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DIFFUSIVITY IN ONE-DIMENSIONAL GENERALIZED MOTT
VARIABLE-RANGE HOPPING MODELS

BY P. CAPUTO AND A. FAGGIONATO

Università Roma Tre and Università “La Sapienza”

We consider random walks in a random environment which are gener-
alized versions of well-known effective models for Mott variable-range hop-
ping. We study the homogenized diffusion constant of the random walk in
the one-dimensional case. We prove various estimates on the low-temperature
behavior which confirm and extend previous work by physicists.

1. Introduction. Random walks among randomly distributed traps have been
proposed as models to study the low-temperature behavior of conductivity in dis-
ordered solids in which the Fermi level (set equal to 0 below) lies in a region of
strong Anderson localization. In the so-called Mott variable-range hopping model
one considers trapping sites ξ = {xi} randomly distributed on Rd , d ≥ 1, with a
given density ρ. Each site xi is marked with a random energy Ei ∈ [−1,1], where
the variables Ei are independent and identically distributed according to some
law ν on [−1,1], and are assumed to be independent of ξ . The law ν satisfies
ν[−E,E] ∼ |E|δ when E � 1, for some positive constant δ. Then one considers
a continuous-time random walk which starts at a given site x0 and jumps from a
site xi to any other site xj with rate

cxi ,xj
= exp{−|xi − xj | − βu(Ei,Ej )},(1.1)

where β is the inverse temperature and the function u is given by

u(Ei,Ej ) = |Ei | + |Ej | + |Ei − Ej |.(1.2)

The associated random resistor network is obtained by connecting each pair of
sites xi, xj by the resistor Rxi,xj

= 1/cxi ,xj
. At the heuristic level, as predicted by

the Einstein relation, the effective conductivity σ of the medium can be identified
with the diffusion coefficient D associated to the random walk. We refer to [2, 14,
22] and references therein for a justification of the model (1.1) from the physical
point of view.

As shown in [2] in the case δ = 1, by means of percolation arguments this model
is well suited to explain Mott’s law which asserts that the conductivity σ should
vanish as

logσ ∼ −βδ/(d+δ), d ≥ 2,(1.3)
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as β → ∞. The heuristics behind this behavior can be roughly explained as fol-
lows. As β increases, the dominant contribution comes from traps x̃i with energy
Ei ∈ [−Ẽ(β), Ẽ(β)] where Ẽ(β) → 0 as β → ∞. The traps ξ̃ = {x̃i} are a thin-
ning of the original process ξ = {xi}. Since ν[−E,E] ∼ |E|δ , these traps have
a density ρν[−Ẽ(β), Ẽ(β)] ∼ Ẽ(β)δ and are typically separated by a distance
�(β) ∼ Ẽ(β)−δ/d . Percolation ideas valid for d ≥ 2 allow to argue that these traps
contribute roughly −c1�(β)−c2βẼ(β) to logσ . One obtains the desired estimates
by optimizing with the choice Ẽ(β) = β−d/(δ+d).

Recently, a mathematical proof of Mott’s law for the diffusion coefficient D of
the variable-range random walk introduced above was presented in [13, 14] for all
dimensions d ≥ 2.

The situation is quite different in dimension one. As argued in the physics liter-
ature [17], here one should have two possible regimes:

diffusive regime: logσ ∼ −β,(1.4)

subdiffusive regime: logσ ∼ −∞.(1.5)

More precisely, in [17] an upper bound on σ is obtained by heuristic arguments
when δ = 1 and ξ = {xi} is a Poisson point process of density ρ. This upper bound
is in agreement with (1.4) when ρ > 1 and implies that σ = 0 when ρ ≤ 1. As
we shall see, the point is that a thinning with arbitrarily small density does not
contribute to the conductivity when d = 1, that is, nonzero contributions come
only from traps with sufficiently high density. We thus have an insulator/conductor
transition with critical density ρc = 1.

The exponential law in (1.4) is in striking contrast with the stretched exponen-
tial appearing in the standard Mott law. There is a large literature on the conduc-
tivity of one-dimensional or quasi one-dimensional physical systems where the
two regimes are compared, see, for example, [1, 18, 19, 21]. Recently, the one-
dimensional variable-range hopping model has been also used to study electrical
properties of the DNA double helix [23]. All these works focus also on finite-size
effects which allow for the onset of a stretched exponential law which is experi-
mentally observed at suitably low temperatures.

Let us now turn to a discussion of our results. We first establish the functional
central limit theorem for the diffusively rescaled variable-range random walk. We
then characterize its limiting diffusion coefficient D and prove rigorous bounds
on D. Our bounds will confirm in particular the exponential behavior (1.4) and the
transition predicted in [17]. Although the model is spatially one dimensional, the
presence of multiple jumps between arbitrarily far traps does not allow for explicit
solutions.

Moreover, we will investigate the generalized model which is obtained by re-
placing the distance |xi − xj | in (1.1) by |xi − xj |α , with a new parameter α > 0.
Although the standard case α = 1 is the most natural from the physical point of
view, we shall see that the case α < 1 allows us to produce the various stretched
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exponential laws discussed in the physics literature. In particular, our main results
will establish that if the distribution ν satisfies ν[−E,E] ∼ Eδ , δ > 0, if ξ is a
Poisson point processes with density ρ, then one has the following behavior of
logD as a function of β:

logD ∼
⎧⎨⎩

−β, α = 1, ρ > 1,
−βδα/(1−α+δα), α < 1, ρ > 0,
−∞, α > 1, ρ > 0 or α = 1, ρ ≤ 1.

(1.6)

We shall observe that for α ≥ 1 the behavior of the diffusion coefficient D is qual-
itatively the same as that of the diffusion coefficient D′ of the nearest-neighbor
random walk on ξ = {xi} with jump rates between consecutive sites xi and xi±1
given by (1.1).

On the other hand, the stretched exponential behavior in the case α < 1 will
be obtained by optimization arguments partially inspired by the one discussed
above for the higher-dimensional case, since in this case one can show that non-
trivial contributions come from any thinning of the original process. However, we
stress that in dimension 1 percolation arguments do not work and in contrast to
the higher-dimensional case jumps contributing to logσ can be arbitrarily long if
the distances between consecutive points in ξ = {xi} are not bounded from above.
In particular, the heuristics given above has to be modified. We will show that the
contribution of traps with energy inside the interval [−Ẽ(β), Ẽ(β)] is no longer
−c1�(β) − c2βẼ(β) but rather −c1�(β)α/(1−α) − c2βẼ(β), with �(β) ∼ Ẽ(β)−δ .
This will give the behavior in (1.6) for α < 1, by setting Ẽ(β) = β−(1−α)/(1−α+δα).

Finally, we shall investigate a different but related problem, namely the relax-
ation speed of the random walk in finite boxes, via spectral gap and isoperimetric
estimates. This gives another point of view to discuss the transition from diffusive
to subdiffusive behavior. This approach was developed in [6] for the case of di-
mension d ≥ 2. Here we describe some finer results that can be obtained in the
one-dimensional setting. An important difference with respect to the case d ≥ 2 is
that here we expect that the diffusion coefficient is positive if and only if the finite
volume spectral gaps obey diffusive estimates.

1.1. Model and results. We consider the following generalization of the
variable-range random walk discussed above. Let {Zj , j ∈ Z} denote a station-
ary and ergodic sequence of positive random variables with finite mean. Define
the variables {xk, k ∈ Z} by

xk = xk−1 + Zk−1, k ∈ Z, x0 = 0.(1.7)

Then, we consider the point process ξ = {xk} on R. If {Zj } are i.i.d. then ξ is a
renewal process. If {Zj } are i.i.d. exponentially distributed variables then ξ is a
homogeneous Poisson process conditioned to contain the origin. We refer to [7]
for a basic reference on point processes.
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Let 
 = {Ek}k∈Z denote a family of i.i.d. random variables with values in
[−1,1] with common law ν. We do not make any special assumption on ν. The
processes ξ and 
 are supposed to be independent and we denote by ω = (ξ,
)

the resulting marked point process (we interpret Ej as an energy mark for the
point xj ). We denote by P and E the associated probability measure and expecta-
tion.

Given a realization of the environment ω, Xω(t) denotes the continuous-time
random walk having state space ξ = {xk}, starting at the origin and jumping from
xi to xj , i 
= j , with jump rate

cxi ,xj
(ω) = exp{−|xi − xj |α − βu(Ei,Ej )}.(1.8)

Here α > 0 and the function u is assumed to satisfy

c1(|Ei | + |Ej |) ≤ u(Ei,Ej ) = u(Ej ,Ei) ≤ c2(|Ei | + |Ej |)(1.9)

for some positive constants c1 ≤ c2, for any Ei,Ej ∈ [−1,1]. We set cxi ,xi
(ω) = 0.

When α = 1 and u is given by (1.2) we are back to the standard model (1.1).
Letting P ω denote the law of Xω, the dynamics is described by the following

identities:

P ω(
Xω(t + dt) = xj |Xω(t) = xi

) = cxi ,xj
(ω)dt + o(dt), t ≥ 0, i 
= j,

P ω(
Xω(t + dt) = xi |Xω(t) = xi

) = 1 − ∑
j : j 
=i

cxi ,xj
(ω)dt + o(dt), t ≥ 0.

Equivalently, the random walk Xω can be described as follows: after arriving at
site xi the particle waits an exponential time with parameter

λxi
(ω) = ∑

j∈Z

cxi ,xj
(ω)(1.10)

and then jumps to site xj , j 
= i, with probability

cxi ,xj
(ω)

λxi
(ω)

.(1.11)

By standard methods (see, e.g., [5] and [14], Appendix A), one can check that the
random walk Xω is well defined for P-a.a. ω as soon as E(λ0(ω)) < ∞. One can
easily verify that the above condition is equivalent to requiring

E(ξ [0,1]) < ∞,(1.12)

where ξ [0,1] denotes the number of points of ξ in the interval [0,1]. Note that this
always holds for ξ a renewal process, since in this case (see Lemma A.1) one has

E(ξ [0,1]k) < ∞ ∀k ∈ N.(1.13)

In order to state our main results we need some further notation. P ω, the law
of Xω, is a probability measure on the space D([0,∞), ξ) of right continuous
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paths having left limits from [0,∞) to ξ , endowed of the Skorokhod topology [4,
10]. We write Eω for the associated expectation. We will often identify the random
sets ξ , ω with random measures, namely

ξ = ∑
i∈Z

δxi
, ω = ∑

i∈Z

δ(xi ,Ei).

Given functions f = f (ξ), g = g(ω) we set

∇yf (ξ) = f (τyξ) − f (ξ), ∇yg(ω) = g(τyω) − g(ω), y ∈ ξ,

where

τyξ = ∑
i∈Z

δxi−y, τyω = ∑
i∈Z

δ(xi−y,Ei), y ∈ ξ.

The following functional central limit theorems (FCLTs) hold for all α > 0 and
for all probability distributions ν of the energy marks.

THEOREM 1.1. (i) As ε → 0, the law P ω
ε of the diffusively rescaled random

walk

Xω
ε := (

εXω(ε−2t) : t ≥ 0
)
,

converges weakly in P-probability to the law of a 1D Brownian motion with diffu-
sion coefficient D(β) admitting the variational characterization

D(β) = inf
g∈L∞(P)

E

{∑
i∈Z

c0,xi
(xi + ∇xi

g)2
}
.(1.14)

(ii) If in addition E[(c0,x1)
−1] < ∞, then for P-a.a. environments ω as ε → 0

the law P ω
ε converges weakly to the law of the 1D Brownian motion with diffusion

coefficient D(β).

We recall that the weak convergence in P-probability stated above simply means
that, for any bounded continuous function F on the path space D([0,∞),R) en-
dowed with the Skorokhod topology, the random variable

ω → Eω
ε (F (Xω

ε ))

with Eω
ε denoting expectation with respect to P ω

ε , converges in P-probability to
the expectation of F(W), where W is a 1D Brownian motion with diffusion coef-
ficient D(β), that is, the variance of Wt equals D(β)t .

The first part of the above theorem will be obtained along the lines of classical
homogenization results [8, 16]. It is derived also in [14] under an additional finite
moment condition. The second part of the theorem is an almost sure FCLT and its
proof will be based on the construction of the so-called corrector field.

We point out that the diffusion coefficient D(β) characterized by (1.14) could
be zero, thus implying the subdiffusive behavior of the random walk. If not zero,
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it is relevant to analyze the behavior of D(β) as β goes to infinity in the same
spirit of Mott’s law. In the next theorem, we answer these issues by giving upper
and lower bounds on D(β) under suitable assumptions. Before stating our results,
it is convenient to adopt the following notation: given functions f (x) and g(x),
x positive number, we write

f (x) ∼ g(x), x ↘ 0[x ↗ ∞],
if there exist c1, c2 > 0 such that

c1g(x) ≤ f (x) ≤ c2g(x)

for all x in a neighborhood of 0 [∞].

THEOREM 1.2. Suppose that Zj has finite second moment, that is,
E[Z2

j ] < ∞.
(1) If E[exp (Zα

j )] < ∞, then there exist C,κ > 0 such that for all β ≥ 0

D(β) ≥ C exp [−κβ].(1.15)

(2) Suppose that α ≥ 1 and that {Zj } are positive i.i.d. random variables. Then

D(β) > 0 ⇐⇒ E[exp(Zj
α)] < ∞.(1.16)

If in addition to the above bound ν has no mass at zero, that is, ν[−E,E] → 0 as
E ↘ 0, then

C1 exp[−κ1β] ≤ D(β) ≤ C2 exp[−κ2β](1.17)

for suitable positive constants C1,C2, κ1, κ2, for all β ≥ 0.
(3) Suppose that α < 1 and that {Zj } are positive i.i.d. random variables.

(i) If E[exp(γZj
α)] = ∞ for some γ ∈ (0,1), then D(β) = 0.

(ii) If E[exp(εZj )] < ∞ for some ε > 0 and

ν[−E,E] ∼ Eδ, E ↘ 0,(1.18)

for some constant δ > 0, then

C1 exp
[−κ1β

δα/(1−α+δα)] ≤ D(β) ≤ C2 exp
[−κ2β

δα/(1−α+δα)](1.19)

for suitable positive constants C1,C2, κ1, κ2, for all β ≥ 0.

The upper bounds in (1.17) and (1.19) will be obtained by choosing suitable
test functions in the variational characterization (1.14). The proof of the other
bounds on D(β) will be based on comparison with suitable nearest-neighbor ran-
dom walks for whose diffusion coefficients one can derive explicit expressions. For
instance, to define a nearest-neighbor walk on ξ with a diffusion coefficient smaller
than D(β) we shall simply cut all jumps of the form xi → xj with |i −j | 
= 1. This
produces the random walk Yω which will be used in the proof of (1.15). On the
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other hand, the construction of a nearest-neighbor walk on ξ whose diffusion co-
efficient is larger than D(β) is more tricky. This will be needed for the proof of
points (2) and (3)(i) in Theorem 1.2. Here the electric network representation and
the associated monotonicity laws [9] will turn out to be a very useful guide for our
comparison arguments. A convenient construction in the electric network context
has been outlined in [17].

It will be clear from our proof that the diffusion coefficient of the nearest-
neighbor walk Yω defined above is positive iff the condition in the right-hand
side of (1.16) is satisfied and, under this assumption it satisfies the same bounds
appearing in (1.17). Hence, we can conclude that for α ≥ 1 and at least for renewal
point processes ξ the Mott variable-range hopping is essentially a nearest-neighbor
hopping. If α < 1 on the other hand, the proof of the stretched exponential esti-
mates in point (3)(ii) above will make clear that the main contribution to diffusion
comes from jumps between sites xi with small energy marks, which are typically
not nearest neighbors.

Let us now draw some consequences of Theorem 1.2 in specific cases. Various
other cases can be considered in the way described below.

1.1.1. Poissonian case. This is the case where {Zj } are i.i.d. exponentials of
parameter λ > 0. Here we can easily collect the estimates in Theorem 1.2 to obtain
the picture anticipated in (1.6), where ρ = λ. In particular, the critical point for
diffusivity appears at α = αc = 1, λ = λc = 1 and the system is subdiffusive at the
critical point.

1.1.2. Diluted lattice. Suppose the {Zj } are i.i.d. geometric random variables
with parameter p ∈ (0,1), that is, P(Zj = k) = p(1 − p)k−1, k ∈ N. This corre-
sponds to the point process ξ obtained by deleting independently each point of
Z \ {0} with probability 1 − p. It is easily seen that here one has the same picture
as in the Poissonian case described above with the correspondence p = 1 − e−λ.

1.1.3. Weibull distribution. Here we take {Zj } to be i.i.d. with a Weibull dis-
tribution, that is, P(Zj > t) = e−λtτ , t ≥ 0, for some λ > 0, τ > 0. This generalizes
the Poissonian case (τ = 1). It follows from Theorem 1.2 that the critical point for
diffusivity is given by α = αc = τ , and λ = λc = 1. Thanks to point (2) in the the-
orem we know that the system is subdiffusive at the critical point at least in the
case τ ≥ 1. For τ < 1 we cannot exclude positive diffusion constant at the critical
point.

1.1.4. Gaussian distribution. We may take {Zj } to be i.i.d. with Zj distributed
as |Y | where Y is a normal random variable with mean 0 and variance σ 2. Since,
apart from polynomial corrections, P(Y ≥ t) behaves as e−t2/(2σ 2) for t large, it is
simple to check that in this case the asymptotic behavior of D(β) corresponds to
the case of Weibull distribution with τ = 2, λ = 1/(2σ 2).
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1.1.5. Random variables with polynomial tails. If we take {Zj } to be i.i.d.
with P(Zj > t) ∼ t−r ∀t ≥ 1, for some r > 2 (we require r > 2 so that E[Z2

j ] <

∞), then it is immediate to use points (2) and (3)(i) in the theorem to see that the
system is subdiffusive for all α > 0 and all r > 2.

1.2. Diffusivity via spectral gap and isoperimetric bounds. As in [6] our finite
volume estimates will be related to the geometry of the point process only and
the temperature plays essentially no role. Therefore, without loss of generality, we
set β = 0 for this subsection. We stress that the results presented here are proven
for almost all environments under the assumption that ξ is a renewal process. As
a convention, whenever we state that some event EL involving the parameter L

holds P-a.s. we mean that with P-probability 1 there exists L0 = L0(ξ) < ∞ such
that the event EL occurs for all L ∈ N, with L ≥ L0.

Let ξ = {xk, k ∈ Z} denote as usual the renewal process generated by (1.7). We
write, for every L > 0, ξL := ξ ∩ �L, where �L = [−L/2,L/2], for the process
inside the segment of length L.

We recall the definition of Cheeger’s isoperimetric constant �L(ξ):

�L(ξ) := min
U⊂ξL : #(U)≤1/2#(ξL)

IU (ξ),(1.20)

IU (ξ) := 1

#(U)

∑
x∈U,y∈ξL\U

e−|x−y|α ,(1.21)

where #(U) stands for the number of points in U .
In order to estimate the isoperimetric constant �L(ξ) it is convenient to intro-

duce the random variable ζL defined as the maximal distance between consecutive
points in ξL:

ζL = max{xk+1 − xk :xk, xk+1 ∈ ξL}.(1.22)

Then the behavior of �L is mostly determined by ζL.

PROPOSITION 1.3. For any γ ∈ (0,1), there exists a positive constant C such
that

1

CL
e−ζα

L ≤ �L(ξ) ≤ C(logL)2

L
e
−d(α)ζα

γL, P-a.s.,(1.23)

where d(α) := 1 ∧ 3α−1. If there exists ε > 0 such that P(Zi > ε) = 1 then (1.23)
holds without the (logL)2 factor in the right-hand side.

Since the Zi are independent, the a.s. behavior of ζL can be characterized in
terms of the tail

ψ(t) = P(Zi > t).
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We note that limL↑∞ ζL = ∞ a.s. if Zi’s are unbounded and limL↑∞ ζL < ∞
a.s. if Zi’s are bounded [11], Chapter 3. Hence, from Proposition 1.3, �L(ξ) �
L−1 a.s. if Zi are unbounded, while �L ∼ L−1 a.s. if Zi’s are bounded and
bounded away from zero. In [6] the bound �L ∼ L−1 was shown to be character-
istic of the diffusive regime for the spectral gap of the random walk in dimension
d ≥ 2. When d = 1, we shall see that Proposition 1.3 and the results of the pre-
vious section imply that this is no longer true. Namely, the spectral gap can have
diffusive behavior while �L � L−1.

Proposition 1.3 and standard results concerning the a.s. asymptotic behavior of
maxima of i.i.d. random variables (see [15], Section 4, [11], Section 3.5) allow to
derive rather fine estimates on �L. In Section 6 we discuss a general method and,
as an application, we derive the following criterion which covers several interesting
cases discussed below.

THEOREM 1.4. Let {Zi, i ∈ Z} be i.i.d. positive variables with finite mean μ.
Let a, b : R+ → R+ be two nonnegative, nondecreasing functions satisfying
ψ(a(n)),ψ(b(n)) → 0, and nψ(b(n)) → ∞ as n → ∞ and such that∑

n∈N

ψ(a(n)) < ∞,(1.24)

∑
n∈N

ψ(b(n))e−nψ(b(n)) < ∞.(1.25)

Then, for any γ ∈ (0,1), there exists a positive constant C = C(γ ) < ∞ such that

1

C

e−a(L/(γμ))α

L
≤ �L ≤ C(logL)2 e−d(α)b(γL/μ)α

L
, P-a.s.,(1.26)

where d(α) = 1 if α ≥ 1 and d(α) = 3α−1 if α < 1. Moreover, if the Zi’s are
bounded one can take a and b constant in (1.26). Finally, if the Zi’s are bounded
away from zero then the estimate in the right-hand side of (1.26) holds without the
logarithmic correction.

Let us now look at the Poincaré or spectral gap inequality associated to the
random walk in �L. The Poincaré constant γ (L) = γ (L, ξ) is defined by

γ (L) := sup
f : ξL→R

1

#(ξL)

∑
x,y∈ξL

(f (x) − f (y))2∑
x,y∈ξL

e−|x−y|α (f (x) − f (y))2 .(1.27)

The spectral gap is given by gap(L) := γ (L)−1. We recall that gap(L) coincides
with the smallest nonzero eigenvalue of the nonnegative matrix −LL, where LL

is the Markov generator of the variable-range random walk confined to the seg-
ment �L, defined by its action on vectors f : ξL → R as follows:

LLf (x) = ∑
y∈ξL

e−|x−y|α (
f (y) − f (x)

)
, x ∈ ξL.(1.28)
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In the diffusive regime we expect the Laplacian-like behavior gap(L) ∼ L−2.
In view of our previous discussion this cannot be obtained in general through
Cheeger’s inequality asserting that γ (L) ≤ 8�−2

L ; cf. [6]. However, a simple alter-
native is available in dimension one and we are able to prove that gap(L) ≥ cL−2,
P-a.s. as soon as E[eZα

1 ] < ∞. On the other hand, the simple estimate γ (L) ≥
1
2�−1

L [which follows from (1.27) by restricting f to be an indicator function]
allows to obtain upper bounds on the spectral gap from Theorem 1.4. We can sum-
marize these facts in the following:

COROLLARY 1.5. Let {Zi, i ∈ Z} be i.i.d. positive variables with finite
mean μ.

1. If E[eZα
1 ] < ∞ then there exists c > 0 such that

gap(L) ∼ L−2, P-a.s.(1.29)

2. Let the function b : R+ → R+ be as in Theorem 1.4. Then, for any γ ∈ (0,1),
there exists a positive constant C = C(γ ) < ∞ such that

gap(L) ≤ C(logL)2 e−d(α)b(γL/μ)α

L
, P-a.s.,(1.30)

where d(α) = 1 ∧ 3α−1. If P(Zi ≤ δ) = 0 for some δ > 0 the last estimate holds
without the logarithmic correction.

1.2.1. Examples. Let us conclude this discussion with some details on spe-
cific examples. We start with the Poisson case, that is, {Zj } are i.i.d. exponential
variables of parameter λ > 0.

We can apply Theorem 1.4 with the following choice of the functions a, b:

a(t) = 1

λ
log[t (log t)p], b(t) = 1

λ
log[t/(p log log t)](1.31)

for some p > 1 and all t large enough. Here ψ(t) = e−λt and one can easily check
that both (1.24) and (1.25) are satisfied, since with this choice we have

ψ(a(n)) = 1

n(logn)p
, ψ(b(n)) = p log logn

n
,

(1.32)

ψ(b(n))e−nψ(b(n)) = p log logn

n(lnn)p
.

If α = 1, from (1.26) we then obtain in particular that for every λ > 0 there exists
some constant c > 0 such that

(logL)−cL−1−1/λ ≤ �L ≤ (logL)cL−1−1/λ, P-a.s.(1.33)

Since �L behaves like L−1−1/λ apart from logarithmic corrections, Corollary 1.5
implies in particular that gap(L) ∼ L−2, P-a.s. whenever λ > 1, while gap(L) ≤



1D HOPPING DIFFUSIVITY 1469

(logL)cL−1−1/λ, when λ < 1. Hence, we have a transition at λ = 1 from diffusive
to subdiffusive relaxation.

If α > 1 then we easily see from Theorem 1.4 and Corollary 1.5 that both
gap(L) and �L decay to zero almost surely, faster than any inverse power of L.

When α ∈ (0,1), we know by Corollary 1.5 that gap(L) ∼ L−2, P-a.s. while
L�L → 0 as L → ∞ since Zj ’s are unbounded.

The same arguments apply to the diluted lattice, that is, to the case of geometric
random variables with parameter p, with the correspondence p = 1 − e−λ. More-
over, the extension to Weibull distributions is also straightforward. Here we have
ψ(t) = e−λtτ , for some λ > 0, τ > 0. We simply replace the functions in (1.31)
by a(t) → a(t)1/τ and b(t) → b(t)1/τ . Then it follows that (1.24) and (1.25) are
satisfied, just as in the case τ = 1 discussed above. In conclusion, thanks to Corol-
lary 1.5, one has that gap(L) shrinks faster than any inverse power of L for α > τ ,
while gap(L) ∼ L−2 for α < τ . At α = τ ≥ 1 one finds again a transition at λ = 1.
Indeed, a direct inspection of the bounds in (1.26) shows that for α = τ ≥ 1 one
has again the estimate (1.33) for every λ > 0. In particular, Corollary 1.5 shows a
transition from gap(L) ∼ L−2 (when λ > 1) to gap(L) ≤ L−2−ε for some ε > 0
(when λ < 1). When α = τ < 1 we believe that the same should hold. However,
since now d(α) = 3α−1 < 1, then the right-hand side of (1.33) has to be modi-
fied with replacement of (logL)cL−1−1/λ by (logL)cL−1−3α−1/λ. Therefore, by
Corollary 1.5, if α = τ < 1, gap(L) � L−2 for λ < 3α−1 while gap(L) ∼ L−2

for λ > 1, thus we are only able to say that a transition occurs for λ somewhere
between 3α−1 and 1. Note that, when τ = 2, the same behavior is produced in
the Gaussian case, that is, by random variables Zi = |Yi |, where Yi are normally
distributed with mean 0 and variance σ 2 = 1/(2λ).

Finally, one may consider variables with a polynomial tail, such as, for example,
ψ(t) = t−r , with some r > 1, for all t ≥ 1. Theorem 1.4 allows to obtain detailed
estimates on �L as follows. Fix p > 1 and define, for t large enough,

a(t) = t1/r (log t)p/r , b(t) =
(

t

p log log t

)1/r

.

The above sequences are increasing for t large enough, moreover one can check
that (1.32) holds. In particular, Theorem 1.4 can be used to produce the estimates,
for any ε > 0

exp[−Lα/r(logL)α/r+ε] ≤ �L ≤ exp[−Lα/r(logL)−ε], P-a.s.

1.3. Overview of the following sections. The paper is organized as follows.
The proof of Theorem 1.1 is given in Section 2. The proof of Theorem 1.2 requires
several distinct tools which are given separately in Sections 3, 4 and 5. In Sec-
tion 3 we introduce nearest-neighbor random walks, characterize their diffusion
constants and prove the lower bound (1.15) and the lower bound in the left-hand
side of (1.19). In Section 4 we prove the equivalence (1.16) and statement (3)(i) of
Theorem 1.2. In Section 5 we prove the upper bounds in (1.17) and (1.19). Finally,
in Section 6 we prove our results on isoperimetric constants and spectral gaps.
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2. Proof of Theorem 1.1. In order to prove Theorem 1.1, it is convenient
to fix some notation. We denote by N0 the space of doubly–infinite sequences
ω = {xi,Ei}i∈Z, where xi < xi+1, x0 = 0 and Ei ∈ [−1,1]. The topology of N0 is
the one making the map

N0 � ω → {(xi+1 − xi,Ei)}i∈Z ∈ (
(0,∞) × [−1,1])Z

a topological homeomorphism. We recall that, given ω as above, ξ denotes its
spatial projection, namely ξ = {xi}i∈Z.

The annealed FCLT given in part (i) can be derived by applying Theorem 2.1
of [8] and then using a time–change argument. We only sketch the proof, since
these methods are rather standard. First, we consider the discrete-time random
walk {X̂ω(n)} starting at the origin and jumping from xi to xj , j 
= i, with prob-
ability cxi ,xj

(ω)/λxi
(ω). The associated environment viewed from the particle

ωn := τ
X̂ω(n)

ω is reversible (see Lemma 1(i) in [14]) and ergodic with respect
to the probability measure Q defined as dQ(ω) = (λ0(ω)/E(λ0))dP(ω). Then, we
note that the function f (ω,ω′) defined as x if ω′ = τxω and 0 otherwise is P × P-
a.s. (and therefore Q × Q-a.s.) well defined on N0 × N0 if

τxω 
= ω ∀x ∈ ξ, P-a.s.(2.1)

The above condition is violated only if ξ = aZ and Ei ≡ E for suitable constants
a,E. Since in this case the analysis of the random walk Xω becomes trivial, with-
out loss of generality we can assume (2.1). Then f is a well-defined and antisym-
metric function. Moreover, due to our basic assumption (1.12),

E(f (ω0,ω1)
2) =

∫
Q(dω)

∑
i∈Z

c0,xi
(ω)

λ0(ω)
x2
i

(2.2)
= E(λ0)

−1
∫

P(dω)
∑
i∈Z

c0,xi
(ω)x2

i < ∞,

where the first member denotes the expectation with respect to the process {ωn},
ω0 being chosen with distribution Q. In particular, all the conditions of The-
orem 2.1 in [8] are satisfied. Since X̂ω(n) = ∑n−1

j=0 f (ωj ,ωj+1), this theorem

implies that the diffusively rescaled random walk X̂ω
ε := (εX̂ω([ε−2t]) : t ≥ 0)

converges weakly in Q-probability to the 1D Brownian motion with diffusion co-
efficient D̂(β) defined as (see [8], (2.28))

D̂(β) = E(f (ω0,ω1)
2) − 2‖ϕ‖2

−1,L2(Q)
,(2.3)

where ϕ(ω) = ∑
i∈Z(c0,xi

(ω)/λ0(ω))xi and ‖ϕ‖−1,L2(Q) denotes the H−1-norm
of ϕ with respect to the symmetric operator Lg(ω) = ∑

i∈Z(c0,xi
(ω)/λ0(ω)) ×

(g(τiω) − g(ω)) defined on L2(Q). Since the family B∞ of bounded Borel func-
tions is dense in L2(Q), (2.3) reads

D̂(β) = E(f (ω0,ω1)
2) − 2 sup

g∈B∞

(
2〈ϕ,g〉L2(Q) − 〈g,−Lg〉L2(Q)

)
.
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By standard algebra together with Lemma 1(i) in [14], it is simple to prove that
the above right-hand side coincides with E(λ0)

−1D(β), with D(β) defined as
in (1.14). At this point, part (i) of Theorem 1.1 can be obtained by thinking of Xω

as obtained from X̂ω by a time change (see, e.g., [14], page 13) and then applying
Theorem 17.1 in [4] as done in the proof of Theorem 4.5 in [8].

Let us now prove the almost sure FCLT stated in Theorem 1.1(ii). Again, we first
prove that the diffusively rescaled random walk X̂ω

ε converges to the 1D Brown-
ian motion with diffusion coefficient D̂(β) and then extend the result to Xω by
means of time–change arguments. The proof for X̂ω is based on the construc-
tion of the so-called corrector field χ(ω,xi), a random variable at each point xi

such that ξ � x → ϕ(ω,x) := x + χ(ω,x) is harmonic with respect to the random
walk X̂ω. This approach is by now rather standard and we shall only point out the
main steps required together with the relevant literature; see, for example, [3, 20]
for recent accounts. As in these works the FCLT is derived from a sublinearity
property of the corrector together with an application of the Lindeberg–Feller CLT
for martingales. It is important to note that the 1D setting allows for significant
simplification. On the other hand, the long-range nature and the intrinsically non-
deterministic structure of the state space of our walk do require some modifications
of the standard arguments.

In order to construct the corrector, we introduce the Hilbert space H of square-
integrable forms vanishing at the origin, that is, of measurable functions u :N0 ×
R → R such that u(ω,0) = 0, P-a.s. and

‖u‖2 := ∑
i∈Z

E[c0,xi
(ω)u(ω,xi)

2] < ∞.(2.4)

Note that, from our basic assumption (1.12), we know that u(ω,x) = x is an el-
ement of H . Let H� ⊂ H denote the closure of the linear subspace of gradient
functions. Namely, ψ ∈ H� iff there exists a sequence of bounded measurable
functions gn :N0 → R such that ‖ψ − ∇gn‖2 → 0, n → ∞, with ∇gn(ω, x) de-
fined as gn(τxω) − g(ξ), for x ∈ ξ , and 0 otherwise. Elements of H� are called
potential forms. Its orthogonal complement H⊥∇ is the space of solenoidal forms.
It can be checked that the standard theory applies. Namely:

(1) Potential forms u ∈ H� are curl-free, that is, they satisfy the co-cycle prop-
erty: for P-a.a. ω, for every x ∈ ξ , for any finite set of points y0, . . . , ym ∈ ξ with
y0 = ym one has

m−1∑
j=0

u(τyj
ω, yj+1 − yj ) = 0.(2.5)

[The above property trivially holds if u = ∇g(ω,x) and extends by continuity to
all H�.]
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(2) A form u ∈ H is solenoidal if and only if it is divergence free, that is, for
P-a.a. ω it holds

divu(ω) := ∑
x∈ξ

c0,x(ω)
(
u(ω,x) − u(τxω,−x)

) = 0.(2.6)

The above characterization is implied by the identity:

E

(∑
x∈ξ

c0,x(ω)∇g(ω,x)u(ω,x)

)
= −E

(∑
x∈ξ

c0,x(ω)g(ω, x)divu(ω)

)
,

where g is a bounded measurable function on N0 × R and u ∈ H .
Finally, (3) a form ϕ which is both curl-free and divergence free must be har-

monic, that is, for P-a.a. ω, for any x ∈ ξ we must have

ϕ(ω,x) = ∑
y∈ξ

cx,y(ω)
(
ϕ(ω,y) − ϕ(ω,x)

)
.(2.7)

Indeed, due to (2.5) it must be ϕ(ω, z) + ϕ(τzω,−z) = 0 for P-a.a. ω, for any
z ∈ ξ . This together with (2.6) implies (2.7) for x = 0. The general case follows
from the covariance of jump rates with respect to translations.

We can finally define the corrector field χ . Consider the form u defined by
u(ω,x) = x. Let π :H → H∇ be the orthogonal projection on potential forms
and define the corrector field by χ := π(−u). We see that the form ϕ = u + χ is
curl-free (u is clearly curl-free and χ is potential). Moreover, by construction ϕ is
solenoidal and therefore divϕ = 0. It follows that ϕ is harmonic as in (2.7). We
can list the following properties of the corrector χ :

LEMMA 2.1. (1) χ ∈ H , that is, χ(ω,0) = 0 for P-a.a. ω and
E[∑i∈Z c0,xi

(ω)χ(ω,xi)
2] < ∞.

(2) For any i ∈ Z, the map N0 � ω → χ(ω,xi) is in L1(P) and E[χ(ω,xi)] = 0.
(3) For P-a.a. ω, given ε > 0, there exists K = K(ω, ε) < ∞ such that

|χ(ω,x)| ≤ K + ε|x| for all x ∈ ξ.(2.8)

(4) For P-a.a. ω, the discrete-time process

M(n) := X̂ω(n) + χ(ω, X̂ω(n))

is a martingale (with respect to the natural X̂ω-filtration) with square-integrable
increments.

We stress that the property E[(c0,x1)
−1] < ∞ is used to derive property (2).

PROOF OF LEMMA 2.1. (1) follows from the definition of the corrector χ . To
prove (2) note that there exists a sequence gn of bounded functions on N0 such
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that ∇gn → χ in H . From stationarity E[∇x1gn] = 0, so that the claim for i = 1
follows from the Schwarz inequality:

E[|χ(ω,x1) − ∇x1gn|] ≤ E[c−1
0,x1

]1/2E[c0,x1 |χ(ω,x1) − ∇x1gn|2]1/2

≤ E[c−1
0,x1

]1/2‖χ − ∇gn‖2 → 0.

For any i ∈ Z we have, by the co-cycle property

χ(ω,xi) = χ(ω,x1) + · · · + χ(τxi−1ω,xi − xi−1).

Therefore the claim follows for any i by stationarity.
To prove (3), we shall use property (2). Namely, for i = 1 we have E[χ(ω,

x1)] = 0. From the ergodic theorem and the co-cycle property we have

1

xn

χ(ω,xn) = n

xn

1

n

n−1∑
j=0

[χ(ω,xj+1) − χ(ω,xj )]

= n

xn

1

n

n−1∑
j=0

[χ(τxj
ω, xj+1 − xj )] → E[Z0]−1E[χ(ω,x1)] = 0,

almost surely as n → ∞. Similarly, one has 1
x−n

χ(ω, x−n) → 0, n → ∞. This
proves the sublinearity of the corrector claimed in (2.8).

Finally, let us prove (4). Since X̂ω(n) = ∑n−1
j=0 f (ωj ,ωj+1), due to (2.2) and

the stationarity of the process ωn we know that EQ[Êω(X̂ω(n)2)] < ∞, where Êω

denotes the expectation with respect to the law of X̂ω. Hence for P-a.a. ω the ran-
dom walk X̂ω(n) has square-integrable increments. Due to the sublinearity of the
corrector χ given by (2.8), the same holds for the Markov chain χ(ω, X̂ω(n)).
Hence, for P-a.a. ω, M(n) has square-integrable increments. The martingale prop-
erty follows from the fact that for P-a.a. ω the map ξ � x → x + χ(ω,x) ∈ R is
harmonic for the random walk X̂ω (see the discussion preceding the lemma). �

We can now conclude the proof of the a.s. FCLT. Following line by line the
d = 2 argument in [3], Section 6.1, one obtains an a.s. FCLT for the deformed
walk M(n) = X̂ω(n) + χ(ω, X̂ω(n)). From this result and the sublinearity of the
corrector field [see Lemma 2.1(3)], reasoning as in [3], Section 6.2, (6.10)–(6.13),
one derives the FCLT for X̂ω for a suitable diffusion coefficient D̂(β). This co-
efficient must coincide with the one obtained in the proof of part (i). Finally, one
derives the FCLT for Xω by a time–change argument as in [3], Section 6.3, proof
of Theorem 1.2.

3. Proof of Theorem 1.2: Lower bounds on D(β) by comparison with
nearest-neighbor random walks. In this section we prove the lower bounds
(1.15) and (1.19) (left-hand side) by comparing Mott variable-range random walk
with suitable nearest-neighbor random walks, whose diffusion coefficient can be
computed explicitly. Trivially, the lower bound in (1.17) is implied by (1.15).
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3.1. Nearest-neighbor walks on ξ . Let ω = (ξ,
) denote a given realization
of our marked point process [as defined in the Introduction; cf. the paragraph af-
ter (1.7)].

Given κ ∈ (0,∞], we consider the nearest-neighbor random walk (Yω
κ (t), t ≥ 0)

on ξ starting at 0, with infinitesimal generator

Lω
κ f (xi) = ∑

j : j=i±1

r(κ)
xi ,xj

(ω)
(
f (xj ) − f (xi)

) ∀f : ξ → R,

where

r(κ)
xi ,xj

(ω) = exp{−(|xi − xj |α ∧ κ) − βu(Ei,Ej )}.
The random walk Yω

κ can be described as follows: after arriving at site xi the
particle waits an exponential time with parameter

γ (κ)
xi

(ω) = r(κ)
xi ,xi+1

(ω) + r(κ)
xi ,xi−1

(ω)(3.1)

and then jumps to the nearest-neighbor point xi±1 with probability r
(κ)
xi ,xi±1(ω)/

γ
(κ)
xi (ω). Since the parameters (3.1) satisfy 0 < γ

(κ)
xi (ω) ≤ 2, it is standard to check

that the random walk is well defined (see, e.g., [5]) for any 0 < κ ≤ ∞. Since

r(∞)
xi ,xj

= cxi ,xj
,(3.2)

Yω∞ is the nearest-neighbor version of the random walk defined by (1.8). Note that
the definition above is such that when κ < ∞ one has uniformly elliptic jump rates.

By the same methods used in Section 2 and thanks to the finite second moment
condition, it is simple to establish the following invariance principle. Let P ω

κ,ε de-
note the law on D([0,∞),R) of the rescaled process εYω

κ (ε−2t). Then, for any
0 < κ ≤ ∞, P ω

κ,ε weakly converges in P-probability to a one-dimensional Brown-
ian motion W with variance E(W(t)2) = Dκ(β)t , where

Dκ(β) = inf
g∈L∞(P)

E

{ ∑
i=±1

r
(κ)
0,xi

(
xi + ∇xi

g(ω)
)2

}
.(3.3)

Note that, at this stage, the value of Dκ(β) in (3.3) could well be zero.
As before we shall obtain an almost sure invariance principle under the follow-

ing extra assumption:

E
[
1/r

(κ)
0,Z0

]
< ∞.(3.4)

Note that (3.4) is trivially satisfied for κ < ∞. Below we derive an explicit expres-
sion for Dκ(β).

PROPOSITION 3.1. Assume (3.4). Then P-a.s. the law of Yω
ε = (εYω

κ (ε−2t) :
t ≥ 0) converges weakly as ε → 0 to the law of the 1D Brownian motion W with
variance E(W 2(t)) = D̃κ(β)t , where

D̃κ(β) = 2E[Z0]2

E(1/r
(κ)
0,x1

)
.(3.5)
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The proof of the above proposition will be based on the corrector field. Al-
ternatively, the same result could be obtained by expressing the nearest-neighbor
random walk as a space–time change of a Brownian motion and applying Stone’s
method [12, 24].

PROOF. We repeat the main steps of the proof of Theorem 1.1 with the explicit
choice for χ given by

χ(ω,xn) =
n−1∑
j=0

(
C

r
(κ)
xj ,xj+1

− Zj

)
,

(3.6)

χ(ω,x−n) = −
n∑

j=1

(
C

r
(κ)
x−j ,x−j+1

− Z−j

)
,

where

C := E[Z0]
E(1/r

(κ)
0,x1

)
.

The crucial observation is that this function χ has the property (1), (2), (3) and (4)
listed in Lemma 2.1. For instance, property (4) follows from the harmonicity
Lω

κ ϕ(ω,x) = 0, x ∈ ξ , where ϕ(ω,x) = χ(ω,x) + x. Therefore, it satisfies the
same conclusions. In particular, the almost sure invariance principle holds for
εYω

κ (ε−2t) with constant diffusion coefficient given by D̃κ(β) = 1
t
EE0,ω[M2

t ], for
any t > 0, where Mt denotes the continuous-time martingale Mt = ϕ(ω,Yω

κ (t)).
Here E0,ω denotes expectation with respect to the random walk with genera-
tor Lω

κ , started at the origin. It remains to check that D̃κ(β) is given by (3.5).
There are several ways to do this. For instance one can check that, [Lω

κ ϕ2](ω,0) =
C2/r

(κ)
0,x1

+ C2/r
(κ)
x−1,0

. In this way it follows that

D̃κ(β) = lim
t→0

1

t
EE0,ω[M2

t ] = E[(Lω
κ ϕ2)(ω,0)] = 2C2E

[
1/r

(κ)
0,x1

]
,(3.7)

which gives the desired expression (see, e.g., [8], (4.22), for a similar argument).
�

As a corollary we thus obtain the following consequences for the constant
Dκ(β) appearing in (3.3).

COROLLARY 3.2. For any 0 < κ ≤ ∞ we have

Dκ(β) = 2E[Z0]2

E(1/r
(κ)
0,x1

)
.(3.8)

In particular, D∞(β) > 0 if and only if

E(exp(Zα
0 )) < ∞.(3.9)
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Moreover, assuming (3.9), there exist C1, κ1 ∈ (0,∞) such that for all β ≥ 0

D∞(β) ≥ C1e
−κ1β.(3.10)

Finally, if ν 
= δ0 then there exist C2, κ2 ∈ (0,∞) such that for all β ≥ 0

D∞(β) ≤ C2e
−κ2β.(3.11)

PROOF. Clearly, whenever (3.4) is satisfied then Dκ(β) must equal D̃κ(β) and
therefore (3.8) holds in this case. The only way to violate (3.4) is to have κ = ∞
and E(exp(Zα

0 )) = ∞. But here we can use monotonicity in κ of the variational
characterization (3.3) which implies that

D∞(β) ≤ Dκ(β) = 2E[Z0]2

E(1/r
(κ)
0,x1

)
∀κ ∈ (0,∞).

By taking the limit κ → ∞ we get that D∞(β) = 0. In particular, (3.8) is always
valid.

To prove (3.10) simply observe that by (1.9), using |Ei | ≤ 1 we have

ν[exp(βu(E0,E1))] ≤ e2c2β.(3.12)

Finally, if ν 
= δ0 then there is ε > 0 such that ν(|E0| ≥ ε) > 0, so that by (1.9)

ν[exp(βu(E0,E1))] ≥ ν(|E0| ≥ ε)ec1εβ,(3.13)

which proves (3.11). �

3.2. Proof of the lower bound (1.15). We compare the variational characteri-
zations (1.14) and (3.3). Clearly,

D(β) ≥ D∞(β).(3.14)

Hence the lower bound on D(β) follows from (3.10).

3.3. Proof of the lower bound (1.19). Here {Zj } are i.i.d. with E[exp εZj ] <

∞ for some parameter ε > 0. Let E∗ > 0 be a small fixed number [later we shall
take E∗ = E∗(β) → 0 as β → ∞]. From (1.14) we have

D(β) ≥ inf
g∈L∞(P)

E

{
χ{|E0|≤E∗}

∑
i∈Z

c0,xi
(xi + ∇xi

g)2χ{|Ei |≤E∗}
}
,(3.15)

where χ denotes the indicator function. Let P0,∗ = P(·||E0| ≤ E∗) and let ν∗ =
ν([−E∗,E∗]), so that the right-hand side above can be written as

ν∗ inf
g∈L∞(P)

E0,∗
{∑

i∈Z

c0,xi
(xi + ∇xi

g)2χ{|Ei |≤E∗}
}
,(3.16)

where E0,∗ denotes expectation with respect to P0,∗. Let ξ∗ := {xi ∈ ξ : |Ei | ≤ E∗}
denote the set of points in ξ with energy of modulus less than E∗. This is a thinning
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of the original process. Moreover, the law P∗ of ξ∗ under P0,∗ coincides with the
law of the process obtained from (1.7) where the distances Zj between consecutive
points are replaced by new independent variables Z∗

j , each distributed as

Z∗
1 =

Q∑
j=1

Zj ,(3.17)

where Q is an independent geometric random variable with parameter p := ν∗.
That is, Q is independent of the {Zi} and P(Q = k) = ν∗(1−ν∗)k−1 for all positive
integers k.

We write ĉxi ,xj
for the rates (1.8) evaluated at β = 0, that is, ĉxi ,xj

= exp{−|xi −
xj |α}. In particular, by (1.9), assuming |E0| ≤ E∗ we have

c0,xi
χ{|Ei |≤E∗} ≥ e−cβE∗ ĉ0,xi

χ{|Ei |≤E∗}

for some constant c > 0, for every xi . From (3.15), (3.16) and by the same argu-
ments used in the proof of Proposition 5 in [14], it then follows that

D(β) ≥ ν∗e−cβE∗D∗,(3.18)

where D∗ is defined by

D∗ := inf
g∈L∞(P∗)

E∗
{∑

i∈Z

ĉ0,xi
(xi + ∇xi

g)2
}

(3.19)

with E∗ denoting expectation with respect to the new measure P∗. Thus D∗ is the
diffusion coefficient at β = 0 associated to the point process P∗. Now, we note
that D∗ can be bounded from below by comparison with the associated nearest-
neighbor walk as we did in (3.14). Namely,

D∗ ≥ D∗∞ := 2E[Z∗
1]2

E(exp[(Z∗
1)α]) ,(3.20)

where Z∗
1 is defined by (3.17).

Next, we claim that there exists a constant C such that for all values of ν∗:

E(exp[(Z∗
1)α]) ≤ exp

[
Cν−α/(1−α)∗

]
.(3.21)

To prove our claim we need the following lemma.

LEMMA 3.3. Set ϕ∗(t) := P(Z∗
1 ≥ t). Then there exists a constant c > 0 inde-

pendent of ν∗ such that for all t ≥ 0

ϕ∗(t) ≤ 4e−cν∗t .(3.22)
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PROOF. Since ϕ∗ is bounded, it is enough to prove the statement for ν∗ small
enough. Let �(δ) := log E[eδZ1], δ ≥ 0, denote the logarithmic moment generating
function of the original variable Z1. We know this is finite for sufficiently small
δ > 0 since we are assuming E[eεZ1] < ∞ for some ε > 0. From the independence
of the {Zi} we have E[eδSn] = e�(δ)n, where Sn = ∑n

i=1 Zi . Since the geometric
variable Q is independent of the {Zi} we have

E[eδZ∗
1 ] = E[eδSQ] = E

[
e�(δ)Q]

.

Moreover, for any a > 0 such that ea < (1 − ν∗)−1, for the geometric variable Q

with parameter ν∗ we have

E[eaQ] = ν∗ea

1 − (1 − ν∗)ea
.

Therefore, for any δ > 0 such that e�(δ) < (1 − ν∗)−1 we have

ϕ∗(t) ≤ e−δtE[eδZ∗
1 ] ≤ e−δt ν∗e�(δ)

1 − (1 − ν∗)e�(δ)
.

It follows that for any δ > 0 such that

e�(δ) ≤ 1 − ν∗/2

1 − ν∗
,(3.23)

we have

ϕ∗(t) ≤ 2e�(δ)e−δt .(3.24)

Let us now show that there exists a constant c > 0 such that setting δ = cν∗ we
can satisfy the bound (3.23) for all sufficiently small values of ν∗. In this case the
desired estimate (3.22) would follow from (3.24) since �(δ) → 1 as δ → 0.

Set μ := E[Z1] > 0, so that �′(0) = μ. It is easy to check that �(δ) ≤ 2μδ for
all sufficiently small values of δ. Therefore (3.23) follows if

δ ≤ 1

2μ
log

(1 − ν∗/2)

1 − ν∗
.

However, one checks that log (1−ν∗/2)
1−ν∗ ≥ ν∗/2, and therefore the estimate above is

certainly satisfied by δ = 1
4μ

ν∗. �

3.3.1. Proof of claim (3.21). Using Lemma 3.3, we have

E(exp[(Z∗
1)α]) =

∫ ∞
0

P
(
exp[(Z∗

1)α] ≥ t
)
dt

= 1 +
∫ ∞

1
ϕ∗[(log t)1/α]dt(3.25)

≤ 1 + 4
∫ ∞

1
exp[−cν∗(log t)1/α]dt.
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Since α < 1, the last integral is finite. In particular, it is enough to prove (3.21) for
ν∗ small enough. By the variable change s = λ∗(log t)1/α , where λ∗ := cν∗, the
last integral becomes

λ−α∗
∫ ∞

0
αsα−1e−sesαλ−α∗ ds.

This, in turn, is estimated from above by

Cαλ−α∗ eλ−α∗ + λ−α∗
∫ ∞

1
e−sesαλ−α∗ ds,

with some constant Cα independent of λ∗. To estimate the last integral we set C =
21/(1−α) and observe that for s > Cλ

−α/(1−α)∗ one has sαλ−α∗ < s/2. Therefore, the

integrand e−sesαλ−α∗ can be estimated by exp[Cαλ
−α/(1−α)∗ ] for s ≤ Cλ

−α/(1−α)∗
and by e−s/2 for s > Cλ

−α/(1−α)∗ . By splitting the integral one obtains∫ ∞
1

e−sesαλ−α∗ ds ≤ Cλ−α/(1−α)∗ exp
[
Cαλ−α/(1−α)∗

] + 2 ≤ exp
[
2Cαλ−α/(1−α)∗

]
,

where the last bound follows if we assume that λ∗ is sufficiently small. Putting
these estimates together and using λ−α∗ eλ−α∗ ≤ exp[λ−α/(1−α)∗ ] (for λ∗ small
enough) we have

Cαλ−α∗ eλ−α∗ + λ−α∗
∫ ∞

1
e−sesαλ−α∗ ds ≤ exp

[
C′λ−α/(1−α)∗

]
(3.26)

for some new constant C′, whenever λ∗ is sufficiently small. Using (3.25), and
recalling that λ∗ = cν∗, this proves the claim (3.21).

We can now finish the proof of the lower bound (1.19) in Theorem 1.2. Going
back to (3.20) and observing that E[Z∗

1 ] ≥ E[Z1] =: μ > 0 for some constant μ,
we see that thanks to (3.21) we have

D∗∞ ≥ 2μ2 exp
[−Cν−α/(1−α)∗

]
.

From (3.18) and (3.20) it follows that

D(β) ≥ 2μ2ν∗ exp
[−cβE∗ − Cν−α/(1−α)∗

]
.(3.27)

By assumption there are positive constants c1, c2 such that

c1E
δ∗ ≤ ν∗ ≤ c2E

δ∗.(3.28)

Therefore, the exponent in (3.27) is bounded from below by −cβE∗ − κ1 ×
E

−δα/(1−α)∗ , with a new constant κ1. Choosing E∗ = β−(1−α)/(1−α+δα) one ob-
tains

D(β) ≥ exp
[−κβδα/(1−α+δα)]

for all sufficiently large β , for some constant κ > 0. This ends the proof of the
lower bound (1.19) in Theorem 1.2.
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We remark that the preceding proof is obtained by optimization over several
possible choices of nearest-neighbor walks. In particular, it shows that the true dif-
fusion constant D(β) can be much larger than the diffusion constant of the nearest-
neighbor walk defined in (3.2), which is characterized by the low-temperature be-
havior given by (3.10) and (3.11).

4. Proof of Theorem 1.2: subdiffusive regime. Here we shall prove points
(2) and (3)(i) of Theorem 1.2. Due to point (1) in Theorem 1.2, we only need to
show for renewal point processes ξ that D(β) = 0 if (i) α ≥ 1 and E[exp(Zα

j )] =
∞, or if (ii) α < 1 and E[exp(γZα

j )] = ∞ for some γ ∈ (0,1). To this end, we

define ϕ(x) = e|x|α and, for any g ∈ L∞(P), we set

A(g) = A+(g)+A−(g), A±(g) := E

{ ∞∑
i=1

ϕ(x±i )(x±i +∇x±i
g)2

}
.(4.1)

Then, due to (1.9), we have the upper bound D(β) ≤ c(β) infg∈L∞(P) A(g). We
only need to show that this last infimum is zero in the above cases (i) and (ii).

To this end we pick g ∈ L∞(P) and, given i ≥ 1, we write

xi + ∇xi
g =

i−1∑
�=0

[Z� + ∇Z�
g(τx�

ω)].

Applying the Schwarz inequality we get

(xi + ∇xi
g)2 ≤ i

i−1∑
�=0

[Z� + ∇Z�
g(τx�

ω)]2.

Therefore, we can bound

A+(g) ≤ E

{ ∞∑
i=1

iϕ(xi)

i−1∑
�=0

[Z� + ∇Z�
g(τx�

ω)]2

}
(4.2)

=
∞∑

�=0

E{c�(ξ)[Z� + ∇Z�
g(τx�

ω)]2},

where we use the notation c�(ξ) := ∑∞
k=�+1 kϕ(xk). Using shift invariance, we can

write

E{c�(ξ)[Z� + ∇Z�
g(τx�

ω)]2} = E

{ ∞∑
k=1

(
(� + k)ϕ(xk − x−�)

)[Z0 + ∇Z0g(ω)]2

}
.

In conclusion, we arrive at the bound A+(g) ≤ E{C1(ξ)[Z0 + ∇Z0g(ω)]2}, where

C1(ξ) :=
∞∑

m=0

∞∑
n=0

(1 + n + m)ϕ

(
Z0 +

n∑
�=1

Z� +
m∑

�=1

Z−�

)
,
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(we agree to set
∑b

�=a equal to zero if a > b). By the same arguments, one can
bound A−(g) and therefore arrive at the estimate

A(g) ≤ E

{ ∑
j=±1

Cj(ξ)[xj + ∇xj
g(ω)]2

}
,

where

C−1(ξ) :=
∞∑

m=0

∞∑
n=0

(1 + n + m)ϕ

(
Z−1 +

n−1∑
�=0

Z� +
m+1∑
�=2

Z−�

)
.

Collecting all our bounds, we get that

D(β) ≤ c(β) inf
g∈L∞(P)

A(g) ≤ c(β)D̄,(4.3)

where

D̄ := inf
g=g(ξ)

bounded

E

{ ∑
j=±1

Cj(ξ)[xj + ∇xj
g(ξ)]2

}
.(4.4)

Given κ > 0 we define

C
(κ)
j (ξ) := Cj(ξ) + κ.

Since Cj(ξ) ≤ C
(κ)
j (ξ), we conclude that

D̄ ≤ D̄κ := inf
g=g(ξ)

bounded

E

{ ∑
j=±1

C
(κ)
j (ξ)[xj + ∇xj

g(ξ)]2
}
.

Since E(
∑

j=±1 C
(κ)
j (ξ)x2

j ) < ∞ [recall that E(Z2
j ) < ∞] and E(1/C

(κ)
j ) < ∞ we

can apply the same arguments used in Section 3 and check that D̄κ is the diffusion
coefficient of the nearest-neighbor random walk on ξ jumping from xi to xi±1 with
rate C

(κ)
±1 (τxi

ξ), and that D̄κ equals 2E(Z0)
2/E(1/C

(κ)
1 ). Since C

(κ)
1 (ξ) ↘ C1(ξ),

by applying the monotone convergence theorem we conclude that

D̄ ≤ lim
κ↓∞ 2E(Z0)

2/E
(
1/C

(κ)
1

) = 2E(Z0)
2/E(1/C1).

In conclusion, in order to prove that D(β) = 0 it is enough to show that E(1/

C1) = ∞.

4.1. Case α ≥ 1 and E[exp(Zα
j )] = ∞. Since α ≥ 1, we have

ϕ

(
Z0 +

n∑
�=1

Z� +
m∑

�=1

Z−�

)
≤ ϕ(Z0)ϕ

(
n∑

�=1

Z� +
m∑

�=1

Z−�

)
.
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It follows that C1(ξ) ≤ ϕ(Z0)C̄1(ξ), where

C̄1(ξ) :=
∞∑

m=0

∞∑
n=0

(1 + n + m)ϕ

(
n∑

�=1

Z� +
m∑

�=1

Z−�

)
.

It is easy to check that E[(C̄1)
−1]−1 ≤ E[C̄1] ≤ K for some constant K < ∞.

Moreover, by independence of the Zk

E[(C1(ξ))−1] ≥ E[ϕ(Z0)
−1]E[(C̄1(ξ))−1] ≥ K−1E[ϕ(Z0)

−1] = ∞,

due to our main assumption.

4.2. Case α < 1 and E[exp(γZα
j )] = ∞ for some γ ∈ (0,1). It is the same

proof as above, with the exception that by concavity of xα we can estimate

(a + b)α ≥ (
γ a + (1 − γ )b

)α ≥ γ aα + (1 − γ )bα

for all γ ∈ (0,1) and all positive a, b, therefore

ϕ

(
Z0 +

n∑
�=1

Z� +
m∑

�=1

Z−�

)
≤ exp(−γZα

0 ) exp

(
(1 − γ )

[
n∑

�=1

Z� +
m∑

�=1

Z−�

]α)
.

From here on we can repeat the previous argument and the conclusion follows.

5. Proof of Theorem 1.2: Upper bounds on D(β). In this section we prove
the upper bounds in (1.17) and (1.19) by using suitable test functions g in the
variational formula (1.14). To this end the exponential moment assumption is not
needed. Indeed, what we shall use is only the existence of the second moment in
Lemma 5.1 below.

We start the proof in the general case α > 0 and then separate the two cases
α ≥ 1 and α < 1 afterward. Given a value E∗ > 0 of the energy and a realization
ω = (ξ,
) of the sequence {xj } in (1.7) and of the associated energies Ej , we
define the new sequence yk as follows:

y0 := 0, yk :=
{

inf{xj :xj > yk−1, |Ej | ≤ E∗}, k ≥ 1,
sup{xj :xj < yk+1, |Ej | ≤ E∗}, k ≤ −1.(5.1)

Note that, apart from y0 = x0 = 0 which may have energy E0 satisfying |E0| > E∗,
the sequence yk corresponds exactly to the points xj such that |Ej | ≤ E∗. We call
ξ∗ := {yk, k ∈ Z} the new point process (a thinning of ξ ). Next, given a sequence
of nonnegative numbers {c(n), n ∈ N} to be chosen later we define

L+
n := inf{k ≥ 0 :yk+1 − yk ≥ c(n)},

(5.2)
L−

n := sup{k ≤ 0 :yk − yk−1 ≥ c(n)}.
We consider the function g(ω) given by

g(ω) := yL+
n

∧ n.(5.3)
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Therefore, from (1.14) we may estimate

D(β) ≤ E

{∑
j∈Z

e−|xj |αe−βu(E0,Ej )(xj + ∇xj
g)2

}
.(5.4)

We split the expectation above in two terms given by the events |E0| ≤ E∗ and its
complement. Letting E0,∗ denote the expectation with respect to the conditional
probability P0,∗ = P(·||E0| ≤ E∗) and setting ν∗ = ν([−E∗,E∗]) we have

D(β) = D1(β) + D2(β),(5.5)

where

D1(β) := ν∗E0,∗
{∑

j∈Z

e−|xj |αe−βu(E0,Ej )(xj + ∇xj
g)2

}
,(5.6)

D2(β) := E

{∑
j∈Z

e−|xj |αe−βu(E0,Ej )(xj + ∇xj
g)2χ(|E0| > E∗)

}
.(5.7)

We first estimate the term D2(β). Here we know that |E0| > E∗ so that from (1.9)
and the fact that for γ < 1 we can bound e−|x|α (x + ∇xg)2 ≤ cn2e−γ |x|α for some
finite c = c(γ ) we have

D2(β) ≤ cn2e−c1βE∗E
{∑

j∈Z

e−γ |xj |α
}
.(5.8)

Using Lemma A.1 we see that the last expectation in (5.8) is finite and therefore
we obtain the following estimate for D2(β), for some finite constant C:

D2(β) ≤ Cn2e−c1βE∗ .(5.9)

We turn to the estimate of D1(β). In (5.6) we can further split the sum depending
on whether |Ej | > E∗ or not, that is, whether xj ∈ ξ∗ or not. Estimating as in (5.8)
and (5.9) we have

E0,∗
{∑

j∈Z

e−|xj |αe−βu(E0,Ej )(xj + ∇xj
g)2χ(xj /∈ ξ∗)

}
≤ Cn2e−c1βE∗ .(5.10)

Therefore

D1(β) ≤ Cn2e−c1βE∗ + D∗
1 ,(5.11)

where, recalling that ξ∗ = {yj } and neglecting the energy contribution, we define

D∗
1 := E0,∗

{∑
j∈Z

e−|yj |α (yi + ∇yi
g)2

}
.(5.12)

We observe that the law of ξ∗ under P0,∗ is given by the renewal process such
that the distance between consecutive points Z∗

j := yj+1 − yj is distributed as
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�=1 Z�, where Q is an independent geometric random variable with parameter

p = ν∗. That is, Q is independent of the {Zi} and P(Q = k) = ν∗(1 − ν∗)k−1,
k ∈ N. Again for any given 0 < γ < 1, we have e−|x|α (x +∇xg)2 ≤ cn2e−γ |x|α for
some positive constant c = c(γ ). Therefore we can estimate

D∗
1 ≤ c(A0 + A+

1 + A−
1 + A+

2 + A−
2 ),(5.13)

where

A0 = E0,∗
{∑

j∈Z

e−|yj |α (yj + ∇yj
g)2χ(−n/2 ≤ yL−

n
≤ yj ≤ yL+

n
≤ n/2)

}
,

A+
1 = n2E0,∗

{∑
j∈Z

e−γ |yj |αχ(yL+
n

> n/2)

}
,

A−
1 = n2E0,∗

{∑
j∈Z

e−γ |yj |αχ(yL−
n

< −n/2)

}
,

A+
2 = n2E0,∗

{∑
j∈Z

e−γ |yj |αχ(yj > yL+
n
)

}
,

A−
2 = n2E0,∗

{∑
j∈Z

e−γ |yj |αχ(yj < yL−
n
)

}
.

The first observation is that A0 = 0. Indeed, since −n/2 ≤ yL−
n

≤ yj ≤ yL+
n

≤ n/2,
we have that g(τyj

ξ∗) = yL+
n

− yj so that yj + ∇yj
g = 0 in this case.

We turn to estimate A+
1 . Fix p,q > 1 with 1/p + 1/q = 1 and set ψ :=∑

j∈Z e−γ |yj |α . Then by Hölder’s inequality

A+
1 ≤ n2P0,∗(yL+

n
> n/2)1/pE0,∗[ψq]1/q .

Thanks to Lemma A.1 we have E0,∗[ψq]1/q ≤ Cq < ∞ for any q > 1. Now, note
that by construction yL+

n
≤ L+

n c(n) so that

P0,∗(yL+
n

> n/2) ≤ P0,∗
(
L+

n > n/(2c(n))
)
.

Set mn = [n/(2c(n))] (the integer part). Then L+
n > n/(2c(n)) implies that the

first mn variables Z∗
j , j = 0, . . . ,mn − 1 are all smaller than c(n), so that

P0,∗(yL+
n

> n/2) ≤ (
1 − P

(
Z∗

1 ≥ c(n)
))mn ≤ exp[−mnϕ∗(c(n))],(5.14)

where ϕ∗(t) := P(Z∗
j ≥ t). We have obtained

A+
1 ≤ n2Cq exp

[
− 1

p
mnϕ∗(c(n))

]
.(5.15)

Since A+
1 = A−

1 by symmetry, the same bound applies to A−
1 .
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We now estimate the term A+
2 = A−

2 . If yj ∈ ξ∗ with yj > yL+
n

then yj ≥ yL+
n

+
c(n) + (yj − yL+

n +1) =: a1 + a2 + a3. Since ai ≥ 0, we can use the elementary

inequality (
∑3

i=1 ai)
α ≥ d(α)

∑3
i=1 aα

i , where d(α) := 1 ∧ 3α−1. Hence, by the
renewal property,

A+
2 ≤ n2e−γ d(α)c(n)αE0,∗(exp[−γ d(α)yα

L+
n
])E0,∗

( ∞∑
j=0

e
−γ d(α)yα

j

)
.(5.16)

Again Lemma A.1 allows to bound the last factor in the right-hand side by a finite
constant C. Therefore, using the obvious bound E0,∗(exp[−γ d(α)yα

L+
n
]) ≤ 1 we

have

A+
2 ≤ Cn2e−γ d(α)c(n)α .(5.17)

Due to the above bounds and the arbitrariness of p in (5.15), we obtain that, for
all ε > 0 and γ ∈ (0,1), for a suitable positive constant C

D∗
1 ≤ Cn2{exp[−(1 − ε)mnϕ∗(c(n))] + exp[−γ d(α)c(n)α]},(5.18)

where mn = [n/(2c(n))], d(α) = 1 ∧ 3α−1, and ϕ∗(t) = P(Z∗
1 ≥ t) denotes the tail

probability of Z∗
1 .

We need the following simple lemma.

LEMMA 5.1. Suppose that Z1 has finite second moment. There exists a con-
stant c > 0 independent of ν∗ such that

ϕ∗(t) ≥ ce−λ∗t , t ≥ 0,

where λ∗ := − 1
μ

log(1 − ν∗), μ := E[Z1].

PROOF. Set Sn = ∑n
i=1 Zi . Then by the central limit theorem we have P(Sn ≥

μn) → 1
2 , n → ∞. Recall that Q is an independent geometric random variable

with parameter p = ν∗. Therefore, for t sufficiently large

ϕ(t) = P(SQ ≥ t) ≥ P(SQ ≥ t;Q ≥ t/μ)

≥ P(S[t/μ] ≥ t)P(Q ≥ t/μ) ≥ cP(Q ≥ t/μ) ≥ ce−λ∗t

with λ(ν∗) = − 1
μ

log(1 − ν∗). �

We are now able to finish the proof of the upper bounds in (1.17) and (1.19).
We start with the case α ≥ 1.
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5.1. Proof of the upper bound in (1.17). We choose the sequence c(n) as

c(n) := a logn

with a > 0. We want (5.18) to be smaller than an inverse power of n. Here
d(α) = 1. By Lemma 5.1 the first exponential in (5.18) is smaller than any in-
verse power of n provided that aλ∗ < 1. For the second exponential in (5.18) the
worst case is when α = 1. Here we need, for example, aγ ≥ 3 to ensure that

n2 exp[−γ c(n)α] ≤ 1

n

for all α ≥ 1. Since γ < 1 is arbitrarily close to 1 we can reach this by requiring
a > 3. Therefore we obtain, as soon as aλ∗ < 1 and a > 3,

D∗
1 ≤ 2

n
(5.19)

for all sufficiently large n. Since we are assuming that ν∗ → 0 as E∗ → 0 there
is no difficulty in taking E∗ sufficiently small so that both a > 3 and aλ∗ < 1 are
satisfied. Finally, we can set

n := ec0E∗β(5.20)

for a sufficiently small c0 > 0, so that using (5.5), (5.9), (5.11) and (5.19) we
obtain that D(β) ≤ e−κβ for some κ > 0 and for all sufficiently large β . This ends
the proof of the upper bound (1.17) in Theorem 1.2.

5.2. Proof of the upper bound in (1.19). We are going to use the same idea we
used for (1.17), with the difference that now the value E∗ will itself depend on β

and will go to 0 as β → ∞. Recall that here we assume that ν∗ is of order Eδ∗ as
E∗ → 0; cf. (3.28). We take c(n) as

c(n) := (a logn)1/α.(5.21)

As in the previous case we want an estimate as (5.19). Therefore the second expo-
nential term in (5.18) requires the condition γ 3α−1a ≥ 3. Since γ < 1 is arbitrarily
close to 1 we can meet this requirement by taking a > 32−α . For the first exponen-
tial, using Lemma 5.1, we see that

λ∗ < (a logn)−(1−α)/α,

is sufficient to have that exp[−(1− ε)mnϕ∗(c(n))] vanishes faster than any inverse
power of n. Since λ∗ = −μ−1 log(1 − ν∗) ≤ 2μ−1ν∗ for small ν∗, it is sufficient to
have, for a suitable constant C,

ν∗ < C(logn)−(1−α)/α.(5.22)

The above argument shows that if we choose c(n) as in (5.21) with, for example,
a = 9 and suppose that ν∗ satisfies (5.22) then we know that (5.19) holds for all n

sufficiently large.



1D HOPPING DIFFUSIVITY 1487

Let us now rephrase things in terms of E∗ and β . We have ν∗ ∼ Eδ∗ and we
may choose n again as in (5.20). Therefore (5.22) can be rewritten, after suitably
modifying the constant C,

Eδ∗ < C(E∗β)−(1−α)/α.(5.23)

We can then choose E∗(β) := cβ−(1−α)/(δα+1−α) for a sufficiently small constant
c > 0 and we are sure to satisfy (5.23). Once we have (5.23) we know that (5.19)
holds with n = ec0βE∗(β), provided β is large enough. Collecting the previous es-
timates in (5.5), (5.9) and (5.11) we have thus obtained, for suitable κ1, κ2 > 0:

D(β) ≤ e−κ1βE∗(β) = e−κ2β
δα/(δα+1−α)

.

This ends the proof of Theorem 1.2.

6. Bounds on Cheeger’s constant and spectral gap. In this section we are
going to prove Proposition 1.3, Theorem 1.4 and Corollary 1.5. We recall that, as
a convention, whenever we state that some event EL involving the parameter L

holds P-a.s. we mean that with P-probability 1 there exists L0 = L0(ξ) < ∞ such
that the event EL occurs for all L ∈ N, with L ≥ L0.

Let ξ = {xk, k ∈ Z} denote as usual the renewal process generated by (1.7) and
recall that ξL := ξ ∩ �L, �L = [−L/2,L/2]. Recall the definition of Cheeger’s
isoperimetric constant (1.21) and the definition of ζL (1.22).

6.1. Proof of Proposition 1.3. To prove the left bound in (1.23), observe that
for any nonempty subset U with #(U) ≤ 1

2#(ξL) we have

IU (ξ) ≥ 2

#(ξL)
e−ζα

L .

By ergodicity we have #(ξL)/L → 1/E(Zi), P-a.s. Therefore we may assume that

1

C1
L ≤ #(ξL) ≤ C1L(6.1)

for some constant C1, and the claimed lower bound follows.
We turn to the proof of the upper bound in (1.23). We fix γ ∈ (0,1) and let

aγL < bγL be two consecutive points realizing the maximum in (1.22) when L is
replaced by γL, that is, bγL − aγL = ζγL. Since γ < 1, in analogy with (6.1) we
know that taking U to be either U1 := ξ ∩ [−L

2 , aγL] or U2 := ξ ∩ [bγL, L
2 ] we

have

cγ L ≤ #(U) ≤ 1
2#(ξL),(6.2)

where cγ > 0 is a suitable constant depending on γ . Without loss of generality
we may assume that U = U1. Note that for any pair x, y ∈ ξL such that x ∈ U and
y ∈ ξL\U we have |x−y| = (aγL−x)+ζγL+(y−bγL), the sum of three positive
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terms. Using (
∑3

i=1 wi)
α ≥ d(α)

∑3
i=1 wα

i , for any wi ≥ 0, with d(α) = 1 ∧ 3α−1,
we can estimate

�L(ξ) ≤
∑

x∈U

∑
y∈ξL\U e−|x−y|α

#(U)

≤ 1

cγ L
e
−d(α)ζα

γL

(∑
x∈U

e−d(α)|x−aγL|α
)( ∑

y∈ξL\U
e−d(α)|y−bγL|α

)
.(6.3)

Next, we show that each sum in the right-hand side of (6.3) is bounded by C logL

for a suitable constant C.
By the assumption P(Zi = 0) = 0, we can find δ > 0 such that P(Zi ≤ δ) ≤ 1

2 .
We partition [−L

2 , L
2 ] by means of δ-intervals �i of the form [ai, ai+1], ai+1 =

ai + δ. For any interval �i we write Ni = #(ξ ∩ �i) for the number of points
in �i . We note that for any integer K ≥ 1, for every i:

P(Ni ≥ K) ≤ 2−K+1.(6.4)

Indeed, we may assume that �i = [a, a + δ] for some a > 0 (this represents no
real loss of generality since the argument when a ≤ 0 is very similar). Then, we
call Xa = min{x ∈ ξ :x ≥ a}. Let μa = P ◦ X−1

a denote the law of Xa . Then

P(Ni ≥ K) =
∫ a+δ

a
μa(dt)P(Ni ≥ K|Xa = t).

From the renewal property we have that for any t ∈ �i = [a, a + δ]
P(Ni ≥ K|Xa = t) ≤ P(Z� ≤ δ,1 ≤ � ≤ K − 1) ≤ 2−K+1.

This proves (6.4).
If we take K = C logL in (6.4) with C suitably large, then a union bound with

the Borel–Cantelli lemma shows that we can assume that there is no interval �i

such that Ni ≥ C logL. In this case, we can estimate∑
x∈U

e−d(α)|x−aγL|α ≤ sup
a∈[−L/2,L/2]

∑
x∈ξL

e−d(α)|x−a|α

(6.5)

≤ C logL

+∞∑
j=−∞

e−d(α)|jδ|α ≤ C2 logL

for a suitable constant C2. The same estimate can be used to treat the second sum
in the right-hand side of (6.3). This shows that we can find a constant C3 such that

�L(ξ) ≤ C3(logL)2

L
e
−d(α)ζα

γL.

Finally, it is clear that if P(Zi > ε) = 1 for some ε > 0 the argument given above
is not needed. Indeed, in this case both sums in (6.3) are finite and therefore (1.23)
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holds without the (logL)2 factor in the right-hand side. This ends the proof of
Proposition 1.3.

6.2. General method to estimate �L(ξ). Thanks to Proposition 1.3, the a.s.
behavior of �L(ξ) can be derived from the a.s. behavior of ζL. To this aim we
recall some results concerning the a.s. asymptotic behavior of maxima of i.i.d.
random variables (see [15], Section 4, [11], Section 3.5). Recall that ψ(t) =
P(Z1 > t).

LEMMA 6.1. Define

Mn := max(Z1,Z2, . . . ,Zn).

The following holds:

(i) Let un be a nondecreasing sequence. Then

P(Mn ≥ un, i.o.) = 0 or 1

accordingly as
∞∑

n=1

ψ(un) < ∞ or
∞∑

n=1

ψ(un) = +∞.

(ii) Let un be a nondecreasing sequence such that

lim
n↑∞ψ(un) = 0,

lim
n↑∞nψ(un) = ∞.

Then

P(Mn ≤ un, i.o.) = 0 or 1

accordingly as
∞∑

n=1

ψ(un)e
−nψ(un) < ∞ or

∞∑
n=1

ψ(un)e
−nψ(un) = +∞.

(iii) Suppose that P(Zi ≤ x) < 1 for all x ∈ R and set αn := inf{y :ψ(y) ≤
1/n}. Then

P
(

lim
n↑∞Mn/αn = 1

)
= 1,

if and only if for arbitrary k > 1,
∞∑

n=1

ψ(kαn) < ∞.(6.6)
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(iv) Suppose that ψ is continuous and that P(Zi ≤ x) < 1 for all x ∈ R. Let βn

be a nondecreasing sequence of positive numbers such that

P
(

lim
n↑∞Mn/βn = 1

)
= 1.

Then limn↑∞ βn/αn = 1.

As shown in detail in the next subsection, the a.s. asymptotic behavior of ζL is
similar to the a.s. asymptotic behavior of Mn. Since it is the exponential of ζL that
enters in the lower and upper bound of �L(ξ) in (1.23), it is necessary to know
good sequences un, vn such that un ≤ Mn ≤ vn P-a.s. for n large enough. Thanks
to Lemma 6.1(iv), (v), in many cases the right sequences un, vn can be easily
guessed, since they must be corrections of αn (see [11], Chapter 3, for examples
and further discussions). These observations are at the heart of Theorem 1.4, which
covers several interesting cases already discussed in the Introduction.

6.3. Proof of Theorem 1.4. Let us define

n+(L) := max{n :xn ≤ L/2}, n−(L) := max{n :x−n ≥ −L/2}.(6.7)

Also, for integers k ≥ 0, � ≥ 1 we set

Mk,� := max{Z−k,Z−k+1, . . . ,Z�−2,Z�−1}.(6.8)

With these definitions we have

ζL = Mn−(L),n+(L).

We may define Ms,t for every s, t > 0, by taking the integer parts Ms,t := M[s],[t].
From the ergodicity it follows that

lim
L→∞

n±(L)

L
= 1

2μ
, P-a.s.,(6.9)

where, as usual μ = E[Z1]. For any γ < 1 and setting nL := L
μ

we then have

[γ nL/2] ≤ n±(L) ≤ [γ −1nL/2], P-a.s.

Therefore

M1/2γ nL,1/2γ nL
≤ ζL ≤ M1/2γ −1nL,1/2γ −1nL

, P-a.s.(6.10)

Since nL is deterministic, one can define a deterministic bijective map τ : N+ → Z

such that, setting M
(τ)
n = max(Zτ(1),Zτ(2), . . . ,Zτ(n)), it holds

M1/2γ nL,1/2γ nL
= M

(τ)
2[γ nL/2],(6.11)

M1/2γ −1nL,1/2γ −1nL
= M

(τ)

2[γ −1nL/2].(6.12)
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The a.s. limiting behavior of Mτ
n can be determined by means of Lemma 6.1,

replacing {Zi}i≥1 with {Zτ(i)}i≥1. In particular, if a(·) is a function as in Theo-
rem 1.4, satisfying (1.24) it follows from Lemma 6.1(i) that

M1/2γ −1nL,1/2γ −1nL
≤ a(γ −1nL), P-a.s.

Similarly if b(·) is a function as in Theorem 1.4, satisfying (1.25) then Lem-
ma 6.1(ii) implies that

M1/2γ nL,1/2γ nL
> b(2[γ nL/2]) ≥ b(γ 2nL), P-a.s.

In conclusion, assuming both (1.24) and (1.25) we may estimate, for any γ ∈
(0,1):

b(γ 2nL) ≤ ζL ≤ a(γ −1nL), P-a.s.(6.13)

Since γ is arbitrarily close to 1 we see that (1.26) is an immediate consequence of
Proposition 1.3 and (6.13). This ends the proof of Theorem 1.4.

6.4. Proof of Corollary 1.5. Thanks to the simple estimate gap(L) ≤ 2�L,
the upper bound (1.30) in Corollary 1.5 is an immediate consequence of the upper
estimate of Theorem 1.4. Moreover, as discussed in [6] an upper bound of order
L−2 on gap(L) is not hard to obtain in our setting. Therefore, we only have to
prove the lower bound in (1.29). Let −L

2 ≤ x−n−(L) < · · · < xn+(L) ≤ L
2 denote

the points of ξL; see (6.7). Let f be an arbitrary vector. The numerator in (1.27) is
written as∑

x,y∈ξL

(
f (x) − f (y)

)2 = AL(f ) :=
n+(L)∑

i=−n−(L)

n+(L)∑
j=−n−(L)

(
f (xi) − f (xj )

)2
.

Note that xi+1 − xi = Zi . The denominator in (1.27) therefore satisfies

∑
x,y∈ξL

e−|x−y|α (
f (x) − f (y)

)2 ≥ BL(f ) :=
n+(L)−1∑
i=−n−(L)

e−Zα
i
(
f (xi) − f (xi+1)

)2
.

For any i < j we estimate with the Schwarz inequality

(
f (xi) − f (xj )

)2 ≤
j−1∑
k=i

eZα
k

j−1∑
�=i

e−Zα
�
(
f (x�) − f (x�+1)

)2
.

Since limn→∞ 1
n

∑n
k=1 eZα

k = E[eZα
1 ] < ∞, P-a.s., using (6.9) we see that for some

constant C1 we have, for any i < j ,(
f (xi) − f (xj )

)2 ≤ C1LBL(f ), P-a.s.(6.14)

Summing over i and j in (6.14) and using again (6.9) we see that for some con-
stant C2

AL(f ) ≤ C2L
3BL(f ).(6.15)
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From (6.1) it follows that for some constant C :γ (L) ≤ CL2, P-a.s. This finishes
the proof of Corollary 1.5.

APPENDIX: A SIMPLE ESTIMATE ON RENEWAL POINT PROCESSES

LEMMA A.1. Suppose that ξ is a renewal point process containing the origin.
Then, given a < b, there exists positive constants c, c′ such that

P
(
ξ(a, b) ≥ k

) ≤ ce−c′k, k ∈ N.(A.1)

Moreover,

E(λ0(ω)k) < ∞, k ∈ N,(A.2)

where λx is defined by (1.10).

PROOF. Let us prove (A.1) in the case a = 0 < b, the general case can be
treated similarly. We fix u > 0 such that

γ := P(Zi ≤ u) < 1

and set n equal to the integer part [b/u]. If Z1 + Z2 + · · · + Zk < b then at least
k − n of the variables Z1,Z2, . . . ,Zk are not larger than u. Therefore

P
(
ξ(0, b) ≥ k

) = P(Z1 + Z2 + · · · + Zk < b)
(A.3)

≤
k∑

j=k−n

(
k

j

)
γ j (1 − γ )k−j .

The last member is a sum of n + 1 addenda. Since 0 ≤ γ < 1, for all j :k − n ≤
j ≤ k it holds that γ j ≤ γ k−n and (1 − γ )k−j ≤ 1. Moreover(

k

j

)
=

(
k

k − j

)
= k(k − 1)(k − 2) · · · (j + 1)

(k − j)! ≤ kk−j ≤ kn.

Hence, for a suitable constant c > 0 depending only on n,

k∑
j=k−n

(
k

j

)
γ j (1 − γ )k−j ≤ (n + 1)knγ k−n ≤ cγ k/2 ∀k ≥ 1.

This concludes the proof of (A.1).
The last estimate (A.2) follows immediately from (A.1) and from the trivial

bound λ0(ξ) ≤ C
∑

x∈Z ξ([x, x + 1))e−c|x|α . �



1D HOPPING DIFFUSIVITY 1493

REFERENCES

[1] ALEXANDER, S. (1982). Variable range hopping in one-dimensional metals. Phys. Rev. B 26
2956.

[2] AMBEGOAKAR, V., HALPERIN, B. I. and LANGER, J. S. (1971). Hopping conductivity in
disordered systems. Phys. Rev. B 4 2612–2620.

[3] BERGER, N. and BISKUP, M. (2007). Quenched invariance principle for simple random walk
on percolation clusters. Probab. Theory Related Fields 137 83–120. MR2278453

[4] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.
MR0233396

[5] BREIMAN, L. (1953). Probability. Addison-Wesley, Reading, MA.
[6] CAPUTO, P. and FAGGIONATO, A. (2007). Isoperimetric inequalities and mixing time for a

random walk on a random point process. Ann. Appl. Probab. 17 1707–1744. MR2358639
[7] DALEY, D. J. and VERE-JONES, D. (1988). An Introduction to the Theory of Point Processes.

Springer, New York. MR950166
[8] DE MASI, A., FERRARI, P. A., GOLDSTEIN, S. and WICK, W. D. (1989). An invariance

principle for reversible Markov processes. Applications to random motions in random
environments. J. Statist. Phys. 55 787–855. MR1003538

[9] DOYLE, P. G. and SNELL, J. L. (1984). Random Walks and Electric Networks. Carus Mathe-
matical Monographs 22. Math. Assoc. Amer., Washington, DC. MR920811

[10] ETHIER, S. N. and KURZ, T. G. (1986). Markov Processes: Characterization and Conver-
gence. Wiley, New York. MR838085

[11] EMBRECHTS, P., KLÜPPELBERG, C. and MIKOSCH, T. (1997). Modelling Extremal Events
for Insurance and Finance. Applications of Mathematics (New York) 33. Springer, Berlin.
MR1458613

[12] FAGGIONATO, A. (2007). Bulk diffusion of 1D exclusion process with bond disorder. Markov
Process. Related Fields 13 519–542. MR2357386

[13] FAGGIONATO, A. and MATHIEU, P. (2008). Mott law for Mott variable-range random walk.
Comm. Math. Phys. 281 263–286.

[14] FAGGIONATO, A., SCHULZ-BALDES, H. and SPEHNER, D. (2006). Mott law as lower bound
for a random walk in a random environment. Comm. Math. Phys. 263 21–64. MR2207323

[15] GALAMBOS, J. (1978). The Asymptotic Theory of Extreme Order Statistics. Wiley, New York.
MR489334

[16] KIPNIS, C. and VARADHAN, S. R. S. (1986). Central limit theorem for additive functionals of
reversible Markov processes and applications to simple exclusions. Comm. Math. Phys.
104 1–19. MR834478

[17] KURKIJÄRVI, J. (1973). Hopping conductivity in one dimension. Phys. Rev. B 8 922–924.
[18] LADIEU, F. and BOUCHAUD, J.-P. (1993). Conductance statistics in small GaAs:Si wires

at low temperatures. I. Theoretical analysis: Truncated fluctuations in insulating wires.
J. Phys. I France 3 2311–2320.

[19] LEE, P. A. (1984). Variable range hopping in finite one-dimensional wires. Phys. Rev. Lett. 53
2042.

[20] MATHIEU, P. and PIATNITSKI, A. (2007). Quenched invariance principles for random walks
on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 2287–2307.
MR2345229

[21] SEROTA, R. A., KALIA, R. K. and LEE, P. A. (1986). New aspects of variable-range hopping
in finite one-dimensional wires. Phys. Rev. B 33 8441.

[22] SHKLOVSKII, B. and EFROS, A. L. (1984). Electronic Properties of Doped Semiconductors.
Springer, Berlin.

[23] YU, Z. G. and SONG, X. (2001). Variable range hopping and electric conductivity along the
DNA double helix. Phys. Rev. Lett. 86 6018.

http://www.ams.org/mathscinet-getitem?mr=2278453
http://www.ams.org/mathscinet-getitem?mr=0233396
http://www.ams.org/mathscinet-getitem?mr=2358639
http://www.ams.org/mathscinet-getitem?mr=950166
http://www.ams.org/mathscinet-getitem?mr=1003538
http://www.ams.org/mathscinet-getitem?mr=920811
http://www.ams.org/mathscinet-getitem?mr=838085
http://www.ams.org/mathscinet-getitem?mr=1458613
http://www.ams.org/mathscinet-getitem?mr=2357386
http://www.ams.org/mathscinet-getitem?mr=2207323
http://www.ams.org/mathscinet-getitem?mr=489334
http://www.ams.org/mathscinet-getitem?mr=834478
http://www.ams.org/mathscinet-getitem?mr=2345229


1494 P. CAPUTO AND A. FAGGIONATO

[24] STONE, C. (1963). Limit theorems for random walks, birth and death processes, and diffusion
processes. Illinois J. Math. 7 638–660. MR0158440

DIPARTIMENTO DI MATEMATICA

UNIVERSITÀ ROMA TRE

LARGO S. MURIALDO 1
00146 ROMA

ITALY

E-MAIL: caputo@mat.uniroma3.it

DIPARTIMENTO DI MATEMATICA

“G. CASTELNUOVO”
UNIVERSITÀ “LA SAPIENZA”
P. LE ALDO MORO 2
00185 ROMA

ITALY

E-MAIL: faggiona@mat.uniroma1.it

http://www.ams.org/mathscinet-getitem?mr=0158440
mailto:caputo@mat.uniroma3.it
mailto:faggiona@mat.uniroma1.it

	Introduction
	Model and results
	Poissonian case
	Diluted lattice
	Weibull distribution
	Gaussian distribution
	Random variables with polynomial tails

	Diffusivity via spectral gap and isoperimetric bounds
	Examples

	Overview of the following sections

	Proof of Theorem 1.1
	Proof of Theorem 1.2: Lower bounds on D(beta) by comparison with nearest-neighbor random walks
	Nearest-neighbor walks on xi
	Proof of the lower bound (1.15)
	Proof of the lower bound (1.19)
	Proof of claim (3.21)


	Proof of Theorem 1.2: subdiffusive regime
	Case alpha>=1 and E[ exp( Zjalpha)]=
	Case alpha< 1 and E[ exp( gammaZjalpha)]= for some gamma(0,1)

	Proof of Theorem 1.2: Upper bounds on D(beta)
	Proof of the upper bound in (1.17)
	Proof of the upper bound in (1.19)

	Bounds on Cheeger's constant and spectral gap
	Proof of Proposition 1.3
	General method to estimate PhiL(xi)
	Proof of Theorem 1.4
	Proof of Corollary 1.5

	Appendix: A simple estimate on renewal point processes
	References
	Author's Addresses

