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Rejoinder: Bayesian Checking of the
Second Levels of Hierarchical Models
M. J. Bayarri and M. E. Castellanos

We would like to thank the discussants for the valu-
able insights and for commenting on important aspects
of model checking that we did not touch in our pa-
per. Our goal was modest (but crucial): to select an
appropriate distribution with which to judge the com-
patibility of the data with a hypothesized (hierarchical)
model, when the test statistic is not ancillary and an
improper prior is used for the hyperparameters. Since
it is important to emphasize that this is by no means the
only aspect of model checking, the discussants’ com-
plementary contributions and comments are all most
welcome. The specific technical contributions of Evans
and Johnson are also appreciated, since their develop-
ments in this area were not mentioned in our review.

Several discussants have highlighted the importance
of graphical displays in model checking. We will not
comment on this because we entirely agree. We sim-
ilarly agree with most of the discussants’ other com-
ments, although in this rejoinder we mainly concen-
trate on disagreements. Our comments are organized
around the main topics that arise in the discussions. We
keep the same notation and terminology used in the pa-
per (although it does conflict with the notation used by
some of the discussants).

ROLE OF PRIOR PREDICTIVE DISTRIBUTIONS
WHEN MODEL UNCERTAINTY IS PRESENT

Bayesian analyses, when model uncertainty is
present (model choice, model averaging), are based on
the prior predictive distributions for the different mod-
els under consideration. Model checking is a quick-
and-dirty shortcut to bypass model choice, and “pure”
Bayesian reasoning indicates that all relevant informa-
tion lies in the (prior) predictive distribution m(x) for
the entertained model.
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As Evans points out, objective Bayes methodology
should be guided by proper Bayes methodology, so ob-
jective Bayes model checking should also be based on
the prior predictive distribution. The difficulty, how-
ever, is that only some aspects of this distribution can
be utilized when the prior distribution is improper.
Bayarri and Berger (1997, 1999, 2000) argue that the
relevant aspect to consider for model checking is a con-
ditional (prior) predictive distribution m(x | u), where
U = U(X) is an appropriate conditioning statistic such
that the posterior π(θ | u) is proper. Model checks
(measures of surprise) computed with this distribution
(such as p-values or relative surprise) are called condi-
tional predictive measures.

If we use a statistic T to measure departure and use
U for conditioning, the relevant distribution for model
checking is then m(t | u). Evans’ prescription can be
put in this framework with T ancillary and U suffi-
cient (caution: Evans’ notation switches the roles of
T and U ). Larsen and Lu’s (from now on L&L) pre-
scription for checking group i is also of this form with
T = T (Xi ) and U = X(−i). The complete theory of
Johnson (not sketched in his discussion) relies on the
whole prior predictive. Hence, all these methods pro-
duce legitimate Bayesian measures of surprise. The
posterior predictive distribution cannot be expressed in
this way (it would produce a trivial, degenerate distrib-
ution).

Bayarri and Berger (1997, 1999) explore several
choices of U and recommend use of the conditional
MLE of θ , that is, the MLE computed in the condi-
tional distribution f (x | t, θ). The resulting measures
of surprise (or model checks) were shown to basically
coincide with the partial posterior measures; indeed,
the conditional predictive distribution for that choice
of U and the partial posterior predictive distribution are
asymptotically equivalent (Robins, 1999; Robins, van
der Vaart and Ventura, 2000).

We have concentrated on partial posterior measures
because they are basically indistinguishable from the
conditional predictive ones and they are easier to com-
pute, but their Bayesian justification comes from the
conditional predictive reasoning. We should perhaps
have reiterated this in the paper.
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CHOICE OF T AND/OR D

We are not addressing optimal choice of T in this pa-
per: we focus on the choice of the relevant distribution
to locate T . T is often chosen casually based on intu-
itive grounds and we wanted a method that would work
with any choice of the departure statistic T (although,
of course, adequate choice of T is always important to
increase power). However, several discussants have fo-
cused their discussion on specific choices, so we com-
ment on those.

A preliminary issue is consideration of discrepancy
measures, that is, functions of the data and the para-
meters D = D(x, θ), as well as statistics T = T (x)

for model checking. Gelman and L&L favor their rou-
tine use, also with informal, intuitively sound choices.
Johnson’s proposal, although derived from a differ-
ent philosophy, could also be considered under this
umbrella. Johnson’s interesting method applies to in-
variant situations in which the distribution of an opti-
mally chosen D, namely a pivotal quantity, is precisely
known. Johnson’s elegant theorem shows how to obtain
simulations from the pivotal quantities for the true (un-
known) parameter values, so that their adequacy with
the known distribution can be assessed. The main dif-
ficulty is that these simulations are highly correlated
and proper assessments require prior predictive tech-
niques (and hence informative priors). In some situa-
tions, the provided bounds for the p-values of the sug-
gested test statistic might suffice, so these techniques
are definitely worth considering. Note, however, that
without an informative prior, interpretation of graphi-
cal displays, or other uses of these correlated simula-
tions, is an issue.

Although our methodology could be applied to such
functions [it would probably suffice to consider the
joint conditional distribution p(x, θ | u)], we have not
thought about it enough to venture an opinion. Use of
D’s seems intuitive; however, when used in conjunc-
tion with posterior predictive distributions, they suf-
fer from the same type of conservativeness as statis-
tics do (Robins, 1999; Robins, van der Vaart and Ven-
tura, 2000). Since the problems are the same whether
or not T is chosen to also include parameters, we cast
the rest of the rejoinder in terms of traditional statis-
tics T . (Note that, if T is ancillary or D pivotal, the
issues about how to integrate out the parameters disap-
pear.)

Evans chooses not to integrate out the unknown θ
but rather to eliminate it in traditional frequentist ways,
by either conditioning on a sufficient statistic (i.e.,

U above is sufficient) or by using an ancillary test sta-
tistic T . His argument is, however, also well within
Bayesian thinking, providing a beautiful factorization
of the joint (prior) distribution of x and θ in which the
role of the different factors can be very nicely inter-
preted. Although these specific choices of T and U are
needed for the clean factorization, we show that other
choices of T and/or U are also possible (maybe desir-
able) for model checking, and might be simpler to im-
plement. This applies specially to problems in which
the required statistics do not exist, are difficult to iden-
tify, or when sampling from the resulting distribution
is particularly challenging.

Johnson wonders about choices of T sufficient (or
nearly so) and/or T ancillary. T should not be suf-
ficient; a sufficient T is virtually useless for model
checking (this is in agreement with Evans’ remarks).
An extensive discussion of this issue, with examples,
can be found in Bayarri and Berger (1997), Bayarri and
Berger (2000) and rejoinder. An ancillary T simply re-
produces frequentist testing with similar p-values (ter-
minology from Bayarri and Berger, 1999, 2000); the
Bayesian machinery for integrating out unknown quan-
tities is simply not needed and, in this case, prior, pos-
terior, conditional and partial posterior predictive dis-
tributions are all identical to the specified marginal dis-
tribution for T , f (t). When T is nearly ancillary, then
all procedures will produce very similar model checks.

L&L suggest choosing for group i a Ti which is a
function of the data Xi (and possibly the parameters)
and as Ui the rest of the data. As L&L indicate, there
might be some concern about losing power, but cer-
tainly the behavior is much better than that of poste-
rior predictive measures (as clearly shown by L&L’s
Table 1). As we remarked before, this avoids double
use of the data if we were only testing that group. Our
main concern is how to properly interpret all these Ti’s
jointly. L&L have been very careful not to compute
any p-value based on overall measures. For instance,
using the overall discrepancy measures T1 = max{X̄i},
T2 = max{|X̄i − ¯̄X|} and T3 = max{|X̄i −μ|} produces
p-values equal to 0.479,0.619 and 0.476, respectively,
thus showing the same undesirable behavior as poste-
rior predictive p-values, and the concern about double
use of the data still arises. (For a simple example of
similar issues with cross-validation p-values, see the
rejoinder to Professor Carlin in Bayarri and Berger,
1999.) If we keep the p-values individually, it is not
very clear what to do with them. One concern is that
they are probably highly correlated, and then displays
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of uniformity might mean little; another important con-
cern is with multiplicity issues, especially when there
are many groups. Of course the multiplicity issue gets
worsened when, in addition to having many groups,
one considers many T ’s for each group. The only way
that we know to satisfactorily handle multiplicities is
Bayesian model selection analysis, and the complex-
ity of the problem escalates (and again requires proper
priors).

METHODOLOGICAL ISSUES

In the discussion, various interesting methodological
issues arose. We briefly address the main issues here.

Model elaboration. Gelman and Johnson touch on
model elaboration followed by inference as an alterna-
tive to model checking. In the situation contemplated
in this paper, however, in which we are seriously enter-
taining a model, an analysis with a single, more com-
plex model would not be adequate. Correct Bayesian
analysis should acknowledge the uncertainty in the
model assessment, utilizing model selection (between
the more elaborated and the simpler models) or model
averaging. This is indeed the ideal Bayesian analysis,
but both the analysis and the prior assessments are
considerably harder than those required for our model
checking proposal. Avoiding the full model uncertainty
analysis in situations where we are reasonably confi-
dent in the assessed model was precisely the motiva-
tion for developing an objective Bayes model checking
procedure. Of course, if the model is found incompat-
ible with the data, then a full model selection analysis
cannot be avoided.

Avoiding double use of the data. Evans suggests
that, to avoid double use of the data, our choices for
T and U should satisfy his factorization of the joint
distribution, at least asymptotically. There is no need
for this: we avoid double use of the data by condition-
ing. Also, there is no need for T and U to be inde-
pendent (as when splitting the data), nor for T to be
sufficient nor for U to be ancillary (in our notation,
not Evans’). Computing a mean and a variance of the
same posterior distribution is not using the data twice;
it is describing two characteristics of that distribution.
Similarly, focusing on one “slice” (a conditional dis-
tribution) of the joint prior predictive m(x) is not us-
ing the data twice, but using a specific characteristic
of that distribution. To illustrate with the simplest dis-
crete example, if T = (x1, x2) and U = x1, then m(t |
uobs) = m(x1, x2 | x1 = uobs) = m(x2 | x1 = uobs) if

x1 = uobs and 0 otherwise; x1 and x2 are used for dif-
ferent things, but not used twice. Note that posterior
predictive checks cannot be cast in this way. This issue
is also discussed at length in the rejoinder of Bayarri
and Berger (2000).

Accounting for uncertainty in the estimates. Gelman
argues that there must be something wrong in our rec-
ommendation of plug-in checks over posterior predic-
tive checks, since the former do not account for un-
certainty in the estimates. It is true that plug-in checks
make two mistakes—using the data twice and ignor-
ing the uncertainty in the estimates—whereas poste-
rior predictive checks only make the first mistake. Cru-
cially, however, the second “mistake” that is made by
plug-in checks actually operates in the opposite di-
rection of the first mistake, and brings the resulting
p-value closer to uniformity. This was formally shown
to be the case in Robins, van der Vaart and Ventura
(2000), but can also be understood intuitively: when
the data are very incompatible with the model, pos-
terior predictive (and plug-in) distributions sit in the
wrong part of the space (the parameters are overtuned
to accommodate for model deficiency) but, since the
plug-in distribution is (wrongly) more concentrated
than the posterior predictive distribution, it is less com-
patible with extreme values of test statistics, and hence
is less conservative. It is the theorem in Robins, van der
Vaart and Ventura (2000) that shows the correction is
not an overcompensation, that is, that the plug-in still
remains conservative, while possessing more power.
The plug-in predictive checks are also often easier to
compute. Note that this superior performance of the
plug-in checks occurs regardless of the specific form
of checking used, that is, whether it is formal or graph-
ical.

LIMITATIONS

We are sympathetic to the complaints concerning the
difficulty of computing partial posterior (and condi-
tional) predictive checks, but it can be done and the
difficulty is only in estimating a (usually) univariate
density at one point, not a difficult computation com-
pared to most Bayesian computations nowadays. How-
ever, we recognize that more work is needed to develop
fast and efficient algorithms to carry out the necessary
computations. For invariant situations, the computa-
tions for posterior simulations from the pivotal quan-
tity are simpler, but only when the computed bounds
are satisfactory (and the test procedure adequate); oth-
erwise, proper interpretation of the simulated values
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(whether for visual displays or numerical computa-
tions) requires prior predictive techniques, which not
only need a proper prior, but also are of a similar level
of complexity as the partial posterior predictive tech-
nique. Cross-validation may or may not be simpler to
compute. The computations required for m(g(x) | u)

for a sufficient statistic U (and g any function of the
data) are likely to be formidable; in Bayarri, Castel-
lanos and Morales (2006) we actually suggest use of
MCMC computations to generate from m(g(x) | u)

which are basically identical to the ones used for con-
ditional and partial posterior predictive distributions.
For any T (and discrepancy D), Robins (1999) and
Robins, van der Vaart and Ventura (2000) suggest how
to “center” them so as to produce asymptotically uni-
form p-values, and this can also be a daunting task.
Posterior predictive techniques are usually simpler to
compute than partial posterior or conditional predictive
techniques.

Another limitation of our methodology is that it
does not say anything about choosing T . Choice of
T is equivalent to informally choosing the aspect of
the model to be checked. What we advocate, once a
statistic T has been chosen to detect incompatibility
between data and model, is to locate the observed t

in the distribution of m(t | u) [or in its approxima-
tion m(t | xobs\tobs)]. In the language of Gelman, one
should get the “replicates” for model checks from those
distributions. This prescription holds whether T is uni-
variate or multivariate, and whether one uses graphics,
residuals, relative surprise, p-values or other methods
to formally or informally locate T in m(t | u). This ad-
dresses one of Gelman’s concerns. (Of course, if T is
multivariate, the definition of the p-value is not clear.)
We do recognize, however, that choice of T is an im-
portant issue. Evans and Johnson have both addressed
this issue and their suggestions are certainly sensible
and worth considering. We do recommend a specific
choice of U , namely the conditional MLE. Robert and
Rousseau (2002) and Fraser and Rousseau (2005) sug-
gest use of the unconditional MLE instead; this choice
is also worth exploring.

MISUNDERSTANDINGS

In the discussions, a number of the statements made
concerning our methodology are incorrect. These state-
ments refer to issues that were discussed in our earlier
papers where the methodology was first presented, and
so we neglected to review these issues in this paper. We
try to straighten out some of these misunderstandings
here.

Gelman suggests that our methodology focuses on
using p-values as a model-rejection rule with speci-
fied Type-I errors. This is not the case. We do not fix
Type-I errors, nor do we advocate use of p-values as
formal decision rules (indeed, we are quite opposed to
it; see Sellke, Bayarri and Berger, 2001, and Hubbard
and Bayarri, 2003). Indeed, the methodology is valid
whether or not p-values are used. We use p-values
as “measures of surprise”: numerical quantifications of
the incompatibility of the observed t and the “refer-
ence” distribution; another such measure is the rela-
tive predictive surprise also explored in the paper (and
which can readily be applied to multivariate T ’s). Al-
ternatively, one can opt for checking informally this in-
compatibility with graphical displays. The main advan-
tage of p-values is pedagogical: statisticians are used
to interpreting them. Of course, this familiarity is a
detriment when procedures such as posterior predic-
tive p-values are used, in that casual users will interpret
the p-values as arising from a uniform distribution, not
suspecting that they are instead arising from a distrib-
ution much more concentrated about 1/2.

Gelman and Johnson imply that the methodology
can only be applied to simple examples and univariate
statistics. This is not so. We use “simple” examples so
that the numerical complexity does not obscure the rel-
evant issues. As mentioned earlier, there is nothing in
the methodology to prevent it being used with multi-
variate statistics. Similarly, although we use p-values
and relative surprise (numerical quantifications), one
can use graphical displays of simulations from m(t | u)

in the same way as the discussants use graphical dis-
plays from their proposed distributions.

Johnson conjectures that our p-values can be an-
ticonservative. Conditional predictive p-values can
never be uniformly conservative or anticonservative
since, as valid Bayesian p-values (i.e., based on the
prior predictive distribution), they are uniform on av-
erage. Partial posterior predictive p-values are not only
asymptotically equivalent to the conditional predictive
p-values (for the proposed u), but very often they are
identical; when they are not, the partial posterior and
conditional predictive distributions are extremely sim-
ilar even after very few observations. Of course, if one
has an ancillary statistic, one has exact uniformity, but
this is rarely the case.

CONCLUSIONS

Model checking is subtle and has a variety of as-
pects, as clearly pointed out by the discussants. Opti-
mal selection of T and U is still an issue, and cross-
validation might prove useful. A possible answer is
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Evans’ proposals, but we find them unduly limited.
Use of pivotal quantities is certainly a possibility in in-
variant situations, but proper interpretation in general
would ultimately require prior predictive analysis and
thus preclude use of improper priors. Techniques that
produce p-values near 0.5 when the model is obviously
wrong are simply bad techniques, whether one uses
p-values, other characteristics of the reference distri-
butions, or graphical displays. Such techniques can de-
tect truly terrible models, but the fact that they can have
such poor detection power means that “passing” such
a model check does very little to instill confidence that
one has a good model.
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