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AIC is commonly used for model selection but the precise value of AIC
has no direct interpretation. We are interested in quantifying a difference of
risks between two models. This may be useful for both an explanatory point
of view or for prediction, where a simpler model may be preferred if it does
nearly as well as a more complex model. The difference of risks can be in-
terpreted by linking the risks with relative errors in the computation of prob-
abilities and looking at the values obtained for simple models. A scale of
values going from negligible to large is proposed. We propose a normaliza-
tion of a difference of Akaike criteria for estimating the difference of ex-
pected Kullback–Leibler risks between maximum likelihood estimators of
the distribution in two different models. The variability of this statistic can be
estimated. Thus, an interval can be constructed which contains the true dif-
ference of expected Kullback–Leibler risks with a pre-specified probability.
A simulation study shows that the method works and it is illustrated on two
examples. The first is a study of the relationship between body-mass index
and depression in elderly people. The second is the choice between models
of HIV dynamics, where one model makes the distinction between activated
CD4+ T lymphocytes and the other does not.

1. Introduction. Since its proposal by Akaike (1973), Akaike information
criterion (AIC) has had a huge impact on so-called “model choice,” in particular,
in the application of statistical methods; see the presentation of deLeuwe (1992). It
is often used in its original simple form, precisely because of its simplicity. Many
variants of the criterion have been proposed. We may cite, in particular, the EIC
[Konishi and Kitagawa (1996), Shibata (1997)], which makes use of the bootstrap,
extended to the choice of semi-parametric estimators by Liquet, Sakarovitch and
Commenges (2003). Other criteria have been proposed, such as the BIC [Schwarz
(1978)] or approaches based on complexity [Bozdogan (2000)]. AIC is commonly
used to select the “best” model on the basis of a sample and it is often forgotten that
it is a statistic and as such has a distribution [see Burnham and Anderson (2002)
and Shimodaira (2001)]. When the goal is prediction or estimating a parameter
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which may be common to several models, the model averaging approach [Hoeting
et al. (1999), Hjort and Claesken (2003), Shen and Huang (2006)] may be used.

One problem with AIC is that its value has no intrinsic meaning; in particular,
AIC is not invariant to a one-to-one transformation of the random variables and
values of AIC depend on the number of observations. Investigators commonly
display big numbers, only the last digits of which are used to decide which is the
smallest. If the specific structure of the models is of interest, because it tells us
something about the explanation of the observed phenomena, it may be interesting
to measure how far from the truth each model is. This may not be possible, but we
can quantify the difference of risks between two models. It may also be useful in
prediction problems where we may prefer a simpler model, not only on statistical
grounds but because of its very simplicity, if the increase of risk incurred by using
it is not too large. Of course, estimating the difference of risks will be informative
only if we have an idea of what a large or a small difference is.

We show that a normalized difference of AIC is an estimate of a difference of
Kullback–Leibler risks. The distribution of this statistic can be estimated using the
results of Vuong (1989) for nonnested models and results of Wald (1943) for the
case of nested models. We give some examples of values of such differences to
help develop an intuition of what a large or a small difference is.

In Section 2 we present two examples. One is the comparison of a linear and
a nonlinear effect of body-mass index (BMI) on depression using data from the
Paquid study; the other is the comparison of two models of interaction between
HIV and the immune system. In Section 3 we present the relevant Kullback–
Leibler risk and we show that the normalized difference of AIC is an estimate
of the difference of risks; moreover, we propose a so-called “tracking interval”
which should contain the difference of risks with a given probability; we also give
insight in the interpretation of the differences of risks. Section 4 presents a simu-
lation study in the framework of the logistic regression, which makes it possible to
assess the properties of the proposed tracking interval. In Section 5 we present an
illustration on real data in the two examples.

2. Motivating examples.

2.1. Comparison of linear and nonlinear effect models of BMI on depression.
Our first example bears on the comparison of possible models of association of
depression and body-mass index (BMI) in elderly people, using the data of the
Paquid study [Letenneur et al. (1999)]. We aim at assessing quantitatively the dif-
ference between estimators based on different models.

As is conventional, depression was considered as a binary trait coded by a di-
chotomized version of the CESD (using the thresholds 17 and 23 for men and
women, resp.). The question here is to see whether there is a linear effect or if
there is an optimal BMI, as far as depression is concerned. This problem is treated
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in the logistic regression framework. The simplicity of the problem makes it pos-
sible to design a simulation study which looks like this real data problem.

We worked with the sample of the first visit of the Paquid study and we excluded
the subjects who were diagnosed demented at that visit: the sample size was 3484.
We fitted logistic regression models for explaining depression from BMI, age and
gender. We entered age, gender and their interaction as explanatory variables. As
for BMI which was the factor of main interest, we tried a linear (in the logistic
scale) model and then we challenged the linear model by trying a categorization of
BMI in terciles and a quadratic model. Specifically, it is interesting to see, if there
is an effect of BMI, whether there is a linear trend or there is an optimal region
of values of the BMI (as far as depression is concerned). We also tried a more
complex model involving simple powers of weight and height.

2.2. Comparison of two models of interaction between HIV and the immune
system. Models of the interaction between HIV and the immune system have had
a high impact on the research in the pathology induced by HIV [Ho et al. (1995),
Perelson et al. (1996)]. These models are based on ODE systems reflecting the
mechanisms of infection of CD4+ T Lymphocytes (called CD4 for short) and the
production of viruses by infected cells. A possible model, denoted M1, is graphi-
cally represented in Figure 1(a); see the Appendix for the description of the system
of ordinary differential equations (ODE). Rather than making a patient-by-patient
analysis, random effect models [Putter et al. (2002)] make it possible to analyze

FIG. 1. Graphical representation of HIV dynamics models: (a) model M1 including uninfected (T̄ )
and infected (T ∗) CD4+ T lymphocytes, and HIV viruses (V ); (b) model M2 including uninfected
quiescent (Q), uninfected activated (T ), infected (T ∗) CD4+ T lymphocytes, and HIV viruses (V ).
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a sample of subjects, thus yielding more precise estimates of the parameters. The
statistical estimation in these models is challenging because (i) the ODE systems
have no analytical solution; (ii) computation of the likelihood involves numerical
multiple integrals.

It may be useful to distinguish between quiescent and activated CD4 because
it seems that only activated CD4 can be infected [De Boer and Perelson (1998)].
Guedj, Commenges and Thiébaut (2007) analyzed such a model, denoted M2,
represented in Figure 1(b); see the Appendix for details. However, this model is
more complex and therefore numerically more challenging. Moreover, only the
total number of CD4 is measured. So one may wonder whether the possible gain
obtained with this model is worth the additional complexity. One way to study it is
to estimate the difference of Kullback–Leibler risks between the two models. Bortz
and Nelson (2006) used an information complexity criterion and AIC to select
between HIV dynamics models but could not quantitatively assess the difference
between models. We will attempt to estimate the difference of Kullback–Leibler
risks between M1 and M2 using data of a clinical trial.

3. Theory about inference of differences of AIC criteria.

3.1. Estimating a difference of Kullback–Leibler divergences. Consider a
sample of independently identically distributed (i.i.d.) random variables Ȳn =
(Yi, i = 1, . . . , n) having probability density function (pdf) f = f (·). Let us con-
sider two models: (g) = (gβ(·))β∈B,B ⊂ �p and (h) = (hγ (·))γ∈�,� ⊂ �q .

DEFINITION 1. (i) (g) and (h) are nonoverlapping if (g)∩ (h) = ∅; (ii) (g) is
nested in (h) if (g) ⊂ (h); (iii) (g) is well specified if there is a value β∗ ∈ B such
that gβ∗ = f ; otherwise it is misspecified.

The log-likelihood loss of gβ relatively to f for observation Y is log f (Y )

gβ(Y )
.

The expectation of this loss under f , or risk, is the Kullback–Leibler diver-
gence [Kullback (1968)] between gβ and f : KL(gβ, f ) = Ef [log f (Y )

gβ(Y )
]. We have

KL(gβ, f ) ≥ 0 and KL(gβ, f ) = 0 implies that gβ = f , that is, β = β∗. The
Kullback–Leibler divergence is often intuitively interpreted as a distance between
the two pdf (or, more generally, between the two probability measures), but this
is not mathematically a distance; in particular, the Kullback–Leibler divergence is
not symmetric. It may be felt that this is a drawback, and, in particular, it makes
any graphical representation perilous. However, this feature may also have a deep
meaning in our particular problem: there is no symmetry between f , the true pdf,
and gβ , a possible pdf. So we shall take on the fact that the Kullback–Leibler di-
vergence is an expected loss (with respect to f ) and not a distance. We assume that
there is a value β0 ∈ B which minimizes KL(gβ, f ). If the model is well specified
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β0 = β∗; if the model is misspecified, KL(gβ0, f ) > 0. The MLE β̂n is a consistent
estimator of β0.

We shall say that (g) is closer to f than (h) [avoiding to qualify (g) as “better”
which may be misleading in this context] if KL(gβ0, f ) < KL(hγ0, f ). We have
KL(gβ, f ) = Ef [logf (Y )] − Ef [loggβ(Y )]. We cannot estimate KL(gβ0, f ) be-
cause the entropy of f , H(f ) = Ef [logf (Y )], cannot be correctly estimated.
However, we can estimate the difference of risks �(gβ0, hγ0) = KL(gβ0, f ) −
KL(hγ0, f ), a quantitative measure of the difference of misspecification by

−n−1(L
gβ̂n

Ȳn
− Lhγ̂n

Ȳn
).

This result may not be completely satisfactory in practice if n is not very large
because the distribution we will use is gβ̂n rather than gβ0 . Thus it is more relevant
to consider the risk Ef [log f (Y )

gβ̂n (Y )
] that we call the expected Kullback–Leibler risk

(or simply Kullback–Leibler risk) and that we denote by EKL(gβ̂n, f ). This is the
point of view introduced by Akaike (1973).

Akaike’s approach was revisited by Linhart and Zucchini (1986) who showed
that

EKL(gβ̂n, f ) = KL(gβ0, f ) + 1
2n−1 Tr(I−1

g Jg) + o(n−1),(1)

where Ig = −Ef [ ∂2 loggβ(Y )

∂β2 |β0] and Jg = Ef {[ ∂ loggβ(Y )
∂β

|β0][ ∂ loggβ(Y )
∂β

|β0]T }. This

can be nicely interpreted by saying that the risk EKL(gβ̂n, f ) is the sum of the
misspecification risk KL(gβ0, f ) plus the statistical risk 1

2n−1 Tr(I−1
g Jg). Note in

passing that if (g) is well specified, we have KL(gβ0, f ) = 0 and Ig = Jg , and

thus, EKL(gβ̂n, f ) = p
2n

+ o(n−1).
We also have

EKL(gβ̂n, f ) = −Ef (n−1L
gβ̂n

Ȳn
) + H(f ) + 1

n
Tr(I−1

g Jg) + op(n−1).(2)

Here we have essentially estimated Ef [loggβ0(Y )] by Ef [n−1Lgβ̂n ] but because
of the overestimation bias, the factor 1

2 in the last term disappears; thus the term
1
n

Tr(I−1
g Jg) is the sum of two equal terms, the statistical error and the estima-

tion bias of the misspecification risk [of course, the misspecification risk is es-

timated up to the constant H(f )]. Akaike criterion [AIC(gβ̂n) = −2L
gβ̂n

Ȳn
+ 2p]

follows from (2) by multiplying by 2n, deleting the constant term H(f ) replacing

Ef (n−1L
gβ̂n

Ȳn
) by n−1L

gβ̂n

Ȳn
and replacing Tr(I−1

g Jg) by p.

What we really want to estimate is �(gβ̂n, hγ̂n) = EKL(gβ̂n, f )−EKL(hγ̂n, f ).
Using (2), we obtain

Ef

{−n−1{Lgβ̂n

Ȳn
− Lhγ̂n

Ȳn
− [Tr(I−1

g Jg) − Tr(I−1
h Jh)]}} = �(gβ̂n, hγ̂n) + op(n−1).
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Using the Akaike approximation Tr(I−1
g Jg) ≈ p, we obtain a simple estimator of

�(gβ̂n, hγ̂n):

D(gβ̂n, hγ̂n) = 1
2n−1[AIC(gβ̂n) − AIC(hγ̂n)]

(3)

= −n−1[Lgβ̂n

Ȳn
− Lhγ̂n

Ȳn
− (p − q)].

Ef [D(gβ̂n, hγ̂n) − �(gβ̂n, hγ̂n)] is an o(n−1). Thus, in contrast with AIC, D(gβ̂n,

hγ̂n) has an interpretation since its expectation tracks the quantity of main inter-
est �(gβ̂n, hγ̂n) with pretty good accuracy. Moreover, it has important invariance
properties.

LEMMA 1 (Invariance properties). Both �(gβ̂n, hγ̂n) and D(gβ̂n, hγ̂n) are in-
variant under re-parametrization, one-to-one transformation of the observed vari-
ables and change of the reference probability.

The proof is straightforward. It can be noted that AIC itself is invariant under
re-parametrization, but neither under one-to-one transformation of the observed
variables nor change of the reference probability.

3.2. Tracking interval for a difference of Kullback–Leibler divergences. We
propose a “tracking interval” for �(gβ̂n, hγ̂n). This is not a usual confidence
interval because �(gβ̂n, hγ̂n) changes with n. Although it converges toward
�(gβ0, hγ0), we wish to approach �(gβ̂n, hγ̂n) for values of n for which the Akaike
correction is not negligible.

We focus on the case where gβ0 	= hγ0 . Using Theorem 3.3 of Vuong (1989),
which is valid under conditions clearly stated by this author, we obtain that in that
case

n1/2[D(gβ̂n, hγ̂n) − �(gβ̂n, hγ̂n)] D−→ N (0,ω2∗),(4)

where ω2∗ = var[log gβ0 (Y )
hγ0 (Y )

]. A natural estimator of ω2∗ is

ω̂2
n = n−1

n∑
i=1

[
log

gβ̂n(Yi)

hγ̂n(Yi)

]2

−
[
n−1

n∑
i=1

log
gβ̂n(Yi)

hγ̂n(Yi)

]2

.

From this we can compute the tracking interval (An,Bn), where An =
D(gβ̂n, hγ̂n) − zα/2n

−1/2ω̂n and Bn = D(gβ̂n, hγ̂n) + zα/2n
−1/2ω̂n, where 1 −

	(zα/2) = α/2 and 	 is the cdf of the standard normal variable. This interval
has the property

Pf [An < �(gβ̂n, hγ̂n) < Bn] −→ 1 − α,
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where Pf represents the probability with density f . The assumption gβ0 	= hγ0 is
necessarily the case if the models do not overlap and may also be often the case
even if the models overlap or are nested. However, in the latter case the conver-
gence toward the normal may be slow and it is desirable to construct confidence
and tracking intervals compatible with the likelihood ratio test.

3.3. The case of nested models. In the case of nested models (g) ⊂ (h) the
likelihood ratio test is often used to test whether the true distribution f is in (g).
It can be used in the more general case where (h) [and hence (g)] is misspecified.
In that case the null hypothesis H0 that can be tested by the likelihood ratio test
is gβ0 = hγ0 ; that is, the closest distribution to f in (h) is in (g). Let us define

LR = L
gβ̂n

Ȳn
− Lhγ̂n

Ȳn
. The asymptotic distribution of 2LR under the null hypothesis

is chi-square with q − p degrees of freedom. If H0 is true, we have KL(gβ0, f ) =
KL(hγ0, f ) and we deduce from (1) that �(gβ̂n, hγ̂n) ≈ p−q

2n
< 0. Thus, if H0 is

true, the risk of gβ̂n is always lower than that of hγ̂n , so we should work with (g).
If, however, H0 is not true, we have KL(hγ0) < KL(gβ0) so that

�(gβ̂n, hγ̂n) >
p − q

2n
.(5)

Since p−q
2n

is negative, it is possible, if the difference of misspecification risks
is small enough, that the risk incurred with (g) is smaller than that incurred
with (h). Also, if H0 is not true, the LR statistic has a completely differ-
ent asymptotic distribution than when H0 is true. This is a normal rather
than a chi-square distribution, and even more important, there is a scaling
factor n−1/2 [see (4)], showing that the LR statistic is an Op(n1/2) and no
longer an Op(1). A practical question arises: is there a transition between
two so different distributions? When H0 is not true but we are not far from
it, that is, |�(hγ0, gβ0)| is small, the convergence toward the normal may
be slow, so at finite distance we may be in between the chi-square and the
normal. In particular, we know that D > (p − q)/n; a normal distribution
giving nonnegligible probability to {D < (p − q)/n} would not be satisfac-
tory.

Wald (1943) [see also Kendall and Stuart (1973)] showed that, under the alter-
native hypothesis, the likelihood ratio statistic (−2LR) has approximately a non-
central chi-squared distribution with q − p degrees of freedom (dof). We adopt
this distribution and express the noncentrality parameter δ in term of �(gβ0, hγ0).
We deduce from (1) and (3) that E[−2LR] ≈ 2n�(gβ0, hγ0) + q − p. Since the
expectation of a noncentral chi-square with dof = q − p is δ + q − p, we ob-
tain δ ≈ 2n�(gβ0, hγ0). For �(gβ0, hγ0) = 0, we retrieve the χ2

q−p distribution for
the classical test of the null hypothesis using the likelihood ratio statistic. This
distribution is also compatible with the asymptotic normal distribution given by
Vuong (1989). Indeed, for fixed �(gβ0, hγ0), we have δ → ∞ when n → ∞, and
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we know that the noncentral chi-squared distribution tends to normal when δ → ∞
[Evans, Hastings and Peacock (1993)]. This also entails that, for fixed n, the nor-
mal approximation will be better for large �(gβ0, hγ0).

Now suppose that we wish to test “�(gβ0, hγ0) = �0.” We are in the ideal situa-
tion of simple hypothesis testing where we can apply the Neyman lemma. That is,
the rejection region of the test is formed by all the values having the lower values
of the density of the test statistic. Typically, the rejection region will be (c,∞)

[resp., (cinf, csup)] for small (resp., large) values of �0. The test can be inverted to
form a confidence interval for �(gβ0, hγ0): the 1−α confidence interval is formed
of all the values �0 which are not rejected by the test at level α. This confidence
interval is by definition compatible with the likelihood ratio test, since 0 will not
be in the interval if “�(gβ0, hγ0) = 0” has been rejected by the test (which pre-
cisely assumes a χ2

q−p distribution for �0 = 0). From this confidence interval for

�(gβ0, hγ0), say, (A′
n,B

′
n), we can deduce the tracking interval for �(gβ̂n, hγ̂n) by

subtracting to the bounds the additional statistical risk incurred with (h), that is,
(q −p)/(2n) :An = A′

n + (p −q)/2n; Bn = B ′
n + (p −q)/2n. It is not impossible

that An be negative, even if “�(gβ0, hγ0) = 0” has been rejected. Indeed, if we
reject H0 using the likelihood ratio test, we reject �(gβ̂n, hγ̂n) = p−q

2n
, but we do

not reject negative values of �(gβ̂n, hγ̂n) larger than p−q
2n

.
In practice, the computation of the intervals may be done by computing the

p-value for each value �0. Let f�0 and F�0 be the pdf and cdf of the noncen-
tral chi-squared distribution with q − p dof and noncentrality parameter 2n�0. If
f�0(x) > f�0(−2LR) for all x < −2LR, the p-value is simply 1 − F�0(−2LR).
This situation occurs for small values of dof and the noncentrality parameter. If
this is not the case, the rejection region includes an interval (0, cinf) so the p-value
is 1 − F�0(−2LR) + F�0(cinf), where f�0(cinf) = f�0(−2LR). In practice, it may
not be easy to find cinf unless a special program is available. We propose to look
at the quantile of (1 − F�0(−2LR))/2, say, qpv/2. If f�0(qpv/2) > f�0(−2LR)

we can take p-value = 1 − F�0(−2LR); if f�0(qpv/2) < f�0(−2LR), we take
p-value = 2(1 − F�0(−2LR)).

3.4. How to interpret a difference of Kullback–Leibler risks. It is important
to judge whether the values within the intervals correspond to large or small ex-
pected losses. The Kullback–Leibler risk takes values between 0 and +∞ but, in
practice, most of the risks or difference of risks that we encounter are lower than
1. To give an idea of how to interpret these values, we may relate them to rela-
tive errors made in evaluation of probabilities as in Commenges et al. (2007). We
will make errors by evaluating the probability of an event A using a distribution
g, Pg(A), rather than using the true distribution f , Pf (A). For instance, we may

evaluate the relative error re(Pg(A),Pf (A)) = Pf (A)−Pg(A)

Pf (A)
. Consider the typical

event on which Pf (A) will be under-evaluated, defined as A = {x :g(x) < f (x)}.
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To obtain a simple formula relating KL(g, f ) to the error on Pf (A), we consider
the particular case Pf (A) = 1/2 and g/f constant on A and AC . In that case we
easily find re(Pg(A),Pf (A)) = √

1 − e−2 KL(g,f ) ≈ √
2 KL(g, f ), the approxima-

tion being valid for a small KL value. For KL values of 10−4, 10−3, 10−2, 10−1

we find that re(Pg(A),Pf (A)) is equal to 0.014, 0.045, 0.14 and 0.44, errors that
we may qualify as “negligible,” “small,” “moderate” and “large,” respectively.

As already noted, we can give an interpretation of EKL from (1) as the sum
of the misspecification risk KL(gβ0, f ) and the estimation risk, approximated by
p/(2n). For a well specified model the risk is about p/(2n); for instance, it is 10−2

if p = 10 and n = 500, or if p = 1 and n = 50. The statistical risk associated to
the estimation of one parameter is negligible, small, moderate and large for n =
5000,500,50,5, respectively. The correspondence between the different scales is
summarized in Table 1. We may also measure on this scale the magnitude of the
Akaike correction of (p − q)/n.

As an example the KL divergence of a double exponential relative to a normal
distribution with same mean and variance is of order 10−1 what may be called a
“large” value. As another example we may compute the risk incurred when us-
ing a normal distribution of variance σ 2 when the true distribution has variance
one. It is easy to compute that the Kullback–Leibler risk is 1

2 [logσ 2 − 1 + 1
σ 2 ]:

this expression takes the value 0 for σ 2 = 1 and tends toward +∞ if σ 2 tends to-
ward +∞ or 0. The values obtained for σ 2 = 1.02;1.1;1.3;2 are, respectively,
= 0.0001;0.002;0.016;0.096, corresponding approximately to the negligible,
small, moderate and large levels. To approach a risk of 1, one has to take very large
values of σ 2: the risk is 0.65 for σ 2 = 4 and 0.91 for σ 2 = 16. Finally, we give the
correspondence between the KL divergence and the odds-ratio in a particular case
of a binary variable with Pf (Y = 1|X) = 1/2, while logit[Pg(Y = 1|X)] = βX,
X being itself a binary variable taking values 1 or −1 with probability 1/2. We
have KL(g, f ) = E{1/2 log[ 1/2

Pg(Y=1|X)
+ 1/2 log[ 1/2

Pg(Y=0|X)
}, where the expecta-

tion bears on X. After some algebra we find that KL(g, f ) = 1/2 log[1/2(1 +

TABLE 1
Order of magnitude of KL risks; the relative error is that for a typical underestimated event in a

standard case; the sample size is the size which gives the corresponding statistical risk for
estimating one parameter

Risk for estimation of one parameter
Qualification KL scale Relative error sample size

Large 10−1 0.44 5
Moderate 10−2 0.14 50
Small 10−3 0.045 500
Negligible 10−4 0.014 5000
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cosh(β))]. The values of the odds-ratio (OR= eβ ) giving negligible, small, mod-
erate and large divergences are 1.03;1.1;1.35;2.5, respectively. It is important
to realize that this correspondence depends on the joint distribution of both Y

and X; higher values of OR are associated to the same divergence levels for
Pf (Y = 1|X) 	= 1/2 or P(X = 1) 	= 1/2.

A question which arises is whether the Kullback–Leibler risks are comparable
when Y is multivariate and when Y is univariate. If we have n independent uni-
variate variables and we group them in vectors of size m, we obtain n′ = n/m

multivariate observations. To get the same estimator of the difference of risks be-
tween two models, we should divide by the n′m rather than by n′. Thus, in case of
multivariate data we propose to divide the difference of AIC by the total number
of measurements to get a value, that is, more comparable to a situation where the
variables are univariate.

3.5. Extension to regression models. All that has been said can be extended
to regression models (gY |X) = (g

β
Y |X(·|·))β∈B and (hY |X) = (h

γ
Y |X(·|·))γ∈� . This

can be done as in Vuong (1989) by directly defining the Kullback–Leibler di-
vergence in terms of conditional densities: KL(g

β
Y |X,fY |X) = Ef [log fY |X(Y |X)

g
β
Y |X(Y |X)

],
where the expectation is taken for the true distribution of the couple Y,X. How-
ever, this approach has the drawback of requiring a new definition of the Kullback–
Leibler divergence. The so-called reduced model approach [Commenges et al.
(2007)] is more satisfactory. Consider a sample of i.i.d. couples of variables
(Yi,Xi), i = 1, . . . , n, having joint pdf f , f (y, x) = fY |X(y|x)fX(x). Consider

the model (g) = (gβ(·, ·))β∈B such that gβ(y, x) = g
β
Y |X(y|x)fX(x); the model is

called “reduced” because fX(·) is assumed known. The Kullback–Leibler diver-
gence is

KL(gβ, f ) = Ef [logfY |X(Y |X)] − Ef [logg
β
Y |X(Y,X)],

that is, the term in fX(·) disappears (so that we do not need to know it in fact)
and we get the same definition as in Vuong (1989) using only the conventional
Kullback–Leibler divergence.

4. Simulation study.

4.1. Study of the tracking interval in a nonnested case. We performed a simu-
lation resembling the situation of the Depression-BMI application where we have
to choose between different logistic regression models. We considered i.i.d. sam-
ples of size n of triples (Yi, x

i
1, x

i
2), i = 1, . . . , n, from the following distribu-

tion (which plays the role of the true distribution f ). The conditional distribu-
tion of Yi given (xi

1, x
i
2) was logistic with logit[fY |X(1|xi

1, x
i
2)] = 0.5 + xi

1 + 2xi
2,

where fY |X(1|xi
1, x

i
2) = Pf (Yi = 1|xi

1, x
i
2); the marginal distributions of (xi

1, x
i
2)
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were bivariate normal with zero expectation and variance equal to the identity ma-
trix. We considered model (g) specified by logit[gβ

Y |X(1|xi
1, x

i
2)] = β0 + β1x

i
1 +

β2x
i
2, which was well specified and the (mis)specified model (h) defined as

logit[hγ
Y |X(1|xi

1, x
i
2)] = γ0 + ∑2

l=1 γlx
i
1l + γ3x

i
2, where xi

1l were dummy variables

indicating in which categories xi
1 fell; the categories were defined using terciles of

the observed distribution of x1, and this was represented by two dummy variables:
xi

11 indicating whether xi
1 fell in the first tercile or not, xi

12 indicating whether xi
1

fell in the second tercile or not.
Since model (g) is well specified, we know that gβ0 = f , that the misspeci-

fication error KL(gβ0, f ) is zero and that Tr(I−1
g Jg) = p. As for model (h), we

must compute the quantities of interest by simulation. We can compute that in
the logistic regression the l, k term of the matrix Jh is Ef [xl(Y − exγ0

1+exγ0 )2xk],
and that the l, k term of the matrix Ih is Ef [xl

exγ0

(1+exγ0 )2 xk]. We estimated γ0

by fitting model (h) on a simulated data set with n = 105. Our precise esti-
mate γ̌0 was thus γ̂n for n = 105. We used it to precisely estimate Jh and Ih as

Ǐh = 10−5 ∑105

i=1[xi
l

exi γ̌0

(1+exi γ̌0 )2
xi
k] and J̌h = 10−5 ∑105

i=1[xi
l (Yi − exi γ̌0

1+exi γ̌0
)2xi

k].
We estimated KL(hγ0, f ) by 10−5 ∑105

i=1 log
fY |X(Yi |xi

1,x
i
2)

h
γ̌0
Y |X(Yi |xi

1,x
i
2)

. We also computed a

precise estimate of ω2∗, ω̌2∗, by the empirical variance of log
fY |X(Yi |xi

1,x
i
2)

h
γ̌0
Y |X(Yi |xi

1,x
i
2)

computed

on 105 replicas. Thus, we can compute a precise estimate of EKL(hγ̂n, f ) and
EKL(gβ̂n, f ) by replacing the terms on the right-hand side of (1) by their estimates.
Because (g) is well specified, we obtain immediately EKL(gβ̂n, f ) ≈ 3

2n
; a precise

estimate of EKL(gβ̂n, f ) − EKL(hγ̂n, f ) is thus given by �̌ = 3
2n

− KL(hγ̌0, f ) −
1

2n
Tr(Ǐ−1

h J̌h). We find first that KL(hγ̌0, f ) ≈ 7.2810−3, a value approaching the

“moderate magnitude.” We found 3.998 and 3.999 for the values of Tr(Ǐ−1
h J̌h) for

n = 250 and n = 1000, respectively. These values are very close to q = 4 [that
would be obtained if (h) was well specified], so in the following we will use this
approximation. Using this approximation, we can compute �̌ = − 1

2n
−KL(hγ̌0, f )

and obtain �̌ = −9.2810−3 for n = 250 and �̌ = −7.7810−3 for n = 1000. We
also find ω̌2∗ = 1.4410−2. We can then compute the standard error of D as n−1/2ω̌∗
and find 7.5910−3 and 3.7910−3 for n = 250 and n = 1000, respectively. We see
at once that there is more chance that the tracking interval does not contain zero
for n = 1000 than for n = 250.

We generated 1000 replications from the above model for n = 250 and n =
1000. For each replication we computed the maximum likelihood estimates and
the AIC. We computed the histogram of D(gβ̂n, hγ̂n) (see Figure 2): its shape is
approximately in accordance with the asymptotic normal distribution for both sam-
ple sizes; the empirical mean was −9.5010−3 and −7.6710−3 for n = 250 and
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FIG. 2. Histogram of the values of D (which estimates the difference of Kullback–Leibler risks
between the tercile and the linear models) in the simulation: upper figure, n = 250, lower figure,
n = 1000.

n = 1000, respectively, close to the values of �̌. The empirical variance of D (not
shown) was in agreement with the theoretical variance computed from ω̌2∗. The
mean of the estimated variances ω̂2∗ was 1.8810−2 and 1.5410−2 for n = 250 and
n = 1000, respectively, also reasonably close to the ω̌2∗. The proportion of repli-
cas for which �̌ was outside the 0.95 tracking interval was 0.045 and 0.053 for
n = 250 and n = 1000, respectively. The proportion of replicas for which zero was
outside of the tracking interval was 0.197 and 0.514 for n = 250 and n = 1000, re-
spectively, and in all cases (g) was preferred to (h). These results are summarized
in Table 2.

TABLE 2
Simulation study: choice between tercile and linear model for the explanatory variable in a logistic

regression model

n �̌ D̄ ¯̂ω2
Coverage rate Power

250 −9.28 · 10−3 −9.50 · 10−3 1.88 · 10−2 0.967 0.197
1000 −7.78 · 10−3 −7.67 · 10−3 1.54 · 10−2 0.954 0.514
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The results of the simulation are in accordance with the asymptotic theory. From
a practical point of view, the variability of D seems to be large so that it is difficult
to be sure that an estimator is better than another one if the difference of risk is
small or moderate. Note that this variability is not specific to our approach, but is a
fact applying to any criteria based on likelihood ratio. For instance, in the simulated
situation for n = 250 there is a probability of about 12% that D(gβ̂n, hγ̂n) takes a
positive value (thus suggesting the wrong choice) and this probability is exactly
the same for AIC.

4.2. Quality of the fit by the noncentral chi-squared distribution in the nested
case. We performed another simulation for the case of nested model to check
the quality of the approximation of the distribution of −2LR by the noncentral
chi-squared distribution. We made two simulations with true distributions f 1,
specified by logit[f 1

Y |X(1|xi
1, x

i
2)] = 0.5 + 0.2xi

1 + 2xi
2 and f 2, specified by

logit[f 2
Y |X(1|xi

1, x
i
2)]) = 0.5+0.5xi

1 +2xi
2. For both cases we considered two mod-

els: (g) and (h) with logit[gβ
Y |X(1|xi

1, x
i
2)] = β0 +β2x

i
2 and logit[hγ

Y |X(1|xi
1, x

i
2)] =

γ0 + γ1x
i
1 + γ2x

i
2, so that (h) was well specified while (g) ⊂ (h) was misspecified.

However, if f 1 is the true distribution, the difference of risks using (g) and (h) is
of “small” magnitude (≈ 10−3), while if f 2 is the true distribution, it of “moder-
ate” (≈ 10−2) magnitude. The distributions of (xi

1, x
i
2) were as in the first simula-

tion above. We simulated 10000 replications of samples of size n = 1000 from f 1

and f 2 and in both cases we studied the fit of the noncentral chi-squared dis-
tribution for the distribution of −2LR. The dof was equal to 1 and we took the
expectation equal to the mean, from which we deduced the noncentrality parame-
ter. Figure 3 displays the histograms and the noncentral chi-squared densities for
both cases. The fits are nearly perfect and we also see that the distribution is closer
to the normal for f 2 than for f 1. It is clear that the convergence to the normal is
slow in the case of nested models unless the difference of risks is large.

5. Applications.

5.1. Relation between BMI and depression: analysis of the Paquid data. The
values of AIC, and the D statistic and tracking intervals (taking as reference the lin-
ear model) are given in Table 3. The tercile model had a larger AIC than the linear
model, but the point estimate (D) of the difference of risks was lower than 10−4,
a level that we have qualified “negligible,” and zero was well inside the tracking
interval. So from the point of view of the Kullback–Leibler risk there was no ev-
idence that one model is better than the other. When it comes to comparing the
linear and the quadratic model, because the first is nested in the second, we can
use the likelihood ratio test: the null hypothesis is that the best distribution is in
the linear sub-model. The hypothesis was strongly rejected (p < 0.01). We tend
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FIG. 3. Fit of the distribution of −2LR in the case of nested models, (g) ⊂ (h) (see Section 4.2) by
the noncentral chi-squared distribution with q −p dof: (a) case of a “small” difference of risks (true
distribution f 1); (b) case of “moderate” difference of risks (true distribution f 2).

to conclude that the shape of the effect is not linear and that we may approach it
better with a quadratic term. However, it is interesting to estimate the difference
of risks between the two models. The point estimate of the difference of risks was
0.0007, a value which approaches the 10−3 level that we qualified to be a small
(but not negligible) difference. Since (g) ⊂ (h), we computed the tracking interval

TABLE 3
Upper part of the table: comparison of the linear, tercile and quadratic models for the effect of BMI

on depression; D and the tracking interval are with respect to the linear model. Lower part:
comparison of the quadratic model with the model (w) including weight, height, weight2, height2

and 1/height; D and the tracking interval are with respect to the quadratic model

Model # parameters Likelihood AIC D Tracking interval

Linear 5 −1346.2 2702.5 – –
Tercile 6 −1345.6 2703.2 −0.0001 [−0.0009;0.0007]
Quadratic 6 −1342.9 2697.9 0.0007 [−2 · 10−5;0.0029]
Quadratic 6 −1342.9 2697.9 – –
(w) 9 −1338.7 2695.5 0.0003 [−0.0016;0.0022]
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applying the version of the tracking interval for nested models of Section 3.3. The
computation was done using the pchisq, dchisq and qchisq R functions. We found
(0.00012;0.0030) for the confidence interval of �(gβ0, hγ0) and, subtracting the
increased statistical risk (p − q)/2n = 0.00014, we found (−0.00002;0.0029) for
the tracking interval. Thus, we are not completely sure to incur a smaller risk with
the quadratic model. However, if the difference of risks was not in favor of the
quadratic model, this would be completely negligible. The difference of risks in
favor of the quadratic model may be negligible or of small magnitude.

In conclusion, there is no reason to prefer the tercile model to the linear model,
but there are some reasons to prefer the quadratic model to the linear model. Fig-
ure 4 shows the shape of the effect of BMI with the quadratic model, taking as
reference the median BMI (equal to 24.2). This is a U-shaped curve yielding the
lower risks of depression for medium values of the BMI, somewhat shifted, how-

FIG. 4. Estimated “effect” of the BMI on depression in the quadratic model: odds-ratios with
respect to the probability at the median of BMI (24.2); the dots have for abscissas the observed BMI
values.



1138 D. COMMENGES ET AL.

ever, toward large BMI. Of course, the epidemiological interpretation of this result
is delicate and the apparent effect that we have detected is the consequence of
complex biological and psychological mechanisms that we do not attempt to ex-
plore here. Several other studies have found links between BMI and depression
[Bergdahl et al. (2007), Bjerkeset et al. (2008)].

Since BMI is a combination of weight and height, one may wonder whether
it is possible to find a better model directly using simple powers of height and
weight in the linear predictor. It happens that the model including weight, height,
weight2, height2 and 1/height, that we denote (w) = (wθ )θ∈�, has a better AIC
than the quadratic (in BMI) model, (h). Note that (h) is not nested in (w). Follow-
ing the conventional use of AIC, we should prefer (w) to (h). However, (w) lacks
readability because it involves a combination of weight and height that has never
been used. For instance, a nice graphical representation of the effect of weight
and height such as presented in Figure 4 is not possible. So we have nonstatis-
tical reasons to prefer (h) over (w). If we examine the statistical reasons to pre-
fer (w) over (h), they are very thin. First, the point estimate of �(hβ̂n,wθ̂n) is
D = 0.0003, of the “negligible” order of magnitude. Second, the tracking interval
is [−0.0016;0.0022]: zero is well inside this interval, so there is no confidence
that we incur a lower risk using (w) rather than (h). Thus, it is reasonable to pre-
fer (h) for further use, for instance, presentation of the epidemiological evidence
of a relation between over- and under-weight and depression.

5.2. Interaction between HIV and the immune system: analysis of the ALBI
data. As an application of the proposed method, we analyzed the difference of
risks between the model M1 and model M2 described in Section 2.2 using the data
of a randomized clinical trial, the ALBI ANRS 070 trial [Molina et al. (1999)].
This trial compared over 24 weeks the combination of zidovudine plus lamivu-
dine (AZT + 3TC) to that of stavudine plus didanosine (ddI + d4T). There were
50 patients in each arm. Measurements of CD4 and of HIV RNA were taken once
a month up to six months. The likelihood, taking into account the detection limit
of HIV RNA, was computed with the algorithm of Guedj, Thiébaut and Com-
menges (2007). The AIC for model M1 was equal to 1466.15, while for model
M2 AIC = 1026.63. The estimate of the variance was ω̂2

n = 5.88. Thus, the D

statistic was equal to 4.40. However this applies to a multivariate outcome: we
had seven measurements of viral load and of CD4 counts for each subject, that is,
14 measurements per subject. So the standardized value of D was 4.40/14 = 0.31.
For the tracking interval we find [0.28;0.35].

We can say with a good degree of confidence that the difference of risks is
larger than 0.28, a large difference as we have seen. This means that this difference
between quiescent and activated CD4 is an important biological fact and that it
must be taken into account, even though fitting the more complicated model is
more challenging.
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6. Discussion. We have proposed a statistic which tracks the difference of
expected Kullback–Leibler risks between maximum likelihood estimators in two
different models, �(gβ̂n, hγ̂n). Moreover, we have an estimator of the variance
of this statistic and we can construct a “tracking interval.” We can also construct
a confidence interval for �(gβ0, hγ0): the bounds of the latter are the bounds of
the former shifted of (q − p)/(2n). The results of our simulation study were in
agreement with the asymptotic results. Our approach enlightens the unavoidable
variability of any criterion based on log-likelihood ratio such as AIC, BIC and
their variants. This variability is generally not taken into account and there is a
misleading intuition that extrapolates the distribution of the likelihood ratio test
to the variability of AIC. The distribution of the likelihood ratio statistic is well
approximated by a normal in the nonnested case, while it is better approximated
by a noncentral chi-squared in the nested case. In both cases the variance is larger
than that of the chi-squared with q − p dof, a distribution which holds only under
the null hypothesis of the likelihood ratio test.

In fine we can do more than simply choosing the estimator which has the low-
est AIC. We can estimate the difference of risks and this has the same meaning
in different problems. We may become accustomed to considering differences
of 10−4, 10−3, 10−2, 10−1 as negligible, small, moderate and large, respectively, as
we are accustomed to interpret correlation coefficients or odds-ratios, for instance.
More work is needed, however, to deepen our intuition about the magnitude of a
difference of Kullback–Leibler risks.

In the first application we have found that the quadratic model for the effect
of BMI on risk of depression was better than a linear model, although the dif-
ference between the two models was small. With the quadratic model both low
and high BMI are at higher risk of depression. Our method gives arguments to
prefer the quadratic model in BMI for presentation of the results to a more com-
plex model obtaining a slightly better AIC. In the application on comparing two
HIV dynamics models, we found that the model distinguishing quiescent and acti-
vated CD4 was better than the simpler model which did not make this distinction.
The estimated difference of risks was large and this has implications in future de-
velopments of HIV dynamics models.

The statistic D and the tracking interval for the difference of risks are easy to
compute and could be useful in a wide variety of applications.

APPENDIX: THE HIV DYNAMICS MODELS

To write the differential equation for the model, one uses assumptions which are
plausible in view of the knowledge of the biological mechanisms: for instance, we
assume that new CD4 are produced (by the thymus) at a rate λ, that only activated
cells can be infected, that the probability of a meeting of a cell and a virion is
proportional to the product of their concentrations. A possible model (M1) takes
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into account the uninfected and infected CD4, T̄ and T ∗, respectively, and the viral
particles, V and is as follows:

dT̄t = (
λ − (1 − ηIRT )γ TtVt − μT̄ T̄t

)
dt,

dT ∗
t = [(1 − ηIRT )γ TtVt − μT ∗T ∗

t ]dt,

dVt = (μT ∗
t
πT ∗

t − μvVt) dt,

where IRT indicates whether a treatment based on an inhibitor of the reverse tran-
scriptase.

Another model (M2) distinguishes between quiescent (Q) and activated (T )
CD4:

dQt = (λ + ρTt − αQt − μQQt) dt,

dTt = (
αQt − (1 − ηIRT )γ TtVt − ρTt − μT Tt

)
dt,

dT ∗
t = [(1 − ηIRT )γ TtVt − μT ∗T ∗

t ]dt,

dVt = (μT ∗
t
πT ∗

t − μvVt) dt.

A statistical model is necessary to take into account that some parameters may dif-
fer from one subject to another and to link the observations to the ODE system. In
model M1 the parameters λ and π were random (adding other random parameters
did not increase the likelihood). In model M2 the parameters α, λ and μT ∗ were
considered as random. Measurements of the total numbers of CD4 and of num-
ber of viruses were available at times tij . We assumed the following observation
equations:

Yij1 = log10
(
VI

(
tij , ξ̃

(i)) + VNI

(
tij , ξ̃

(i))) + εij1, j ≤ ni,

Yij2 = (
Q

(
tij , ξ̃

(i)) + T
(
tij , ξ̃

(i)) + T ∗(
tij , ξ̃

(i)))0.25 + εij2, j ≤ ni.

An additional complexity was that the HIV RNA load was measured up to a detec-
tion limit. Guedj, Thiébaut and Commenges (2007) designed a special algorithm
for computing and maximizing likelihood for this type of model. We refer the
reader to this paper for more details.
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