∗ )‖2

F

+ 2 tr
[
(Ir − G−1∗ )1/2BT∗ B�

(
BT (IM − B∗BT∗ )B

)
× �BT B∗(Ir − G−1∗ )1/2]

+ ‖(Ir − G−1∗ )1/2(BT∗ B�BT B∗ − �∗)(Ir − G−1∗ )1/2‖2
F

≥ 2c3λ
2
r (σmin(B

T∗ B))2 σ 2

s
‖(IM − B∗BT∗ )B‖2

F

+ c2
3

(
σ 2

s

)2

‖BT∗ B�BT B∗ − �∗‖2
F

≥ c4

(
σ 2

s

)
‖(IM − B∗BT∗ )B‖2

F + c2
3

(
σ 2

s

)2

‖BT∗ B�BT B∗ − �∗‖2
F

for constants c3, c4 > 0. Now, since (B,�) ∈ �̃(αn), where B = exp(1,B∗AU +
CU) it follows that ‖AU‖F ≤ αn

√
s

σ 2 and ‖CU‖F ≤ αn. Moreover, from (4.2), and

using the fact that AU = −AT
U , we have,

BT∗ B�BT B∗ − �∗
= D + (AU� − �AU)

+ O
(‖AU‖2

F + ‖D‖2
F + ‖U‖F (‖AU‖F + ‖CU‖F )

)
.

Since AU� − �AU is symmetric, has zeros on the diagonal, and its Frobenius
norm is bounded below by min1≤j<k≤r (λj − λk)‖AU‖F , and D is diagonal, it
follows that for some constant c6 > 0,

‖BT∗ B�BT B∗ − �∗‖2
F

≥ c6(‖D‖2
F + ‖AU‖2

F ) − O

((
s

σ 2

)3/2

α3
n

)
.

From this, and using (4.3) to approximate the first term in (A.30), it follows that
for some constant c7 > 0,

‖(IM − B∗G−1
∗i BT∗ )1/2�(IM − B∗G−1

∗i BT∗ )1/2‖2
F

≥ c7

(
σ 2

s

)[
‖CU‖2

F + σ 2

s
‖AU‖2

F + σ 2

s
‖D‖2

F − O

(√
s

σ 2 α3
n

)]
(A.31)

= c7

(
σ 2

s

)
α2

n

(
1 − o(1)

)
.
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The last equality is because αn

√
s

σ 2 = o(1). Also, it is easy to show now that, for
some c8 > 0

‖(IM − B∗G−1∗ BT∗ )1/2�(IM − B∗G−1∗ BT∗ )1/2‖2
F

(A.32)

≤ c8

(
σ 2

s

)
α2

n

(
1 + o(1)

)
.

Hence, from (A.31) and (A.32), it follows that there are constants c9, c10 > 0 such
that, for sufficiently large n,

c9αn

√
s

σ 2 ≤ ‖�−1/2∗ (� − �∗)�−1/2∗ ‖F ≤ c10αn

√
s

σ 2 ,

which, together with (A.29), proves (5.2).

A.4. Score representation in the matrix case. First, define the canonical
metric on the tangent space TB ⊕ R

r of the parameter space 
̃ = SM,r ⊗ R
r [for

θ = (B, ζ )] by

〈X,Y 〉g = 〈XB,YB〉c + 〈Xζ ,Yζ 〉 for XB,YB ∈ TB, Xζ , Yζ ∈ R
r ,

where 〈XB,YB〉c = tr(XT
B(IM − 1

2BBT )YB) is the canonical metric on SM,r and
〈Xζ ,Yζ 〉 = tr(XT

ζ Yζ ) is the usual Euclidean metric. Next, for an arbitrary θ ,

write L̃n(θ) = F 1
n (θ) + F 2

n (θ), where F 1
n (θ) = tr(�−1S̃) and F 2

n (θ) = log |�| =
log |Ir + eζ | = log |Ir +�|. Similarly, we write L(θ; θ∗) = F 1(θ; θ∗)+F 2(θ; θ∗),
where F 1(θ; θ∗) = tr(�−1�∗) and F 2(θ; θ∗) = F 2

n (θ). Below, we shall only give
expressions for gradient and Hessian of F 1

n (·) and F 2
n (·), since the gradient and

Hessian of F 1(·; θ∗) and F 2(·; θ∗) follow from these (by replacing S̃ with �∗).

Gradient and Hessian. From Appendices B and D of [23], we obtain expres-
sions for the gradient and Hessian of F 1

n (·) and F 2
n (·). We mainly follow the no-

tation used there. Let, P := P(θ) = IM + B�BT . Then P −1 = IM − BQ−1BT ,
where

Q := Q(θ) = �−1 + BT B = �−1 + Ir �⇒ Q−1 = �(Ir + �)−1.

The fact that Q is independent of B is of importance in the calculations throughout.
Use F 1

n,B(·) to denote the Euclidean gradient of F 1
n (·) with regard to B . It is easy

to see that F 1
n,B(θ) = −2S̃BQ−1. Then, under the canonical metric the intrinsic

gradient is given by

∇BF 1
n (θ) = F 1

n,B(θ) − B(F 1
n,B(θ))T B = 2[BQ−1BT S̃B − S̃BQ−1].

Since F 2
n (θ) does not involve B , the Euclidean gradient F 2

n,B(θ) = 0, and hence
∇BF 2

n (θ) = 0. Therefore,

∇BL̃n(θ) = ∇BF 1
n (θ) = 2[BQ−1BT S̃B − S̃BQ−1].(A.33)
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Next, for XB ∈ TB , let G1
n,BB(·)(XB) be the Euclidean Hessian operator of F 1

n (·)
evaluated at XB . It is computed as

G1
n,BB(θ)(XB) = −2S̃XBQ−1.

The Hessian operator of L̃n(·) with regard to B , equals the Hessian operator of
F 1

n (·) with regard to B . For XB,YB ∈ TB , it is given by

Hn,B(θ)(XB,YB)

= tr(Y T
B G1

n,BB(θ)(XB))
(A.34)

+ 1
2 tr

[(
(F 1

n,B(θ))T XBBT + BT XB(F 1
n,B(θ))T

)
YB

]
− 1

2 tr
[(

BT F 1
n,B(θ) + (F 1

n,B(θ))T B
)
XT

B(IM − BBT )YB

]
.

For computing gradient and Hessian with respect to ζ , we only need to compute
first and second derivatives of the function L̃n(·) [equivalently, of F 1

n (·) and F 2
n (·)].

Using calculations carried out in Appendix D of [23], and the identity P −1Bk =
(1 + λk)

−1Bk where Bk is the kth column of B , 1 ≤ k ≤ r , we have

∂F 1
n

∂ζk

(θ) = −eζkBT
k P −1S̃P −1Bk = − λk

(1 + λk)2 BT
k S̃Bk,

∂F 2
n

∂ζk

(θ) = eζkBT
k P −1Bk = λk

1 + λk

.

Thus

∇ζ L̃n(θ) = diag
(

λk

(1 + λk)2 (1 + λk − BT
k S̃Bk)

)r

k=1
.

Since BT
k P −1Bl = 0, for 1 ≤ k �= l ≤ r , it follows that ∂2F i

n

∂ζk∂ζl
(θ) = 0 for k �= l,

i = 1,2. Also,

∂2F 1
n

∂ζ 2
k

(θ) = eζkBT
k P −1S̃P −1Bk[2eζk (BT

k P −1Bk) − 1] = λk(λk − 1)

(1 + λk)3 BT
k S̃Bk,

∂2F 2
n

∂ζ 2
k

(θ) = eζkBT
k P −1Bk[1 − eζk (BT

k P −1Bk)] = λk

(1 + λk)2 .

Thus, the Hessian operator of L̃n(·) with regard to ζ is given by

Hn,ζ (θ) = diag
(

λk

(1 + λk)3

(
(λk − 1)BT

k S̃Bk + (1 + λk)
))r

k=1
.(A.35)
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Boundedness and inversion of H(θ∗; θ∗). As discussed in Section 6, the
Hessian operator H(θ∗; θ∗) is “block diagonal.” So, we only need to show the
boundedness and calculate the inverse of HB(θ∗; θ∗) and Hζ (θ∗; θ∗). First note
that, from (A.35) we have

Hζ (θ∗; θ∗) = diag
(

λ∗k

(1 + λ∗k)3

(
(λ∗k − 1)BT∗k�∗B∗k + (1 + λ∗k)

))r

k=1

= �2∗(Ir + �∗)−2,

which is clearly positive definite with eigenvalues bounded away from 0 and ∞,
due to conditions A1′ and C′′.

Next, we show that HB(θ∗; θ∗)(X,X) ≥ C〈X,X〉c, for some C > 0, for all
X ∈ TB∗ . Define F 1

B(θ∗; θ∗) = Eθ∗F
1
n,B(θ∗) and G1

BB(θ∗; θ∗) = Eθ∗G
1
n,BB(θ∗).

Note that HB(θ∗; θ∗) is obtained by replacing F 1
n,B(θ∗) and G1

n,BB(θ∗) by F 1
B(θ∗)

and G1
BB(θ∗; θ∗), respectively, in (A.34). Observe that

F 1
B(θ∗) = −2�∗B∗Q−1∗ = −2B∗(Ir + �∗)Q−1∗ = −2B∗�∗,

where Q∗ = Q(θ∗) = �−1∗ (Ir + �∗), and we have used the fact that �∗B∗ =
B∗(Ir + �∗). For notational simplicity we use F 1

B to denote F 1
B(θ∗). Note that,

for X ∈ TB∗ , X = B∗AX + (I − B∗BT∗ )CX , where AX = −AT
X ∈ R

r×r , and
CX ∈ R

M×r . Using this representation, for any X,Y ∈ TB∗ , we have

1
2 tr[((F 1

B)T XBT∗ + BT∗ X(F 1
B)T )Y ]

= − tr[�∗BT∗ XBT∗ Y + BT∗ X�∗BT∗ Y ]
(A.36)

= tr[�∗XT B∗BT∗ Y + BT∗ X�∗YT B∗]
= 2 tr[�∗XT B∗BT∗ Y ]

and

−1
2 tr

[(
BT∗ (F 1

B) + (F 1
B)T B∗

)
XT (IM − B∗BT∗ )Y

]
= tr[(BT∗ B∗�∗ + �∗BT∗ B∗)XT (IM − B∗BT∗ )Y ](A.37)

= 2 tr[�∗XT (IM − B∗BT∗ )Y ].
Next, notice that, for X ∈ TB∗ , G1

BB(θ∗; θ∗)(X) = −2�∗XQ−1∗ . Therefore,

tr[YT G1
BB(θ∗; θ∗)(X)]

= −2 tr[YT �∗XQ−1∗ ](A.38)

= −2 tr[YT (IM − B∗BT∗ )XQ−1∗ ] − 2 tr[YT B∗(Ir + �)BT∗ XQ−1∗ ].
Now, combining (A.36), (A.37) and (A.38), and using the definition of HB(θ∗; θ∗),
and the facts that Ir −Q−1∗ = (Ir +�∗)−1, XT B∗ = AT

X = −AX and BT∗ Y = AY =



CONSISTENCY OF REML ESTIMATORS 1267

−AT
Y , after some simple algebra we have

HB(θ∗; θ∗)(X,Y )

= 2
(
tr[XT B∗�∗BT∗ Y(Ir + �∗)−1] − tr[XT B∗BT∗ YQ−1∗ ])(A.39)

+ 2 tr[�2∗(Ir + �∗)−1XT (Ir − B∗BT∗ )Y ].
Again, since AX = −AT

X and AY = −AT
Y , denoting by AX,ij and AY,ij , the (i, j)th

element of AX and AY , respectively, we have

tr[XT B∗�∗BT∗ Y(I + �∗)−1] − tr[XT B∗BT∗ YQ−1∗ ]
= − tr

[
AX

(
�∗AY (Ir + �∗) − AY �∗(Ir + �∗)−1)]

= −
r∑

i=1

r∑
j=1

AX,ij

(
λ∗j

1 + λ∗i

AY,ji − λ∗i

1 + λ∗i

AY,ji

)

=
r∑

i=1

r∑
j=1

AX,ijAY,ij

(
λ∗j − λ∗i

1 + λ∗i

)
(A.40)

=
j−1∑
i=1

r∑
j=i+1

AX,ijAY,ij

[
(λ∗i − λ∗j )

(
1

1 + λ∗j

− 1

1 + λ∗i

)]

=
j−1∑
i=1

r∑
j=i+1

AX,ijAY,ij

(λ∗i − λ∗j )
2

(1 + λ∗i)(1 + λ∗j )

= 1

2

r∑
i=1

r∑
j=1

AX,ijAY,ij

(λ∗i − λ∗j )
2

(1 + λ∗i)(1 + λ∗j )
.

Since min1≤k �=k′≤r (λ∗k − λ∗k′)2(1 + λ∗k)
−2 ≥ C1∗ and λ∗r ≥ C∗2, for some con-

stants C1∗,C∗2 > 0 (value depending on c1 and c2 appearing in A1′), it follows
from (A.39) and (A.40) that for X ∈ TB∗ ,

HB(θ∗; θ∗)(X,X) ≥ C∗1 tr(XT B∗BT∗ X) + 2C∗2 tr
(
XT (IM − B∗BT∗ )X

)
≥ C∗3 tr(XT X),

where C∗3 = min{C∗1,2C∗2}. This proves that HB(θ∗; θ∗)(X,X) is bounded be-
low in the Euclidean norm and hence in the canonical metric because of the norm
equivalence. An upper bound follows similarly.

PROOF OF COROLLARY 3.1. From (A.39) and (A.40), we can derive an ex-
plicit expression of H−1

B (θ∗; θ∗). Note that H−1
B (θ∗; θ∗)(X) is defined as

HB(θ∗; θ∗)(H−1
B (θ∗; θ∗)(X),Y ) = 〈X,Y 〉c for any Y ∈ TB∗ .
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Therefore, for X ∈ TB∗ and AX = BT∗ X,

H−1
B (θ∗; θ∗)(X)

= 1

2
B∗

(
(1 + λ∗i)(1 + λ∗j )

(λ∗i − λ∗j )2 AX,ij

)r

i,j=1
+ 1

2
(IM − B∗BT∗ )X�−2∗ (Ir + �∗).

Using this, we can now get an explicit expression for H−1
B (θ∗; θ∗)(∇BL̃n(θ∗)).

From (A.33), we have

BT∗ ∇BL̃n(θ∗) = 2[Q−1∗ BT∗ S̃B∗ − BT∗ S̃B∗Q−1∗ ]

= 2
(
BT∗i S̃B∗j

(
λ∗i

1 + λ∗i

− λ∗j

1 + λ∗j

))r

i,j=1

= 2
(

(λ∗i − λ∗j )

(1 + λ∗i)(1 + λ∗j )
BT∗i S̃B∗j

)r

i,j=1
.

Also,

(IM − B∗BT∗ )∇BL̃n(B∗,�∗) = −2(IM − B∗BT∗ )S̃B∗Q−1∗ .

Thus, it follows that

−H−1
B (θ∗; θ∗)(∇BL̃n(θ∗))

= −
(

1

(λ∗i − λ∗j )
BT∗i S̃B∗j

)r

i,j=1
+ (IM − B∗BT∗ )S̃B∗�−1∗

= −[R1S̃B∗1 : · · · : Rr S̃B∗r ]. �

A.5. Gradient and Hessian on product manifolds. In this section, we give a
brief outline of the intrinsic geometry associated with the product manifold of two
Riemannian manifolds, and as an application we consider the manifold SM,r ⊗R

r ,
which is the parameter space for (B, ζ ) in our problem.

Product manifolds. Consider two Riemannian manifolds: M,N with metrics
gM and gN , respectively. The product manifold P of M,N is then defined as:

P := M ⊗ N = {(x, y) :x ∈ M, y ∈ N }
with the tangent space at a point p = (x, y) ∈ P ,

TpP := TxM ⊕ TyN ,

where TxM,TyN are tangent spaces of M,N at points x, y, respectively. The
Riemannian metric g on the tangent space T P is naturally defined as

〈T1, T2〉g := 〈ξ1, ξ2〉gM
+ 〈η1, η2〉gN

,

where Ti = (ξi, ηi) ∈ T P , with ξi ∈ T M and ηi ∈ T N (i = 1,2).
By the above definition of the product manifold P , the intrinsic gradient and

Hessian of a smooth function f defined on P are as follows:
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• Gradient:

∇f = (∇MfM,∇N fN ),

where fM (fN ) is f viewed as a function on M (N ), and ∇M (∇N ) denotes
the gradient operator for functions defined on M (N ).

• Hessian: for Ti = (ξi, ηi) ∈ T P (i = 1,2),

Hf (T1, T2) = HfM(ξ1, ξ2) + 〈∇N 〈∇MfM, ξ1〉gM
, η2〉gN

+ 〈∇M〈∇N fN , η1〉gN
, ξ2〉gM

+ HfN (η1, η2).

The above expression is derived from the bilinearity of the Hessian operator and
its definition. Also note that

〈∇N 〈∇MfM, ξ1〉gM
, η2〉gN

= 〈∇M〈∇N fN , η2〉gN
, ξ1〉gM

.

Application to the product of a Stiefel manifold and an Euclidean space. Con-
sider the special case: M = SM,r with the canonical metric 〈·, ·〉c, and N = R

d

with Euclidean metric. For a point p = (B, x) on the product manifold P , the
tangent space is

TpP = TBM ⊕ TxN ,

where

TBM = {� ∈ R
M×r :BT � = −�T B} and TxN = R

d .

For a smooth function f defined on the product space P :

• Gradient (at p):

∇f |p =
(
∇Mf,

∂f

∂x

)∣∣∣∣
p

,

where ∇Mf |p = fB − Bf T
B B (with fB = ∂f

∂B
).

• Hessian operator (at p): for T = (�,a), and forX = (XB,η) ∈ TpP ,

Hf (T ,X)|p
= HfM(�,XB)|p +

〈
∂

∂x
〈∇Mf,�〉c, η

〉
(A.41)

+
〈

∂

∂x
〈∇Mf,XB〉c, a

〉
+ aT ∂2f

∂x2 η,

where

HfM(�,XB)|p
= fBB(�,XB) + 1

2 Tr[(f T
B �BT + BT �f T

B )XB]
− 1

2 Tr[(BT fB + f T
B B)�T �XB]

with � = I − BBT .
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• Inverse of Hessian operator (at p): for G ∈ TpP , T = H−1
f (G)|p is defined

as: T = (�,a) ∈ TpP such that for any X = (XB,η) ∈ TpP the following
equation is satisfied

Hf (T ,X)|p = 〈G,X〉g.
A.6. Some inequalities involving matrices. In this paper we make frequent

use of the following matrix inequalities:

• For any A, B , and with λmin(B) denoting the smallest eigenvalue of B

‖AB‖F ≤ ‖A‖F ‖B‖ and ‖AB‖F ≥ ‖A‖F λmin(B),

where the last inequality holds for B positive definite. Also, if A and B are
invertible then

A−1 − B−1 = A−1(B − A)B−1 = B−1(B − A)A−1.(A.42)

• Weilandt’s inequality [16]: For symmetric p × p matrices A, B with eigenvalue
sequences λ1(A) ≥ · · · ≥ λp(A) and λ1(B) ≥ · · · ≥ λp(B), respectively,

p∑
i=1

|λi(A) − λi(B)|2 ≤ ‖A − B‖2
F .(A.43)

• Eigenvector perturbation [21]: Let A be a p × p positive semidefinite ma-
trix, with j th largest eigenvalue λj (A) with corresponding eigenvector pj , and
τj := max{(λj−1(A) − λj (A))−1, (λj (A) − λj+1(A))−1} is bounded [we take
λ0(A) = ∞ and λp+1(A) = 0]. Let B be a symmetric matrix. If qj denotes the
eigenvector of A + B corresponding to the j th largest eigenvalue [which is of
multiplicity 1, for ‖B‖ small enough, by (A.43)], then (assuming without loss
of generality qT

j pj > 0),

‖qj − pj‖ ≤ 5
‖B‖
τj

+ 4
(‖B‖

τj

)2

.(A.44)
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