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TESTING SIGNIFICANCE OF FEATURES BY LASSOED
PRINCIPAL COMPONENTS

BY DANIELA M. WITTEN1 AND ROBERT TIBSHIRANI2

Stanford University

We consider the problem of testing the significance of features in high-
dimensional settings. In particular, we test for differentially-expressed genes
in a microarray experiment. We wish to identify genes that are associated
with some type of outcome, such as survival time or cancer type. We propose
a new procedure, called Lassoed Principal Components (LPC), that builds
upon existing methods and can provide a sizable improvement. For instance,
in the case of two-class data, a standard (albeit simple) approach might be
to compute a two-sample t-statistic for each gene. The LPC method involves
projecting these conventional gene scores onto the eigenvectors of the gene
expression data covariance matrix and then applying an L1 penalty in order to
de-noise the resulting projections. We present a theoretical framework under
which LPC is the logical choice for identifying significant genes, and we
show that LPC can provide a marked reduction in false discovery rates over
the conventional methods on both real and simulated data. Moreover, this
flexible procedure can be applied to a variety of types of data and can be
used to improve many existing methods for the identification of significant
features.

1. Introduction. In recent years new experimental technologies within the
field of biology have led to data sets in which the number of features p greatly ex-
ceeds the number of observations n. Two such examples are gene expression data
and data from genome-wide association studies. In the case of gene expression
(or microarray) data, it is often of interest to identify genes that are differentially-
expressed across conditions (for instance, some patients may have cancer and oth-
ers may not), or that are associated with some type of outcome, such as survival
time. Such genes might be used as features in a model for prediction or classi-
fication of the outcome in a new patient, or they might be used as target genes
for further experiments in order to better understand the biological processes that
contribute to the outcome.

Over the years, a number of methods have been developed for the identification
of differentially-expressed genes in a microarray experiment; for a review, see Cui
and Churchill (2003) or Allison et al (2006). Usually, the association between a
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given gene and the outcome is measured using a statistic that is a function of that
gene only. Genes for which the statistic exceeds a given value are considered to be
differentially-expressed. Many methods combine information, or borrow strength,
across genes in order to make a more informed assessment of the significance of a
given gene. In the case of a two-class outcome, such methods include the shrunken
variance estimates of Cui et al. (2005), the empirical Bayes approach of Lonnstedt
and Speed (2002), the limma procedure of Smyth (2004) and the optimal discov-
ery procedure (ODP) of Storey, Dai and Leek (2007). We elaborate on the latter
two procedures, as we will compare them to our method throughout the paper in
the case of a two-class outcome. Limma assesses differential expression between
conditions by forming a moderated t-statistic in which posterior residual standard
deviations are used instead of the usual standard deviation. The ODP approach
is quite different; it involves a generalization of the likelihood ratio statistic such
that an individual gene’s significance is computed as a function of all of the genes
in the data set. In the case of a survival outcome, a standard method to assess a
gene’s significance (and the one to which we will compare our proposed method
in this paper) is the Cox score; see, for example, Beer et al. (2002) and Bair and
Tibshirani (2004).

We propose a new method, called Lassoed Principal Components (LPC), for
the identification of differentially-expressed genes. The LPC method is as follows.
First, we compute scores for each gene using an existing method, such as those
mentioned above. These scores are then regressed onto the eigenarrays of the data
[Alter, Brown and Botstein (2000)]—principal components of length equal to the
number of genes—with an L1 constraint. The resulting fitted values are the LPC
scores. In this paper we demonstrate that LPC scores can result in more accurate
gene rankings than the conventional methods, and we present theoretical justifica-
tions for the use of the LPC method.

Our method has two main advantages over existing methods:

1. LPC borrows strength across genes in an explicit manner. This benefit is
rooted in the biological context of the data. In biological systems genes that
are involved in the same biological process, pathway, or network may be co-
regulated; if so, such genes may exhibit similar patterns of expression. One
would not expect a single gene to be associated with the outcome, since, in
practice, many genes work together to effect a particular phenotype. LPC ef-
fectively down-weights individual genes that are associated with the outcome
but that do not share an expression pattern with a larger group of genes, and in-
stead favors large groups of genes that appear to be differentially-expressed. By
implicitly using prior knowledge about what types of genes one expects to be
differentially-expressed, LPC achieves improved power over existing methods
in many examples.

2. LPC can be applied on top of any existing method (regardless of outcome type)
in order to obtain potentially more accurate measures of differential expres-
sion. For instance, in the case of a two-class outcome, many methods to detect
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differentially-expressed genes exist, including SAM [Tusher, Tibshirani and
Chu (2001)], limma [Smyth (2004)] and ODP [Storey, Dai and Leek (2007)],
as mentioned earlier. By projecting any of these methods’ gene scores onto the
eigenarrays of the data with an L1 constraint, we harness the power of these
methods while incorporating the biological context.

The idea behind this method is that a gene that resembles the outcome is more
likely to be significant if it is one of many genes with similar expression patterns
than if it resembles no other genes. From a biological standpoint, this is due to the
hypothesis that a gene that truly is associated with an outcome (such as cancer)
will be involved in a biological pathway related to the outcome that involves many
genes. Other genes in the pathway may exhibit similar expression patterns due to
co-regulation. From a statistical standpoint, it is due to the fact that while variance
in the genes’ expression levels may occasionally cause an individual nonsignificant
gene to be correlated with the outcome by chance, it is statistically quite unlikely
that a great number of genes will all be correlated with the outcome and with
each other due solely to random noise. By regressing the conventional gene scores
onto the eigenarrays of the gene expression data and using the fitted values to
rank genes, we essentially only rank highly the genes that have moderate to high
gene scores and have large loadings in an eigenarray that is correlated with the
vector of gene scores. Thus, individual genes with expression patterns that do not
resemble those of other genes in the data set are not given high rankings by our
method. Genes with moderate scores that resemble a large block of genes with high
scores are given high LPC scores; they borrow strength from genes with similar
expression profiles.

The LPC method bears similarities to the surrogate variable analysis (SVA)
method of Leek and Storey (2007). SVA attempts to adjust for expression hetero-
geneity among samples, whereas we try to exploit heterogeneity in order to obtain
more accurate gene scores. The effects of the two methods are quite different, and
the methods can be used together, as is shown in Appendix D.2.

A simulated two-class example helps to illustrate how LPC can outperform
standard approaches. Suppose that expression profiles come from either cancer
or normal tissue, and that genes over-expressed in cancer also happen to be under-
expressed in older individuals (Figure 1, see Supplementary Materials for R lan-
guage code for this simulation [Witten and Tibshirani (2008)]). The expression of
these genes is a function of both patient age and tissue type. If it is known by the
data analyst that age affects gene expression, then age can be used as a covariate
in determining whether a gene is differentially-expressed. However, in practice,
factors that affect gene expression are often unknown or unmeasured, and so are
not included as covariates. In this case, a two-sample t-statistic will have limited
success in identifying the genes associated with cancer type, because the age ef-
fect masks some of the correlation between cancer type and gene expression. On
the other hand, applying the LPC method to the two-sample t-statistics results in
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FIG. 1. Heatmap of simulated data set; blue signifies low and yellow signifies high gene expression.
There are 50 genes (rows) and 10 patients (columns); 10 of the genes (shown on the bottom of the
heatmap) are associated with the outcome. Patients are ordered from oldest to youngest. The binary
outcome for each patient is shown below the heatmap. The alternating pattern of the outcome can
be seen in the significant genes in the heatmap, but the predominant pattern seen in these genes is
associated with age.

high scores for the differentially-expressed genes, because these genes will have
high loadings on the eigenarray that is most correlated with the cancer type. The
resulting gene scores can be seen in Figure 2.

LPC is not restricted to the two-class problem, and findings in the context of
survival outcomes indicate its potential promise. Figure 3 shows the estimated
false discovery rates in detecting genes in lymphoma patients that are associated

FIG. 2. Genes that truly are differentially-expressed are shown in red. The two-sample t-statistic
does not assign very high scores to the differentially-expressed genes, because the confounding effect
of age reduces the association between these genes and the outcome. LPC (based on the two-sample
t-statistic) assigns high scores to all of the significant genes.
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FIG. 3. Estimated false discovery rates are shown for the lymphoma data set [Rosenwald et al.
(2002)], which consists of 7,399 gene expression measurements on 240 patients. The false discovery
rate of Cox scores is shown in black, and that of LPC is shown in red.

with altered survival. LPC clearly outperforms a standard gene-specific analysis
based on Cox scores (see Section 3.3).

The paper is organized as follows. In Section 2 we present the details of the
LPC method, as well as some theoretical results that justify its use. Then, in Sec-
tion 3 we demonstrate by example that LPC outperforms the conventional gene
scores in simulations and on published microarray data sets for two-class and sur-
vival outcomes. We also present a method for false discovery rate estimation for
LPC, which is given in greater detail in Appendix C. Section 4 contains the Dis-
cussion.

2. The LPC method.

2.1. Description. Let X denote an n × p matrix of log transformed gene ex-
pression levels, where n is the number of observations and p is the number of
genes, and n � p. Assume that the columns of X (the genes) have been centered
so that they have mean zero across all of the observations. Let Xj denote the vector
of expression levels for gene j . Let y denote a vector of length n containing the
outcomes for each observation. For instance, if this is a two-class problem, then y
will be a binary vector.

The LPC method involves using existing gene scores to develop LPC scores that
aim to provide a more accurate ranking of genes in terms of differential-expression.
In principle, a wide variety of gene scores could be used; however, in the simplest
version of LPC one would use one of the methods in Table 1, depending on the
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TABLE 1
Simple scores for various outcomes

Outcome type Gene score

Quantitative Standardized regression coefficient for regression of y onto Xj

Survival Score statistic for univariate Cox proportional hazards model;
see, for example, Beer et al. (2002) and Bair and Tibshirani (2004)

Two-class Two-sample t-statistic
Multiple-class F-statistic for one-way ANOVA

outcome variable. In the examples analyzed, a small constant is added to the de-
nominators of the gene scores in Table 1 in order to avoid large ratios resulting
from small estimated standard deviations; see, for example, Tusher, Tibshirani and
Chu (2001). We will refer to the statistics in Table 1 as T . For ease of notation,
unless we specify otherwise, the LPC scores discussed in this paper are formed
by applying the LPC method to these T scores. Tj will refer to the gene score for
gene j . The LPC method is as follows for the quantitative, survival and two-class
cases:

LPC Algorithm:

1. Compute T, the vector of length p with components Tj , the score for gene j ,
for j ∈ 1, . . . , p.

2. Compute v1, . . . ,vn, the eigenarrays of X, where the vi’s are the columns of
the matrix V in the singular value decomposition (SVD) of X, X = UDVT .

3. For some value of the parameter λ, fit the model T = β0 + ∑n
i=1 βivi , where

the vector β with components βi is chosen to minimize the quantity (T − β0 −
Vβ)T (T − β0 − Vβ) + λ

∑n
i=1 |βi |. This is multiple linear regression with an

L1 constraint, also known as the “lasso” [Tibshirani (1996)].
4. Let T̂ denote the fitted values obtained by the above model. The LPC score for

gene j is T̂j .

In the case of a multiple-class response, the procedure is slightly different, and
is presented in Appendix B.

In Step 3 of the LPC algorithm, fitting a linear model with an L1 constraint is
very fast, because we are regressing the scores T on the columns of V, which are
orthogonal. We use the following soft thresholding approach in order to obtain the
lasso coefficients:

Soft-Thresholding Algorithm:

1. Compute β̂ , the vector of coefficients obtained by regressing T on the eigenar-
rays of X using ordinary multiple least squares; that is, β̂ = arg minβ(T −β0 −∑n

i=1 viβi)
T (T − β0 − ∑n

i=1 viβi).



992 D. M. WITTEN AND R. TIBSHIRANI

2. Let β̃i = sign(β̂i)(|β̂i | − λ
2 )+, ∀i ∈ 1, . . . , n.

3. Compute T̂ = β̂0 + ∑n
i=1 vi β̃i ; these are the LPC scores.

The LPC algorithm involves a shrinkage parameter, λ, which determines the
amount of regularization performed in the L1-constrained regression. An auto-
mated method for the selection of the value for this parameter is presented in Ap-
pendix A.

Returning to the example from the Introduction, the value of the shrinkage pa-
rameter λ chosen by our automated method was 5.5. This resulted in β̂1 nonzero
and β̂i = 0 for i ∈ 2, . . . , n. The first eigenarray is associated with the response. In
this example, LPC’s success stems from the fact that the L1 constraint resulted in
a nonzero coefficient only for the correct eigenarray.

In the case of a quantitative response, the T scores take the form
XT

j y

σ
√

(XT X)jj
for

gene j . Suppose that the genes have been scaled appropriately so that the T scores
are simply XT y. From the LPC Algorithm and the Soft-Thresholding Algorithm,
the LPC scores are given by the formula T̂ = β̂0 + ∑n

i=1 vi β̃i , where the columns
of V are linear combinations of the rows of X. Therefore, if λ = 0 (i.e., in the
absence of an L1 constraint), the LPC scores equal the T scores exactly. This
means that T is a special case of LPC. This leads us to hope that if, on a given data
set, T outperforms LPC with nonzero λ, our adaptive method of choosing λ will
set λ to zero. If this is the case, then we will always end up using the approach that
works best on a particular data set. A similar result holds for the case of a two-class
response. Note that, in practice, however, one usually does not scale the genes as
described here.

2.2. Motivating LPC via an underlying latent variable model. Consider a sce-
nario in which a subset of genes is associated with the outcome because some
underlying process, or “latent variable,” affects both the expression of the genes
and the outcome measurements. In Appendix D.1, it is shown that in such a sit-
uation, under suitable assumptions, LPC scores will have lower variance than T

scores. This justifies the use of LPC in situations where a latent variable model
could reasonably describe the data set of interest.

2.3. Relationship with the eigengene space. In microarray data analysis the
principal components of the columns of X are referred to as the eigengenes, and
the principal components of the rows of X are referred to as the eigenarrays. We
are interested in identifying significant genes; therefore, it may seem peculiar that
our proposed method works in the space of eigenarrays rather than in the space of
eigengenes. For instance, Bair and Tibshirani (2004) and Bair et al. (2006) perform
supervised principal components analysis in the eigengene space. We show here
that, in the simple case of a quantitative outcome, working in the eigenarray space
is quite similar to working in the eigengene space, but has a distinct advantage.
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Assume that the columns of X are centered and that the quantitative outcome y
is centered. Let X = UDVT denote the singular value decomposition for X. Let T
denote the vector of T statistics. The LPC method fits the linear model with L1
constraint on the coefficients

T = Vβ + ε =
n∑

i=1

viβi + ε,(2.1)

where E(ε) = 0 and vi is the ith right singular vector of the gene expression data;
in other words, it is the ith eigenarray of the original data X.

Now, suppose that instead of using the conventional T scores (which, in this
case, would be the standardized regression coefficients), we take the inner product
of each gene Xj with the vector y. (If the genes of X were scaled appropriately
before computing the usual T scores, then the usual T scores would be equivalent
to these simplified scores.) The above equation gives

T = XT y

= Vβ + ε
(2.2)

= XT UD−1β + ε

= XT Uθ + ε,

letting θ be a vector of length n with components θi = βi

di
, where di is the ith

diagonal element of D.
Assuming that λ = 0 (so we are simply performing multiple least squares re-

gression), then

θ = arg min‖XT y − XT Uθ‖2

= arg min‖XT (y − Uθ)‖2(2.3)

= arg min‖DUT (y − Uθ)‖2.

Note that if XXT = UD2UT = I, then

θ = arg min‖y − Uθ‖2.(2.4)

Now, suppose that we instead regress y on the columns of U:

y =
n∑

i=1

uiθ
′
i + ε′

(2.5)
= Uθ ′.

Here, if λ = 0, then θ ′ is again given by (2.4).
So, if λ = 0, then regressing the scores on the eigenarrays is quite similar to

regressing the outcome on the eigengenes. In fact, we have shown that if XXT = I,
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then the resulting coefficients are identical up to a scaling by the matrix D of
the SVD.

In general, when λ = 0, the solution to the LPC least squares problem is the θ
that minimizes

‖XT (y − Uθ)‖2 = ‖ỹ − Ũθ‖2,(2.6)

where ỹ = DUT y, Ũ = DUT U. Therefore, in the case of a quantitative response
with simplified T scores of the form XT y, regressing the scores on the eigenar-
rays is equivalent to regressing the outcomes on the eigengenes after rotating the
outcome and the eigengenes.

When the outcome is quantitative, working in the eigengene space is a reason-
able alternative to working in the eigenarray space. However, in the case of a non-
quantitative outcome, working in the eigengene space does not always generalize.
For instance, suppose that the outcome is survival time. Then, for each observa-
tion, the response is a time (e.g., number of months that the patient survived) and
a binary variable (whether or not the patient was censored). It is not clear how to
regress this pair of numbers onto the eigengenes. However, using LPC, we first
compute the Cox scores; it is then a simple matter to regress the Cox scores onto
the eigenarrays. Therefore, working in the eigenarray space has a distinct advan-
tage in that it is applicable to a wider range of outcome types.

3. Performance of LPC.

3.1. Simulated data. LPC outperforms existing methods in a variety of sim-
ulations, for quantitative, survival, two-class, and multiple-class responses. We
present results on three such simulations here. Each simulation involves 1000
genes and 40 observations. The first 50 genes are associated with the outcome
for each observation, and will be referred to as the significant genes. Simulation 1
represents the simplest case; the only structure present in the data is due to the
differentially-expressed genes, which closely resemble the outcome. Simulation 2
is more complicated: in addition to the genes that resemble the outcome, there are
three blocks of 100 genes that display very strong expression patterns that are or-
thogonal to the outcome. In Simulation 3, the 50 genes that are associated with
the outcome are split into two sets of 25 genes; the signals present in each set are
orthogonal to each other, and the response is obtained by summing the two orthog-
onal signals. Detailed descriptions of each simulation can be found in Appendix E,
and heatmaps and R language code can be found in the Supplementary Materials
[Witten and Tibshirani (2008)].

The performances of ODP [Storey, Dai and Leek (2007)] and limma
[Smyth (2004)] are compared to the performances of the LPC method applied
to ODP and limma for each simulation (with a two-class outcome) in Figure 4. It
is clear that the statistics are improved by applying LPC. Though not shown in the
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FIG. 4. False discovery rates are shown for Simulations 1, 2 and 3 with a two-class response. In
each simulation, 50 out of 1000 genes are significant. ODP, LPC(ODP), Limma and LPC(Limma)
are compared. In almost all cases, the LPC methods result in lower FDRs than the existing methods.
T and LPC(T), though not plotted, closely resemble the Limma and LPC(Limma) curves for all three
figures.

figure, T is also improved by applying the LPC method. Similar results hold for
other outcome types.

It is worth noting that the L1 constraint in the LPC algorithm is an important part
of the reason that LPC outperforms the statistics to which it is applied. A reviewer
inquired whether one would expect to see the same gains if one simply projected
the initial statistics onto, say, the first k < n eigenarrays. Consider Simulation 2 as
described above (with a two-class response), but assume that now there are seven,
rather than three, blocks of 100 noise genes that are orthogonal to the response.
We can compare the LPC scores to the scores obtained by regressing the T scores
onto the first five eigenarrays. As expected, Figure 5 shows that this latter method
results in very poor performance, since the blocks of noise genes dominate the
first five principal components. On the other hand, LPC does well because the L1
constraint leads to sparsity in the regression coefficients, and so only the eigenarray
or eigenarrays that are related to the response are included in the model.

3.2. Predictive advantage. An objection to the use of LPC might be that de-
spite its performance on simulated data and its theoretical properties, it simply
does not rank genes using the metric that is truly of interest. For instance, in the
case of two-class data, a biologist might truly care about finding genes that have
different mean expression in the two classes. Such a researcher might claim that T

succinctly quantifies the concept of interest, whereas LPC finds genes that satisfy
the rather abstract and perhaps irrelevant requirement of having T scores which,
when projected onto the high-variance subspace of the gene expression data, yield
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FIG. 5. False discovery rates are shown for a simulation with seven blocks of noise genes that are
orthogonal to the two-class outcome. LPC performs much better than simply regressing T onto the
first five eigenarrays.

large values. Here we show that in many cases, even if the conventional T scores
are the quantities of interest, LPC should be used instead of T .

Let X and X∗ denote independent training and test sets for the same set of genes.
T and L are the vectors of conventional T scores and LPC scores on the training
set, and T∗ is the vector of conventional T scores on the test set. Then, we define
predictive advantage as

E
(|Tj

∗| | |Lj | > c2(α)
) − E

(|Tj
∗| | |Tj | > c1(α)

)
,(3.1)

where c1(α) and c2(α) are the α quantiles of |Tj | and |Lj |, respectively. A posi-
tive predictive advantage for LPC essentially means that even if T is the quantity
of interest, then LPC should be used instead, since LPC will pick out genes with
higher T scores on an independent test set. If LPC has a positive predictive advan-
tage on a given data set, then there is no question that LPC is superior to T on that
data set.

On data that we examined, the predictive advantage is often positive (Fig-
ures 6 and 7). The simulated data for Figure 6 has a quantitative outcome; for
each simulation, the predictive advantage is positive. Two of the data sets used for
Figure 7 have survival outcomes; they are the lymphoma data set from Rosenwald
et al. (2002) and the kidney cancer data set from Zhao et al. (2006). The third data
set is the two-class colon cancer data set of Alon et al. (1999). The predictive ad-
vantage of LPC is positive for the survival data sets, and is positive after more than
the first few genes have been selected for the two-class data set.

The predictive advantage provides a “quick and dirty” approach to verifying
that LPC is uniformly better at identifying significant genes on a given data set. We
recommend the use of LPC instead of competing methods whenever its predictive
advantage relative to the competing methods is positive. However, the predictive
advantage of LPC was not positive for all of the data sets that we considered.
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FIG. 6. E(|Tj
∗| | |Lj | > c2(α)) (red) and E(|Tj

∗| | |Tj | > c1(α)) (black) are shown for Simula-
tions 1, 2 and 3 with a quantitative outcome. The difference between the two quantities gives the
predictive advantage. The predictive advantage is positive in all cases. Similar results hold for other
outcome types.

3.3. Estimated false discovery rates for LPC. Estimation of false discovery
rates for LPC is surprisingly difficult. Due to the fact that the LPC statistic for
a given gene is a function of all of the genes present in the data set, the stan-
dard method of estimating false discovery rates by permutations cannot be applied.
More on this topic, as well as the method that we developed to estimate false dis-
covery rates for LPC and other functionally dependent statistics using predictive
advantage, can be found in Appendix C.

We apply our method of estimating false discovery rates for LPC to the kid-
ney cancer and lymphoma survival data sets of Zhao et al. (2006) and Rosenwald

FIG. 7. E(|Tj
∗| | |Lj | > c2(α)) (red) and E(|Tj

∗| | |Tj | > c1(α)) (black) are shown for two
survival data sets: the kidney data [Zhao et al. (2006)] and the lymphoma data [Rosenwald
et al. (2002)]. In both cases, the predictive advantage of LPC is positive. The two-class colon data
[Alon et al. (1999)] is also shown; in this case, the predictive advantage is positive when more than
around 15 genes are considered. The kidney data set involves survival times and expression mea-
surements on 14,814 genes for 177 patients. As mentioned earlier, the lymphoma data set involves
survival times and expression measurements on 7,399 genes for 240 patients. The colon data consists
of cancer status and gene expression measurements on 2,000 genes for 62 patients.
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FIG. 8. Estimated FDR for two published microarray data sets: the Zhao et al. (2006) kidney
cancer survival data set and the Alon et al. (1999) colon cancer two-class data set.

et al. (2002), as well as to the two-class colon data set of Alon et al. (1999). For
the survival data sets, we compare LPC to T , and for the two-class data set, we
compare T , limma, ODP and LPC. Figures 3 and 8 show that the estimated FDR
of LPC is less than those of the other methods, with the exception of the first 15 or
so genes for the colon cancer data set. The erratic performance of LPC for these
first genes is a direct consequence of the fact that the predictive advantage of LPC
is negative for these first genes in this data set (see Figure 7).

As discussed in Appendix C, our method of estimating FDRs for LPC involves
computing FDRs for simpler scores that can be estimated through permutations,
and then estimating the difference in FDR between LPC and those simpler scores.
Figure 9 displays the mean estimated difference between the FDR of T and the
FDR of LPC, as well as standard errors for this estimate, for the colon, kidney,
and lymphoma data sets. The figure was obtained by repeatedly sampling 90% of

FIG. 9. The mean estimated difference in FDR between T and LPC is shown in black, as a function
of the number of genes called significant, for 20 data sets created by sampling 90% of the observa-
tions from the original data set without replacement. An estimate of one standard error above and
below this mean is shown in red. A positive mean difference indicates that T has higher FDR than
LPC.
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FIG. 10. The loadings of the kidney cancer genes on the second and fourth eigenarrays are shown.
The top 1% of genes selected by LPC are shown in red, and the top 1% of genes selected by Cox score
are shown in green. The remaining genes are in black. There is some overlap between the genes with
the highest Cox scores and the genes with the highest LPC scores.

the observations, without replacement; for each resulting sample, the difference
in FDR between T and LPC was computed. The figure shows that for these three
data sets, the estimated FDR of T is significantly higher than that of LPC (with the
exception of the first few genes in the colon data set).

3.4. Another look at LPC versus T for survival data. First, we examine more
closely the differences between the genes selected as significant by LPC and T

(in this case, Cox scores) in the kidney cancer data set of Zhao et al. (2006).
When LPC is applied to this data set, several eigenarrays (out of 177) are as-
signed nonzero coefficients; two of these, eigenarrays 2 and 4, have large absolute
coefficients. Figure 10 shows the loadings of the genes on these two eigenarrays.
The top 1% of genes selected by LPC and the top 1% of genes selected by Cox
scores are shown. Though there is some overlap between these two gene sets, it is
clear from the figure that LPC selects genes with extreme loadings on these two
eigenarrays, whereas the Cox score uses a different criterion.

The genes with the highest LPC scores have high loadings on eigenarrays 2
and 4; this means that they have expression that is correlated with eigengenes 2
and 4. Figure 11 shows the top genes selected by LPC and not by Cox score, the
top genes selected by Cox score and not by LPC, and the fourth eigengene. It
is clear that the top genes selected by LPC and not by Cox score resemble this
eigengene more closely than do the genes selected by Cox score and not by LPC.

We established earlier that in the kidney cancer and lymphoma data sets, LPC
has a positive predictive advantage relative to Cox scores. We now examine a re-
lated concept, the ability of the top genes ranked by LPC and Cox scores to pre-
dict survival. We split the kidney and lymphoma data sets into a training set and
a test set, and identified the 25 genes with highest Cox and LPC scores on the
training set. We fit Cox proportional hazard models to the test data, using the top
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FIG. 11. For the kidney data set, the top 29 genes selected by LPC but not by Cox score are shown
on the top left, and the top 29 genes selected by Cox score but not by LPC are shown on the top right.
On the bottom left and the bottom right, the fourth eigengene is shown. The observations are ordered
from left to right by the size of their loading in the fourth eigengene. The top 29 genes selected by
LPC resemble the fourth eigengene more closely than do the top 29 genes selected by Cox score.

i = 1, . . . ,25 genes ranked by each scoring method. We then computed the medi-
ans of the log rank statistics obtained from each of these models over 20 iterations.
The results can be seen in Figure 12. Models that use the top genes ranked by
LPC outperform models that use the top genes ranked by Cox scores when not
too many genes are included in the model. However, when enough genes are in-
cluded in the model, then for both data sets, genes with high training set Cox scores
eventually lead to superior models. This is due to the fact that LPC assigns high
scores to correlated sets of genes, and including additional correlated predictors in
a model does not lead to much improvement. On the other hand, using Cox scores

FIG. 12. Cox proportional hazard models were fit to the test data, using the 1 through 25 genes
that received highest Cox/LPC scores on the training data. When the number of genes in the model
is low, the models fit using genes with high LPC scores had higher log rank statistics that those fit
using genes with high Cox scores. LPC is red and T is black.
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results in the addition of genes to the model that may be less correlated with each
other, and so adding a greater number of such genes leads to greater improvement.
This example demonstrates that while we have shown that LPC is more successful
than competing methods at identifying significant genes, it is not ideally suited for
model selection if a large model is desired.

3.5. Loss of power if assumptions are incorrect. Throughout this paper we
have motivated LPC by arguing that, for gene expression data, genes work together
in pathways, and a clinical outcome is likely to be caused not by a single gene, but
rather by a set a correlated genes. An obvious question arises: How much power
to detect significant genes will we lose using LPC if the response is caused by a
single or a few genes, rather than by a large pathway of genes? In this case, we
might expect that univariate gene scores would correctly identify the significant
gene, whereas LPC applied to those gene scores would identify the significant
gene, along with other correlated but unimportant genes.

As an example, we randomly selected 500 genes from the colon cancer data
set, and performed k-means clustering on the genes with k = 50. We simulated a
quantitative response y as the centroid of the cluster containing the greatest number
of genes, plus noise (2N(0,1)). The resulting predictive advantage of LPC over T

was positive. We then repeated the experiment, but this time simulated the response
as the centroid of the cluster containing the fewest genes, plus noise. The resulting
predictive advantage of LPC over T was negative. The predictive advantages for
the two cases are displayed in Figure 1 in the Supplementary Materials [Witten
and Tibshirani (2008)].

This example suggests that LPC has the potential to outperform T in cases
where the response is caused by a large pathway of correlated genes; however, if
this condition is not satisfied, then T may do better. As pointed out by an editor, it is
likely that LPC will perform well in cases such as tumorigenesis that involve large
perturbations to molecular pathways; on the other hand, LPC may not perform as
well when more subtle changes in gene expression are present. If one does not
know whether the use of LPC is warranted in a given situation, a simple plot of the
predictive advantage will indicate whether LPC provides a benefit over T .

4. Discussion. Many of the ideas in this paper build upon the existing litera-
ture. Eigenarrays and eigengenes have been used many times before in the analysis
of microarray data; for instance, Alter, Brown and Botstein (2000) decompose mi-
croarray data into eigengenes and eigenarrays in order to obtain a “global picture
of the dynamics of gene expression,” and Bair and Tibshirani (2004) and Bair
et al. (2006) use eigengenes in order to predict patient survival time. Leek and
Storey (2007) use the eigengenes of microarray data in order to infer and remove
expression heterogeneity that is unrelated to the outcome. (More on the relation-
ship between LPC and surrogate variable analysis can be found in Appendix D.2.)
In addition, Shen et al. (2006) make use of the singular value decomposition for
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the selection of genes to use in tumor classification. Unlike LPC, Shen et al. (2006)
seek genes that are uncorrelated with each other and capture the variation in the
data, rather than genes that are associated with the outcome. To the best of our
knowledge, we are the first to propose regressing simple gene scores onto the
eigenarrays in order to obtain gene scores that make use of the data’s correlation
structure and association with the outcome.

The notion of using latent factors and sparse representations in order to model
biological pathways is well developed in the statistical literature. In particular,
West (2003) and Carvalho et al. (2008) use a Bayesian approach to fit sparse factor
models to gene expression data. They demonstrate that these sparse factors are eas-
ily interpreted, and can lead to the discovery and validation of biological pathways.
Their method can also be used for gene selection: if a few factors are associated
with the outcome, then this suggests that only genes with nonzero loadings in those
factors are related to the outcome. Our approach is different, in that we use “empir-
ical factors” rather that attempting to model the factors themselves in a sparse way.
It would be of interest to combine these two approaches by regressing univariate
statistics onto these sparse factors, rather than onto the eigenarrays of the data as
described here.

LPC takes advantage of the structure of the entire microarray data set in order
to improve accuracy of gene scores. In order to achieve this same goal, one might
instead consider the use of a full multivariate approach. For instance, one could
regress a quantitative outcome onto the gene expression matrix using an L2 (ridge)
penalty. The resulting coefficient for each gene could be treated as a measure of its
differential expression. However, suppose that some genes in the expression data
matrix are highly correlated with each other and with the outcome. Ridge regres-
sion would assign to all of these genes similar coefficients that are smaller in mag-
nitude than the coefficients that they each would receive in a univariate regression.
In effect, ridge regression would decrease the estimate of a gene’s significance as
a consequence of the presence of correlated genes. Similarly, one could regress
the outcome onto the data matrix with an L1 penalty. Due to the sparse nature of
the L1 solution, this would result in only one gene out of a correlated set of genes
receiving a nonzero coefficient. From these examples, it is clear that such multi-
variate approaches are not well suited to the problem of identifying differentially-
expressed genes.

An attribute of LPC is that its use is not limited to the identification of signifi-
cant genes in microarray data. Rather, it can be applied to a wide range of data
types, provided that the hypothesis that significant features occur in correlated
sets is justified. Interestingly, a recent paper by Price et al. (2006) makes use of
a technique that is similar to LPC for a completely different reason. In the analy-
sis of genome-wide association data, in order to identify single-nucleotide poly-
morphisms (SNPs) that are associated with a given phenotype, Price et al. (2006)
suggest “adjusting” the phenotypes and genotypes by regressing them onto the
principal components of the genotype data, and using the residuals to compute
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a χ2 statistic to measure the association between a given SNP and the phenotype.
They do this to remove the effects of ancestry from the data. In effect, LPC seeks
features that are associated with the principal components of the data, whereas
Price et al. (2006) do the opposite. This is due to the two very different biological
processes underlying the two types of data. In the case of microarray data, we seek
groups of genes that are correlated with each other and with the outcome; in the
case of genome-wide association data, we seek a single causative SNP or set of
interacting SNPS that affect disease risk.

In practice, the LPC method can be used in two ways. The easiest approach,
which is discussed throughout most of the paper, is to apply it to simple T scores.
As shown here, the resulting scores can result in lower FDR than much more com-
plicated scores, such as ODP. Another possibility is that the LPC method can be
applied directly to more complicated scores such as ODP. (This was done in Fig-
ure 4.) This can lead to even greater decreases in FDR than simply applying LPC
to T , and is an attractive option in situations where there is no need to explain the
gene scores to a nonstatistical audience. Though LPC outperforms T on the sim-
ulated and real data examples that are shown here, it does not always provide an
improvement over T . For microarray data, we recommend the use of LPC instead
of a competing method whenever its predictive advantage, relative to the compet-
ing method, is positive.

An R software package will be made available.

APPENDIX A: SELECTION OF THE SHRINKAGE PARAMETER

The LPC method involves a tuning parameter, λ. We choose the value of λ via
cross-validation, as follows:

Selection of λ:

1. Compute V, the matrix of eigenarrays of X.
2. Split the observations into a training set and a test set.
3. For a range of values of λ:

(a) Compute Lλ,train, which are similar to the LPC scores described in the LPC
Algorithm, except that the matrix V on which the Ttrain scores are regressed
is taken from Step 1 above. In other words, we regress the training set T

scores onto the eigenarrays for the entire data set.
(b) Compute the average |Ttest| of the 50 genes with the highest |Lλ,train|

scores.
4. Repeat steps 2 and 3 ten times, recording the average |Ttest| scores obtained in

step 3(b).
5. Choose the value of λ that results in the highest average |Ttest| of the 50 genes

with the highest |Lλ,train| scores.

We regress the training set T scores onto the eigenarrays of the full data set,
rather than onto the eigenarrays of the training data set, for two reasons. First



1004 D. M. WITTEN AND R. TIBSHIRANI

of all, this leads to a much faster algorithm, as it means that we are required to
compute the SVD only once, for the full data set, rather than once for each of the
10 training sets that we produce. In addition, if we were to regress the test set T

scores onto the eigenarrays for the training set, we would not be guaranteed that
those eigenarrays resemble those of the full data set. Therefore, it would not be
clear that the optimal parameter value for the split data sets is also best for the full
data set. Note that we are not over-fitting the data by using the eigenarrays for the
full data set, since computing the eigenarrays does not involve the test set y values.

Our method of choosing λ is closely related to the concept of predictive advan-
tage, presented in Section 3.2. It is worth noting that in most of our simulations,
LPC’s performance was not very sensitive to the choice of λ: for a wide range of λ

values, LPC outperformed T by a comfortable margin.

APPENDIX B: LPC FOR A MULTIPLE-CLASS RESPONSE

In the case of a multiple-class outcome with K classes, we compute LPC scores
in a slightly different fashion from the method described in the main text:

LPC Algorithm for Multiple-Class Outcome:

1. Compute the contrast Skj for each class k (which we will call Ck) and for each

gene j : Skj = X̄Ckj−X̄j

sj
, where sj is the standard deviation for gene j . Sk de-

notes the vector of contrasts for class k.
2. Compute v1, . . . ,vn, the eigenarrays of X, where the vi ’s are the columns of

the matrix V in the singular value decomposition (SVD) of X, X = UDVT .
3. For some value of the parameter λ, fit the model Sk = β0 + ∑n

i=1 βivi , where
the vector β with components βi is chosen to minimize the quantity (Sk −β0 −
Vβ)T (Sk − β0 − Vβ) + λ

∑n
i=1 |βi |.

4. Let Ŝkj denote the fitted values obtained by the above model for class k and
gene j . The LPC score for gene j is

∑K
k=1 Ŝ2

kj .

Note that the two-class case really is a special case of the multiple-class case
with K = 2, where the LPC score for gene j is given by Ŝ1j .

APPENDIX C: ESTIMATION OF FALSE DISCOVERY RATE FOR LPC

C.1. The problem of functionally dependent statistics. Estimation of the
false discovery rate for the LPC procedure is surprisingly difficult. In studying this
issue, we learned a more general fact about FDR estimation, which we discuss
here. This issue is also addressed in Getz et al. (2007).

False discovery rates are often estimated by permutations, which are simulated
from a null distribution. This is done, for example, in the SAM procedure [Tusher,
Tibshirani and Chu (2001)]. It turns out that the validity of this procedure relies on
the fact that the statistic for gene j is a function of only the data for gene j . This is
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TABLE 2
Possible outcomes from a multiple testing problem

Predicted

Null Nonnull

True Null A B
Nonnull C D

violated for the LPC score, which is functionally dependent on all of the data for
all of the genes.

Consider the usual testing scenario, with outcomes given in Table 2. The FDR
is defined as E(B/(B + D)). This expectation is taken with respect to the popu-
lation of genes, which are null and nonnull; it is not taken with respect to a null
distribution.

Now, null simulations try to estimate the FDR by simulating data from the top
row of this table, counting the average number of false positives B∗, and then using
the approximation F̂DR = (ave #B∗)/(B +D). This assumes that E(B) ≈ Enull(B)

(the expectation under the null). This is true for statistics that are functions of just
one gene, but is not true for functionally dependent statistics. In the latter case,
the interplay between null and nonnull genes creates a large bias in Enull(B) as an
estimate of E(B).

Figure 2 in the Supplementary Materials [Witten and Tibshirani (2008)] shows
a simple example with p-values. We generated 1000 p-values with a U [0,1] dis-
tribution and then set the first 50 to 10−6. These are shown in the top left panel:
the spike on the left are the nonnull p-values. We generated 1000 new p-values
from U [0,1], shown in the top right panel. As we expect, their distribution looks
like that of the null p-values in the top left. For illustration, we chose a cutoff
of t0 = 0.054, the 10% point of the histogram in the top left panel. Hence, 100
p-values in the top left panel are less than 0.054. We simulated 200 versions of the
top right panel, and the average number of p-values that were below t0 was 54.4.
Hence, the estimated FDR is 54.4/100 = 0.544. The true FDR is 50%, since only
one-half of these genes are nonnull. As we expect, the estimated FDR is close to
the actual FDR.

As an illustration, suppose that we instead use a simple transformation of the
p-value,

CaMPj = − log10(npj/qj ),(C.1)

where qj is the rank of the pj among all of the p-values. This score was used in
Sjoblom et al. (2006): it has some appeal from an interpretability viewpoint, but
also creates a functional dependence between the p-values. The bottom two panels
of the figure show what happens when we repeat the exercise with CaMPj instead
of pj . (Note that large values of CaMPj indicate significance.) The histogram in
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the bottom right is shifted to the left compared to that for the null CaMP scores
in the bottom left panel. Using a 90% cutoff of 0.236 for the CaMP score, the
estimated FDR is 0.017, far less than the actual FDR of 50%.

What has happened? The CaMP scores for the null genes behave differently
depending on whether or not there are nonnull scores in the data, because the
scores are functionally dependent. The presence of nonnull scores in the bottom
left panel tends to inflate the scores for the null genes.

This same phenomenon occurs if we use permutations to estimate the null dis-
tribution for an arbitrary statistic that is a function of multiple genes. If the per-
mutation approach is used, the bias in the estimate of the FDR can result in over-
estimation or under-estimation of the true FDR. The LPC statistic is a functionally
dependent statistic, since the data for all genes is used to estimate the principal
components. Therefore, the permutation approach is not suitable for the estima-
tion of the FDR for LPC.

C.2. Estimating FDR via predictive advantage. The FDR of T can be eas-
ily estimated via permutations. Therefore, it makes sense to try to assess the FDR
of the LPC statistic relative to the FDR of T . We take that approach in this section.

It makes sense intuitively that an estimator with higher predictive advan-
tage (3.1) will also tend to have lower FDR. In this section we show that under
a simple shift model, the FDR of a statistic is lower than that of T if the statistic
has higher predictive advantage. Second, we derive an estimate of the FDR of LPC
based on an adjustment of the FDR of T . These results hold for any functionally
dependent statistic, not just the LPC score.

We use the same notation as in previous sections. Let Tj be the T score for
gene j on the training set, and Lj the LPC score for gene j on the training set.
On the test set, the T score for gene j is denoted Tj

∗. Let c1(α) and c2(α) denote
the α quantiles of Tj and Lj . Also, let Tj = uj +zj and Tj

∗ = uj +zj
∗, where uj ,

zj and zj
∗ are independent, uj = 0 if gene j is null, and zj and zj

∗ are identically
distributed.

We wish to show that

P
(
Tj

∗ > c|Lj > c2(α)
)
> P

(
Tj

∗ > c|Tj > c1(α)
)

(C.2)

implies

P
(
uj = 0|Lj > c2(α)

)
< P

(
uj = 0|Tj > c1(α)

)
.(C.3)

Now,

P
(
Tj

∗ > c|Lj > c2(α)
)

= P
(
Tj

∗ > c|Lj > c2(α), uj = 0
)
P

(
uj = 0|Lj > c2(α)

)

+ P
(
Tj

∗ > c|Lj > c2(α), uj 
= 0
)
P

(
uj 
= 0|Lj > c2(α)

)
(C.4)

= P
(
Tj

∗ > c|Lj > c2(α), uj = 0
)
P

(
uj = 0|Lj > c2(α)

)

+ P
(
Tj

∗ > c|Lj > c2(α), uj 
= 0
)[

1 − P
(
uj = 0|Lj > c2(α)

)]
.
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So,

P
(
uj = 0|Lj > c2(α)

)
(C.5)

= P(Tj
∗ > c|Lj > c2(α), uj 
= 0) − P(Tj

∗ > c|Lj > c2(α))

P (Tj
∗ > c|Lj > c2(α), uj 
= 0) − P(Tj

∗ > c|Lj > c2(α), uj = 0)
.

Now, we make the additional assumption that uj = 1 if a gene is nonnull (recall
that we have already assumed that uj = 0 if a gene is null). It follows that

P
(
uj = 0|Lj > c2(α)

) = P(Tj
∗ > c|uj = 1) − P(Tj

∗ > c|Lj > c2(α))

P (Tj
∗ > c|uj = 1) − P(Tj

∗ > c|uj = 0)
.(C.6)

Similarly, we can expand P(Tj
∗ > c|Tj > c1(α)) to find that

P
(
uj = 0|Tj > c1(α)

) = P(Tj
∗ > c|uj = 1) − P(Tj

∗ > c|Tj > c1(α))

P (Tj
∗ > c|uj = 1) − P(Tj

∗ > c|uj = 0)
.(C.7)

Note that (C.6) and (C.7) have the same denominator, which is positive. And,
from (C.2), we know that the numerator of (C.6) is less than the numerator of (C.7)
(and the numerators are positive). So, (C.7) is greater than (C.6); in other words,

P
(
uj = 0|Tj > c1(α)

)
> P

(
uj = 0|Lj > c2(α)

)
.(C.8)

So, the FDR of LPC is bounded above by the FDR of T . This result assumes
that there is only one parameter value in the alternative space, and does not exactly
hold in the composite case.

To estimate the FDR, we use (C.6) and (C.7). We approximate the difference in
FDRs by

P
(
uj = 0|Tj > c1(α)

) − P
(
uj = 0|Lj > c2(α)

)
(C.9)

= (1 − π0) · P(T ∗
j > c|Lj > c2(α)) − P(T ∗

j > c|Tj > c1(α))

P (T ∗
j > c) − P(T ∗

j > c|uj = 0)
,

where π0 is the proportion of genes in the data set that are not significant.
We deal with c in the computations by using the relation E(X) = ∫ ∞

0 (1 −
F(x)) dx for a positive random variable. Hence, we average the quantities on the
right-hand side (e.g., T ∗

j ).
Figure 3 in the Supplementary Materials [Witten and Tibshirani (2008)] shows

the estimated FDRs for LPC and T for Simulations 1, 2, and 3 with a quantitative
response variable. The estimate of FDR for LPC [using (C.9)] is pretty accurate.
We have found that it behaves fairly well in general, and it tends to err in the
conservative direction.



1008 D. M. WITTEN AND R. TIBSHIRANI

APPENDIX D: AN UNDERLYING LATENT VARIABLE MODEL

D.1. Model and results. Assume that the data are generated under the fol-
lowing model, in which the response y is quantitative:

yi = β0 + β1ui1 + εi,

Xij = α0j + c1α1jui1 + c2α2jui2 + zij ,(D.1)

E(εi) = E(zij ) = E(εizij ) = 0,

where P denotes the set of important genes, and α1j = 0 if j /∈ P , α1j 
= 0 if j ∈ P .
Let u1 = (u11 · · ·un1)

T and u2 = (u12 · · ·un2)
T be orthonormal with mean zero.

Similarly, let α1 = (α11 · · ·α1p)T and α2 = (α21 · · ·α2p)T be orthonormal with
mean zero. Assume that y has been centered to have mean zero so that β0 = 0,
and that the genes are centered, so that α0j = 0. Also, assume that the zij are
independent and identically distributed for all i ∈ 1, . . . , n and j ∈ 1, . . . , p, and
that the εi are independent and identically distributed for all i ∈ 1, . . . , n.

First, we consider simplified T scores that take the form Tj = XT
j y for gene j

(these simplified scores are equivalent to the usual T scores one would obtain if
one first scaled the columns of X appropriately). Then,

E(Tj ) = E(XT
j y)

=
n∑

i=1

E
(
(c1α1jui1 + c2α2jui2 + zij )(β1ui1 + εi)

)
(D.2)

= c1α1jβ1,

because E(zij ) = E(εi) = E(zij εi) = 0, and u1 and u2 are orthonormal with mean
zero.

Now, suppose that we ignore the error associated with estimation of the prin-
cipal components, so that we estimate some eigenarray v of the data matrix X to
equal α1 = (α11 · · ·α1p)T from the underlying model. We can regress XT y onto
v = (v1 · · ·vp) in order to obtain LPC scores:

T̂ = 〈XT y,v〉v,(D.3)

where 〈·, ·〉 denotes inner product, and T̂ = (T̂1 · · · T̂p)T . We want the expectation
of T̂j :

E(T̂j ) = E(vj 〈XT y,v〉) = α1j c1β1α
T
1 α1 = α1j c1β1 = E(Tj ).(D.4)

Now, to find the variance of T̂j ,

Var(T̂j ) = Var(vj 〈XT y,v〉)
= α2

1j Var(α1
T XT y)

(D.5)
= α2

1jα
T
1 Var(XT y)α1

= α2
1jα

T
1 Var(T)α1.
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Now,

Var(T) = (c2
1α1α

T
1 + c2

2α2α
T
2 )Var(εi) + Ip×p

(
β2

1 Var(zij ) + Var(zT
j ε)

)
(D.6)

and so

Var(T̂j ) = c2
1α

2
1j Var(εi) + α2

1jβ
2
1 Var(zij ) + α2

1j Var(zT
j ε),

Var(Tj ) = (c2
1α

2
1j + c2

2α
2
2j )Var(εi) + β2

1 Var(zij ) + Var(zT
j ε),(D.7)

Var(Tj ) − Var(T̂j ) = c2
2α

2
2j Var(εi) + (1 − α2

1j )[β2
1 Var(zij ) + Var(zT

j ε)].
Therefore, using T̂j rather than XT

j y to rank the significant genes results in a
decrease in variance (note that we have assumed that v = α1; we are ignoring
the variance associated with the estimation of the eigenarrays). Equation (D.4)
indicates that the LPC scores and the T scores have the same expectation.

In this example, only one latent factor (u1) is related to the response. As pointed
out by a reviewer, the argument does not extend exactly to the case of multiple
latent factors.

Details of the calculations performed in this section can be found in the Supple-
mentary Materials [Witten and Tibshirani (2008)].

D.2. Relation to surrogate variable analysis. In a recent paper Leek and
Storey (2007) present surrogate variable analysis (SVA), a novel method that in-
corporates sources of expression heterogeneity into microarray data analysis in
order to increase power and mitigate spurious signals in genes that are unrelated to
outcome. An editor noted that there are similarities between SVA and LPC. While
both methods involve using the singular value decomposition in order to identify
structure in the data shared by the response and the gene expression measurements,
they have different effects.

Consider, as an example, the result of applying SVA to the data generated under
our latent variable model (Appendix D.1). We use the same notation as in that
section. SVA first detects “unmodeled factors” in the gene expression data that are
not explained by the model

Xij = μj + fj (yi) + εij .(D.8)

Let us assume that SVA is able to correctly identify the u2 term as a source of
expression heterogeneity unrelated to the outcome. Then, in subsequent analysis,
Leek and Storey (2007) suggest the use of the modified data

X∗
j = Xj − c2α2j u2,(D.9)

which is what remains after removing the surrogate variable that we estimated.
The conventional scores using the modified data (call them T ∗) will take the form

T ∗
j = X∗

j
T y

= (Xj − c2α2j u2)
T (β1u1 + ε)(D.10)

= (c1α1j u1 + zj )
T (β1u1 + ε).
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It is clear that E(T ∗
j ) = E(Tj ). As a consequence of our assumption that we were

able to successfully identify the surrogate variable u2, it follows that Var(T ∗
j ) =

c2
1α

2
1j Var(εi) + β2

1 Var(zij ) + Var(zT
j ε) < Var(Tj ). So, under our model, SVA has

successfully reduced the variance of the T scores.
However, at this point, the SVA scores T ∗ can be regressed onto the eigenarrays

of the original data, as in the LPC method, in order to obtain a reduction in variance
as in Section D.1. In fact, by the argument in the previous section, the variance of
LPC applied to T ∗ is the same as that of LPC applied to T (and is less than the
variance of T ∗). Therefore, in this example, LPC provides benefits in variance
reduction that are beyond those given by SVA. In general, the LPC method can
be applied on top of gene scores obtained after expression heterogeneity has been
removed using SVA.

APPENDIX E: SIMULATION DETAILS

E.1. Description of simulations. Here, we describe in greater details the sim-
ulations used in Section 3.1.

Our first simulation represents the simplest case: all of the signal in the data is
associated with the outcome.

Simulation 1: Simple Case

1. In observations 1–20, yi ∼ N(6,1), and in observations 21–40, yi ∼ N(5,1).
2. In observations 1–20, Xij ∼ N(2,1) for j ≤ 50. Otherwise (for i > 20 and for

j > 50), Xij ∼ N(0,1).

In our second simulation the significant genes have less signal than large blocks
of genes that are unrelated to the outcome.

Simulation 2: Blocks of Noise Genes

1. In observations 1–20, yi ∼ N(12.5,1), and in observations 21–40, yi ∼
N(10,1).

2. In observations 1–20 and in genes 1–50, Xij ∼ N(1.5,1).
3. For all other i, j , we let Xij ∼ N(0,1), with the following exception: there are

three blocks of 100 genes each that are distributed N(2,1) or N(−2,1) in 10
observations; these three blocks of genes are orthogonal to the signal present in
the outcome and in the first 50 genes.

The blocks of noise genes represent groups of genes with strong expression
patterns that are unrelated to the outcome of interest.

In our final simulation there are two sets of 25 significant genes that have or-
thogonal expression patterns. The quantitative outcome is the sum of the expres-
sion patterns in the two sets of significant genes.
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Simulation 3: Two Sets of Orthogonal Significant Genes

1. For observations 1–10, yi ∼ N(10,1); for observations 11–30, yi ∼ N(11,1),
and for observations 31–40, yi ∼ N(12,1).

2. For genes 1–25, Xij ∼ N(0,1) for observations 1–20 and Xij ∼ N(2,1) for
observations 21–40.

3. For genes 26–50, Xij ∼ N(0,1) for observations 1–10 and 21–30. For obser-
vations 11–20 and 31–40, Xij ∼ N(2,1).

4. For genes 51–1000, Xij ∼ N(0,1).

Heatmaps for each simulation can be seen in Figure 4 in the Supplementary
Materials [Witten and Tibshirani (2008)]. The simulations described above have a
quantitative outcome; two-class outcomes are obtained using an indicator variable
for whether the outcome for a given observation is greater than or less than the
median outcome across all observations.
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cussions of the false discovery rate issues, and Trevor Hastie, Gen Nowak, two
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SUPPLEMENTARY MATERIAL

Supplementary materials: Testing significance of features by lassoed prin-
cipal components (DOI: 10.1214/08-AOAS182SUPP; .pdf). R code for simula-
tions, details of variance derivations for latent variable model and supporting fig-
ures.
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