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Strategies for Estimating a Population
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INTRODUCTION

We congratulate Drs. Kang and Schafer (KS hence-
forth) for a careful and thought-provoking contribution
to the literature regarding the so-called “double robust-
ness” property, a topic that still engenders some con-
fusion and disagreement. The authors’ approach of fo-
cusing on the simplest situation of estimation of the
population mean p of a response y when y is not ob-
served on all subjects according to a missing at ran-
dom (MAR) mechanism (equivalently, estimation of
the mean of a potential outcome in a causal model un-
der the assumption of no unmeasured confounders) is
commendable, as the fundamental issues can be ex-
plored without the distractions of the messier notation
and considerations required in more complicated set-
tings. Indeed, as the article demonstrates, this simple
setting is sufficient to highlight a number of key points.

As noted eloquently by Molenberghs (2005), in
regard to how such missing data/causal inference
problems are best addressed, two ‘“schools” may be
identified: the “likelihood-oriented” school and the
“weighting-based” school. As we have emphasized
previously (Davidian, Tsiatis and Leon, 2005), we pre-
fer to view inference from the vantage point of semi-
parametric theory, focusing on the assumptions em-
bedded in the statistical models leading to different
“types” of estimators (i.e., “likelihood-oriented” or
“weighting-based”) rather than on the forms of the esti-
mators themselves. In this discussion, we hope to com-
plement the presentation of the authors by elaborating
on this point of view.
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Throughout, we use the same notation as in the pa-
per.

SEMIPARAMETRIC THEORY PERSPECTIVE

As demonstrated by Robins, Rotnitzky and Zhao
(1994) and Tsiatis (2006), exploiting the relationship
between so-called influence functions and estimators
is a fruitful approach to studying and contrasting the
(large-sample) properties of estimators for parameters
of interest in a statistical model. We remind the reader
that a statistical model is a class of densities that could
have generated the observed data. Our presentation
here is for scalar parameters such as u, but gener-
alizes readily to vector-valued parameters. If one re-
stricts attention to estimators that are regular (i.e., not
“pathological’; see Davidian, Tsiatis and Leon, 2005,
page 263 and Tsiatis 2006, pages 26-27), then, for
a parameter (4 in a parametric or semiparametric sta-
tistical model, an estimator it for u based on inde-
pendent and identically distributed observed data z;,
i=1,...,n, is said to be asymptotically linear if it
satisfies

M a'P@—po)=n""Y " 0) +o0,(1)
i=1

for ¢(z) with E{p(z)} =0 and E{¢?(z)} < oo, where
o is the true value of u generating the data, and ex-
pectation is with respect to the true distribution of z.
The function ¢(z) is the influence function of the es-
timator . A regular, asymptotically linear estimator
with influence function ¢(z) is consistent and asymp-
totically normal with asymptotic variance E{@?(z)}.
Thus, there is an inextricable connection between es-
timators and influence functions in that the asymp-
totic behavior of an estimator is fully determined by
its influence function, so that it suffices to focus on
the influence function when discussing an estimator’s
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properties. Many of the estimators discussed by KS are
regular and asymptotically linear; in the sequel, we re-
fer to regular and asymptotically linear estimators as
simply “estimators.”

We capitalize on this connection by considering the
problem of estimating u in the setting in KS in terms of
statistical models that may be assumed for the observed
data, from which influence functions corresponding to
estimators valid under the assumed models may be de-
rived. In the situation studied by KS, the “full” data
that would ideally be observed are (¢, x, y); however,
as y is unobserved for some subjects, the observed data
available for analysis are z = (¢, x,ty). As noted by
KS, the MAR assumption states that y and ¢ are condi-
tionally independent given x; for example, P(t = 1|
vy,x) = P(t = 1|x). Under this assumption, all joint
densities for the observed data have the form

2) p(@) = py10)' =V ptlx)px),

where p(y|x) is the density of y given x, p(¢|x) is the
density of ¢ given x, and p(x) is the marginal density
of x. Let po(z) be the density in the class of densities
of form (2) generating the observed data (the true joint
density).

One may posit different statistical models by making
different assumptions on the components of (2). We fo-
cus on three such models:

I. Make no assumptions on the forms of p(x) or
p(t|x), leaving these entirely unspecified. Make
a specific assumption on p(y|x), namely, that
E(ylx) = m(x,8) for some given function
m(x, B) depending on parameters 8 (p x 1). De-
note the class of densities satisfying these assump-
tions as M.

II. Make no assumptions on the forms of p(x) or
p(y|x). Make a specific assumption on p(¢|x)
that P(t = 1|x) = E(t|x) = n(x,a) for some
given function 7 (x, o) depending on parameters o
(s x 1). Here, we also require the assumption that
P(t =1|x) > & > 0 for all x and some ¢. Denote
the class of densities satisfying these assumptions
as M 1

III. Make no assumptions on the form of p(x), but
make specific assumptions on p(y|x) and p(f|x),
namely, that E(y|x) =m(x, ) and P(t = 1|x) =
E(t|x) =n(x,a) > ¢ > 0 for all x and some ¢ for
given functions m(x, 8) and 7 (x, ) depending on
parameters B and «. The class of densities satisfy-
ing these assumptions is M; N M.

All of I-IIT are semiparametric statistical models in
that some aspects of p(z) are left unspecified. Denote
by mg(x) the true function E(y|x) and by mo(x) the
true function P(t = l|x) = E(t|x) corresponding to
the true density po(z).

Semiparametric theory yields the form of all influ-
ence functions corresponding to estimators for u un-
der each of the statistical models I-III. As discussed in
Tsiatis (2006, page 52), loosely speaking, a consistent
and asymptotically normal estimator for w in a statisti-

cal model has the property that, for all p(z) in the class

of densities defined by the model, n'/?(i — 1) 2¢)

N{0,0%(p)}, where D—(f ) means convergence in distri-
bution under the density p(z), and o%(p) is the asymp-
totic variance of it under p(z).

If model I is correct, then my(x) = m(x, 8) for
some S, and it may be shown (e.g., Tsiatis, 2006, Sec-
tion 4.5) that all estimators for i have influence func-
tions of the form

3) mo(x) — pu+ra(x){y —mo(x)}

for arbitrary functions a(x) of x. If model II is correct,
then r9(x) = 7w (x, o) for some «, and all estimators for
1 have influence functions of the form

ty t — mo(x)
7o (x) 7o (x)
for arbitrary /i (x), which is well known from Robins,
Rotnitzky and Zhao (1994). If model Il is correct, then
mo(x) =m(x, B) and mo(x) = 7w (x, o) for some B and
«, and influence functions for estimators i have the
form

4

h(x) —

mo(x) — p +ta(x){y — mo(x)}
&)
t —mo(x)
+ ———h(x)
7o(x)

for arbitrary a(x) and h(x). Depending on forms of
m(x, B) as a function of 8 and 7 (x, @) as a function
of «, there will be restrictions on the forms of a(x) and
h(x); see below.

We now consider estimators discussed by KS from
the perspective of influence functions. The regression
estimator fLors in (7) of KS comes about naturally
if one assumes model I is correct. In terms of influ-
ence functions, ftors may be motivated by consider-
ing the influence function (3) with a(x) = 0, as this
leads to the estimator n~! *_ym(x;, B). In fact, al-
though KS do not discuss it, the “imputation estima-
tor” e = n~ 'Y {tiyi + (1 — ti))m(x;, B)} may
be motivated by taking a(x) = 1 in (3). Of course,
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in practice, § must be estimated. In general, (3) im-
plies that all estimators for w that are consistent
and asymptotically normal if model I is correct must
be asymptotically equivalent to an estimator of the
form

n
© n~' Y Im(xi, B) +tid(xi) {yi — m(xi, B},

i=l

where 8 is estimated by solving an estimating equa-
tion Y i A(xi, B)(yi — m(xi, f)} = 0 for A(x, B)
(p x 1). Because B is estimated, the influence func-
tion of the estimator (6) with a particular @ (x) will not
be exactly equal to (3) with a(x) = @(x); instead, it
may be shown that the influence function of (6) is of
form (3) with a(x) in (3) equal to

d(x) — E[{mo(x)a(x) — 1img (x, Bo)]
(7) [E{mo(x)A(x, Boymp (x, Bo)}] ™"
- A(x, Bo),

where mg(x, B) is the vector of partial derivatives of
elements of m(x, B) with respect to 8, and By is such
that mo(x) =m(x, Bo).

The IPW estimator ii;pw-pop in (3) of KS and
its variants arise if one assumes model II. In par-
ticular, fi;pw-pop can be motivated via the influence
function (4) with h(x) = —u. The estimator [Z;pw-NR
in (4) of KS follows from (4) with h(x) = —E[y{1 —
w(x)}I/E[{l — m(x)}]. In fact, if one restricts A (x)
in (4) to be a constant, then, using the fact that the ex-
pectation of the square of (4) is the asymptotic vari-
ance of the estimator, one may find the “best” such
constant minimizing the variance as h(x) = —E[y{l —
w(x)}/m(x)]/E[{1 —m(x)}/m(x)]. An estimator based
on this idea was given in (10) of Lunceford and Da-
vidian (2004, page 2943). In general, as for model I,
(4) implies that all estimators for p that are consis-
tent and asymptotically normal if model II is correct
must be asymptotically equivalent to an estimator of
the form

®) —12{ ahl [f_”ina)fz(xi)},

T[(Xl, C()

where @ is estimated by solving an equation of the
form ) {t; = (x;, @)} B(x;, @) = 0 for some (s x 1)
B(x;, «), almost always maximum likelihood for bi-
nary regression. As above, because « is estimated, the
influence function of (8) is equal to (4) with /& (x) equal

to
h(x) — Elxl (x, a0){mo(x) + h(x)}/mo(x)]

) [E{B(x, ap)m] (x, 20)}] 7!
- B(x, ap)mo(x),

where 7, (x, ) is the vector of partial derivatives of
elements of 7 (x, o) with respect to «, and o satisfies
mo(x) = (x, ap).

Doubly robust (DR) estimators are estimators that
are consistent and asymptotically normal for models
in M; U My, that is, under the assumptions of model |
or model II. When the true density po(z) € Mj N My,
then the influence function of any such DR estimator
must be equal to (3) with a(x) = 1/79(x) or, equiva-
lently, equal to (4) with h(x) = —mo(x). Accordingly,
when pg(z) € MjN My, that is, both models have been
specified correctly, all such DR estimators will have
the same asymptotic variance. This also implies that,
if both models are correctly specified, the asymptotic
properties of the estimator do not depend on the meth-
ods used to estimate 8 and «.

KS discuss strategies for constructing DR esti-
mators, and they present several specific examples:
pc-oLs in their equation (8); the estimators be-
low (8) using POP or NR weights, which we denote as
pc-pop and Lpc-NR, respectively; the estimator fyrs
in their equation (10); z-cop in their equation (12);
and a version of [i;-¢.y equal to the estimator proposed
by Scharfstein, Rotnitzky and Robins (1999) and Bang
and Robins (2005), which we denote as ftsgg. The re-
sults for these estimators under the “Correct-Correct”
scenarios (M; N M) in Tables 5-8 of KS are consis-
tent with the asymptotic properties above. We note that
r-cov 18 not DR under M; U Mj; because of the addi-
tional assumption that the mean of y given 7w must be
equal to a linear combination of basis functions in .
Making this additional assumption may not be unrea-
sonable in practice; however, strictly speaking, it takes
Ur-cov outside the class of DR estimators discussed
here, and hence we do not consider it in the remainder
of this section. However, [isgg is still in this class.

KS suggest that a characteristic distinguishing the
performance of DR estimators is whether or not the
estimator is within or outside the augmented inverse-
probability weighted (AIPW) class. We find this dis-
tinction artificial, as all of the above estimators
Bc-oLs, WBC-POP, IBC-NR, Mwrs and [Lsgr can be
expressed in an AIPW form. Namely, all of these
estimators are algebraically exactly of the form (8)
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with & (x;) replaced by a term —y — m(x;, E), where
YBc-oLs = YwLs = Ysrr =0,

YBC-POP
TN @ /R (i — ) and
N n=IY" ot/
(10) =l
YBC-NR

T YR (=) /R (i — )
n=IY (1 =) /7 ’

where we write T; = 7 (x;, @) and m; = m(x;, E) for
brevity. For fiwrs and fisgr, this identity follows from
the fact that Y7, 2 (y; — ;) = 0, which for fZwrs
holds because KS restrict to m(x, 8) = x! B, with x
including a constant term. Thus, we contend that is-
sues of performance under M; U Mj; are not linked
to whether or not a DR estimator is AIPW, but, rather,
are a consequence of forms of the influence functions
of estimators under M; or My. In particular, under
model II, it follows that the above estimators have in-
fluence functions of the form (4) with /4 (x) equal to (9)
with f(x) = —{y* 4+ m(x, B*)}, where y* and B* are
the limits in probability of ¥ and E , respectively. Thus,
features determining performance of these estimators
when model II is correct are how close y* + m(x, 8*)
is to mq(x) and how « is estimated, where maximum
likelihood is the optimal choice. In fact, this perspec-
tive reveals that, for fixed m(x, 8), using ideas similar
to those in Tan (2006), the optimal choice of ¥ is as in
PBc-nk With #; (1 — 7;) /7; replaced by t; (1 — ;) /77

Similarly, under model I, the influence functions of
these estimators are of the form (3) with a(x) equal
to (7) with d(x) = Y1/ (x,a®) + yp, where a™* is
the limit in probability of & and ¥ = 1 and vy, =0
for ftpc-oLs, Mwrs and fisgr; Y1 = 1/E{mo(x)/m (x,
a®)} and Yp = 0 for lpc-pop; and Yy and v, for
Bc-Nr are more complicated expectations involving
mo(x) and 7 (x, «™®). Thus, under model I, features de-
termining performance of these estimators are the form
of d(x) and how B is estimated through the choice of
A(x, B).

We may interpret some of the results in Tables 5,
6 and 8 of KS in light of these observations. Un-
der the “w-model Correct—y-model Incorrect” scenario
(M NMY), Lpc-oLs, BwLs and fLsgr show some non-
trivial differences in performance, which, from above,
are likely attributable to differences in m(x, 8*). Under
the “z-model Incorrect—y-model Correct” (M N M),
all three estimators share the same @ (x) but use differ-
ent methods to estimate 8, so that any differences are

dictated entirely by the choice of A(x, 8). The poor
performance of fisgg can be understood from this per-
spective: “B” for this estimator is actually B in the
model m(x, B) used by the other two estimators con-
catenated by an additional element, the coefficient of
7?1._1. The A(x, B8) for lisgr thus involves a design ma-
trix that is unstable for small 77;, consistent with the
comment of KS at the end of their Section 3.

In summary, we believe that studying the perfor-
mance of estimators via their influence functions can
provide useful insights. Our preceding remarks refer to
large-sample performance, which depends directly on
the influence function. Estimators with the same influ-
ence function can exhibit different finite-sample prop-
erties. It may be possible via higher-order expansions
to gain an understanding of some of this behavior; to
the best of our knowledge, this is an open question.

BOTH MODELS INCORRECT

The developments in the previous section are rele-
vant in M; U Mj;. Key themes of KS are performance
of DR and other estimators outside this class; that is,
when both the models 7 (x, @) and m(x, B) are incor-
rectly specified, and choice of estimator under these
circumstances.

One way to study performance in this situation is
through simulation. KS have devised a very interesting
and instructive specific simulation scenario that high-
lights some important features of various estimators.
In particular, the KS scenario emphasizes the difficul-
ties encountered with some of the DR estimators when
7 (x;, @) is small for some x;. Indeed, in our expe-
rience, poor performance of DR and IPW estimators
in practice can result from few small 7 (x;, @). When
there are small 7 (x;, @), as noted KS, responses are
not observed for some portion of the x space. Conse-
quently, estimators like jtors rely on extrapolation into
that part of the x space. KS have constructed a sce-
nario where failure to observe y in a portion of the x
space can wreak havoc on some estimators that make
use of the 7 (x;, @) but has minimal impact on the qual-
ity of extrapolations for these x based on m(x, E). One
could equally well build a scenario where the x for
which y is unobserved are highly influential for the re-
gression m(x, ) and hence could result in deleterious
performance of ftprs. We thus reiterate the remark of
KS that, although simulations can be illuminating, they
cannot yield broadly applicable conclusions.

Given this, we offer some thoughts on other strate-
gies for deriving estimators that may have some ro-
bustness properties under the foregoing conditions, that
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is, offer good performance outside M; U M;;. One ap-
proach may be to search outside the class of DR es-
timators valid under M; U Mj;. For example, as sug-
gested by the simulations of KS, estimators in the spirit
of Wr-cov, Which impose additional assumptions ren-
dering them DR in the strict sense only in a subset
of M; U Mj;, may compensate for this restriction by
yielding more robust performance outside M; U Mj;;
further study along these lines would be interesting. An
alternative tactic for searching outside M; U My may
be to consider the form of influence functions (5) for
estimators valid under M N Mj;. For instance, a “hy-
brid” estimator of the form

n-! Z[m(xi, B {n(x;, @) < 8}

i=1

{ 4 yi t —
(X, d)

for § small, may take advantage of the desirable prop-
erties of both tprs and DR estimators.

A second possible strategy for identifying robust es-
timators arises from the following observation. Con-
sider the estimator

(an ‘IZ{ o )

(x;) 7T (x;)

If w(x;) = w(x;, @), then (11) yields one form of a
DR estimator. If 7 (x;) = 1, then (11) results in the
imputation estimator. If 7w (x;) = oo, (11) reduces to
ors- This suggests that it may be possible to develop
estimators based on alternative choices of m(x;) that
may have good robustness properties. For example,
a method for obtaining estimators 7 (x;, &) that shrinks
these toward a common value may prove fruitful. The
suggestion of KS to move away from logistic regres-
sion models for 7 (x;, &) is in a similar spirit.

Finally, we note that yet another approach to devel-
oping estimators would be to start with the premise
that one make no parametric assumption on the forms
of E(y|x) and E(¢|x) beyond some mild smooth-
ness conditions. Here, it is likely that first-order as-
ymptotic theory, as in the previous section, may no

longer be applicable. It may be necessary to use higher-
order asymptotic theory to make progress in this di-
rection; see, for example, Robins and van der Vaart
(2006).

CONCLUDING REMARKS

We again compliment the authors for their thought-
ful and insightful article, and we appreciate the oppor-
tunity to offer our perspectives on this important prob-
lem. We look forward to new methodological devel-
opments that may overcome some of the challenges
brought into focus by KS in their article.
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