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LIMITS OF ONE-DIMENSIONAL DIFFUSIONS

By GEORGE LOWTHER

In this paper, we look at the properties of limits of a sequence of real
valued inhomogeneous diffusions. When convergence is only in the sense of
finite-dimensional distributions, then the limit does not have to be a diffusion.
However, we show that as long as the drift terms satisfy a Lipschitz condition
and the limit is continuous in probability, then it will lie in a class of processes
that we refer to as the almost-continuous diffusions. These processes are
strong Markov and satisfy an “almost-continuity” condition. We also give
a simple condition for the limit to be a continuous diffusion.

These results contrast with the multidimensional case where, as we show
with an example, a sequence of two-dimensional martingale diffusions can
converge to a process that is both discontinuous and non-Markov.

1. Introduction. Suppose that we have a sequence of one-dimensional dif-
fusions, and that their finite-dimensional distributions converge. The aim of this
paper is to show that, under a Lipschitz condition for the drift components of the
diffusions, then the limit will lie in a class of processes that is an extension of the
class of diffusions, which we refer to as the almost-continuous diffusions. Further-
more, we give a simple condition on this limit in order for it to be a continuous
diffusion.

One way that an inhomogeneous diffusion can be defined is by an SDE

(1) dX;=o(t,X;))dW; +b(t, X;)dt,

where W is a Brownian motion. Under certain conditions on ¢ and b, such as
Lipschitz continuity, then it is well known that this SDE will have a unique so-
lution (see [5], Chapter V, Section 3, [6], Chapter IX, Section 2, [7], Chapter V,
Section 11). Furthermore, whenever the solution is unique, then X will be a strong
Markov process (see [5], Chapter V, Section 6, [7], Chapter V, Section 21). More
generally, we can consider all possible real valued and continuous strong Markov
processes.

We now ask the question, if we have a sequence X" of such processes whose
finite-dimensional distributions converge, then does the limit have to be a contin-
uous and strong Markov process? In general, the answer is no. There is no reason
that the limit should either be continuous or be strong Markov. In the case of tight
sequences (under the topology of locally uniform convergence), then convergence
of the finite-dimensional distributions is enough to guarantee convergence under
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the weak topology, and the limits of continuous processes under the weak topology
are themselves continuous (see [6], Chapter XIII or [1], Chapter 15).

However, we shall look at the case where the finite-dimensional distributions
converge, but do not place any tightness conditions on the processes. In fact, we
shall only place a Lipschitz condition on the increasing part of b(¢, x) (w.r.t. x)
for processes given by the SDE (1), and place no conditions at all on o (¢, x). We
further generalize to processes that do not necessarily satisfy an SDE such as (1),
but only have to satisfy the strong Markov property and a continuity condition.

In this case, there is no need for the limit of continuous processes to be contin-
uous, as we shall see later in a simple example. However, in the main result of this
paper, we show that as long as the limit is continuous in probability, then it will be
strong Markov and satisfy a pathwise continuity condition—which we shall refer
to as being almost-continuous. Furthermore, under simple conditions on the limit,
then it can be shown to be a continuous process.

The extension of continuous one-dimensional diffusions that we require is given
by the almost-continuous diffusions that we originally defined in [3].

DEFINITION 1.1. Let X be a real valued stochastic process. Then:

1. X is strong Markov if for every bounded, measurable g:R — R and every
t € R, there exists a measurable f:R; x R — R such that

[, X)) =E[g(Xc40)|F7]

for every finite stopping time t.

2. X is almost-continuous if it is cadlag, continuous in probability and given any
two independent, identically distributed cadlag processes Y, Z with the same
distribution as X and for every s <t € R we have

P(Ys < Zs, Yy > Z; and Y, # Z,, forevery u € (s, 1)) =0.

3. X is an almost-continuous diffusion if it is strong Markov and almost-
continuous.

We shall often abbreviate “almost-continuous diffusion” to ACD. Note that the
almost-continuous property simply means that ¥ — Z cannot change sign without
passing through zero, which is clearly a property of continuous processes. In [3],
we applied coupling methods to prove that conditional expectations of functions of
such processes satisfy particularly nice properties, such as conserving monotonic-
ity and, in the martingale case, Lipschitz continuity and convexity. These methods
were originally used by [2] in the case of diffusions that are a unique solution to
the SDE (1). As the results in this paper show, almost-continuous diffusions arise
naturally as limits of continuous diffusions and our method of proof will also em-
ploy similar coupling methods. Furthermore, in a future paper, we shall show that
subject to a Lipschitz constraint on the drift component, any almost-continuous
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diffusion is a limit of continuous diffusions (under the topology of convergence of
finite-dimensional distributions).

We now recall that the weak topology on the probability measures on (R,
B(R?)) is the smallest topology making the map p — (f) continuous for every
bounded and continuous f : RY - R.In particular, a sequence (i, ),eN of proba-
bility measures on R" converges weakly to a measure p if and only if

pn(f) = n(f)

for every bounded and continuous f:R? — R.

Now, suppose that we have real valued stochastic processes (X"),cn and X,
possibly defined on different probability spaces. Then for any subset S of Ry, we
shall say that X" converges to X in the sense of finite-dimensional distributions
on § if and only if for every finite subset {1, t2, ..., t7} of S then the distributions
of (X?l, X,”z, e, XZ,) converges weakly to the distribution of (X;,, X;,, ..., X;,).

We shall use the space of cadlag real valued processes (Skorokhod space) on
which to represent the probability measures, and use X to represent the coordinate

process.
D = {cadlag functions w: Ry — R},
X:Ry xD—R, (t,w) = X (w) =w(t),
F=0(X;:teRy),
Fr=0Xs:5€[0,1]).
Then (D, ) is a measurable space and X is a cadlag process adapted to the filtra-
tion ;.

With these definitions, a sequence P, of probability measures on (D, ¥) con-
verges to [P in the sense of finite-dimensional distributions on a set S € R if and
only if

Ep, [f(Xt, Xtyy - s Xi)] = Eplf (X, Xiys ooy Xip)]

as n — oo for every finite {¢{, t2, ..., 77} € § and every continuous and bounded
f:RY - R.
We now state the main result of this paper.

THEOREM 1.2. Let (P,),eN be a sequence of probability measures on (D, )
under which X is an almost-continuous diffusion. Suppose that there exists a
K € R such that, for every n € N, the process X decomposes as

t
X =M —i—/ bu(s, X5)ds
0

where M" is an F.-local martingale under P, and b, :R; x R — R is locally
integrable and satisfies

by(t,y) —by(t,x) < K(y —x)
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foreveryx <y eRandeveryt e Ry.

If P, — P in the sense of finite-dimensional distributions on a dense subset
of Ry, and X is continuous in probability under P, then it is an almost-continuous
diffusion under P.

The proof of this result will be left until Sections 3 and 4. Note that in the
special case where K = 0 then the condition simply says that b, (¢, x) is decreasing
in x. Furthermore, Theorem 1.2 reduces to the following simple statement in the
martingale case.

COROLLARY 1.3. Let (P,)peN be a sequence of probability measures on
(D, ) under which X is an ACD martingale. If P, — P in the sense of finite-
dimensional distributions on a dense subset of Ry and X is continuous in proba-
bility under P, then it is an almost-continuous diffusion under P.

We can also give a simple condition on the measure P from Theorem 1.2 and
Corollary 1.3 in order for X to be a continuous process. Recall that the support
of the real valued random variable X, is the smallest closed subset C of the real
numbers such that P(X; € C) = 1.

LEMMA 1.4. Let X be an almost-continuous process. If the support of X, is
connected for every t in R outside of a countable set then X is continuous.

The proof of this result is left until the end of Section 3, and follows quite easily
from the properties of the marginal support of a process, which we studied in [3].

The results above (Theorem 1.2 and Corollary 1.3) are, in a sense, best possi-
ble. Certainly, it is possible for a continuous and Markov (but nonstrong Markov)
martingale to converge to a process that is neither almost-continuous nor Markov.
Similarly, a strong Markov but discontinuous martingale can converge to a process
that is not Markov. Furthermore, these results do not extend in any obvious way
to multidimensional diffusions—in Section 2 we shall construct an example of a
sequence of continuous martingale diffusions taking values in R?, and which con-
verge to a discontinuous and non-Markov process.

Now, suppose that we have any sequence of probability measures P, on (D, )
under which X is an almost-continuous diffusion. In order to apply Theorem 1.2,
we would need to be able to pass to a subsequence whose finite-dimensional dis-
tributions converge. It is well known that if the sequence is tight with respect to
the Skorokhod topology, then it is possible to pass to a subsequence that converges
weakly with respect to this topology (see [6], Chapter XIII or [1], Chapter 15).
We do not want to restrict ourselves to this situation. Fortunately, it turns out that
under fairly weak conditions on X then it is possible to pass to a subsequence
that converges in the sense of finite-dimensional distributions. This follows from
the results in [4], where they consider convergence under a topology that is much
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weaker than the Skorokhod topology, but is still strong enough to give convergence
of the finite-dimensional distributions in an almost-everywhere sense.

By “convergence almost everywhere” in the statement of the result below, we
mean that there is an § € R such that Ry \ S has zero Lebesgue measure and
P, — IPin the sense of finite-dimensional distributions on S. In particular, S must
be a dense subset of R . Recall that we are working under the natural filtration F.
on Skorokhod space (D, F).

THEOREM 1.5. Let (P,),eN be a sequence of probability measures on (D, )
under which X has the decomposition

X=M"+A",

where M" is a cadlag P,-martingale and A" is an adapted process with locally
finite variation. Suppose further that for every t € R the sequence

t
Ep, [|X,]] + Ep, [fo |dA:?|]

is finite and bounded.
Then there exists a subsequence (P, )ren and a measure P on (D, ¥) such that
P, — IPin the sense of finite-dimensional distributions almost everywhere on R .

PROOF. We use the results from [4] for tightness under the pseudo-path topol-
ogy of a sequence of processes with bounded conditional variation.

For every k € N, define the process Ytk = l{;<kyX;. Then the conditional varia-
tion of Y* under the measure P, satisfies

k
vn<Y’<)sEp,,[|Xk|]+Epn[ /O |dA?|}

which is bounded over all n € N by some constant L. Now define the process
o
Z=> 2 L+ )7 =0 X,
k=1
where 6 is the cadlag function

o0
01 =>"27"Li+ D .
k=1

Then the conditional variation of Z satisfies

o0 00
Va(Z) <Y 27+ DT < Y2k =1
k=1 k=1

So, by Theorem 4 of [4], there exists a subsequence (P, )xen under which the
laws of the process Z converge weakly (w.r.t. the pseudo-path topology) to the law
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of Z under a probability measure P. Then by Theorem 5 of [4], we can pass to a
further subsequence such that the finite-dimensional distributions of Z converge
almost everywhere to those under P. Finally, as X; = 0(1)~1Z,, we see that the
finite-dimensional distributions of X also converge almost everywhere. [

These results give us a general technique that can be used to construct almost-
continuous diffusions whose finite-dimensional distributions satisfy a desired
property. That is, we first construct a sequence of almost-continuous diffusions
whose distributions satisfy the required property in the limit. Then we can appeal
to Theorem 1.5 in order to pass to a convergent subsequence and use Theorem 1.2
to show that the limit is an almost-continuous diffusion. This is a method that we
shall use in a later paper in order to construct ACD martingales with prescribed
marginal distributions.

2. Examples. We give examples demonstrating how the convergence de-
scribed in Theorem 1.2 behaves, and in particular show how a continuous diffusion
can converge to a discontinuous process satisfying the almost-continuity condition.

We then give an example showing that Theorem 1.2 and Corollary 1.3 do not
extend to multidimensional diffusions.

2.1. Convergence to a reflecting Brownian motion. 'We construct a simple ex-
ample of continuous martingale diffusions converging to a reflecting Brownian
motion. Consider the SDE

dX} =o(X})dWw,,
2

o, (x) = max(1l, —nx)

for each n € N, with Xj = 0. Here, W is a standard Brownian motion. As o,
are Lipschitz continuous functions, these SDEs have a unique solution and X"
will be strong Markov martingales. In particular, they will be almost-continuous
diffusions. We shall show that they converge to a reflecting Brownian motion.

The SDE (2) can be solved by a time change method, where we first choose any
Brownian motion B and define the processes

t
AP =/0 o, (By) 2 ds,

3) _
T,' =inf{T e R4 : AT > t}.

Then the process
X} = Brn

gives a weak solution to SDE (2). We can take limits as n — 00,

t
Al — A E/(; 1{B,>0)ds.
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If we now use A to define the time change,

T; =inf{T e Ry : A1 > t},
4

X:; =Br,
then X is a Brownian motion with the negative excursions removed, and so is a
reflecting Brownian motion.

For every t € R4, we have X; > 0 (a.s.) and so A is strictly increasing in a
neighborhood of ¢. Therefore, 7" — T;. This shows that X}' — X, (a.s.), so the
processes X" do indeed converge to X in the sense of finite-dimensional distri-
butions. However, it does not converge weakly with respect to the topology of
locally uniform convergence. In fact, the minimum of X" over any interval does
not converge weakly to the minimum of X.

inf X! = inf By — inf B; <0=inf X;

s<t s<T" s<T; s<t
for every t > 0. This example shows that a limit of martingale diffusions need not
be a martingale. However, note that the support of X; is [0, oo) for any positive
time ¢, and X has no drift over any interval that it does not hit 0. This is true more
generally—whenever a process is a limit of one-dimensional martingale diffusions,
then it will behave like a local martingale except when it hits the edge of its support.

2.2. Convergence to a symmetric Poisson process. We show how continuous
diffusions can converge to a discontinuous process, such as the symmetric Poisson
process. By “symmetric Poisson process” with rate A, we mean a process with in-
dependent increments whose jumps occur according to a standard Poisson process
with rate A and such that the jump sizes are independent and take the values 1
and —1, with positive and negative jumps equally likely. Alternatively, it is the
difference of two independent Poisson processes with rate A /2.

If X is a symmetric Poisson process with Xy = 0, then it follows that the support
of X; is Z for every positive time ¢ and it is easy to show that it satisfies the almost-
continuous property.

We now let 0, : R — R be positive Lipschitz continuous functions such that o, 2
converges to a sum of delta functions at each integer point. For example, set

00 -1/2

(5) o (x) = (n/n)‘/“( > exp(—n(x + k)z)) :
k=—00

In particular, this gives

(©) [ 1o 2dr > Y r®

keZ

as n — 00, for all continuous functions f with compact support. We now consider
the SDE

(7) dX}! =o0,(X})d W,
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where W is a standard Brownian motion, and X§ = 0. As oy, is Lipschitz con-
tinuous, X" will be an ACD martingale. We can solve this SDE by using a time
changed Brownian motion, in the same way as for the previous example. So, let B
be a standard Brownian motion and Ay, T/" be defined by (3). Then X} = Br»
solves SDE (7).

If we let L{ be the semimartingale local time of B at a, then it is jointly contin-
uous in ¢ and a and Tanaka’s formula gives

A} = / Lfcrn(a)_2 da.
Equation (6) allows us to take the limit as n goes to infinity,

Al > A=) LY.

aeZ
Then A will be constant over any time interval for which B ¢ 7Z and it follows that
if we define T; and the time changed process X by (4), then the support of X, will
be contained in Z for every time 7. In fact, X will be a symmetric Poisson process.
As in the previous example, we have 7" — T; as n — oo (a.s.). Therefore,
X! — X; (as.) for every t € Ry, showing that the continuous martingale diffu-

sions converge to the discontinuous process X .

2.3. A discontinuous and non-Markov limit of multidimensional martingale dif-
fusions. We give an example of a sequence of 2-dimensional continuous diffu-
sions converging to a discontinuous and non-Markov process. This shows that
Theorem 1.2 and Corollary 1.3 do not extend to the multidimensional case in any
obvious way. To construct our example, first define the Lipschitz continuous func-
tion f:R — R by

f(x) =minf{|x — k|:k € Z}.

Now let U be a normally distributed random variable with mean 0 and variance 1
(any random variable with support equal to R and absolutely continuous distribu-
tion will do). Also, let o,, be as in the previous example, defined by (5). Consider
the SDE

dY" = f(nZon (Y dW,,
dZ!' =0,

where Y =0and Zj = U, and W is a standard Brownian motion. As f (nx)oy, (x)
is Lipschitz continuous, the processes (Y", Z™) will be strong Markov martingales.

It is easy to solve this SDE. Let X" be the processes defined in the previous
example. Then a solution is given by

Y[n = f(nU)Xnv
Z'=U.
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From the previous example, we know that X" converges to a symmetric Poisson
process X in the sense of finite-dimensional distributions. Also, from the definition
of f, f(nU) will converge weakly to the uniform distribution on [0, 1]. So, let V
be a random variable uniformly distributed on [0, 1] and suppose that X, V and U
are independent. Setting

Y, =VX,,
Z[:U,

then (Y",Z") — (Y, Z) in the sense of finite-dimensional distributions. This
process is both discontinuous and non-Markov, showing that the results of this
paper do not extend to two-dimensional processes.

In fact, I conjecture that for d > 1 any d-dimensional cadlag stochastic process
is a limit of martingale diffusions in the sense of finite-dimensional distributions,
and for d > 2 any such process is a limit of homogeneous martingale diffusions.

3. Almost-continuity. We split the proof of Theorem 1.2 into two main parts.
First, in this section, we show that the limit is an almost-continuous process, and
we leave the proof that it is strong Markov until later. The main result that we shall
prove in this section is the following.

LEMMA 3.1. Let (IP,),en be a sequence of probability measures on (D, )
under which X is an almost-continuous diffusion. If P,, — P in the sense of finite-
dimensional distributions on a dense subset of Ry and X is continuous in proba-
bility under P, then it is almost-continuous under IP.

The method we use will be to reformulate the pathwise “almost-continuity”
property into a condition on the finite distributions of X. The idea is that given
real numbers (or more generally, subsets of the reals) x < y and x’ < y’ then a
coupling argument can be used to show that the probability of X going from x
to y’ multiplied by the probability of going from y to x” across a time interval [s, ]
is bounded by the probability of going from x to x’ multiplied by the probability
of going from y to y’. The precise statement is as follows.

LEMMA 3.2. Let P be a probability measure on (D, ) under which X is
continuous in probability. Then each of the following statements implies the next.

1. X is an almost-continuous diffusion.
2. Foreverys <t € Ry, nonnegative F5-measurable random variables U, V , and
real numbers a and b < c <d < e, then

(8) IE[U1{Xs<a,a’<X,<e}]E[V1{X3->a,b<Xt<c}]
=< IE—?:[UI{XS<a,b<X[ <c}]E[V1{XS>a,d<X,<e}]-
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3. X is almost-continuous.

We shall split the proof of this lemma into several parts. The approach that we
use is to consider two independent copies of X and look at the first time that they
cross. So, we start by defining the probability space on which these processes exist,
which is just the product of (D, ) with itself:

D?=D x D,
©) ,
F’=FQF.

Then we let Y and Z be the coordinate processes,
Y, Z:R; x D> > R,
(10) Yi (w1, w2) = Xi(01) = 1),

Zi(w1, ) = X (w2) = w(1).

We also write TF,Z for the filtration generated by Y and Z, which is just the product
of #; with itself:

(11) FP=F @ F =0, Zs:s €[0,1]).

Given any probability measure P on (D, ff ) we denote the measure on (D?, 2)
formed by the product of P with itself by PP.

(12) P=PQP.

In what follows, the notation E[-] will be used to denote expectations with respect
to the measure P. From these definitions, ¥ and Z are adapted cadlag processes,
and under P they are independent and identically distributed each with the same
distribution as X has under P. We now rewrite statement 2 of Lemma 3.2 in terms
of the finite distributions of Y and Z.

LEMMA 3.3. Given any probability measure P on (D, ¥), statement 2 of
Lemma 3.2 is equivalent to the statement that for every s <t € Ry and real num-
bers b <c <d < e then

I~P’(Ys <Ziyb<Zi<c,d<Y; < e|37sz)

(13) .
<P(Yy<Zs,b<Y, <c,d<Z <elF?.

PROOF. First, suppose that inequality (13) holds. Choose s < t € R and real
numbers a and b < ¢ <d < e. Also choose nonnegative ¥;-measurable random
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variables U = u(X) and V = v(X). Then the definition (12) of P together with
inequality (13) gives

E[UI{XS<a,d<X,<e}]E[V1{XX>a,b<X,<c}]
=Eu()v(Z)ly,<a<z,)La<v,<e) L p<Zi<c)]
=E[u(V)v(2) y,<a<z,\P(Yy < Zs,b < Z; <c,d < Y, < e|FP)]

<EluMv(Z) 1y, <4<z PYs < Zs,b < Y, <c,d < Z; < e|F)]

[
[
=E[u(Y)0(2) (v, <a<z L p<vi<c} lid<z,<e)]
:E[

U1{X;<a,b<X,<c}]E[Vl{Xs>a,d<X[<e}]

as required.

Conversely, suppose that statement 2 of Lemma 3.2 holds. Now choose
s <t € Ry, real numbers @’ < a and b < ¢ < d < e and bounded nonnega-
tive Fs-measurable random variables U = u(X) and V = v(X). Defining the
ﬁz-measurable random variable W = u(Y)v(Z), then the definition (12) of P
together with inequality (8) gives

E[Wl{a/sYs <a<Zs,b<Zt<c,d<Yt<e}]
= E[(M(X) 1{a/gXS}) 1{X5<a,d<Xt<e}j|E[U(X) 1{a<XS} 1{b<X[<c}]
= E[(”(X) 1{a’SXS}) 1{Xs<a,b<X,<c}:|IE[U(X) 1{a<XS} 1{d<X,<e}]

= IE[VV1{(1/§Ys<a<ZS,}’7<Y,<c,d<Z,<e}]-

For any & > 0, we can set @’ = (n — 1)e and a = ne¢ in this inequality and sum
over n,

IE[VVI{EIneZ S.t. Yy<ne<Zy b<Z,<c,d<Y; <e}]
00

= Z IE[‘/V1{(n—l)ssYs<ns<Zs,b<Z,<c,d<Y,<e}]

n=—0o
o0

= Z ]E[W1{(n—1)e§YS<ns<Zs,b<Y,<c,d<Z,<e}]

n=—00
= I’E]:[VVI{EIneZ S.t. Ys<n€<ZS,b<Y;<c,d<Z,<e}]-
Letting ¢ decrease to 0 and using bounded convergence gives
(14) E[W iy, <z, b=z <c.d<vi<e}) < E[W1{y, <z, b<¥,<c.d<Z <e})-

Finally, we note that the set of bounded and nonnegative ?“Sz—measurable random
variables W for which inequality (14) holds is closed under taking positive linear
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combinations, and under taking increasing and decreasing limits. Therefore, in-

equality (14) holds for all bounded and nonnegative F,>-measurable random vari-

ables W, and inequality (13) follows from this. [J

Using this result, it is now easy to prove that the first statement of Lemma 3.2
implies the second. The idea is to look at the processes ¥ and Z up until the first
time that they touch, which is similar to the coupling method used in [2] to inves-
tigate the conditional expectations of convex functions of a martingale diffusion.

LEMMA 3.4. If P is a probability measure on (D, ¥) under which X is an
almost-continuous diffusion, then statement 2 of Lemma 3.2 holds.

PROOF. First choose real numbers b < ¢ <d < e, times s <t € R, and set

g1(x) =lppex<c) 82(x) =lig<x<e)-

Then by the strong Markov property, there exist measurable functions fi, f>: [0,
t] x R — R such that

l{rft}fi(f, X)) = l{rft}E[gi (X)) |F7]

for i = 1,2 and for every stopping time 7. This follows easily from Definition 1.1
of the strong Markov property (see [3], Lemma 2.1). Furthermore, it then follows
that

Liz<n) fi (T, Yo) = 1< Elgi (V)| F 21,
Liz<n) i (T, Z1) = Liz<\Elgi (Z)| F 2]

for every F>-stopping time 7 (see [3], Lemma 2.2).
Now, let 7 be the following stopping time:

= inf{u € [s,00):Y, > Z,}, if Yy < Zj,
"] oo, otherwise.

Strictly speaking, T will only be a stopping time with respect to the universal com-
pletion of the filtration. So, throughout this section, we assume that all o -algebras
are replaced by their universal completions. Note that if ¥ < Zs and 7 > ¢ then
Y; < Z;s0 g1(Z;)g2(Yy) =0. Therefore

P(Yy < Zs,b<Z;<c,d <Y, < e|$'32)
= E[1(r=g1(Z0)g2 (Y| 7]
=E[1r<n) fi1 (1. Zo) (1, Yo) | F2].
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However, by almost-continuity, we have Y; = Z; whenever 7 < oo (I@’ a.s.). So,
P(Ys < Zs,b < Z; <c,d <Y, < e|FP)
= Ellr<n /1 (. Y) fo(z, Z0)IF
= Ellr=ng1(Y)82(Z0)1 7]
=I~P’(t§t,b< Yi<c,d< Z, <e|?'sz)
<P(Ys; < Zs.b <Y, <c,d < Z; <e|F?).

The result now follows from Lemma 3.3. [

To prove that the second statement of Lemma 3.2 implies the third, we shall look
at what happens when the processes Y and Z first cross after any given time. The
idea is to show that they cannot jump past each other at this time and, therefore,
will be equal. As this will be a stopping time, we start by rewriting statement 2 of
Lemma 3.2 in terms of the distribution at a stopping time.

LEMMA 3.5. Let P be a probability measure on (D, ) such that statement 2
of Lemma 3.2 holds.

Let b < ¢ <d < e be real numbers and set V = (b,c) x (d,e). Also let U
be an open subset of {(x,y) € R?:x < y} that is disjoint from V, and for any
F2-stopping time S define the stopping time

(15) TU_{inf{t>S:(Yt,Zt)¢U}, if S<ooand (Ys, Zs) € U,
S$ 7 oo otherwise.

Then

’

P(zg <00, (Zy.Y,p) € V) =Bty <00, (Yop. Zy) € V).

PROOF. Lett, y =k/nforall k € Z>p and n € N, and set

Ak ={S <tax <t¥.(Ys5.Zs) U} e F2,.

We now let T,, be the stopping time
Ty =inf{ty 1k €N, tyg >t > thro1 > S)

sothat T}, | rSU as n — o0o. Then we can apply Lemma 3.3,

P(Tn < o0, (ZTn, YTn) € V)
00

ED(Tn =1Ink, (Ztmks Ytn,k) € V)

~
Il
—_

P(Ap k-1 N {(Zs,, Vi) € V)

e

(16)

x~
Il
—
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Mg

P(An k-1 N {(Y,, .. Zy, ) € V))

»
Il
—

r”18

P(Ty = tu s Yo, 10 Z1, ) € V)

»
I
—_

=P(T, <00, (Y1,, Z1,) € V).

Now suppose that rg < 0o and (ZTSU, Yrg) eV.AsT, | réj as n — 00, the right-

continuity of Y and Z gives (Zr,, Yr,) € V for large n. So, by bounded conver-
gence

(17)  P(z¥ < oo, (Zy. Yp)eV) < liminfP(7, < oo, (Z1,, Y1,) € V).

Similarly, suppose that (Y7,,Z7,) € V for infinitely many n. By the right-
continuity of Y and Z, this gives b < YTSU <candd < ng <e. So,

hmsup I{Tn<°°»(YTn’ZTn)EV} = 1{f§1<00,b5y v=<c,d<Z y<e}:
n—00 3 g

Then monotone convergence gives

limsup]fD(Tn <oo,(Yr,,Zr,) € V)
n—oo
(18)

§P(rSU <00,b< Y_L,SU Sc,dSZféj <e).
Combining inequalities (16)—(18) gives

P(z¥ < oo, (ng,Yrg)EV)
(19) .
IP’(IS < 00, b<Yu<c d<Zu<e)

Finally, setb, =b+1/n,cp, =c—1/n,d, =d +1/n and e, = e — 1/n for every
n € N. Then inequality (19) with (b, ¢;) X (dy, e,) in place of V gives

]fD(‘L'g < 00, (Z,L,é], Yréj) € V)
= lim P(réj <00, b, < ZTU <cp,dy < YTU <ey)

<11msupIP’(rS < 00, by <Yu<cn,d <Z u<en)
n—oo

IP’(IS <oo(YU ZU)EV) 0

We shall use Lemma 3.5 to prove almost-continuity by showing that the proba-
bility of Y jumping from strictly below Z to above it is bounded by the probability
of them jumping simultaneously. The following simple result will tell us that ¥
and Z cannot jump simultaneously.
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LEMMA 3.6. Let Y and Z be independent cadlag processes such that Y is
continuous in probability. Then with probability 1, Y;,_ = Y; or Z,_ = Z; for every
t>0.

PROOF. As'Y is cadlag, there exist Y -measurable random times (S,),eN such
that |, cn[[S»] contains all the jump times of Y almost-surely (see [1], Theo-
rem 3.32). Without loss of generality, we may suppose that Ys,_ # Y5, when-
ever S, < oo. Similarly, there exist Z-measurable random times (7,),en such
that (J,cnl[7,]] contains all the jump times of Z almost-surely, and such that
Zt,— # Z7, whenever T,, < oo. Then

o
PEAteRystY,—#Y,and Zi— #Z) < Y P(Su=T, <00).

m,n=1
However, the independence of S, and 7}, together with the continuity in probabil-
ity of Y gives
P(Sn=Ty<00)= Y P(Su=0P(T,=1)

IGR+

= Z PY— #YO)P(Z— # Zy)

IER+

=0. g

This simple result together with Lemma 3.5 gets us some way toward showing
that X is almost-continuous.

LEMMA 3.7. Let P be a probability measure on (D, ) under which X is
continuous in probability, and such that statement 2 of Lemma 3.2 holds. Then

PEt>0st.Y,_<Z <Y)=0

PROOF. Choose any real numbers b < ¢ < d and let U, V be the sets
U= (—00,b) x (b, ),
V=(b,c) x(c,Ad).

Then U NV = &, so letting ‘ESU be the stopping time given by (15) for any s € R,
we can apply Lemma 3.5 to get

(20) P(r) <00, (Zw, Yv) € V) <P(Y <00, (You, Zv) € V).
However, 1fr < 00 and (Y. U ZU)GVthenYU>b>YU andZU>c>

Zu_.By Lemma 3.6, the processes Y and Z cannot jump s1mu1taneous1y, so this
has zero probability. Inequality (20) then gives

(21) P(r) <o00,(Z,u,Yw) e V)=0.
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Now suppose that (Y;—, Z;—) € U and (Z;,Y;) € V for some time ¢. Then by
left-continuity, there exists an s < ¢ such that s € Q4 and (Y, Z,) € U for every
u € [s,t). In this case, rsU =t. Therefore, (21) gives

]fD(EIteR+s.t. Y. <b<Z,_ =Z;<c<Y<d)
<P@EreRy st (Y,—,Z, )€U, (Z;,Y) e V)
(22) N
< Y Pty <00, (Zy, Y) € V)
s€Q4

=0.

Note that for every ¢ such that Y, < Z; < Y;, then Lemma 3.6 tells us that Z;_ =
Z;.So, by (22)

PEreRyst.Y,_ <Z <Y))
:]F)(Ht €R+ S.t. Y[_ < Z[_ = ZI < Y[)
< Z P(EIIER+S.t.Y,_<b<Zt_:Z,<c<Yt<d)

a<b<c<deQ

=0. U

Lemma 3.7 shows that Y cannot jump from strictly below to strictly above Z.
However, it does not rule out the possibility that ¥ can approach Z from below,
then jump to above Z (which would contradict almost-continuity). In order to show
that this behavior is not possible, we shall again make use of Lemma 3.5. The
idea is to reduce it to showing that it is not possible for Y to approach Z from
below, then jump downward. In fact, this behavior is ruled out by the conclusion
of Lemma 3.7, but it is far from obvious that this is the case. We shall make use of
some results that we proved in [3]. First, we restate the definition of the marginal
support used in [3].

DEFINITION 3.8. Let X be areal valued stochastic process. Then its marginal
support is
MSupp(X) ={(¢,x) e Ry x R:x € Supp(X;)}.
As we showed in [3], the marginal support of a process X is Borel measurable,

and the relevance of the marginal support to our current argument is given by the
following result.

LEMMA 3.9. If X is a cadlag real valued process which is continuous in prob-
ability, then the following are equivalent.
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1. The set
{t,x) e Ry xR:X;_ <x < X;}.

is disjoint from MSupp(X) with probability one.
2. Given two independent cadlag processes Y and Z, each with the same distrib-
ution as X, then

]P)(Ht > 0s.t. Y[_ < Zl‘ < Yt) =0.
PROOF. See[3], Lemma4.7. O

We also make use of the following result, which says that it is not possible for Y
to approach Z from below and then jump downward to a value strictly less than Z.

LEMMA 3.10. Let X be a cadlag real valued process which is continuous in
probability, and such that the set

{t,x)eRy xR: X, <x<Xyor Xy <x < X;_}

is disjoint from MSupp(X) with probability one.
Also, let Y and Z be independent cadlag processes each with the same distrib-
ution as X. For any s € Ry, let T be the random time

T — inf{r e Ry :t >s,Y; > Z,}, ifYy < Zs,
| oo, otherwise,

and (T,,),eN be the random times

T — inf{reRy:t>s,Y,+1/n> 27}, ifYy < Zs,
"7 oo, otherwise.

Then T, 1 T as n — oo (a.s.). Also, T, < T whenever T < oo and YT # Z7 (a.s.).
PROOF. See [3], Lemma4.9. [

We can now combine these results to prove Lemma 3.2. As we mentioned pre-
viously, the idea is to show that it is not possible for Y to approach Z from below
and then jump past it.

PROOF OF LEMMA 3.2. First, statement 1 implies statement 2 by Lemma 3.4.
So, we now suppose that statement 2 holds. Then by Lemma 3.7, we have

]f"(EIt >0st. Y, <Z; <Y;)=0.
Applying Lemma 3.9 shows that the set
{t,x) e Ry xR: X;_ <x < X4}
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is disjoint from MSupp(X) with probability one. Similarly, we can apply the same
argument to — X to see that

{t,x)eRy xR: X, <x < X;_}

is also disjoint from MSupp(X) with probability one. Therefore, the requirements
of Lemma 3.10 are satisfied. For any s € R4 and n € N, let T and T,, be the
stopping times defined by Lemma 3.10. Also, define the stopping times

o _[Tn H#T<T,
"7 oo, otherwise,

g T, if T,, < T foreveryn € N,
| oo, otherwise.

By Lemma 3.10, 7,, 1 T, and so S, 11 S whenever S < co. Now, let A be the set
A={aeR:P(S <00, Zs_ =a)=0}.

As R\ A is countable, we see that A is a dense subset of R. We now choose any
b <c<d e A and set

U={x,y)eR:x <y <c},
V=(b,c) x(c,d).
Now, fix any ¢ > s and let S, be the stopping time,

S/ — Sl’l 9 lf Sn S ts
n 00, otherwise.

Also, let ‘L'éi be the stopping time defined by (15). Then by Lemma 3.5

23) Pty <00, (Zw,Yu)eV)<P(tY <00, (Y,u,Z,u)eV).
n S/ / n I/

%
n n N n S n

Also, if § < oo, then S = T so, by the definition of T, we have Ys > Zgs. So,
(Ys, Zs) ¢ U. Now consider the following cases:

e S<tand Zs_ <c.Thenas S, 11 S, we see that rg = § for large n.
e S<tand Zg_ > c. Then Zg, > c for large n and so rg = 00.
e S >1t.Then S, = oo for large n.

The case where Zg_ = c is ruled out because we chose ¢ € A. Therefore, we can
take the limit as n goes to infinity in inequality (23),

P(S <t,Zs_<c,(Zs,Ys) € V)
<P(S<t,Zs_ <c,(Ys,Zs) € V).
As Yg > Zg, the right-hand side of this inequality is O,

]f”(Sft,ZS_<c,b<ZS<c<Y5<d)=0.
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Therefore, letting B be any countable and dense subset of A,
]?’(S <t,Zs_=Zg<Yys)

< > PS<tb<Zs_=Zs<c<Ys<d)
b<c<deB

=0.

This shows that it is not possible for Y to approach Z from below, then jump up-
ward to above Z. Similarly, replacing (Y, Z) by (—Z, —Y) in the above argument
gives

P(S<t,Zs<Ys="Ys_)=0.
Lemma 3.6 says that Zs_ = Zg or Ys_ = Y5 whenever S < 0o,
P(S<t,Zs<Ys)=P(S<t,Zs_ =Zs<Ys)
+P(S<t,Zs<Ys=VYs_)
=0.

Thatis, Y5 = Zg whenever S <t (a.s.). Finally, from the statement of Lemma 3.10,
we know that Y7 = Z7 whenever T,, = T < 00. So, Y7 = Z7 whenever T <t. So,
whenever Y; < Z; and Z; < Y;, wehave s < T <t and Z7 = Yp. Therefore,

P(Ys < Zs, Yy > Z; and Y, # Z, for every u € (s, 1)) =0. O

We now move on to the proof of Lemma 3.1. We start off by considering the
case where the finite distributions converge everywhere, rather than just on a dense
subset of R .

LEMMA 3.11. Let (P,),enN be probability measures on (D, ) which satisfy
property 2 of Lemma 3.2. If P,, — IP in the sense of finite-dimensional distributions,
then P also satisfies this property.

PROOF. First, choose s <t € Ry and real numbers ¢ and b < ¢ <d < e.
Also choose times ?1, 12, ..., t, € [0, s] and nonnegative continuous and bounded
functions u, v:R" — R. We let U, V be the F;-measurable random variables

U=u(Xs,Xp), ..., X4,),
V=ulXy, Xp,,.... Xs,).
Then for any real numbers a; < ay and b’ < ¢’ <d’ < ¢’ inequality (8) gives
Ep, [Ul(x, <ar.da'<X, <} JER, [V 11X, > a0, <X, <c')]
=Ep, [(Ul{x,<a) lix, <ar.d’<x, <} JER, [V 1 (X, 500,00 <X, <c'}]
< Ep, [(Ulx,<a) VX, <arbr <, <) JER, [V X, > 00,0 <, <]

= E]P’,, [UI{XS <ap ,b’<X,<c’}]E]P>n [Vl{Xs>a2,d/<X,<e’}]-
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If we take limits as n goes to infinity and use convergence of the finite-dimensional
distributions then this gives

Ep[ULix, <ar,a <X, <e} |ER[V (X, 200,57 <X, <]
< Ep[Ulix, <ar 0 <x, =) JEB[V L, 2000 <X, <1 ]-
Taking limits as @y 1 a,a { a, b’ | b, "t ¢,d | d and €’ 1 e gives
Ep[Ul(x, <a,d<x;<e} |JER[V 1ix,>a,b<x,<c}]
<Ep[Ulix,<a.p<x,<c}|EP[V 1{X,>a.d<x, <e}]-

Note that the set of pairs of random variables (U, V) for which this inequality
is true is closed under bounded limits, and under increasing limits. Therefore, it
extends to all nonnegative and F;-measurable random variables (U, V). [

We now extend this result to the case where convergence is on a dense subset
of RJ’_ .

COROLLARY 3.12. Let (Py)neN be probability measures on (D, ) which
satisfy property 2 of Lemma 3.2. If P, — IP in the sense of finite-dimensional dis-
tributions on a dense subset of R, then P also satisfies this property.

PROOF. Let S be adense subset of R, such that P, — P in the sense of finite-
dimensional distributions on S. Then for every m € N, we can find a sequence
(tm.k)ken € S such that (k — 1)/m <t x < k/m. We define

Om Ry — S,
Om (t) =min{ty, x:k e N, t,, x > t}.

Then 6,, is a right-continuous and nondecreasing function, so if we define the
process X' = Xy (), then it is clear that property 2 of Lemma 3.2 is satisfied if we
replace X by X under the measure P, (and use the natural filtration generated
by X™). Therefore, letting Q, ,, be the measure on (D, ¥) under which X has the
same distribution as X" has under IP,,, then property 2 of Lemma 3.2 is satisfied
for the measure Q,, ,,,. Also, for every m € N, let Q,, be the measure on (D, )
under which X has the same distribution as X" has under P.

As P, — P in the sense of finite-dimensional distributions on S, then it follows
that

(24) Qum = Qe

as n — 00, in the sense of finite-dimensional distributions (on all of R ). Also,
On(t) >t and 6,,(t) — t as m — oo. Therefore, right-continuity of X; gives
X" — X;.So,

(25) Qn—P
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in the sense of finite-dimensional distributions as m — oco. Applying Lemma 3.11
to the limit (24) tells us that QQ,, satisfies property 2 of Lemma 3.2. Finally, apply-
ing Lemma 3.2 to limit (25) shows that IP also satisfies this property. [l

Now we can finish the proof of Lemma 3.1.

PROOF OF LEMMA 3.1. As X is an almost-continuous diffusion under each
of the measures IP,,, the second property of Lemma 3.2 is satisfied. Corollary 3.12
then tells us that P also satisfies this property. So, Lemma 3.2 says that X is almost-
continuous under P. [

We shall now give a quick proof of Lemma 1.4. First, we will make use of the
following result that says that the paths of a process lie inside its marginal support.

LEMMA 3.13. Let X be a cadlag real valued process. Then with probability 1,
we have

{(t, X;):t e Ry} € MSupp(X).
Furthermore, if X is continuous in probability then

{(t, X;-):1 € Ry} € MSupp(X)
with probability 1.

PROOF. See [3], Lemmas 4.3 and4.4. 0O
The proof of Lemma 1.4 follows easily.

PROOF OF LEMMA 1.4. First, by the statement of the lemma, there exists a
countable S € Ry such that Supp(X;) is connected for every t € Ry \ S. As X
is cadlag, there exist stopping times (7,),eN such that the jump times of X are
almost-surely contained in |J,cnl[7,] (see [1] Theorem 3.32). By Lemma 3.13,
we have

(tl’lv X‘L'n)a (Tn’ X'[n—) € Msupp(X)’

whenever 7, < oo (a.s.). Also, by almost-continuity, the second condition of
Lemma 3.9 is satisfied and, therefore, the set

{(t,x):xeR, X, <x <X}

is almost-surely disjoint from the marginal support of X, whenever 1, < co. So,
the connected open components of the complement of the set

A={x eR: (1, x) € MSupp(X)}
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includes the interval (X, _, X, ) whenever 7, < oo and X, — < X, , so A is not
connected in this case and we see that 7, € S. Therefore, the continuity in proba-
bility of X gives

P(r, <00, X¢,— < Xy,) < ZIP’(tn =1, X;— < X;)=0.
teS

Similarly, applying the same argument to — X,
P(z, <00, X¢,— > X,) =0.

So, X.,— = Xy, (a.s.) whenever 1, < 0o, which shows that X is continuous. []

4. The strong Markov property. The aim of this section is to complete the
proof of Theorem 1.2 by showing that the process X is strong Markov under the
measure IP. To do this, we make use of the property that conditional expectations of
Lipschitz continuous functions of X; are themselves Lipschitz continuous. In this
definition, we write f’ and g’ to denote the derivatives df (x)/dx and dg(x)/dx
in the measure-theoretic sense, which always exist for Lipschitz continuous func-
tions.

DEFINITION 4.1. Let X be any real valued and adapted stochastic process.
We shall say that it satisfies the Lipschitz property if for all s <t € Ry and every
bounded Lipschitz continuous g:R — R with |g’| < 1, there exists a Lipschitz
continuous f:R — R with | f/| <1 and,

f(Xs) =E[g(X:)|F5].

The reason that we use this property is that it is preserved under taking limits
in the sense of finite-dimensional distributions (as we shall see), and is a sufficient
condition for the process X to be strong Markov.

LEMMA 4.2. Let X be a cadlag adapted real valued process that satisfies the
Lipschitz property. Then it is strong Markov.

PROOF. Choose any s > 0 and Lipschitz continuous and bounded g : R — R.
By the Lipschitz property there exists an f:R; x R — R such that f(z, x) is
Lipschitz continuous in x and

(26) [T, Xo) =E[g(Xeys)|F2]  (as)

for every T € R;. By linearity, this extends to all stopping times t that take only
finitely many values in R;. We shall show that f (¢, x) is right-continuous in ¢
on the marginal support of X. So, pick any ¢ > 0 and sequence f, || ¢. By the
right-continuity of X and uniform continuity of f (¢, x) and g(x) in x,

E[g(Xt+s)|~%+] = nlggo f(tn» th) = nlingo f(tn’ Xt),
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where convergence is in probability. Taking conditional expectations with respect
to ¥,

Tim f (1, X)) = BIg(X,49)|Fi] = £ (1, X)),

By uniform continuity in x, this shows that f(t,,x) — f(¢, x) for every x in the
support of X; and it follows that f(z, x) is right-continuous in ¢ on the marginal
support of X. So, Lemma 3.13 shows that f (¢, X;) is a right-continuous process
and, by taking right limits in 7, (26) extends to all finite stopping times t. Finally,
the monotone class lemma extends this to all measurable and bounded g. [J

We now prove the Lipschitz property for the case where the drift term b(z, x) is
decreasing in x.

LEMMA 4.3. Let P be a probability measure on (D, ¥) under which X is an
almost-continuous diffusion which decomposes as

t
Xl :Mt +f b(s, Xs)ds,
0

where M is a local martingale and bR, x R — R is locally integrable such that
b(t, x) is decreasing in x.
Then X satisfies the Lipschitz property under P.

PROOF. Fix any s <t € Ry and let g:R — R be bounded and Lipschitz
continuous with |g’| < 1. As X is strong Markov, there exists a measurable
h:[0,t] x R — R such that

l{rft}h(f, X)) = l{rst}E[g(Xt)L(Fr]

for every stopping time t. This follows easily from the strong Markov property
(see [3], Lemma 2.1).

We now let (D2, 2, (f}z)teR o I@’) be the filtered probability space defined
by (9), (11) and (12). We also let Y, Z be the stochastic processes on (D%, %)
defined by (10). Then Y, Z are independent adapted cadlag processes each with
the same distribution under P as X has under P. So, they have the decompositions

u
Y, = M! +/ b(v, Yy) dv,

27) .
Z,=M? +/ b(v, Zy)dv

0

for local martingales M ', M?. Furthermore, Y, Z will also be strong Markov and
satisfy

Le<nh(T, Y2) = 1<y Elg(Y) | F],

(28) .
l{rft}h(":’ Z) = l{rst}E[g(Zt”?r]
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for all #2-stopping times 7. This follows quite easily from the definitions of Y, Z
(see [3], Lemma 2.2).
Now, let T be the stopping time

T =influ € [s,00):Y, > Z,}.
We note that {t > s} = {Y; < Z,}. Then (28) gives
Lizss)(h(s, Zs) = (s, Yy)) = LogBlg(Z)) — g(Y))| F7]
=E[1{r21)(8(Z) — g(¥))I1F7]
+ E[lysras)(h(, Z2) — (T, Y2))| F2].
The almost-continuity of X gives Y; = Z; whenever ¢t > 7 > s, S0
Less)(h(s. Zg) = (s, Yy)) = B[ r=0) (g(Z0) — g(¥)|F2]
(29) =E[1{r>5)(8(Zinr) — ¢(Yine)) | %]
<E[l(r=5)(Zinr — Yiro) | F7].

Here, we made use of the condition that |g'| < 1.
Let N be the local martingale

(30) N, = 1{,>s}(M3M -M! _+ /0 (b(u, Z,) — bu, Y,,)) du>

defined over u > s. Then for every u > s, the condition that b(u, x) is decreasing
in x gives

UNT
GO Ny =l Zune = Yurd = [ (b0, ¥) = b0, Z,)) dv =0,
N
So, substituting into inequality (29),
(32) 1{7:>s}(h(5, Zs) — h(s, Ys)) = 1{7:>s}(Zs —Y) + E[N, — Ns|~7“;2]-

Inequality (31) shows that N,, is a nonnegative local martingale and is therefore a
supermartingale. So, E[N;|¥;] < N, and inequality (32) gives

h(s, Zs) —h(s,Ys) < Zy — Y5,
whenever Y < Z; (almost surely). Replacing 4 by —# in the above argument will
also give the above inequality with Y and Z interchanged on the left- hand side.

Furthermore, the inequality still holds if we interchange Y and Z on both sides (by
symmetry). So,

|h(s, Zs) — h(s, Ys)| < |Zs — Y|

(almost surely). As Y, Z; are independent and each have the same distribution
as Xj, this shows that A (s, -) is Lipschitz continuous in an almost-sure sense. That
is, there is a measurable A C R such that P(X; € A) = 1 and such that

|h(s9-x) _h(S,y)| = |-x _}’|
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for every x, y € A. Therefore, we can define f:R — R by f(x) = h(s, x) for all
x € A. By uniform continuity, this extends uniquely to the closure A of A such
that

[f(x) = fO)I = |x =yl

for every x,y € A. Then we can extend f linearly across each open interval in
the complement of A so that f is Lipschitz continuous with |f’| < 1. Finally,
f(Xs) =h(s, X;) whenever X € A so,

f(Xs) =h(s, Xy) = E[g(X0)[F]. O

We now extend this result to cover the case where b(¢, x) just satisfies the Lip-
schitz condition required by Theorem 1.2.

COROLLARY 4.4. Let X be an almost-continuous diffusion that decomposes
as

t
Xl :Mt +f b(s, Xs)ds,
0

where M is a local martingale, b: R, x R — R is locally integrable and such that
there exists a K € R satisfying

b(t,y) —b(t,x) < K(y —x)

foreveryt e Ry and x <y eR.
Then e~ X! X, satisfies the Lipschitz property.

PROOF. If we set ¥; = e~ X' X, then Y is an almost-continuous diffusion and
integration by parts gives

t
V=Nt [ els. ¥ ds.
0
where
t o
N[ :X0+/ e_KS dMSa
0

ct,y)=e Kb, eX'y) — Ky.

As N is a local martingale and c(¢, y) is decreasing in y, the result follows from
Lemma4.3. O

In order to show that the limit in Theorem 1.2 is strong Markov, we shall show
that e =X X, satisfies the Lipschitz property. This works because this property is
preserved under taking limits in the sense of finite-dimensional distributions.
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LEMMA 4.5. Let (P,),en and P be probability measures on (D, ) such that
P,, — P in the sense of finite-dimensional distributions.

If the Lipschitz property for X is satisfied under each Py, then it is also satisfied
under P.

PROOF. Fix any s <t € Ry and any bounded and Lipschitz continuous
g:R — Rsuchthat |g| < K and |g’| < 1. Then by the Lipschitz property for X un-
der P, there exist Lipschitz continuous functions f;, : R — R such that | f;;| < K,
|f,] <1and

fn(Xs) =Ep, [g(X0)|F].

Now, let S € R be the support of X under P. We shall show that f,, converges
pointwise on § as n — 00. So, pick any x € S and any ¢ > 0. Let 0:R — R be
any continuous and nonnegative function with support contained in [x — &, x 4 €]
such that 8(x) > 0. As x € S, we have

Ep[0(Xs)]=46 > 0.
We use the following simple identity
8(fu(x¥) = fin(x)) = Ep, [0(X) fu ()] = Ep,, [0(X;) fin (x)]
— (Ep,[0(X:)] — Ep[0(X)]) fu (x)
+ (Ep, [0(X9)] — Ep[0(X,)]) fin (x).

Convergence of the distribution of X; under P, to its distribution under P (as
n — o0) tells us that the final two terms on the right-hand side of this inequality
vanish as we take limits so

§limsup | f(x) — fm (x)]

m,n—o0

< limsup |[Ep, [0 (Xy) fn(x)] — Ep,, [0(X;) fin (X)]].

m,n— oo

(33)

Also, Lipschitz continuity of f; on the interval [x — &, x 4 €] gives
|9(Xs)(fn(Xs) - fn(x))| <e0(Xy)
SO
B, [0(Xs) fn(X)] — Ep,,[0(X) fin (]
= [Ep, [0(Xs) fa(Xs)] — Ep, [0 (Xs) fin (X:)]I
+ 5E]P’n [0(X)] + SE[Pm [0(Xs)]
= |Ep, [0(Xs)8(X)] — Ep,, [0(Xs)g(X)]|
+ 5E]P’n [0(X)] + SE[Pm [0(Xs)].
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If we take limits as m,n — oo then the convergence of the finite-dimensional
distributions of PP, and P, to P shows that the right-hand side of this inequality
converges to 24,

limsup [Ep, [0(Xy) fn(x)] — Ep,, [0 (Xy) fm (x)]] < 2€8.

m,n—o00

Substituting this into inequality (33) gives
limsup [ f (x) = fm (x)] < 2e.

m,n— o0

As this is true for every ¢ > 0, the sequence f;,(x) is Cauchy and, therefore, con-
verges as n goes to infinity. So, we can define f : S — R by f(x) =lim,_ o f (x).
Then

(34) F@) = FO = lim | fal®) = fu()] = 1x =]

for every x,y € S. So f is Lipschitz continuous on S. By interpolating and ex-
trapolating f linearly across the connected open components of R \ S, we can
extend it to a function f:R — R such that inequality (34) is satisfied for all
x,y € R. So, f is Lipschitz continuous with | f’| < 1. Also, we can choose f
such that | f| < K. To complete the proof of the lemma, it only remains to show
that f(Xy) = Ep[g(X,)|Fs].
Now set
h(x) =limsup | f, (x) — f(x)]

n—oo

so that 4 vanishes on S, and is a bounded Lipschitz continuous function satisfying
|h| <2K and |h’| < 2. By uniform continuity of the functions f,, the convergence
is uniform on bounded subsets of R. That is, for every A > 0,

| fn(x) = fO)] = h(x)+1/A

for all large n and |x| < A. So,

limsup Ep, [| fn(Xs) — f(X5)I]

n—oo

<limsupEp [h(X;)]+ 1/A+ 2K limsupP, (| Xs| > A)
pLp, p

n—oo n—oo

<Ep[h(Xs)] +1/A+2KP(|X;| > A)

Letting A increase to infinity gives

(35) limsup Ep, [| f(Xs) — f(Xs)|]=0.
n—oo
Finally, choose any finite set of times t1, t2, ..., ;7 € [0, 5], choose any bounded

and continuous u : R? — R, and let U be the F,-measurable random variable

U =M(X[1, Xf2’ ey Xl’d)'
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Then letting L be an upper bound for |u|, we can use the equality f,(X;) =
Ep,[g(X:)|¥5] and (35) to get

[Ee[U(f(Xo) — g(X)]| = lim [Eg,[U(f(X,) — g(X))]|
< limsup|Ep, [U (£, (X) — e (X0)]|

+ LlimsupEp, [| f,(Xs) — f(X:)I]

n—-oo

=0.

Therefore, Ep[U f (X)] = Ep[Ug(X;)]. By the monotone class lemma, this ex-
tends to all bounded and F;-measurable U, so f(X;) = Ep[g(X,)|Fs]. O

This result is for convergence everywhere of the finite-dimensional distribu-
tions. It is easy to extend it to only require convergence on a dense subset of R .

COROLLARY 4.6. Let (P;),en and P be probability measures on (D, ) such
that P, — P in the sense of finite-dimensional distributions on a dense subset
0fR.|..

If the Lipschitz property for X is satisfied under each P, then it is also satisfied
under P.

PROOF. We imply this result from Lemma 4.5 in the same way that Corol-
lary 3.12 followed from Lemma 3.11. So, let Q, ,, and Q, be the probability
measures on (D, ) defined in the proof of Corollary 3.12.

It is clear that the Lipschitz property for X under [P, implies that it also satis-
fies the Lipschitz property under Q, ,,. Then Lemma 4.5 applied to the limit (24)
says that X satisfies the Lipschitz property under Q,,. Applying Lemma 4.5 to the
limit (25) gives the result. [J

We finally prove Theorem 1.2.

PROOF OF THEOREM 1.2. First, Lemma 3.1 says that X is almost-continuous
under the measure P. Also, Corollary 4.4 says that e X’ X, satisfies the Lipschitz
property under PP,,, so by Corollary 4.6 it also satisfies the Lipschitz property un-
der P. Lemma 4.2 then says that e~X” X, is a strong Markov process under IP and,
therefore, X is also a strong Markov process. [
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