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NO ARBITRAGE WITHOUT SEMIMARTINGALES

BY ROBERT A. JARROW, PHILIP PROTTER1 AND HASANJAN SAYIT

Cornell University, Cornell University and Worcester Polytechnic Institute

We show that with suitable restrictions on allowable trading strategies,
one has no arbitrage in settings where the traditional theory would admit arbi-
trage possibilities. In particular, price processes that are not semimartingales
are possible in our setting, for example, fractional Brownian motion.

1. Introduction. In 1997, Rogers [18] showed that fractional Brownian mo-
tion could not be used as a price process for a risky security without introducing
arbitrage opportunities. In related work, Delbaen and Schachermayer in 1994 ([5],
see also [7]; also [19] and [11] present expository treatments) clarified the con-
cept of no arbitrage by introducing their fundamental concept of “No Free Lunch
With Vanishing Risk” (NFLVR) and inter alia showed that as a consequence of the
Bichteler–Dellacherie theorem, a necessary condition for a price process to have
NFLVR was that it be a semimartingale (see [19] for a nice exposition of this). This
insight clarifies the situation of fractional Brownian motion illustrated by Rogers,
since fractional Brownian motion is not a semimartingale for most parameter val-
ues. Subsequently in his thesis, Cheridito [4] showed that if one properly restricts
the class of permissible trading strategies, one can use fractional Brownian mo-
tion as a price process and still maintain NFLVR. To accomplish this task, his
restriction effectively eliminates those strategies that Rogers had used to illustrate
arbitrage. Continuing this line of inquiry, when restricting trading strategies in a
manner similar to that proposed by Cheridito, this article attempts to find a general
class of processes, which need not be semimartingales that do not permit arbitrage.

The idea is to disallow continuous trading, and moreover to require a mini-
mal fixed time between successive trades. The fixed time can be as small as one
likes, but once chosen, it cannot be changed. This disallows a clustering of trades
around a fleeting arbitrage opportunity, such as might occur from a drift process
that the random generating process cannot “see.” An example might be Brownian
local time and Brownian motion, where since the support of the local time is on a
(random) set of Lebesgue measure zero, the Brownian motion cannot see when it
changes.
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This line of inquiry is important for two reasons. First, price processes which
are not semimartingales are appearing more regularly in the empirical literature es-
timating stock price processes (see Lo [14] and references therein), and our meth-
ods would provide tools that can be used to determine whether these more gen-
eral processes are consistent with NFLVR. Second, recent derivatives research has
emphasized the importance of transaction costs and illiquidities on restricting the
class of permissible trading strategies (see Soner, Shreve and Cvitanic [20] or Jar-
row and Protter [12]), for example, continuous trading strategies generate infinite
transaction costs under reasonable models of such costs, and those of unbounded
variation generate infinite liquidity costs in any finite time interval. As such, these
trading strategies could never be used in practice, even if it were physically possi-
ble to trade continuously. Without modeling these trading costs explicitly, restrict-
ing the class of trading strategies as done by Cheridito provides us with a market
setting that implicitly incorporates these trading costs, but maintains the analytic
tractability of frictionless markets. Thus, our paper finds those price processes con-
sistent with NFLVR when possible, but also goes beyond those price processes
having NFLVR to encompass a larger class. It does this for an extended class of
derivative pricing models, without explicitly incorporating transaction costs and
illiquidities.

To state the main result of this paper, we need two quick definitions [and we let
F = (Ft )t≥0 denote the underlying filtration satisfying the “usual hypotheses”].

DEFINITION 1. The set of simple predictable integrands with bounded sup-
port is given by S(F) = {g01{0} + ∑n−1

j=1 gj 1(τj ,τj+1] :n ≥ 2,0 ≤ τ1 ≤ · · · ≤ τn,
where all of the τj are F-stopping times; g0 is a real number,and the gj are real
Fτj

measurable random variables and τn is bounded}.

We give the name Cheridito Class to the trading strategies defined next; we
abbreviate it as the class CC.

DEFINITION 2 (Cheridito class of trading strategies). For any h > 0, let
Sh(F) = {g01{0} + ∑n−1

j=1 gj 1(τj ,τj+1] ∈ S(F) :∀j, τj+1 ≥ τj + h} and let �(F) =⋃
h>0 Sh(F). � is the class CC of trading strategies.

Let K� = {(H ·S)∞|H ∈ �(F)} denote the outcome of the corresponding trad-
ing strategies for the price process S.

DEFINITION 3. We say S satisfies the no arbitrage property with respect to
the Cheridito Class �(F) if K� ∩ L+

0 = {0}.
THEOREM 1. Let S = (St )t≥0 be a continuous semimartingale that satisfies

the NFLVR property with respect to general admissible integrands such that

[S,S]t+h − [S,S]t ≥ δ(h)(∗)
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for all t ≥ 0 and any h > 0, and for a positive nonrandom increasing function
δ(·) with δ(0) = 0 and δ(h) > 0 for h > 0. Assume [S,S]t is bounded for each t.
Then for any adapted càdlàg,2 process V which is bounded in [0, T ] for each finite
T > 0, the process Y = S + V does not have arbitrage in �(F).

We remark that there are essentially no hypotheses on the bounded process V

other than it be càdlàg and adapted to the underlying filtration; for example, it
need not have paths of bounded variation. However, simple examples show that
the requirement that V be bounded is key.

In this paper, we will also establish related results, consider a different but still
restrictive class of trading strategies and prove some useful tools that will allow us
to exploit Theorem 1 and give some important examples.

2. Theorems. As stated in the Introduction, we will assume given a com-
plete, filtered probability space (�,F ,P ,F) satisfying the “usual hypotheses”
(i.e., the filtration of σ algebras F is right continuous, and F0 contains all of the
P null sets of F ). Let M(P ) be the collection of probability measures on (�,F )

that are equivalent to P and we set L0 = L0(�,F ,P ), L0++ = {η ∈ L0 :P(η ≥
0) = 1 and P(η > 0) > 0}, L0−− = {η ∈ L0 :P(η ≤ 0) = 1 and P(η < 0) > 0}, and
L0+− = L0 \ (L0++ ∪ L0−−).

We begin with a lemma which is the key tool in our analysis. It gives a necessary
and sufficient condition for a process in class CC to have no arbitrage.

LEMMA 1. A process Xt, t ∈ [0,∞) satisfies the no arbitrage property in
�(F) if and only if for any two bounded stopping times τ1 ≥ τ0 + h with h > 0,
and any A ∈ Fτ0 we have 1A(Xτ1 − Xτ0) ∈ L0+−.

PROOF. Let PA(·) denote the measure PA(·) = P(·∩A)
P (A)

for any A ∈ F with
P(A) > 0. Let τ0, τ1 be two stopping times with τ1 ≥ τ0 + h. Assume X does not
have arbitrage but PA(Xτ1 > Xτ0) = 0; then Xτ1 ≤ Xτ0 a.s. on A. If Xτ1 < Xτ0

with positive probability on A, we take V = −1A1(τ0,τ1] ∈ S(F) and it is an ar-
bitrage strategy for X. This leaves us the only possibility Xτ1 = Xτ0 a.s. on A,
which is PA(Xτ1 = Xτ0) = 1. If PA(Xτ1 < Xτ0) = 0 in the same way, we can show
PA(Xτ1 = Xτ0) = 1. Now, if PA(Xτ1 = Xτ0) < 1, then either PA(Xτ1 > Xτ0) > 0
and PA(Xτ1 < Xτ0) > 0 or one of them is zero. But if one of them is zero,
we should have PA(Xτ1 = Xτ0) = 1 as we showed above and this contradicts
PA(Xτ1 = Xτ0) < 1. So, if PA(Xτ1 = Xτ0) < 1, then PA(Xτ1 > Xτ0) > 0 and
PA(Xτ1 < Xτ0) > 0. This proves the sufficiency.

2Càdlàg is the French acronym for “right continuous with left limits.”
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To prove the necessary part, assume there is V = g01{0} + ∑n−1
j=1 gj 1(τj ,τj+1] ∈

S(F ) with P(gj 
= 0) > 0 for some j ∈ {1,2, . . . , n − 1} such that (V · X)T ≥ 0
a.s. and P((V · X)T > 0) > 0. Let

k = min

{
l :P(gl 
= 0) > 0,P

(
l∑

j=1

gj (Xτj+1 − Xτj
) ≥ 0

)
= 1,

P

(
l∑

j=1

gj (Xτj+1 − Xτj
) > 0

)
> 0

}
.

If k = 1, then P(g1 
= 0) > 0 and g1(Xτ2 − Xτ1) ≥ 0 a.s. and g1(Xτ2 − Xτ1) > 0
with positive probability. Let C = {g1(Xτ2 − Xτ1) > 0} and A1 = {g1 > 0},A2 =
{g1 < 0}. Then P(C) > 0 and either P(C ∩A1) > 0 or P(C ∩A2) > 0. So, assume
P(C ∩ A1) > 0, since A1 ∈ Fτ1 by hypothesis either Xτ2 = Xτ1 a.s. on A1 or
PA1(Xτ2 > Xτ1) > 0 and PA1(Xτ2 < Xτ1) > 0. But since P(A1 ∩ C) > 0, both
Xτ2 = Xτ1 a.s. on A1 and PA1(Xτ2 < Xτ1) > 0 cannot happen, this contradicts with
the hypothesis. If we assume P(C∩A2) > 0, we also reach the same contradiction,
so k > 1.

Now, if k > 1 then either
k−1∑
j=1

gj (Xτj+1 − Xτj
) ≤ 0 a.s. or

k−1∑
j=1

gj (Xτj+1 − Xτj
) < 0 a.s.

with positive probability. First assume
∑k−1

j=1 gj (Xτj+1 −Xτj
) ≤ 0 a.s. and let A1 =

{gk > 0} and A2 = {gk < 0}. Since P(gk 
= 0) > 0, we have either P(A1) > 0 or
P(A2) > 0. If P(A1) > 0 and P(A2) = 0, then Xτ1 = Xτ2 a.s. on A1 cannot hap-
pen because P(

∑k
j=1 gj (Xτj+1 − Xτj

) > 0) > 0 so PA1(Xτk+1 > Xτk
) > 0 and

PA1(Xτk+1 < Xτk
) > 0 and this contradicts P(

∑k
j=1 gj (Xτj+1 − Xτj

) ≥ 0) = 1. If
P(A1) = 0 and P(A2) > 0 by the same argument as above, we can find a con-
tradiction. If P(A1) > 0 and P(A2) > 0, then both PA1(Xτk+1 = Xτk

) = 1 and
PA2(Xτk+1 = Xτk

) = 1 cannot happen at the same time. So, either pA1(Xτk+1 >

Xτk
) > 0 and PA1(Xτk+1 < Xτk

) > 0 or PA2(Xτk+1 > Xτk
) > 0 and PA2(Xτk+1 <

Xτk
) > 0. In either case, it contradicts P(

∑k
j=1 gj (Xτj+1 − Xτj

) ≥ 0) = 1.

Now assume
∑k−1

j=1 gj (Xτj+1 − Xτj
) < 0 with positive probability. Let C =

{∑k−1
j=1 gj (Xτj+1 − Xτj

) < 0}, then P(C) > 0. And we have PC(gk 
= 0) > 0 be-

cause if gk = 0 a.s. on C, then P(
∑k

j=1 gj (Xτj+1 − Xτj
) < 0) > 0 a contradic-

tion. So, we either have P(C ∩ A1) > 0 or have P(C ∩ A2) > 0. We know both
C ∩ A1 and C ∩ A2 are in Fτk

. Now if P(C ∩ A1) > 0, then PC∩A1(Xτk+1 =
Xτk

) = 1 cannot happen because if not we will have
∑k

j=1 gj (Xτj+1 −Xτj
) < 0 on

C ∩A1, a contradiction. So, we have PC∩A1(Xτk+1 > Xτk
) > 0 and PC∩A1(Xτk+1 <

Xτk
) > 0 by hypothesis and this contradicts P(

∑k
j=1 gj (Xτj+1 − Xτj

) ≥ 0) = 1. If
P(C ∩A2) > 0 analogously, we reach a contradiction and complete the proof. �
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This lemma allows us to prove that the collection of price processes without
arbitrage for the class CC is closed under composition with strictly monotonic
functions.

THEOREM 2. Let S = (St )t≥0 be a càdlàg stochastic process adapted to the
filtration F and let f be any strictly increasing or strictly decreasing real-valued
function in a domain of the real line that contains the range of X. Then the no
arbitrage property of X in the class CC or �(F) is equivalent to the no arbitrage
property of Yt = f (St ) in the class CC or �(F), under any measure Q ∈ M(P ).

PROOF. Since Xt satisfies the no arbitrage property by Lemma 1 for any
τ1 ≥ τ0 and any A ∈ Fτ0, we have 1A(Xτ1 − Xτ0) ∈ L0+−(�,F ,P ). This im-
plies that 1A(f (Xτ1) − f (Xτ0)) ∈ L0+−(�,F ,P ) for any strictly monotone func-
tion f . So, again by the above lemma, the process f (Xt) also satisfies the no
arbitrage property. Since Xt = g(f (Xt)) for the inverse function g of f , by the
same argument we know the no arbitrage property of f (Xt) also implies the
no arbitrage property of Xt . Also, we have ξ ∈ L0+−(�,F ,P ) if and only if
ξ ∈ L0+−(�,F ,Q) when Q is equivalent to P . So, the claim in Theorem 2 is
true for any Q equivalent to P . �

Since Cheridito (see [4]) has shown that fractional Brownian motion has no
arbitrage in class CC, we have the following corollary.

COROLLARY 1. Let f be any strictly increasing or decreasing function on R

and BH
t be fractional Brownian motion with Hurst parameter H . Then the process

Xt = f (BH
t ) does not have arbitrage in class CC, that is, �(F) where F is the

natural filtration of BH
t .

EXAMPLE 1. Let f (x) = ex , then obviously f is a strictly increasing function
on R. By Theorem 1, the geometric fractional Brownian motion process eBH

t ,0 ≤
t ≤ T does not have arbitrage in class CC.

The next theorem shows that the property of no arbitrage for class CC is pre-
served under filtration shrinkage. Suppose D is another filtration satisfying the
usual hypotheses, and that Dt ⊂ Ft for every t ≥ 0. We have the following theo-
rem.

THEOREM 3. Let X be a continuous process adapted to the filtration D, and
hence also to F. If X satisfies the no arbitrage property in �(F), then it also
satisfies the no arbitrage property in �(D) as well.
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PROOF. Take any two bounded stopping times τ1 ≥ τ0 + h,h > 0, of the fil-
tration D. Since D is the subfiltration of F, τ0 and τ1 are also bounded stopping
times with respect to F. Then the no arbitrage property of X in �(F) implies, for
any A ∈ Fτ0 , by Lemma 1, we have 1A(Xτ1 − Xτ0) ∈ L0+−. Since Dτ0 ⊂ Fτ0 using
again Lemma 1, the result is established.

Before restating the main theorem announced in the Introduction and proving it,
we establish a second lemma which we will use in its proof. Note that the hypoth-
esis that the stopping times be bounded is essential to the truth of the next lemma.

�

LEMMA 2. Let B = (Bt )t≥0 be a Brownian motion. Let T denote a finite hori-
zon time and let 0 ≤ τ1 ≤ T and 0 ≤ τ2 ≤ T be two stopping times with τ2 ≥ τ1 +h

for some h > 0. Then for any C > 0 and any A ∈ Fτ1 with P(A) > 0, we have
PA(Bτ2 − Bτ1 > C) > 0 and PA(Bτ2 − Bτ1 < −C) > 0.

PROOF. First, we prove P(sups∈[h,T ] Bs < −C) > 0 and P(infs∈[h,T ] Bs >

C) > 0. By symmetry, it is enough to prove one of these. So, to show
P(sups∈[h,T ] Bs < −C) > 0 note that {Bh < −2C, sups∈[h,T ](Bs − Bh) < C} ⊆
{sups∈[h,T ] Bs < −C}. Using the independence of the increments of Brownian
motion, and the fact that Bh is Gaussian and has support over all of R, this implies

P

(
sup

s∈[h,T ]
Bs < −C

)
≥ P

(
Bh < −2C, sup

s∈[h,T ]
(Bs − Bh) < C

)

= P(Bh < −2C)P

(
sup

s∈[h,T ]
(Bs − Bh) < C

)

= P(Bh < −2C)P

(
sup

s∈[0,T −h]
Bs < C

)
> 0.

Let Yt = Bτ1+t − Bτ1 . Since Brownian motion “starts afresh” at stopping times,
Yt itself is also a standard Brownian motion and it is independent from Fτ1 . So,
PA(supt∈[h,T ] Yt < −C) = P(supt∈[h,T ] Yt < −C) > 0 = as shown above (re-
call that the event A is independent from Y ). But since τ2 − τ1 = ν is a pos-
itive random variable and ν ≥ h, we have that its values are in the interval
[h,T ], where PA(Yτ2−τ1 < −C) = PA(Yν < −C) > 0. And this is equivalent to
PA(Bτ2 − Bτ1 < −C) > 0 as required. The other part can be proved by analo-
gously. �

We now prove Theorem 1 which is stated in the Introduction.

PROOF OF THEOREM 1. We first observe that since S is a continuous semi-
martingale satisfying NFLVR, we can change to an equivalent probability mea-
sure such that S is a σ martingale; however, since S has continuous paths, we
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can assume it is, in fact, a local martingale. Therefore, we only need to prove the
following:

Let X be an adapted process on [0,∞). Assume X has a decomposition X =
M + V where M is a continuous local martingale and V is any adapted process.
Further assume M satisfies (∗), with both [M,M] and V bounded a.s. on [0, t],
for each t ≥ 0. Then X does not have arbitrage in �(F).

Following the idea of Lemma 2, we let τ1 and τ2 be two stopping times with
τ2 ≥ τ1 +h, and 0 ≤ τ1 < τ2 ≤ T . We only need to show that for any event A ∈ Fτ1

with P(A) > 0 we have PA(Xτ2 > Xτ1) > 0 and PA(Xτ2 < Xτ1) > 0. Since V is a
bounded process, the above is satisfied if we can show PA(Mτ2 − Mτ1 > C) > 0
and PA(Mτ2 − Mτ1 < −C) > 0 for any C >. Let ηs = inf{t > 0 : [M,M]t > s};
for each s, ηs is a stopping time for F. Condition (∗) implies [M,M]t → ∞
when t → ∞. So, if we let Bs = Mηs and βs = Fηs , then (Bs, βs) is a standard
Brownian motion, and moreover, Mt = B[M,M]t (cf., e.g., [16]). Since [M,M]
has continuous and strictly increasing paths, we have η[M,M]t = t , and of course
{[M,M]u ≤ s} = {ηs ≥ u} ∈ Fηs and both [M,M]τ1 and [M,M]τ2 are stopping
times for the filtration β . Last, note that Fτ1 ⊆ β[M,M]τ1

, so if A is an event
in Fτ1, then also A ∈ β[M,M]τ1

. Since [M,M] is bounded, so too are the stop-
ping times [M,M]τ1 and [M,M]τ2 and, therefore, by the hypothesis (∗) we have
[M,M]τ2 − [M,M]τ1 ≥ δ(τ2 − τ1) ≥ δ(h). Then by Lemma 2 we have for any
C > 0

PA(Mτ2 − Mτ1 ≥ C) = PA

(
B[M,M]τ2

− B[M,M]τ1
≥ C

)
> 0

and

PA(Mτ2 − Mτ1 ≤ −C) = PA

(
B[M,M]τ2

− B[M,M]τ1
≤ −C

)
> 0

and the theorem is proved. �

3. Examples.

EXAMPLE 2. Let X be given by Xt = ∫ t
0 Bs dBs + t for t ≥ 0. In this example,

the quadratic variation process is
∫ t

0 B2
s ds which is strictly increasing a.s., and the

process Vt = t is a bounded process on [0, t] for each t . However, by Itô’s formula,
we have Xt = 1

2(B2
t + t), which has arbitrage in the Cheridito class �(F), and in

any other reasonable framework. Here, the martingale term Mt = ∫ t
0 Bs dBs does

not satisfy (∗). This shows that the condition (∗) cannot be easily improved upon.

EXAMPLE 3. Let Xt = ∫ t
0 μs dBs + Vt be a continuous process with

P(
∫ T

0 μ2
s ds < ∞) = 1 and infs∈[0,T ] |μs | ≥ δ for some δ > 0 and assume Vt and

μt are bounded adapted processes. Then X satisfies the no arbitrage property in
�(F). This follows because Mt = ∫ t

0 μs dBs and [M,M] satisfies (∗).
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EXAMPLE 4. By Tanaka’s formula, we have |Bt | = ∫ t
0 sign(Bs) dBs + Lt ,

where Lt is the local time at zero of the Brownian motion. Since |Bt | is a posi-
tive process beginning from zero, it has arbitrage in �. The local martingale part∫ t

0 sign(Bs) dBs satisfies condition (∗), but Lt is an unbounded process in [0, T ].
EXAMPLE 5. In Example 4, we now let τ = inf{t > 0|Lt > N} for positive N

and let Dt = ∫ t
0 sign(Bs) dBs +Lt∧τ . Then this process, modified from example 4,

does not have arbitrage in �.

EXAMPLE 6. Consider the processes Xα
t = ∫ t

0 sα dBs + Vt on [0, T ]. Here,
α > −1

2 and Vt is any adapted bounded process with respect to Brownian motion.
The quadratic variation of Mt = ∫ t

0 sα dBs is [M,M]t = ∫ t
0 s2α ds. By a simple cal-

culation, we get [M,M]t+h−[M,M]t = 1
2α+1 [(t +h)2α+1 − t2α+1] ≥ 1

2α+1h2α+1.

So, we can let δ(h) = 1
2α+1h2α+1 and the condition of the theorem is satisfied. So,

the processes Xα
t do not have arbitrage on �(B).

The remainder of this section will be devoted to the examples within the class
of Gaussian moving average processes, which will include the case of frac-
tional Brownian motions. This treatment will allow us, en passant, to give a new
proof of Cheridito’s result that fractional Brownian motion does not allow arbi-
trage in CC [4]. What underlies this treatment is the theorem that the Delbaen–
Schachermayer condition on the price process of NFLVR implies that the price
process must be a semimartingale.

We consider a probability space equipped with a two-sided Brownian motion
(Wt)t∈R, that is, W is a continuous centered Gaussian process with covariance

Cov(Wt ,Ws) = 1
2(|t | + |s| − |t − s|), t, s ∈ R.

For any function ϕ : R → R that is zero on the negative real axis and satisfies
for all t > 0,

ϕ(t − ·) − ϕ(−·) ∈ L2(R,R),
(1)

Y
ϕ
t =

∫ t

−∞
[ϕ(t − u) − ϕ(−u)]dWu, t ∈ R.

We recall that a stochastic process (Yt )t∈R has stationary increments if for all
t0 ∈ R,

(Yt+t0 − Yt0)t∈R
d= (Yt − Yt0)t∈R.

Cheridito showed in [4] that the process Y
ϕ
t is a semimartingale in [0, T ] for

some T > 0 if and only if ϕ has the following form:

ϕ(t) =
⎧⎨
⎩υ +

∫ t

0
ψ(s) ds, when t ≥ 0,

0, when t < 0,
(2)
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where ψ ∈ L2(R+,R) and υ ∈ R. A key example is that if we let ϕ(t) =
1(0,∞)t

H−1/2, t ∈ R for H ∈ (0,1), then ϕ(t) does not satisfy equation (2), where
Yϕ is not a semimartingale. We note that

Cov(Y
ϕ
t , Y ϕ

s ) = 1
2c2

H (|t |2H + |s|2H − |t − s|2H), t, s ∈ R,

where

cH =
(

1

2H
+

∫ ∞
0

[(1 + u)H−1/2 − uH−1/2]du

)1/2

.

These processes are called fractional Brownian motions. Since these processes
are not semimartingales, they cannot satisfy NFLVR, hence by the definition of
NFLVR, we can conclude that there must exist a sequence Hn of simple predictable
processes of bounded support such that

(Hn · Yϕ)∞ ≥ −1
2 , (Hn · S)∞ → f

for a function f ≥ 0,P (f > 0) > 0. (The choice of 1
2 is, of course, arbitrary.) We

recall the Dalang–Morton–Willinger theorem.

THEOREM 4. Let (Sn)n=0,1,...,N be a process adapted to (Fn)n=0,1,...,N . Let

H = {
N∑

n=1

fn−1(Sn − Sn−1),

where each fn :� → R is Fn measurable. If H ∩L0+ = {0}, then there is an equiv-
alent measure Q such that S is a Q-martingale.

An easy consequence of this theorem in our setting is the following corollary.

COROLLARY 2. A process X satisfies the no arbitrage property in �(F) if
and only if for any sequence of bounded stopping times that satisfies τ1 ≤ τ2 ≤
· · · ≤ τN ; τi+1 ≥ τi +h, i = 1,2, . . . ,N −1, for some h > 0, there is an equivalent
probability measure Q such that (Xi,Fi), i = 1,2, . . . ,N , is a Q-martingale.

We will need the following elementary lemma which we found in [15].

LEMMA 3. Let (Si,Fi ){i=0,1,2,...,N} be an adapted real valued process
such that for every predictable process (hi){i=0,1,2,...,N} we have that (h ·
S)N = ∑N

i=1 hi�Si is unbounded from above and from below as soon as (h ·
S)N 
= 0. Then there is a measure Q equivalent to the original measure such that
(Si){i=0,1,2,...,N} is a Q-martingale for the underlying filtration F = F{i=0,1,2,...,N}.

The key lemma for this topic is as follows.
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LEMMA 4. Let X = (Xt)t≥0 with filtration F be an adapted continuous
process and τ be any bounded stopping time. If for any A ∈ Fτ with P(A) > 0
and any 0 < δ < T < ∞, we have P({1A supt∈[δ,T ](Xτ+t − Xτ) < −C}) > 0 and
P({1A inft∈[δ,T ](Xτ+t − Xτ) > C}) > 0 is satisfied for all C > 0, then for any
bounded adapted process V , Y = X + V does not have arbitrage in �(F).

PROOF. Fix any sequence of bounded stopping times τ1 ≤ τ2 ≤ · · · ≤
τN+1, τi+1 ≥ τi + h, i = 1,2, . . . ,N , for some h > 0. By Corollary 2, we need
to show there is an equivalent probability measure Q such that (Yτi

,Fτi
)N+1
i=1 is

a martingale under Q. We prove this using Lemma 3. So take any nontrivial pre-
dictable simple process

H =
N∑

i=1

gi1(τi ,τi+1].

We assume gn 
= 0. Consequently, either P(gn > 0) > 0 or P(gn < 0) > 0.
So, we assume P(gn > 0) > 0. We can choose a big enough number M > 0
such that the event A = ({∑n−1

i=1 gi(Yτi+1 − Yτi
) < M} ∩ {gn > 0} has positive

probability, namely P(A) > 0. We note that A ∈ Fτn . Then by the hypothe-
ses of this lemma, we have P({1A supt∈[1/2h,d](Xτ+t − Xτ) < −C}) > 0 and
P({1A inft∈[1/2h,d](Xτ+t − Xτ) > C}) > 0 for any C > 0. Here, d is a number
greater than the bound of τn+1. Since V is bounded and τn+1 ≥ τn + h, we have
P(1A(Yτ2 −Yτ1) < −C) > 0 and P(1A(Yτ2 −Yτ1) > C) > 0 for any C > 0. But the
sum

∑n−1
i=1 gi(Yτi+1 −Yτi

) is bounded on A, so we have that (H ·Y)n is unbounded
from below and above. Then by Lemma 3, there is an equivalent measure Q that
makes Yτi

, i = 1,2, . . . ,N + 1, a martingale. �

THEOREM 5. Let Yϕ be a moving average process as given in equation (1).
Let the stationary centered Gaussian process X

ϕ
t = ∫

R
ϕ(t − u)dWu satisfy the

following property: For any 0 < δ < T < ∞, P(supt∈[δ,T ] X
ϕ
t < −C) > 0 and

P(inft∈[δ,T ] Xϕ
t > C) > 0 for all C > 0. Then, for any bounded process V , the

process Zt = Y
ϕ
t + Vt does not have arbitrage in �(F). In particular, the process

Zt = BH
t + Vt does not have arbitrage in �(F). Here, BH

t is fractional Brownian
motion.

REMARK 1. We remark that in Lemma 4.2 of [4] Cheridito has shown that
when ϕ = 1(0,∞](t)tH−1/2 for H ∈ (0, 1

2) ∪ (1
2 ,1), X

ϕ
t satisfies the conditions of

the above theorem. Then by using this lemma, he proved that the process BH
t +

v(t), where v(t) is a deterministic function, does not have arbitrage in �(F). Our
proof of the result might be considered more simple, and also it extends the result
to the random case.
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PROOF OF THEOREM 5. Let τ be any bounded stopping time. By Lemma 4,
we only need to check the process Zt = 1A(Y

ϕ
τ+t −Y

ϕ
τ ) satisfies P(supt∈[δ,T ] Zt <

−C) > 0 and P(inft∈[δ,T ] Zt < −C) > 0 for any A ∈ �τ with P(A) > 0 and any
0 < δ < T < ∞,C > 0. To prove these, we borrow the idea of the proof of Theo-
rem 4.3 of [4]. Let

�̃ :=
{
ω ∈ C(R) :ω(0) = 0 and ∀t ∈ R, lim

s→t

ω(t) − ω(s)√|t − s| log(1/|t − s|) = 0
}
.

Let B be the σ -algebra of subsets of �̃ that is generated by the cylinder sets, and P

be Wiener measure on (�̃,B). Without loss of generality, we assume that (Y
ϕ
t ) is

defined on (�̃,B,P ) by the improper Riemann–Stieltjes integrals

Y
ϕ
t (ω) =

∫ t

−∞
[ϕ(t − s) − ϕ(−s)]dω(s).

We define the filtration F �̃ = (F �̃
t ), t ∈ R by

F �̃
t := σ {{ω ∈ �̃ :ω(s) ≤ a} :−∞ < s ≤ t, a ∈ R}.

It is clear that F �̃ contains the filtration F Yϕ = (F Yϕ

t )t∈R, which is given by

F Yϕ

t = σ {Yϕ
s : 0 ≤ s ≤ t}.

Therefore, τ is also F �̃ stopping time. Now we split each function ω ∈ �̃ at the
time point τ(ω). Let

π1ω(s) := ω(s)1(−∞,τ (ω)](s), s ∈ R,

π2ω(s) := ω
(
τ(ω) + s

) − ω(τ(ω)), s ≥ 0

and let

�1 = {π1(ω) ∈ RR :ω ∈ �̃},
B1 be the σ -algebra of subsets of �1 that is generated by the cylinder sets.

�2 = {π2(ω) ∈ C[0,∞) :ω ∈ �̃}
and B2 the σ -algebra of subsets of �2 that is generated by the cylinder sets. It can
be easily checked that the mapping π1 : (�̃,B) → (�1,B� ) is F �̃

τ measurable.
On the other hand, since a Lévy process “renews itself at stopping times” (see,
e.g., [16], page 23), it follows that (π2ω(s))s≥0 is a Brownian motion which is

independent of F �̃
τ . We have

1A(Y
ϕ
τ+t − Yϕ

τ ) =
∫ τ

−∞
[ϕ(τ + t − s) − ϕ(−s)]dWs +

∫ t

0
ϕ(t − s) dWs.
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Let

Ut(ω1,ω2) := 1A(ω1)

∫ τ(ω1)

−∞
[
ϕ

(
τ(ω1) + t − s

) − ϕ(−s)
]
dω1(s)

+ 1A(ω1)

∫ t

0
ϕ(t − s) dω2(s)

for ω1 ∈ �1,ω2 ∈ �2 and t ≥ 0. Then for all ω ∈ �̃ and t ≥ 0, we have the follow-
ing relation

[1A(Y
ϕ
τ+t − Yϕ

τ )](ω) = Ut(π1ω,π2ω).

For each fixed ω1, the process 1A(ω1)
∫ τ(ω1)−∞ [ϕ(τ(ω1)+ t − s)−ϕ(−s)]dω1(s)

is a continuous process and so

sup
t∈[δ,T ]

(
1A(ω1)

∫ τ(ω1)

−∞
[
ϕ

(
τ(ω1) + t − s

) − ϕ(−s)
]
dω1(s)

)

is finite. Since (Ut )t∈[[δ,T ] is a continuous stochastic process on (�1 × �2,B1 ×
B2), the set

F :=
{
(ω1,ω2) ∈ �1 × �2 : sup

t∈[δ,T ]
Ut(ω1,ω2) ≤ −C

}

is B1 × B2-measurable. It follows (see, e.g., Proposition A.2.5 of [13]) that for
almost every ω ∈ �̃,

E[1F (π1, π2) | F �̃
τ ](ω) = φ(π1ω),

where the mapping φ :�1 → R is given by φ(ω1) := E[1A(ω1, π2)], φ1 ∈ �1.
Since (π2ω(t))t≥0 is a Brownian motion under P , by the condition of the theorem,
it follows that for any fixed ω1 ∈ A

φ(ω1) = P

[
sup

t∈[δ,T ]
Ut(ω1, π2) ≤ −C

]

≥ P

[
sup

t∈[δ,T ]

(
1A(ω1)

∫ τ(ω1)

−∞
[
ϕ

(
τ(ω1) + t − s

) − ϕ(−s)
]
dω1(s)

)
(3)

+ 1A(ω1) sup
t∈[δ,T ]

∫ t

0
ϕ(t − s) dω2(s) ≤ −C

]
> 0,

Therefore,

P

[
sup

t∈[δ,T ]
1A(Y

ϕ
τ+t − Yϕ

τ ) ≤ −C

]
= E[1F (π1, π2)] = E[E[1F (π1, π2) | F �̃

τ ]]
(4)

= E[φ ◦ π1] > 0.
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By using the same argument above, one can prove P [inft∈[δ,T ] 1A(Y
ϕ
τ+t − Y

ϕ
τ ) ≥

C] > 0. This completes the proof of the theorem. �

As a corollary of the theorem, we state a property of fractional Brownian mo-
tion.

COROLLARY 3. Let BH
t , t ∈ [0,∞] be a fractional Brownian motion. Let τ1

and τ2 be any two bounded stopping times with τ2 ≥ τ1 + h for some h > 0. Then
for any C > 0 and any A ∈ Fτ1 with P(A) > 0, we have PA(BH

τ2
− BH

τ1
> C) > 0

and PA(BH
τ2

− BH
τ1

< −C) > 0.

When 1
2 < H < 1, the fractional Brownian motion BH admits the following

integral representation

BH
t =

∫ t

0
KH(t, s) dBs,

where B is the ordinary Brownian motion and the kernel KH(t, s) has the form

KH(t, s) = CH

[(
t

s

)H−1/2

(t − s)H−1/2

−
(
H − 1

2

)
s1/2−H

∫ t

0
uH−3/2(u − s)H−1/2 du

]
.

For each fixed t > 0, the kernel KH defines an operator KH in L([0, t])2 by

(KHh)(u) =
∫ t

0
KH(u, s)h(s) ds.

And for any absolutely continuous h, its inverse operator is given by

(K−1
H h)(s) = sH−1/2D

H−1/2
0+ (r1/2h

′
(r))(s),

where D
H−1/2
0+ denotes the left-fractional derivative, defined for t > 0 by

D
H−1/2
0+ f (t) = 1

�(3/2 − H)

(
f (t)

tH−1/2 +
(
H − 1

2

)∫ t

0

f (t) − f (s)

(t − s)H+1/2 ds.

Then for any adapted process μt, t ∈ [0,∞) with
∫ t

0 μs ds < ∞ a.s., the process
B̃H

t = BH
t + ∫ t

0 μs ds is again a fractional Brownian motion with Hurst parame-
ter H in the interval [0, T ], for fixed T > 0, under and equivalent change of mea-
sure QT defined by dQT

dp
= �T if the following two conditions are satisfied

(i)
∫ ·

0 μs ds ∈ the image of KH a.s.
(ii) E(�t) = 1 for any t > 0, where
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�t = exp
(
−

∫ t

0

(
K−1

H

∫ ·
0

μs ds

)
(s) dBs + 1

2

∫ t

0

(
K−1

H

∫ ·
0

μs ds

)2

(s) ds

)
.

COROLLARY 4. Assume
∫ ·

0 μs ds is in the image of KH , a.s. and E(�t) = 1
for any t > 0. Then the process XH

t =: BH
t + ∫ t

0 μs ds + Vt satisfies the no ar-
bitrage property in �(F) when 1

2 < H < 1, where V is any adapted bounded
process.

PROOF. Take any element Hs = ∑n
i=1 Ci1(τi ,τi+1](s) in �(F). Since the

stopping times τi,1 ≤ i ≤ n + 1 are bounded, the process Hs is supported
in some interval [0, T ] for a finite T > 0. By Girsanov’s theorem for frac-
tional Brownian motions, the process BH

t + ∫ t
0 μs ds is a fractional Brown-

ian motion in the interval [0, T ] under the measure QT . Then by Corol-
lary 3, we have QT ((H · X)T < 0) > 0. This shows that our claim is true.

�

4. Time changed processes. Time changes have recently become quite pop-
ular in the construction of price processes. The reader can consult, for example,
any or all of [2, 9] and [10]. Therefore, it is interesting to check stability of our no
arbitrage property under a time change.

In this section, let F denote the underlying filtration satisfying the usual hy-
potheses, and let (νt )t≥0 denote a change of time, that is, (νt )t≥0 is a family of F

stopping times such that t → νt (ω) is right continuous and nondecreasing for al-
most all ω, νt < ∞ a.s. and ν0 = 0. A continuous change of time is one where
t → νt (ω) is continuous for almost all ω. We let F̃ denote the time changed filtra-
tion given by F̃t = Fνt .

In order to prove Theorem 6 which follows, we need to remark that Lemma
1 holds under a weaker condition. To be precise, we state the new version. Note
that the proof of Lemma 1 can be used to prove Lemma 5 with only slight modi-
fications, and that if a process has no arbitrage for the class of simple predictable
integrands of bounded support, then it a fortiori has no arbitrage for the Cheridito
Class (CC).

LEMMA 5. A càdlàg adapted process (Xt)t≥0 satisfies the no arbitrage prop-
erty in the class of simple predictable integrands of bounded support if and only if
for any bounded stopping times τ1 ≥ τ0 and any A ∈ Fτ0 we have 1A(Xτ1 −Xτ0) ∈
L0+−.

By using the same reasoning as in the proof of Theorem 2, we can prove the
following corollary.

We remark that Delbaen and Schachermayer long ago considered the restriction
to simple integrands of bounded support, and showed in 1994 (cf. [5]) that NFLVR
for this framework implies the existence of an equivalent local martingale measure
(see their Theorem 7.6 of [5]).
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COROLLARY 5. Let St be a càdlàg stochastic process adapted to the filtration
F and let f be any strictly increasing or strictly decreasing function in a domain
of the real line that contains the range of S. Then the no arbitrage property of S

in S(F) is equivalent to the no arbitrage property of Yt = f (St ) in S(F) under any
equivalent change of (probability) measure Q.

Corollary 5 provides a wealth of examples of processes which are not semi-
martingales (and, therefore, cannot satisfy NFLVR), but which nevertheless have
the no arbitrage property in S(F). The following example, taken from [16], is typ-
ical.

EXAMPLE 7. Let B be a one dimensional Brownian motion. Then the process
Yt = B1/3 satisfies the no arbitrage property in S(F), where F is the filtration of Y

(which is the same as the filtration of the Brownian motion B).

Of course, Y is the composition of B with the strictly increasing function
f (x) = x1/3, and since B satisfies NFLVR, it is clearly a no arbitrage process,
and hence so is Y by Theorem 5.

Here, we remark that the critical reason for us to be able to state both Theorem 2
and Corollary 5 is that we allow both short and long positions of any amount in
our trading strategies. More precisely for each H = ∑n

i Hi1[τi ,τi+1) either in �(F)

or in S(F), we allow Hi to be any random variable. If one considers the class of
trading strategies that restricts Hi in both �(F) and S(F) to be bounded random
variables, one can still get a result as in Theorem 2. But if one adds a short sale
restriction, namely if each Hi is only allowed to be a nonnegative random variable,
then one can argue that result such as Theorem 2 does not hold in general.

Another consequence of Lemma 5 is the following simple method to check for
arbitrage. Due to this lemma, we can replace the class (CC) with the class of simple
predictable integrands of bounded support.

COROLLARY 6. A process (Xt)t≥0 has arbitrage in the class of simple pre-
dictable integrands of bounded support if and only if its arbitrage strategy can be
taken in the form 1(τ0,τ1] or −1(τ0,τ1], for two bounded stopping times 0 ≤ τ0 ≤ τ1.

PROOF. If the process has arbitrage then by Lemma 5, there are two bounded
stopping times τ1 ≤ τ2 and a nontrivial event A ∈ Fτ1 such that either PA(Sτ1 ≤
Sτ2) = 1 or PA(Sτ1 ≥ Sτ2) = 1 and PA(Sτ1 = Sτ2) < 1. This implies either
1A1(τ1,τ2] or −1A1(τ1,τ2] is an arbitrage strategy. Define stopping times

τA
1 (ω) =

{
M, when ω /∈ A,
τ1, when ω ∈ A,

τA
2 (ω) =

{
M, when ω /∈ A,
τ2, when ω ∈ A,



NO ARBITRAGE WITHOUT SEMIMARTINGALES 611

where M is any number bigger than the bound of τ2. Then 1A1(τ1,τ2] = 1(τA
1 ,τA

2 ]
and this completes the proof. �

THEOREM 6. Let (Xt)t≥0 be an F adapted process satisfying the no arbi-
trage property on S(F). Let (νt )t≥0 be a continuous change of time, such that νt

is bounded a.s. for each t ≥ 0. Let X̃ = Xνt , and F̃t = Fνt , for t ≥ 0. Then the no
arbitrage property of X on S(F ) is equivalent to the no arbitrage property of the
time changed process X̃ on S(F̃ ).

PROOF. By Lemma 5, it suffices to check that for any two bounded stop-
ping times τ0 ≤ τ1 of F̃ and for any A ∈ F̃τ0 we have either PA(X̃τ0 > X̃τ1) and
PA(X̃τ0 < X̃τ1) or PA(X̃τ0 = X̃τ1) = 1. To do this, we first define Cs = inf{t >

0 :νt > s}. Since νt is continuous, we have νCs = s. Note that all of Cs are F̃

stopping times, and for any stopping time τ of F̃, since {ντ ≥ s} = {Cs ≤ τ } ∈
F̃Cs = Fs , we know ντ is an F stopping time. So, ντ0 and ντ1 are bounded stop-
ping times of F, and we have F̃τ0 = Fντ0

. Since X satisfies the no arbitrage prop-
erty for S(F), by Lemma 5 we have PA(Xντ0

> Xντ1
) and PA(Xντ0

< Xντ1
) or

PA(Xντ0
= X̃ντ1

) = 1 so the above conditions are satisfied. Now if X has arbi-
trage on S(F), then by Corollary 6 the arbitrage strategy can be taken in the form
1(τ0,τ1] or −1(τ0,τ1] for two bounded stopping times τ0 ≤ τ1. Then one can easily
check that either 1(Cτ0 ,Cτ1 ] or −1(Cτ0 ,Cτ1 ] is an arbitrage strategy for X̃ on S(F̃).

�

As an application of Theorem 6, we have the following theorem.

THEOREM 7. Let S be a semimartingale that admits an equivalent local
martingale measure. Assume [S,S]t → ∞ a.s. when t → ∞ and that [S,S]t is
bounded, each t ≥ 0. Then

Zα
t = St + [S,S]αt

satisfies the no arbitrage property with respect to the class of simple trading strate-
gies of bounded support [and thus a fortiori with respect to the Cheridito Class
(CC)] when α ≥ 1

2 .

Before proving Theorem 7, we establish a lemma.

LEMMA 6. Let Bt be a Brownian motion and α ≥ 1
2 . Then the processes Yα

t =
Bt + tα each satisfy the no arbitrage property with respect to simple predictable
processes of bounded support.

PROOF. Take any two bounded stopping times 0 ≤ τ0 ≤ τ1. By Blumenthal’s
0 − 1 law, we either have τ0 > 0 a.s. or τ0 = 0. If τ0 > 0, then by Girsanov’s
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theorem, we know the process Yα − (Y α)τ0 admits an equivalent martingale mea-
sure Q with density given by f = exp(−α

∫ 1
τ0

tα−1 dBt − α2

2

∫ 1
τ0

t2α−2 dt). So, we
have EQYα

τ1
= EQYα

τ0
and this shows that neither 1(τ0,τ1] nor −1(τ0,τ1] can be the

arbitrage strategy. Therefore, assume τ0 = 0. By the law of the iterated logarithm,
lim inft→0

Bt

t1/2
√

2 log log(1/t)
= −1. By writing Yα

t = Bt + t1/2tα−1/2 and noticing

that α ≥ 1
2 , we see that the set {t :Yα

t (ω) < 0} is dense near zero for almost all ω.
The stopping times τδ = inf{t > δ|Yα

t < −δ} tend to zero a.s. as δ goes to zero. Let
δ be small enough such that A =: {τδ < τ1} ∈ Fτδ has positive measure. Define

τA
δ (ω) =

{
γ, when ω /∈ A,
τδ, when ω ∈ A,

and

τA
1 (ω) =

{
γ, when ω /∈ A,
τ1, when ω ∈ A,

where γ is a number bigger than the bound of τ1. Then the process 1A[Yα
t −

(Y α
t )τ

A
δ ] admits an equivalent martingale measure Q and EQ1AYα

τA
1

= EQ1AYα

τA
δ

.

Since Yα

τA
δ

< 0, we have EQ1AYα

τA
1

< 0. This shows that P(Yα
τ1

< 0) > 0. Apply

the same method and use the upper limit of the law of the iterated logarithm to get
P(Yα

τ1
> 0) > 0. We conclude that Yα

t satisfies the no arbitrage property. �

PROOF OF THEOREM 7. Let Q be the local martingale measure for S. Let
νs = inf{t > 0|[S,S]t > s}, then Sνs is a Brownian motion under Q. We denote it
by Bs . Then we have Zα

t = B[S,S]t +[S,S]α , so Zα
t is the time changed process of

Bt + tα . The result now follows by applying Lemma 6 and Theorem 6. �

5. Hedging issues. In this section, we assume the price process S is a con-
tinuous semimartingale satisfying condition (∗) of Theorem 1. We wish to discuss
hedging possibilities.

It is immediately apparent that the restriction of hedging strategies to the class
CC greatly reduces the quantity of redundant claims, and essentially all interesting
models will be incomplete. Indeed, even in the Brownian paradigm, one cannot
have classical completeness without allowing all predictably measurable strategies
which are in L2(dt × dP ), where dt × dP is understood to be on [0, T ] × �.
This includes such unrealistic strategies as buying at rational times and selling at
irrational times.

Nevertheless, if we are in the Brownian paradigm, we can hope for an approx-
imate completeness, in the sense that we can get arbitrarily close to a replicating
hedging strategy in an appropriate norm. This idea was developed in a different
context in [3], for example (alternatively, see [12]). However, we want to go be-
yond the usual Itô process framework to include price processes that normally have



NO ARBITRAGE WITHOUT SEMIMARTINGALES 613

arbitrage opportunities, but do not within our framework of a restricted class of
hedging strategies.

Here, we do not try for maximum generality, but consider only those claims,
which derive from the underlying in a very explicit way, that is, we consider only
those contingent claims, which are twice Fréchet continuous functionals of the
stock price at time T . We further assume the spot interest rate is rt ≡ 0, so we need
not worry about the time value of money. Clearly we are not trying for maximum
generality here (e.g., in the strict Brownian paradigm, we could replace Fréchet
differentiable with Malliavin differentiable), but we are trying only to illustrate
what can be done.

Since S is a continuous semimartingale, we can employ the Itô representation
formula of Ahn [1], which works for a limited and somewhat special class of con-
tingent claims. We recall Ahn’s theorem here for convenience.

THEOREM 8. Let f :C[0, T ] → R be a twice continuously Fréchet differen-
tiable functional at each x ∈ C[0, T ] with respect to the sup norm. Then for a
continuous semimartingale S and t ∈ [0, T ], we have

f (St ) = f (S0)+
∫ t

0
〈ηs,∇f (Ss)〉dSs + 1

2

∫ t

0
〈ηs ⊗ηs,∇2f (Ss)〉d[S,S]s,(5)

where ηs = 1[s,T ] is an element of the bidual (in the Banach sense) of C[0, T ],
and the bracket 〈·, ·〉 is used for dual pairs. Finally, the notation St refers to the
stopped processes: St

s = Ss∧t .

In Theorem 8 above, we can assume without loss of generality that we are taking
the predictable version of the integrands in equation (5).

We need the following lemma.

LEMMA 7. The space (CC) is dense in bL in the ucp topology.

PROOF. By standard results (e.g., Theorem 10 of Chapter II of [16]), we know
that simple predictable processes are dense in bL in ucp, where ucp denotes uni-
form convergence in probability on compact time sets. Let (Hn)n≥1 be a sequence
of simple predictable processes converging in ucp to H ∈ bL. Let us fix δ > 0, and
choose ε > 0 such that for some N we have if n ≥ N , then

P

(
sup

0≤t≤T

|Hn
t − Ht | > δ

)
≤ ε

2
.

Let us now choose and fix an n0 ≥ N , and by an abuse of notation, we hereafter
refer to n0 simply as n. We also suppress the nv superscript notation on the jump
times. Let τ1 ≤ τ2 ≤ · · · ≤ τn be the sequential jump times of Hn, and let δ(ω) =
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inf1≤i≤n{τi+1(ω) − τi(ω)}. Since τi+1 − τi > 0 for all i and there are only a finite
number of them, there exists a δ0 such that

P

(
inf
i

|τ i+1 − τ i | < δ0

)
<

ε

2
.

Let

� =
{
ω

∣∣inf
i

|τ i+1 − τ i | < δ0

}
.

Note that we can assume without loss that P(�) < ε
2 by the strict positivity of the

n < ∞ random variables τi+1 − τi . Next, let ν(ω) ≡ inf{i : |τi+1 − τi | < δ0}, and
let H̃ n

t = Hn
t∧ν .

We need to show that H̃ n
t is in the space (CC). Since H̃ n

t changes values only
by jumps, we need to show that the jump times of H̃ n

t are at least δ apart, for some
δ > 0, with δ nonrandom. Let η1 < η2 < · · · < ηk be the jump times of H̃ n

t . Since
ηi = τi∧ν , for i ≤ ν(ω), the ηi exhaust the jumps of H̃ n

t , and since i ≤ ν(ω), we
have that ηi − ηi−1 ≥ δ0. We need to show that the random times ηi are, in fact,
stopping times. To do this, we note that

{i ≤ ν} =
i⋂

j=1

{τj − τj−1 ≥ δ0} ∈ Fτi
,(6)

which implies that

{ηi ≤ t} = {
τi∧ν ≤ t

} = {{τi ≤ t} ∩ {i ≤ ν}} ⋃
j<i

{{τj ≤ t} ∩ {ν = j}} ∈ Ft .(7)

We conclude that H̃ n
t is in the class (CC).

To show that it approximates Hn, we calculate

P

(
sup

0≤t≤T

|H̃ n − Ht | > δ

)
≤ P

(
sup

0≤t≤T

(|H̃ n − Ht∧ν | + |Ht∧ν − Ht |) > δ

)

≤ P

(
sup

0≤t≤T

|H̃ n − Ht∧ν | > δ

)

+ P

(
sup

0≤t≤T

|Ht∧ν − Ht | > δ

)

≤ P

(
sup

0≤t≤T

|H̃ n − Ht∧ν | > δ

)
+ P(�)

≤ ε

2
+ ε

2
= ε.

This completes the proof. �
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We conclude with our desired result, where we use the semimartingale H2

norm, as defined in Chapter IV of [16]. This theorem shows that if we first es-
tablish a tolerable level of error ε in the semimartingale H2 norm, for at least a
certain class of contingent claims, we can approximately hedge in class (CC) to
within a prescribed error ε.

THEOREM 9. Let f :C[0, T ] → R be a twice continuously Fréchet differ-
entiable functional at each x ∈ C[0, T ] with respect to the sup norm, and let
C = f (S) be a contingent claim whose semimartingale representation given in
Theorem 8 is in H2. Given ε > 0, we can find a hedging strategy Hn in the class
CC such that the H2 norm of f (S), taken on [0, T ], is within ε of the H2 norm of∫ T

0 Hn
s dSs .

PROOF. We know by Theorem 2 of Chapter IV of [16] that the space bL

(bounded, adapted processes with paths which are left continuous with right lim-
its) is dense in bounded predictable processes. By Theorem 4 of Chapter IV of [16],
we know that bL is dense in bP (the bounded, predictable processes) in the semi-
martingale H2 norm, following the definitions given in Chapter IV of [16]. In
addition, we recall that simple predictable processes are dense in bL in the ucp
topology, and hence also in the H2 norm. The result then follows by Lemma 7.

�
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