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ASYMPTOTIC INFERENCE FOR SEMIPARAMETRIC
ASSOCIATION MODELS

BY GERHARD OSIUS

Universität Bremen

Association models for a pair of random elements X and Y (e.g., vectors)
are considered which specify the odds ratio function up to an unknown para-
meter θ . These models are shown to be semiparametric in the sense that they
do not restrict the marginal distributions of X and Y . Inference for the odds
ratio parameter θ may be obtained from sampling either Y conditionally on X

or vice versa. Generalizing results from Prentice and Pyke, Weinberg and Wa-
cholder and Scott and Wild, we show that asymptotic inference for θ under
sampling conditional on Y is the same as if sampling had been conditional
on X. Common regression models, for example, generalized linear models
with canonical link or multivariate linear, respectively, logistic models, are
association models where the regression parameter β is closely related to the
odds ratio parameter θ . Hence inference for β may be drawn from samples
conditional on Y using an association model.

1. Introduction and outline. A common approach to describe the relation-
ship between a random output variable Y of interest (e.g., a health status) and a
random input vector X (e.g., consumption of tobacco, alcohol and other risk fac-
tors) is by means of a parametric regression model which specifies the conditional
distribution of Y given X = x up to an unknown parameter vector. In the most
simple case Y is an indicator (e.g., for the presence of a disease) and the condi-
tional distribution is binomial B(1,p(x)). The popular logistic regression model
relates the logistic transform of p(x) and a vector z = h(x) ∈ R

S of covariates—
obtained from x by a suitable function h—through logit p(x) = γ + zT θ with
parameters γ ∈ R and θ ∈ R

S . The appropriate sampling scheme for this model
is to sample Y conditionally on X = x for specified values of x. In epidemiology
this is called a cohort study, each of the J cohorts being determined by its value x.
In contrast, the so-called case-control studies are obtained by sampling X con-
ditional on Y = 1 (cases), respectively, Y = 0 (controls). An important result by
Prentice and Pyke [12] briefly states that asymptotic inference for the parameter θ
(but not for γ ) in a case-control study may be obtained as if the data came from a
cohort study. Actually their work covers the multivariate logistic regression model
(cf. Example 3) for a random variable Y taking values in {0,1, . . . ,K} and was
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generalized by Scott and Wild [14] to multiplicative intercept models. Our aim is
to extend these results to semiparametric odds ratio models (introduced in [9]) for
random elements, including in particular random vectors Y and X, each with con-
tinuous and/or discrete components. The odds ratio function OR(x, y) for the joint
density p(x, y) of X and Y is defined as a cross-product ratio with respect to fixed
reference values x◦ and y◦:

OR(x, y) = p(x, y) · p(x◦, y◦)
p(x, y◦) · p(x◦, y)

.

An equivalent description is given by the corresponding ratio for the conditional
density p(y | X = x) of Y given X—or vice versa. Under mild assumptions the
joint distribution of (X,Y ) is uniquely determined by the odds ratio function and
the marginal distributions of X and Y ; compare [9] or [10]. And conversely, for any
pair of marginal distributions for X and Y and an odds ratio function there exists a
joint distribution having these properties. The odds ratio function thus captures the
complete association structure of X and Y by ignoring the information contained
in the marginal distributions. A parametric odds ratio model specifies only the odds
ratio function up to an unknown parameter vector θ , that is,

log OR(x, y) = ψθ (x, y).

This model is semiparametric in the sense that it does not restrict the marginal
distributions of X and Y , but only the association structure. An important class are
log-bilinear association models where the log-odds ratio function is bilinear with
respect to given transformations z = hX(x) and v = hY (y), that is,

log OR(x, y) = zT θv.(1.1)

In fact, some widely used regression models, for example, generalized linear mod-
els with canonical link function and multivariate linear, respectively, logistic re-
gression models, have a log-bilinear association structure. The assumptions con-
cerning the conditional distribution of Y given X in these regression models may
be removed by passing to the corresponding log-bilinear odds ratio model. One
advantage of odds ratio models over regression models is that inference about
the odds ratio parameter θ may be obtained from sampling X conditionally on
Y or vice versa. To prove this, we first observe that maximum likelihood estima-
tion is invariant under both conditional sampling schemes, that is, the estimate θ̂
maximizing the conditional likelihood LX|Y for samples of X given Y also maxi-
mizes the corresponding conditional likelihood LY |X for samples of Y given X—
and conversely. Generalizing the result in Prentice and Pike [12] and Scott and
Wild [14], we show that the estimated asymptotic covariance matrix for θ̂ is in-
variant under both conditional sampling schemes, too. Hence asymptotic inference
concerning the odds ratio parameter θ may be obtained from a sample drawn con-
ditionally on Y as if the sample had been drawn conditionally on X.
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The paper is organized as follows. In Section 2 we establish that the joint distri-
bution of (X,Y ) is uniquely determined by its odds ratio function and the marginal
distributions (uniqueness theorem), and that each of these three components can
vary independently of another (existence theorem). The latter result will be proved
here under weaker assumptions than in [9] using a different approach. Association
models are introduced in Section 3 and some widely used regression models are
recognized having a log-bilinear association. Although log-bilinear association is
a natural and common choice, we derive the main results for more general odds
ratio models determined by

log OR(x, y) = G(z,v, θ),(1.2)

where G is a given (sufficiently smooth) function. Section 4 establishes that the
maximum likelihood estimate θ̂ is invariant under the usual sampling schemes:
unconditional or conditional on X, respectively, Y . For log-bilinear association
models the likelihood to maximize corresponds to a log-linear model for a suit-
able contingency table. Hence results on the existence and uniqueness as well as
techniques to compute the estimate are already available.

Knowing that the estimate θ̂ is invariant under conditional sampling given ei-
ther X or Y , we establish in several steps our main result, that its estimated asymp-
totic normal distribution is invariant, too. In Section 5 we consider sampling X

conditional on Y but maximize the “reverse” conditional log-likelihood �(λ)—
arising from conditioning Y on X—with respect to λ = (θ ,γ ∗), where γ ∗ is a
nuisance parameter vector. For the information matrix I(λ) = E(−D2

λλ�(λ)) we
show that the submatrix [I−1(λ)]θθ of I−1(λ) corresponding to θ is indeed the
asymptotic covariance matrix of θ̂ . To establish the asymptotic normality of the
estimate λ̂, we first prove its consistency in Section 6. Our asymptotic approach
applies to a fixed set {y0, . . . , yK} of values for Y to be conditioned upon and inde-
pendent samples of size nk from each conditional distribution of X given Y = yk ,
such that n = ∑

k nk tends to infinity while the ratios nk/n remain fixed. In Sec-
tion 7 the asymptotic normality is derived more generally for any (weakly) consis-
tent estimate λ̂ which solves the estimating equation at least approximately, that is,
Dλ�(λ̂) = oP (

√
n). Using the observed information J(λ̂) = −D2

λλ�(λ̂) as a consis-
tent estimate of I(λ), we finally obtain the asymptotic normality of the odds ratio
estimate

θ̂ ∼
as.

N(θ , [J−1(λ̂)]θθ ).

The estimated asymptotic covariance matrix here is exactly the same as if sampling
had been conditional on X for the observed x-values.

We do not attempt to derive our results under the weakest possible assumptions
but prefer a few easily interpretable conditions which will be verified for a log-
bilinear association model under mild distributional assumptions. The approach
adopted here is symmetric in X and Y so that interchanging X with Y in any
argument entails its dual.
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2. The odds ratio function. Consider arbitrary nonempty spaces �X , respec-
tively �Y , with σ -algebras BX , respectively BY , and denote the product σ -algebra
on � = �X × �Y by B. Let P the space of all probability measures P on (�,B)

and denote the marginal distributions of P on �X , respectively �Y , by P X , re-
spectively P Y . The definition of an odds ratio function for P requires a posi-
tive density with respect to a product measure and a natural choice is the prod-
uct P XY = P X × P Y of the marginals. This leads to the subspace of probability
measures P having a positive density with respect to P XY , or equivalently, are
dominated by and dominate P XY :

P� =
{
P ∈ P

∣∣∣ dP

dP XY
> 0

}
= {P ∈ P | P � P XY � P }.

For any P ∈ P� with density p = dP/dP XY its odds ratio function ORp with
respect to fixed reference values x◦ ∈ �X and y◦ ∈ �Y is defined on � × � by

ORp(x, y) = p(x, y) · p(x◦, y◦)
p(x, y◦) · p(x◦, y)

.(2.1)

The choice of the dominating product measure P XY is not essential (cf. [9]): re-
placing p by a positive density pν with respect to a product ν = νX ×νY of σ -finite
measures yields the same ratio (2.1). Since the density p of P is only unique up to
almost sure equality, the same holds for the odds ratio function ORp of P , which
nevertheless will also be denoted simply by OR(P ). The log-odds ratio function
may be written in terms of the log-density

log ORp(x, y) = logp(x, y) + logp(x◦, y◦) − logp(x, y◦) − logp(x◦, y).(2.2)

It is convenient to view any P ∈ P as a joint distribution of a pair (X,Y ) of random
elements defined on some probability space with values in � and the odds ratio
function of (X,Y ) is defined by OR(X,Y ) = OR(P ).

To show that the odds ratio function completely characterizes the association
between X and Y , we have to restrict the joint distribution P by requiring that
its log-density logp is P XY -integrable, or equivalently, that the Kullback–Leibler
information [7]

I (P XY | P) =
∫

log
(

dP XY

dP

)
dP XY

is finite. Any P in the subclass P∫ = {P ∈ P� | I (P XY | P) < ∞} is uniquely
determined by its marginal distributions and its odds ratio function.

THEOREM 1 (Uniqueness). Any P1,P2 ∈ P∫ having the same marginals
P X

1 = P X
2 , P Y

1 = P Y
2 and the same odds ratio function OR(P1) = OR(P2) agree:

P1 = P2.
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For a proof one easily establishes I (P1 | P2) = 0 using (2.2); compare [10].
Next we want to “define” a distribution P on � by specifying its marginal dis-

tributions and its (log) odds ratio function. For given distributions πX on �X and
πY on �Y and a measurable function ψ on �, we investigate under which condi-
tions we can find a P ∈ P∫ with P X = πX , P Y = πY and log OR(P ) = ψ . First of
all, ψ has to satisfy the obvious constraints

CONDITION (OR1). ψ(x, y◦) = 0, ψ(x◦, y) = 0 for all x, y.

Furthermore from P ∈ P∫ and (2.2) we obtain two necessary integrability con-
ditions:

CONDITION (E1). ψ is πX × πY -integrable.

CONDITION (E2). There exists πX-integrable β :�X −→ R πY -integrable
γ :�Y −→ R functions such that exp(ψ − β − γ ) is πX × πY -integrable.

These conditions are also sufficient for the existence of the wanted P ∈ P∫ .

THEOREM 2 (Existence). For distributions πX on �X and πY on �Y and a
measurable function ψ on � × � the following statements are equivalent:

(a) There exists P ∈ P∫ with P X = πX , P Y = πY and log OR(P ) = ψ .
(b) There exists P ∈ P∫ with log OR(P ) = ψ .
(c) ψ satisfies Conditions (OR1), (E1) and (E2).

The proof is given in Appendix A.1. A few remarks are in order.

1. Conditions (E1) and (E2) hold for bounded ψ , for example, for continuous ψ

and compact �.
2. The integrability of exp(ψ −β −γ ) in Condition (E2) holds if ψ ≤ β +γ . And

if even |ψ | ≤ β + γ , then Condition (E1) follows, too.
3. For finite �Y (or �X) Condition (E1) implies Condition (E2) for β(x) =∑

y |ψ(x, y)| and γ = 0.
4. Although P is uniquely determined by Theorem 1, there is no explicit formula

for P available. In the proof P is given by an I -projection, which can only be
obtained as a limit in an iterative procedure. Only for binary Y (and vector-
valued X) the distribution P is easily available; compare [1] or [9].

5. A stronger version of Condition (E2) requiring exp(ψ − β) and exp(ψ − γ ) to
be integrable was used in [9, 10] to obtain P as a limit of an iterative propor-
tional fitting procedure.

6. For finite spaces �X and �Y this result has long been known; compare [11],
Section 3.4.



464 G. OSIUS

3. Association models. An association model for the joint distribution P of
(X,Y ) only restricts the odds ratio function of P and leaves the marginal distrib-
utions of X and Y arbitrary. To formulate such a model we assume that P has a
positive density with respect to a fixed product measure ν = νX × νY of σ -finite
measures νX , respectively νY , on �X , respectively �Y . Hence P is restricted to
the class P XY = {P ∈ P | P � ν � P } ⊂ P�, which also restricts the marginal
distribution P X of X to

P X = {πX probability measure on �X | πX � νX � πX},
and the marginal P Y to the corresponding P Y . From now on all densities on �,
respectively �X,�Y are taken with respect to the dominating measure ν, respec-
tively νX, νY .

We consider parametric association models indexed by a parameter vector
θ ∈ R

S . For any θ let ψθ be a measurable function on � satisfying Condi-
tion (OR1). The parametric odds ratio model restricts the log-odds ratio function
of P to log OR(P ) = ψθ for some θ . To guarantee for any θ and any marginals
πX,πY the existence of a joint distribution P with ψθ = log OR(P ) and these
marginals, we assume the following bounding condition:

CONDITION (OR2). There exist nonnegative measurable functions ψ̃X

on �X and ψ̃Y on �Y with |ψθ (x, y)| ≤ [ψ̃X(x) + ψ̃Y (y)] · ‖θ‖ for all θ, x, y.

Furthermore we restrict πX to the class P X∫ = {πX ∈ P X | ψ̃X is πX-integrable}
and πY to the corresponding class P Y∫ . Condition (c) in Theorem 2 holds for any

πX ∈ P X∫ , πY ∈ P Y∫ and θ , and hence there exists a unique P ∈ P∫ with P X =
πX,P Y = πY and log OR(P ) = ψθ . Thus a parametric association model (PAM)
for distributions P in P XY∫ = P XY ∩ P∫ is specified by the requirements

log OR(P ) ∈ {ψθ | θ ∈ R
S}, P X ∈ P X∫ , P Y ∈ P Y∫ .(3.1)

This is a semiparametric model for the joint distribution P since the marginals are
only slightly restricted by integrability conditions. By (2.2) a density p(x, y) of
P ∈ P XY∫ satisfying (3.1) can be parametrized as

logp(x, y) = α + β(x) + γ (y) + ψθ (x, y)(3.2)

with α ∈ R and integrable functions β and γ . Identifiability may be achieved
through the constraints β(x◦) = 0 and γ (y◦) = 0, which will be assumed here.
The integration constant α is determined by

α = − log
∫

exp(β + γ + ψθ ) dν



ASYMPTOTIC INFERENCE FOR ASSOCIATION MODELS 465

and marginal density pX(x) of P X is given by

logpX(x) = α + β(x) + δ(x), δ(x) = log
[∫

exp
(
γ (y) + ψθ (x, y)

)
dνY (y)

]
.

The conditional distribution of Y given X = x belongs to P Y and the conditional
density p(y | X = x) satisfies

logp(y | X = x) = γ (y) + ψθ (x, y) − δ(x).(3.3)

The integration constant δ(x) can be removed by passing to the density ratio

log
p(y | X = x)

p(y◦|X = x)
= γ (y) + ψθ (x, y).(3.4)

Equation (3.4) may be viewed as a “regression model.” Conversely, suppose a
model for P is specified by (3.4) with an arbitrary integrable function γ and the
parametric family ψθ . Then log OR(P ) = ψθ and hence the model (3.4) is semi-
parametric in the sense that it does not restrict the marginal distributions P X and
P Y —provided they belong to the class P X∫ , respectively P Y∫ . In the latter case the
regression model (3.4) is in fact equivalent to the association model (3.1). Note
that for finite �Y and counting measure νY the integrability condition imposed by
P Y ∈ P Y∫ always holds.

An important class of parametric association models are log-bilinear asso-
ciation (LBA) models with respect to measurable maps hX :�X −→ R

KX and
hY :�Y −→ R

KY , which will always be chosen here such that hX(x◦) = 0 and
hY (y◦) = 0. The parameter θ is a KX ×KY -matrix and the log-odds ratio function
is bilinear in the transformed variables hX(x) and hY (y)

ψθ (x, y) = hX(x)T θhY (y) for all x, y.(3.5)

Since |hX(x)T θhY (y)| ≤ ‖hX(x)‖ · ‖hY (y)‖ · ‖θ‖, Condition (OR2) holds for
ψ̃X(x) = ‖hX(x)‖2 and ψ̃Y (y) = ‖hY (y)‖2. And the integrability condition in P X∫
and P Y∫ states that the second moments E(‖hX(X)‖2) and E(‖hY (Y )‖2) are finite.

Any submodel of (3.5) specified by a linear restriction of the form θ = AT θ∗B with
given matrices A, B and parameter matrix θ∗ yields a log-bilinear association too,
with respect to h∗

X = AhX , h∗
Y = BhY .

Association models have been introduced long ago in the context of contin-
gency tables, that is, when both X and Y have a finite range; see [4] for a review.
The “RC association models” and “RC correlation models” in [4] are both asso-
ciation models in our sense, the former (but not the latter) being log-bilinear. Ex-
tensions of these models to multivariate contingency tables studied in Gilula and
Haberman [3] also satisfy (3.1). Goodman [4] has generalized the bivariate normal
distribution to a bivariate log-bilinear model in our sense, but did not establish its
semiparametric nature. Returning to our primary focus, namely general random
vectors X and Y , the following examples reveal that the association structure of
some widely used regression models is in fact log-bilinear.
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EXAMPLE 1 (Generalized linear models). Let Y be a univariate random
variable, X an R-dimensional random vector and suppose that the conditional
density of Y given X = x belongs to the exponential family p(y | X = x) =
exp{a(φ)−1[y · τ(x) − b(τ(x))] + c(y,φ)} with suitable functions a, b, c, τ and
a (dispersion) parameter φ; compare [8]. Then the log-odds ratio function has
the form ψ(x, y) = a(φ)−1 · [τ(x) − τ(x◦)] · [y − y◦] and τ(x) is a strictly
monotone function of the conditional expectation μ(x) = E(Y | X = x), namely
τ(x) = λ(μ(x)), where λ−1 = b′. A generalized linear model specifies the condi-
tional expectation via a link function g:

g(μ(x)) = α + zT β,(3.6)

where z = hX(x) ∈ R
S is a known vector of formal covariates (obtained from x by

a given function hX) and α ∈ R, β ∈ R
S are unknown parameters. For G = λ◦g−1

and hX(x◦) = 0 the log-odds ratio function is ψ(x, y) = a(φ)−1 · [G(α + zT β) −
G(α)] · [y − y◦]. If the canonical link g = λ−1 is chosen, then

ψ(x, y) = zT θ [y − y◦](3.7)

is of the form (3.5) with hY (y) = y −y◦ and parameter θ = a(φ)−1β . Note that the
intercept α is no longer present in (3.7). Taking the log-bilinear association model
(3.7) instead of (3.6) weakens the distributional assumption while still including
the regression parameter β up to a positive constant a(φ)−1. In particular a linear
hypothesis Cβ = 0 with a given matrix C is equivalent to Cθ = 0, and for a vec-
tor c a one-sided hypothesis cT β > 0 is equivalent to cT θ > 0. Generalized linear
models with canonical link are often used. First of all, normal conditional distrib-
utions N(μ(x), σ 2) of Y yield the classical linear model with a(φ) = σ 2. Second,
binomial conditional distributions B(μ(x),1) lead to logistic regression models.
And finally, for Poisson conditional distributions Pois(μ(x)) log-linear models are
obtained. Note that for the latter two models we have a(φ) = 1 and hence θ = β .

The above semiparametric nature of the logistic regression model has been no-
ticed before; compare Breslow, Robins and Wellner [1], who established its semi-
parametric efficiency under case-control sampling. However, the logistic regres-
sion model is the only one among generalized linear models for binary Y which
is equivalent to an association model (3.1); compare [9] or Example 2 below. And
the resulting relation between the two conditional densities (given X, resp., Y ) has
been noticed before by Kagan [6].

EXAMPLE 2 (Multivariate linear logistic regression). Extending univariate
logistic regression to the multivariate case, suppose Y (e.g., a disease status)
takes values in �Y = {0,1, . . . ,K}, K ≥ 1, and X is an R-dimensional vec-
tor of observed covariates. Then L(Y | X = x) is a multinomial distribution
MK+1(1, π(x)) with K +1 classes and probabilities πk(x) = P(Y = k | X = x) >
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0. Using the multivariate logistic transformation logitπk(x) = log(πk(x)/π0(x))

of π(x), the linear logistic regression model is given by

logitπk(x) = γk + zT θk, k = 1, . . . ,K,(3.8)

where z = hX(x) ∈ R
S is as above a vector of formal covariates and γk ∈ R, θk ∈

R
S are unknown parameters. Choosing y◦ = 0, the log-odds ratio function is

ψ(x, y) = hX(x)T θk = hX(x)T θhY (k),(3.9)

where θ = (θ1, . . . , θK) is an S × K parameter matrix, and the function hY :
�Y −→ R

K maps k > 0 to the kth unit vector ek and hY (0) = 0. Hence
the linear logistic regression model is equivalent to the log-bilinear association
model (3.9)—provided E(‖hX(X)‖2) is finite. As mentioned above, this also holds
for submodels given by linear constraints, for example, θk = θ∗ for all k > 0. Al-
though the model (3.8) has been known for a long time, its semiparametric char-
acter (based on Theorem 2) does not seem to have been established before for
K > 2.

Replacing zT θk by an arbitrary function g(z, θk) leads to a general logistic
regression model

logitπk(x) = γk + g(z, θk), k = 1, . . . ,K,

which is equivalent to the log-odds ratio model

ψ(x, y) = g(hX(x), θk) = g(hX(x), θhY (k)).

EXAMPLE 3 (Multivariate linear regression). Let Y and X be random vectors
taking values in R

K , respectively R
R , and suppose that the conditional distribution

of Y given X is multivariate normal,

L(Y | X = x) = NK(μY (x),�),(3.10)

such that the conditional covariance matrix � is nonsingular and does not depend
on x. From the conditional log-density

logp(y | X = x) = −1
2

[
log[(2π)K det(�)] + [y − μY (x)]T �−1[y − μY (x)]]

the log-odds ratio function with respect to y◦ = 0 is ψ(x, y) = [μY (x) −
μY (x◦)]T �−1y. The multivariate linear regression model

μY (x) = α + βT z(3.11)

with covariates z = hX(x) ∈ R
S and S × K parameter matrix β has a log-bilinear

association

ψ(x, y) = hX(x)T θy(3.12)

with parameter matrix θ = β�−1—assuming hX(x◦) = 0. Note that the regres-
sion parameter β may only be recovered from θ if the covariance matrix � is
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known. However, any linear hypothesis Cβ = 0 is equivalent to the corresponding
hypothesis Cθ = 0, and the latter may be tested using the semiparametric associ-
ation model (3.12) instead of the regression model (3.11) with the distributional
assumption (3.10). If instead of (3.10) we allow the conditional covariance matrix
to depend on x, that is, L(Y | X = x) = NK(μY (x),�(x)), then (3.11) leads to
ψ(x, y) = hX(x)T β�−1(x)y, which is not bilinear.

The above examples reveal that important regression models may be generalized
to log-bilinear association models by ignoring the distributional assumption for the
conditional distribution. Although log-bilinear association is a natural candidate,
we also consider the more general association model

ψθ (x, y) = G(hX(x), hY (y), θ) for all x, y,(3.13)

given by a fixed function G with G(0,−,−) = G(−,0,−) = 0. We assume
throughout that the function G satisfies the following regularity condition (al-
though some results also hold under weaker assumptions):

CONDITION (R1). G(z,v, θ) is thrice continuously differentiable with re-
spect to θ for all z ∈ hX[�X], v ∈ hY [�Y ] and the derivatives are continuous in z
and v.

Further properties of the functions hX,hY and G will be assumed later in Con-
ditions (R2′′) and (MC).

4. Estimation. For a given data set (xi, yi) with i = 1, . . . , n we want to es-
timate the association parameter θ of the model (3.13) under unconditional sam-
pling from the joint distribution of (X,Y ) and conditional sampling of Y given X

or vice versa. Not surprisingly the maximum likelihood estimate θ̂ under any of
these three sampling schemes may be obtained as a solution of the same estimating
equation.

4.1. Unconditional sampling. For unconditional sampling the data set (xi, yi)

is an independent sample from the joint distribution of (X,Y ). Suppose there are
J + 1 > 1 different x-values and K + 1 > 1 different y-values observed and
denote the corresponding subsets of �X and �Y by �∗

X = {x(0), . . . , x(J )} and
�∗

Y = {y(0), . . . , y(K)}. If rjk is the observed frequency of (x(j), y(k)), then the
likelihood is

LXY =
J∏

j=0

K∏
k=0

p
(
x(j), y(k)

)rjk = LX|Y · LY

with a conditional and a marginal likelihood

LX|Y =
K∏

k=0

J∏
j=0

p
(
x(j) | Y = y(k)

)rjk , LY =
K∏

k=0

pY (
y(k)

)r+k(4.1)
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(the subscript “+” indicates summation over the replaced index). The model does
not restrict the marginal distribution of Y and hence the empirical density with
respect to counting measure ν∗

Y on �∗
Y ,

p̂Y (
y(k)

) = 1

n
r+k for k = 0, . . . ,K(4.2)

is the usual nonparametric estimate. If we restrict the distribution P Y to the
class P ∗

Y of all distributions with finite support �∗
Y , then LY is a multinomial

likelihood which attains its maximum for (4.2). Hence, for estimation purposes
we may restrict the marginal P Y to P ∗

Y and maximization of LXY is equivalent to
separate maximization of LX|Y and LY , because the latter two have no common
parameters.

Interchanging X and Y , we split the likelihood as LXY = LY |X · LX and by the
above argument we may additionally restrict P X to the class P ∗

X of all distrib-
utions with finite support �∗

X . Under these restrictions for both P X and P Y the
likelihood LXY is a multinomial likelihood for the observed (J + 1) × (K + 1)-
contingency table (rjk). Hence, estimation of θ is reduced to a multinomial model
whose probabilities pjk = p(x(j), y(k)) satisfy the log-odds ratio model

log(pjkp00/pj0p0k) = ψθ

(
x(j), y(k)

) =: ψjk(θ) for all j and k

with respect to the reference values x◦ = x(0) and y◦ = y(0). The parametriza-
tion (3.2) now involves only a finite number of parameters

logpjk = βj + γk + ψjk(θ) − log

(∑
j

∑
k

exp[βj + γk + ψjk(θ)]
)
,(4.3)

namely βj = β(x(j)), γk = γ (y(k)) and θ with β0 = γ0 = 0. Instead of maximizing
LXY , it is typically preferable to maximize either LY |X or LX|Y using the parame-
trization of the conditional probabilities pk|j = pjk/pj+ or pj |k = pjk/p+k given
by (3.3) and its dual

logpk|j = γk + ψjk(θ) − δj , logpj |k = βj + ψjk(θ) − εk,

where the parameters δj , respectively, εk are determined by the remaining ones.

4.2. Conditional sampling. When sampling is conditional on values for Y

taken from �∗
Y = {y(0), . . . , y(K)}, say, then the data set (xi, yi) with i = 1, . . . , n is

partitioned into K + 1 independent subsamples given by the values of yi , such that
each subsample (xi) with yi = y(k) is an independent sample from the conditional
distribution L(X | Y = y(k)). Instead of maximizing the appropriate likelihood
LX|Y we can equivalently maximize the unconditional likelihood LXY or even the
“reverse” conditional likelihood LY |X . The latter is preferable from a computa-
tional point of view, when the nuisance parameters γk are less than those of LX|Y ,
that is, for K < L. A dual argument applies if sampling is conditional on values
for X taken from �∗

X = {x(0), . . . , x(J )}.
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4.3. Log-bilinear association. In the log-bilinear association model (3.5), the
odds ratios may be written as ψjk(θ) = zT

j θvk with zj = hX(x(j)) and vk =
hY (y(k)), or in matrix notation

ψ(θ) = ZθVT ∈ R
J×K, Z = (zj l) ∈ R

J×KX, V = (vkl) ∈ R
K×KY .

Then (4.3) reduces to a log-linear model for the probabilities pjk ,

logpjk = α + βj + γk + zT
j θvk(4.4)

induced by the covariates zj ,vk and results by Haberman [5] on the existence
and uniqueness of maximum likelihood estimates in log-linear models apply. In
particular the estimate p̂ = (p̂jk) is unique (if it exists) and hence the estimate θ̂ is
unique too, provided the parameter θ is identifiable.

For sampling conditional on Y , the values y(k) should be chosen such that the
rank condition holds:

CONDITION (RK). The KY × K-matrix VT = (v1, . . . ,vK) has rank KY .

This condition will be assumed whenever the log-bilinear association model is
used. Then a convenient reparametrization is available:

ψjk(θ) = zT
j θ̃k, θ̃k = θvk ∈ R

KX(4.5)

with a KX ×K parameter-matrix θ̃ = (θ̃1, . . . , θ̃K) = θVT . The observed matrix Z
of covariates will typically have rank KX and then θ , respectively, θ̃ is uniquely de-
termined by ψ(θ) = ZθVT = Zθ̃ and hence identifiable. In general identifiability
of θ is guaranteed by Condition (C3) in Section 6.

5. Conditional likelihood. Although the maximum likelihood estimate θ̂ of
the association parameter θ may be obtained by maximizing either of the two con-
ditional likelihoods, the stochastic properties of the latter depend on the sampling
scheme. Let us now consider sampling conditional on Y —which can be preferable
from a practical point of view (even for regression models)—and derive proper-
ties of the “reverse” likelihood LY |X . The advantage of LY |X over the appropri-
ate likelihood LX|Y is that it usually has fewer nuisance parameters since K is
fixed by the sampling design whereas J will typically increase with the number of
observations—unless �X is finite. An important example for finite �Y are case-
control studies (called choice-based samples in econometrics) for which asymp-
totic inference on θ in the (general) logistic regression model may be obtained
as if sampling had been conditional on X; compare [12] and [14]. We want to
extend these results to arbitrary Y (e.g., vectors with continuous and/or discrete
components) and association models.

Instead of a data set (xi, yi) we now consider the underlying random elements.
It is convenient to represent the sample as a compound vector of random elements
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X = (Xki) indexed by k = 0, . . . ,K and i = 1, . . . , nk . Omitting now the parenthe-
ses in y(k) and x(j), each Xki is distributed as Xk ∼ L(X | Y = yk). As above rjk

denotes the frequency of (xj , yk) in the sample (xki, yk) and the empirical distrib-
ution on �∗

Y = {y0, . . . , yK} is given by the proportions r̄k = nk/n, where n = n+
is the total sample size. Replacing in P the marginal distribution of Y by the em-
pirical distribution (4.2) yields a joint distribution P ∗ on �X × �∗

Y given by the
density p∗ with respect to νX × ν∗

Y :

p∗(x, yk) = r̄k · p(x | Y = yk) for all x, k.

The marginal density of Y under P ∗ is p∗Y (yk) = r̄k and the marginal, respec-
tively, conditional density for X is

p∗X(x) =
K∑

k=0

r̄k · p(x | Y = yk), respectively,

(5.1)

p∗
k (x) := p∗(yk | X = x) = r̄k · p(x | Y = yk)

p∗X(x)
.

Equation (3.3) yields the parametrization logp∗
k (x) = γ ∗

k +ψθ (x, yk)−δ∗(x) with
nuisance parameters γ ∗

k = γ ∗(yk) and δ∗(x) = log[∑l exp(γ ∗
l +ψθ (x, yl))], hence

p∗
k (x) = exp[γ ∗

k + ψθ (x, yk)]
[∑l exp[γ ∗

l + ψθ (x, yl)] .(5.2)

Choosing the reference value y◦ = y0 we have γ ∗
0 = 0, and the nuisance parameter

is γ ∗ = (γ ∗
1 , . . . , γ ∗

K) ∈ R
K . Finally, the logarithm of the conditional likelihood

LY |X may be written in terms of the compound parameter vector λ := (θ,γ ∗) ∈
R

S+K :

�(λ) := logLY |X =
K∑

k=0

nk∑
i=1

logp∗
k (Xki) with

(5.3)

logp∗
k (Xki) = γ ∗

k + ψθ (Xki, yk) − log

[
K∑

l=0

exp
(
γ ∗
l + ψθ (Xki, yl)

)]
.

Notice that �(λ) is the log-likelihood of the multivariate logistic regression model

logitp∗
k (x) = γ ∗

k + ψθ (x, yk), k = 1, . . . ,K,(5.4)

which is nonlinear in general. The estimate λ̂ maximizing �(λ) satisfies

Dλ�(λ) =
K∑

k=0

nk∑
i=1

Dλ logp∗
k (Xki) = 0,(5.5)

where Dλ denotes the differential operator with respect to λ. The basic stochastic
properties of the solution of the estimating equation (5.5) depend on the moments
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of the estimating function Dλ�(λ) and its derivative. The first important property
(proved in Appendix A.2) is that its expectation is zero—which is not obvious
since �(λ) is not the log-likelihood for the underlying sampling:

E[Dλ�(λ)] = ∑
k

nk · E[Dλ logp∗
k (Xk)] = 0.(5.6)

Next, the components of the covariance matrix �(λ) := Cov(Dλ�(λ)) are given
by

�st (λ) = ∑
k

nk · Cov(Dλs logp∗
k (Xk),Dλt logp∗

k (Xk))(5.7)

and for the partial second derivatives we get

Jst (λ) := −D2
λsλt

�(λ) = −∑
k

∑
i

D2
λsλt

logp∗
k (Xki)(5.8)

with expectation (cf. Appendix A.2)

Ist (λ) := E(Jst (λ)) = ∑
k

nk · E(
Dλs logp∗

k (Xk) · Dλt logp∗
k (Xk)

)
.(5.9)

Since �(λ) is not the log-likelihood for sampling conditional on X, the matrices
�(λ) and I(λ) need not be equal, but from (5.7) their difference is

Ist (λ) − �st (λ) = ∑
k

nk · E(Dλs logp∗
k (Xk)) · E(Dλt logp∗

k (Xk)).(5.10)

From now on we assume the essential:

CONDITION (R2). �(λ) = Cov(Dλ�(λ)) is positive definite for all λ.

Two equivalent formulations (cf. Appendix A.2) are

CONDITION (R2′). I(λ) is positive definite for all λ.

CONDITION (R2′′). For all θ , all s ∈ R
S and c1, . . . , cK ∈ R: Dθψθ (X,yk) ·

s = ck for k = 1, . . . ,K almost surely ⇒ s = 0.

In the last formulation—which does not include the nuisance parameter γ ∗—we
can replace X by Xk , since their distributions belong to P X and hence dominate
each other.

Using the block notation for an (S + K) × (S + K) matrix, say

� =
[

�θθ �θγ

�γθ �γγ

]
,

a fundamental result can be derived (cf. Appendix A.2) by adopting the method
in [12].
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THEOREM 3. For any λ

(a) I(λ) − �(λ) = I(λ) ·
[

0 0
0 W

]
· I(λ),

where the K ×K-matrix W is the sum of the diagonal diag(n−1
1 , . . . , n−1

K ) and the
constant matrix (n−1

0 ), that is, Wkl = �kln
−1
k + n−1

0 with the Kronecker’s �.

(b) [I−1(λ)]θθ = [I−1 · �(λ) · I−1(λ)]θθ .

The matrix in (b) will later turn out to be the asymptotic covariance matrix of
the estimate θ̂ .

Log-bilinear association: Using (4.5) and θ (instead of θ̃ ) the model states

ψθ (x, yk) = zT θk with z = hX(x), θ = (θ1, . . . , θK) ∈ R
KX×K(5.11)

and is equivalent to the linear logistic regression model given by (5.2), that is,

logitp∗
k (x) = γ ∗

k + zT θk, k = 1, . . . ,K.

Condition (R2′′) holds if hX(X) is not concentrated on a hyperplane of R
KX , that

is, if the following condition is met (cf. Appendix A.2):

CONDITION (R2)LBA. For all s ∈ R
KX : sT hX(X) is constant almost surely

⇒ s = 0.

6. Asymptotics and consistency. We now turn to the asymptotic properties
of the estimate λ̂ = (θ̂, γ̂ ∗) in the model (3.13). Our asymptotic approach assumes
that set �∗

Y = {y0, . . . , yK} of conditional values will remain fixed while all sub-
sample sizes nk tend to infinity with fixed ratios rk = nk/n > 0 for all n and k.
Hence the nuisance parameter γ ∗, the distribution P ∗ and its conditional densities
p∗

k (x) do not vary with n. The true parameter will now be denoted by λ◦ = (θ◦,γ ◦)
instead of λ and the notation E,P , etc. now refer to expectations, probabilities,
etc. with respect to λ◦. The conditional log-likelihood �(n)(λ)—the additional in-
dex n is supplied if necessary—need not have a unique maximizing argument λ̂
for every sample. Concerning uniqueness, the strong law of large numbers yields
for the matrix J(n)(λ) = −D2

λλ�
(n)(λ) from (5.8)

1

n
J(n)(λ)−−−→

n→∞ I(λ) :=
K∑

k=0

rk · E(−D2
λλ logp∗

k (Xk)) almost surely.(6.1)

The matrix I(λ) = 1
n

I(λ) is positive definite by Condition (R2′) which implies
−D2

λλ�
(n)(λ) = −J(n)(λ) is negative definite for almost all (i.e., all except finitely

many) n, almost surely. Hence—almost surely—the function �(n)(λ) is strictly
concave for almost all n, which implies that Dλ�

(n)(λ) = 0 has at most one solu-
tion λ̂, which also maximizes �(n)(λ). Since the unique existence of a maximizing
argument λ̂ of �(n)(λ) is not guaranteed for every n, we consider any sequence of
(measurable) functions λ̂(n) as estimators if the estimating condition is met:



474 G. OSIUS

CONDITION (C1). If �(n)(λ) has a maximizing argument λ, then �(n)(λ̂(n)) =
Maxλ �(n)(λ).

To establish the consistency of such a sequence λ̂(n) we assume an integrability
and an identifiability condition:

CONDITION (C2). E{ψ̃X(Xk)} < ∞ for all k = 0, . . . ,K .

CONDITION (C3). ψθ1(X,yk) = ψθ2(X,yk) for k = 1, . . . ,K almost surely
⇒ θ1 = θ2.

As in Condition (R2′′), we can equivalently replace X by Xk in Condition (C3).
In Appendix A.3 we derive the asymptotic (unique) existence and strong consis-
tency of the estimator:

THEOREM 4 (Consistency). Under Conditions (C1)–(C3) the following prop-
erties hold almost surely:

(a) For almost all n there exists a unique λ maximizing �(n)(λ), namely λ̂(n).
(b) For almost all n there exists a unique solution λ of Dλ�

(n)(λ) = 0,
namely λ̂(n).

(c) λ̂(n) = (θ̂ (n),γ ∗(n))−−−→
n→∞ λ◦ = (θ◦,γ ◦).

Log-bilinear association: In view of ψ̃X(x) = ‖hX(x)‖2, Condition (C2) re-
duces to a moment condition for Zk = hX(Xk):

CONDITION (C2)LBA. E{‖Zk‖2} < ∞ for all k = 0, . . . ,K .

And, using the parametrization (5.11), Condition (C3) reduces to

hT
X(X)θk1 = hT

X(X)θk2

for k = 1, . . . ,K almost surely ⇒ θ1k = θ2k for all k,

which is implied by the stronger Condition (R2)LBA.

7. Asymptotic normality. Let us finally establish the asymptotic normality
for a sequence λ̂(n) of estimates. Instead of assuming Condition (C1), we derive
the asymptotic distribution for any weakly consistent sequence λ̂(n) solving the
estimating equation at least approximately, that is, we only assume

CONDITION (N1). Dλ�
(n)(λ̂(n)) = oP (

√
n), respectively, n−1/2 · Dλ�

(n) ×
(λ̂(n))

P−−−→
n→∞ 0.
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CONDITION (N2). λ̂(n)
P−−−→

n→∞ λ◦.

Obviously both conditions hold under the assumptions of Theorem 4. Further-
more we assume the following consistency results, which are derived later (Theo-
rem 6) from Condition (N2) and additional moment conditions:

CONDITION (N3). 1
n

∫ 1
0 J(n)(λ◦ + t[λ̂(n) − λ◦]) dt

P−−−→
n→∞ I(λ◦).

CONDITION (N4). 1
n

J(n)(λ̂(n))
P−−−→

n→∞ I(λ◦).

In Appendix A.4 we derive the asymptotic normality of the estimate as follows,
where A1/2, respectively, A1/2 denotes the generalized Moore–Penrose inverse,
respectively, the symmetric root of a positive semidefinite matrix A, and I is the
identity matrix.

THEOREM 5 (Normality). Any sequence λ̂(n) of estimators with Conditions
(N1)–(N3) is asymptotic normal

(a)
√

n[λ̂(n) − λ◦] L−−−→
n→∞ N(0, I

−1
(λ◦) · �(λ◦) · I

−1
(λ◦)) with �(λ) := ∑

k rk ·
Cov(Dλ logp∗

k (Xk)),

(b)
√

n[θ̂ (n) − θ◦] L−−−→
n→∞ N(0, [I−1

(λ◦)]θθ ).

COROLLARY. If in addition Condition (N4) holds, then

(c) ([J(n)(λ̂(n))−]1/2
θθ )−[θ̂ (n) − θ◦] L−−−→

n→∞ N(0, I).

Less formally (a) and (b) state

λ̂ ∼
as.

N(λ◦, I−1(λ◦) · �(λ◦) · I−1(λ◦)), θ̂ ∼
as.

N(θ , [I−1(λ◦)]θθ ).

J(λ̂) is a consistent estimate of I(λ◦) by Condition (N4), and will be positive defi-
nite for almost all n (almost surely) by (6.1). In this case, (c) states

θ̂ ∼
as.

N(θ , [I−1(λ̂)]θθ ).(7.1)

Notice that for an observed data set, the estimated covariance matrix [J−1(λ̂)]θθ

(where the random variables are replaced by observations) is identical to the cor-
responding matrix under sampling conditional on X (instead of Y ). In this sense
the estimate θ̂ and its estimated asymptotic normal distribution are invariant un-
der sampling conditional on either Y or X. Hence asymptotic inference (i.e., tests
or confidence regions) for the association parameter θ based on the asymptotic
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distribution (7.1) of the estimate θ̂ is invariant under both conditional sampling
schemes, too.

The above Conditions (N3) and (N4) will now be derived from the consistency
Condition (N2) and additional properties of the function G. For

Hr(z | θ) =
K∑

k=0

|Dθr G(z, hY (yk), θ)|,

Hrs(z | θ) =
K∑

k=0

|D2
θrθs

G(z, hY (yk), θ)|,

Hrst (z | θ) =
K∑

k=0

|D3
θrθsθt

G(z, hY (yk), θ)|,

the following result is proved in Appendix A.4.

THEOREM 6. Conditions (N3) and (N4) follow from (N2) and the moment
condition (MC)LBA

CONDITION (MC). There exists ε◦ > 0 such that for B(θ◦) = {θ | ‖θ −θ◦‖ ≤
ε◦} and all k = 0, . . . ,K the following functions of Zk = hX(Xk):

sup
θ∈B(θ◦)

Hr(Zk | θ)3, sup
θ∈B(θ◦)

Hst (Zk | θ)2, sup
θ∈B(θ◦)

Hrst (Zk | θ)

have finite expectation for all r, s, t = 1, . . . , S.

Hence the requirements for Theorem 5 are met if Conditions (MC) and (C1)–
(C3) in Theorem 4 hold.

Log-bilinear association: The log-bilinear association model is based on the
function G(z,v, θ) = zT θv with partial derivatives Dθlm

G(z,v, θ) = zlvm and van-
ishing higher derivatives. Hence Condition (MC) holds if Condition (C2)LBA is
strengthened to

CONDITION (MC)LBA. E{‖Zk‖3} < ∞ for all k = 0, . . . ,K .

8. Discussion. Association models for a pair of random elements (X,Y ) do
not restrict the marginal distributions of X and Y but only their odds ratio func-
tion. We have looked at parametric association models which include the impor-
tant log-bilinear association models. An advantage of these models is that infer-
ence about the odds ratio (or association) parameter vector θ may be obtained
from sampling Y conditional on fixed values of X or vice versa. The maximum
likelihood estimate θ̂ is the same under both conditional sampling schemes, and
asymptotic inference concerning θ is invariant with respect to sampling, too. More
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precisely, we have shown that for samples conditional on Y , the estimate θ̂ maxi-
mizing the “reverse” conditional likelihood LY |X is consistent, asymptotic normal
and its estimated asymptotic covariance matrix is the same as if sampling had been
conditional on X. These results have been obtained much earlier for discrete Y

with finite range for the multivariate linear logistic regression model in [12] and
for the general logistic regression model in [16] (for X with finite range) and [14].
Our result allows both X and Y to be arbitrary random vectors each having discrete
and/or continuous components.

Furthermore, asymptotic inference for the regression parameters β in widely
used regression models is available when sampling is conditional on Y (instead
of X). For example, in log-linear regression models for Poisson variates we have
β = θ and hence inference on β may also be obtained from samples conditional
on Y . Even in the linear regression model μ(x) = α + zT β with covariate vector
z = hX(x) and L(Y | x) = N(μ(x), σ 2), asymptotic inference for θ = σ−2β may
be obtained from samples conditional on Y —including tests of a linear hypothe-
sis Cθ = 0, which is equivalent to Cβ = 0. However, confidence regions are only
available for θ , but not for β , unless an estimate of σ 2 from another sample is at
hand. This extends to the multivariate case where the conditional distribution of
Y is multivariate normal NK(μ(x),�) and the odds ratio parameter is given by
θ = β�−1. Although sampling conditional on Y seems unnatural for a regression
model, it may be very attractive if such a sample is much easier (e.g., cheaper or
quicker) to obtain. The advantages of (retrospective) case-control over (prospec-
tive) cohort studies can thus be extended to an arbitrary response vector Y , for
example, to infinite discrete response categories or to a continuous response Y .
In the latter case we do not get confidence intervals for β , but tests for linear
hypothesis—which may be of primary interest (e.g., in a clinical trial)—are avail-
able.

Related, but different, semiparametric models for random vectors X = (X1, . . . ,

XI ) and Y = (Y1, . . . , YJ ) are given by multivariate copulas which specify para-
metric distributions on [0,1]I+J with uniform marginals. However, a copula is not
an association model in our sense (cf. [9]) because a copula only leaves the mar-
ginal distributions of all univariate components Xi and Yj arbitrary, but the mar-
ginal distribution of the vectors X, respectively, Y are restricted through the para-
metrization of the copula, unless both X and Y are univariate. And even in the
latter case, the odds ratio function OR(X,Y ) cannot be recovered from the corre-
sponding copula unless both marginal distributions of X and Y are known. Hence
the rather general semiparametnc associations models considered here do not fit in
the framework of copulas.

APPENDIX: PROOFS

A.1. Proof of Theorem 2 (existence). We have already seen that (b) im-
plies (c) and it remains to derive (a) from (c), which uses the concept of an
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I -projection and heavily relies on results by Csiszár [2] and Rüschendorf and
Thomsen [13]. Setting π = πX × πY we first conclude from Condition (E2) the
existence of R ∈ P with π -density

r = exp(ψ − β − γ − α) > 0, α = log
∫

exp(ψ − β − γ )dπ

and the wanted P will be the I -projection of R on E = {P ∈ P | P X = πX,P Y =
πY }. The integrability of ψ , β and γ implies

I (π | R) =
∫

log
(

1

r

)
dπ =

∫
(α + β + γ − ψ)dπ < ∞

and since π ∈ E , we conclude from Theorem 2.1 in [2] that R has an I -projection
P on E . Application of Theorem 3.1 in [2] to the set

F = {fX + fY | fX ∈ L1(πX), fY ∈ L1(πY )} ⊂ L1(P )

yields that the R-density pR of P satisfies pR = exp(h) π -almost surely, where h

belongs to the closure F − of F in L1(P ). Rüschendorf and Thomsen [13] pointed
out that F need not be closed in L1(P )—which was claimed in the proof of Corol-
lary 3.1, case (B) in Csiszár [2].

Now R � π implies that exp(h) > 0 is an R-density of P and hence R � P �
R. Furthermore r > 0 yields R � π � R and hence P ∈ P�, since P XY = π .
From Theorem 2.2 in [2] we obtain

I (π | P) + I (P | R) ≤ I (π | R) < ∞,

which establishes P ∈ P∫ . Finally OR(P ) = ψ remains to be shown. From P �
P XY and Proposition 2 in [13] we conclude the existence of measurable functions
a :�X → R and b :�Y → R, such that h(x, y) = b(x) + c(y) P -almost surely,
and hence R-almost surely. Hence a π -density of p is given by

dP

dπ
= dP

dR
· dR

dπ
= exp(b + c) · r = exp(b + c − β − γ − α + ψ)

and a direct calculation yields log OR(P ) = ψ as required.

A.2. Proof of the results in Section 5. We start with some preliminary re-
sults. The derivatives of logp∗

k are given by

Dλs logp∗
k (x) = Dλsp

∗
k (x)

p∗
k (x)

,

(A.1)

D2
λsλt

logp∗
k (x) = D2

λsλt
p∗

k (x)

p∗
k (x)

− Dλs logp∗
k (x) · Dλt logp∗

k (x).
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For any set of measurable functions Gk(x) we obtain from (5.1) a key equality:∑
k

rk · E(Gk(Xk)) = ∑
k

rk · E(
Gk(X) | Y = yk

)

= ∑
k

rk ·
∫

Gk(x) · p(x | Y = yk) dνX(x)

(A.2)
=

∫ ∑
k

Gk(x) · p∗
k (x) · p∗X(x) dνX(x)

= E∗
[∑

k

Gk(X) · p∗
k (X)

]
,

where E∗ denotes expectation with respect to P ∗.
In particular, we get for Gk(x) = H(x) ·Dλ logp∗

k (x) and any measurable H(x)∑
k

rk · E[H(Xk) · Dλ logp∗
k (Xk)]

= E∗
[∑

k

H(X) · Dλ logp∗
k (X) · p∗

k (X)

]
(A.3)

= E∗
[
H(X) · ∑

k

Dλp
∗
k (X)

]
= 0,

since p∗+(x) = 1. In particular, (5.6) follows for H(x) = 1.

PROOF OF (5.9). Choosing Gk(Xk) = p∗
k (Xk)

−1 · D2
λsλt

p∗
k (Xk) in (A.2)

yields

∑
k

rk · E[p∗
k (Xk)

−1 · D2
λsλt

p∗
k (Xk)] = E∗

[∑
k

D2
λsλt

p∗
k (Xk)

]
= 0

and (5.9) follows using (A.1):

E(Jst (λ)) = n · ∑
k

rk · E(
Dλs logp∗

k (Xk) · Dλt logp∗
k (Xk)

)
.

�

PROOF OF CONDITIONS (R2) ⇔ (R2′). By (5.10) I(λ) is a sum of �(λ)

and a positive semidefinite matrix. Hence I(λ) is positive semidefinite, and even
positive definite, provided Condition (R2) holds. Conversely, let Condition (R2′)
hold. Then tT �(λ)t = Var(tT Dλ�(λ)T ) = 0 implies that tT Dλ�(λ)T is constant
almost surely, and hence tT D2

λλ�(λ) = Dλ[tT Dλ�(λ)T ] = 0 almost surely. Thus
tT I(λ) = E(tT D2

λλ�(λ)) = 0, which implies t = 0 by Condition (R2′). Hence Con-
dition (R2) holds. �
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PROOF OF CONDITIONS (R2′) ⇔ (R2′′). I(λ) is positive semidefinite (as al-
ready observed) and hence Condition (R2′) is equivalent to

For all t ∈ R
S+K tT I(λ)t = 0 ⇒ t = 0.(A.4)

For any t ∈ R
S+K we get from (5.9)

tT I(λ)t = ∑
k

nk · E(‖Dλ logp∗
k (Xk) · t‖2)

and since the distributions of Xk and X dominate each other:

tT I(λ)t = 0 ⇔ Dλ logp∗
k (X) · t = 0(A.5)

for k = 0, . . . ,K almost surely.

To derive Condition (R2′) from Condition (R2′′), let tT I(λ)t = 0. From (5.4) we
get

logitp∗
k (X) = logp∗

k (X) − logp∗
0(X) = γ ∗

k + ψθ (X,yk)(A.6)

and for t = (s,−c) with s ∈ R
S , c = (c1, . . . , cK), we obtain from (A.5) almost

surely

0 = Dλ logitp∗
k (X) · t = Dθ logitp∗

k (X) · s − Dγ logitp∗
k (X) · c

(A.7)
= Dθψθ (X,yk) · s − ck for all k = 1, . . . ,K.

And from Condition (R2′′) we conclude s = 0 as well as ck = 0 for all k, and thus
t = 0.

Conversely, suppose Condition (R2′) holds. To establish Condition (R2′′), it
suffices to show that (A.7) implies s = 0. From (5.2) and (5.4) we get

p∗
0(X) =

(∑
l

exp[logitp∗
l (X, yl)]

)−1

,

Dλ logp∗
0(X) · t = p∗

0(X)−1
∑

l

exp[logitp∗
l (X, yl)] · Dλ logitp∗

l (X, yl) · t.

Hence (A.7)—and logitp∗
0 = 0—imply Dλ logp∗

0(X) · t = 0 almost surely.
From (A.6) we get Dλ logp∗

k (X) · t = 0 for k = 0, . . . ,K almost surely, and (A.5),
(A.4) establish t = 0 and hence s = 0. �

PROOF OF THEOREM 3. Part (a) is equivalent to three equations:

(a)θθ Iθθ − �θθ = Iθγ · W · IT
θγ ,

(a)θγ Iθγ − �θγ = Iθγ · W · Iγ γ ,

(a)γ γ Iγ γ − �γγ = Iγ γ · W · Iγ γ .
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Some prerequisite results are derived first using the notation

bsk = E[Dθs logp∗
k (Xk)] ∈ R, bk = (b1k, . . . , bSk) ∈ R

S,

cmk = E[Dγ ∗
m

logp∗
k (Xk)] ∈ R, ck = (c1k, . . . , cKk) ∈ R

K,

B = (b1, . . . ,bK) ∈ R
S×K, B = (b0, . . . ,bK) ∈ R

S×(K+1),

C = (c1, . . . , cK) ∈ R
K×K, C = (c0, . . . , cK) ∈ R

K×(K+1),

N = diag(n1, . . . , nK) ∈ R
K×K, N = diag(n0, . . . , nK) ∈ R

K×(K+1).

From (5.3) we obtain the partial derivatives

Dθs logp∗
k (x) = Dθsψθ (x, yk) − ∑

l

p∗
l (x) · Dθsψθ (x, yl),

Dγ ∗
m

logp∗
k (x) = �km − p∗

m(x)

and (5.9) yields

Iλtγ ∗
m

= n
∑
k

rk · E(
Dθs logp∗

k (Xk) · Dγ ∗
m

logp∗
k (Xk)

)

= nm · E(Dθs logp∗
m(Xk)) − n

∑
k

rk · E(
p∗

m(Xk) · Dθs logp∗
k (Xk)

)

= nm · E(Dθs logp∗
m(Xk)) [cf. (A.3) for H(x) = p∗

m(x)].

Hence Iθsγ ∗
m

= nm · bsm, Iγ ∗
l γ ∗

m
= nm · clm, or in matrix notation

Iθγ = B · N, Iγ γ = C · N.(A.8)

From (5.6) we have
∑

k nk · bsk = 0 and
∑

k nk · cmk = 0, or in matrix notation

0 = n0b0 + Bn, 0 = n0c0 + Cn, n = (n1, . . . , nK).(A.9)

Using the constant vector e+ = (1) and constant matrix e+eT+ = (1) we thus obtain

Iθγ · W = B · N[n−1
0 e+eT+ + N−1] = n−1

0 B · n · eT+ + B = −b0 · eT+ + B

and similarly with C instead of B

Iγ γ · W = C · N · W = −c0 · eT+ + C.

Now (a)θγ is obtained as follows:

Iθγ · W · IT
γ γ = [B − b0 · eT+][C · N]T = B · N · CT − b0 · [C · n]T [cf. (A.8)]

= B · N · CT + b0 · n0 · cT
0 = B · N · C

T
[cf. (A.9)]

= Iθγ − �θγ [cf. (5.10)]
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And (a)θθ , respectively (a)γ γ , is established similarly (replace B and b0 by C
and c0, respectively, vice versa). Hence (a) holds, and multiplication with I−1(λ)

yields (b). �

PROOF OF CONDITION (R2)LBA ⇒ (R2′′). Suppose for s = (s1, . . . , sK) ∈
R

KX×K and c1, . . . , cK ∈ R we have for all k = 1, . . . ,K

ck = Dθψθ (X,yk) · s = ∑
l

Dθ l
ψθ (X,yk) · sl = hX(X)T · sk almost surely.

Then Condition (R2)LBA implies sk = 0 for all k, and hence s = 0. �

A.3. Proof of Theorem 4 (consistency). The proof is based on the ingenious
ideas from Wald [15]. The log-odds ratio ψθ (x, y) in the model (3.13) depends
only on the vectors z = hX(x) and v = hY (y). Therefore we regard p∗

k (x) = p̃k(z |
λ) as a function of z and λ using the notation

Gk(z, θ) := G(z, hY (yk), θ) = ψθ (x, yk),

p̃k(z | λ) := exp[γ ∗
k + Gk(z, θ)]∑

l exp[γ ∗
l + Gl(z, θ)] = p∗

k (x),

ηk(z | λ) := log p̃k(z | λ) = γ ∗
k + Gk(z, θ) − log

(∑
l

exp[γ ∗
l + Gl(z, θ)]

)
.

We first show for Zk := hX(Xk)

E{|ηk(Zk | λ)|} < ∞ for all λ and k = 0, . . . ,K .(A.10)

From γ ∗
0 = 0 = G0(z, θ) and p̃0(z | λ) ≤ 1 we get

|η0(z | λ)| = log

(∑
l

exp[γ ∗
l +Gl(z, θ)]

)
≤ log(K + 1)+‖γ ∗‖+ Max

l
|Gl(z, θ)|.

And Condition (OR2) yields

|Gl(z, θ)| ≤ [ψ̃X(x) + ψ̃Y (yl)] · ‖θ‖,(A.11)

which in view of Condition (C2) proves (A.10) for k = 0. For k > 0 we get

|ηk(z | λ)| = |γ ∗
k + Gk(z, θ) + η0(z,λ)| ≤ ‖γ ∗‖ + |Gk(z, θ)| + |η0(z | λ)|.

Hence (A.11) and Condition (C2) establish (A.10).
Next we prove three basic lemmas.

LEMMA A.1. For any λ �= λ◦ :
∑K

k=0 rk · E{ηk(Zk | λ) − ηk(Zk | λ◦)} < 0.
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LEMMA A.2. For k = 0, . . . ,K and any λ:

lim
ε→0

E

{
sup

‖λ′−λ‖≤ε

ηk(Zk | λ′)
}

= E{ηk(Zk | λ)}.

LEMMA A.3. For any compact set A ⊂ R
K × R

S with λ◦ /∈ A:

lim
n→∞

[
sup
λ∈A

�(n)(λ) − �(n)(λ◦)
]

= −∞ almost surely.

PROOF OF LEMMA A.1. Uk = ηk(Zk | λ) − ηk(Zk | λ◦) has finite expectation
by (A.10), and Jensen’s inequality yields

∑
k

rk · E{Uk} ≤ ∑
k

rk · logE{exp(Uk)} ≤ log

(∑
k

rk · E{exp(Uk)}
)
.(A.12)

Equation (A.2) with Gk(Xk) = exp(Uk) = p̃k(Zk | λ)[p̃k(Zk | λ◦)]−1 and λ �= λ◦
gives (the true parameter is denoted by λ◦ here)

∑
k

rk · E{exp(Uk)} = E∗
{∑

k

p̃k(Zk | λ)

}
= 1

and (A.12) implies
∑

k rk · E{Uk} ≤ 0. It remains to show that this inequality is
strict. Suppose not; then equality holds in both places of (A.12). The first equality
implies that each Uk is constant almost surely, say Uk = log ck , and the second
yields ck = c for all k, hence Uk = log c, respectively, p̃k(Zk | λ) = c · p̃k(Zk | λ◦)
almost surely. From

∑
k p̃k = 1 we get c = 1, and hence

ηk(Zk | λ) = ηk(Zk | λ◦) for all k almost surely.(A.13)

Then

ψθ (Xk, yk) = ηk(Zk | λ) + η0(Z0 | λ) − η0(Zk | λ) − ηk(Z0 | λ) = ψθ◦(Xk, yk)

almost surely, and since the distributions of Xk and X dominate each other,

ψθ (X,yk) = ψθ◦(X,yk) for all k almost surely.

From Condition (C3) we get θ = θ◦. For λ = (θ ,γ ∗) (A.13) gives almost surely

γ ∗
k + Gk(Zk, θ) = ηk(Zk | λ) − η0(Zk | λ) = γ ◦

k + Gk(Zk, θ
◦) for all k

and from θ = θ◦ we conclude γ ∗ = γ ◦, which contradicts λ �= λ◦. �

PROOF OF LEMMA A.2. Continuity implies for any positive sequence εn → 0

sup
‖λ′−λ‖≤εn

ηk(z | λ′)−−−→
n→∞ ηk(z | λ).
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Since

ηk(z | λ) ≤ sup
‖λ′−λ‖≤εn

ηk(z | λ′) ≤ 0,(A.14)

the dominated convergence theorem and (A.10) yield

E

{
sup

‖λ′−λ‖≤εn

ηk(Zk | λ′)
}

−−−→
n→∞ E{ηk(Zk | λ)}.

�

PROOF OF LEMMA A.3. For ε > 0 consider the ball B(λ | ε) = {λ′ | ‖λ′ −
λ‖ ≤ ε} with interior B◦(λ | ε) and let ηk(z | λ, ε) = supλ′∈B(λ|ε) ηk(z | λ′).
Lemma A.2 implies

lim
ε→0

∑
k

rk · E{ηk(Zk | λ, ε)} = ∑
k

rk · E{ηk(Zk | λ)}

and for any λ ∈ A Lemma A.1 gives∑
k

rk · E{ηk(Zk | λ)} <
∑
k

rk · E{ηk(Zk | λ◦)}.

Hence there exists an ελ > 0 such that∑
k

rk · E{ηk(Zk | λ, ελ)} <
∑
k

rk · E{ηk(Zk | λ◦)}.(A.15)

Since A is compact, there are finitely many λ1, . . . ,λM ∈ A such that for any λ ∈ A

there exists 1 ≤ m ≤ M with λ ∈ B◦(λm | ελm). Thus ηk(z | λ) ≤ ηk(z | λm, ελm)

and

sup
λ∈A

�(n)(λ) − �(n)(λ◦) ≤ Max
m

∑
k

∑
i

[ηk(Zki | λm, ελm) − ηk(Zki | λ◦)].(A.16)

For each m the strong law of large numbers gives almost surely

lim
n→0

1

n

∑
k

∑
i

[ηk(Zki | λm, ελm) − ηk(Zki | λ◦)]

= ∑
k

rk · [E{ηk(Zk | λm, ελm)} − E{ηk(Zk | λ◦)}] < 0 [cf. (A.15)]

with finite expectations by (A.10) and (A.14). Hence

lim
n→0

∑
k

∑
i

[ηk(Zki | λm, ελm) − ηk(Zki | λ◦)] = −∞

and the right-hand side in (A.16) tends to −∞ for n → ∞ almost surely. �

PROOF OF THEOREM 4 (CONSISTENCY). For any ε > 0, the function �(n)(λ)

attains its maximum within B(λ◦ | ε). We show first that (almost surely) the max-
imizing argument lies (for almost all n) in the open ball B◦(λ | ε), and hence is a
solution of Dλ�

(n)(λ) = 0. Applying Lemma A.3 to the boundary Aε = ∂B(λ◦ | ε)
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yields that the following statements hold almost surely for almost all n:

(i) supλ∈Aε
�(n)(λ) < �(n)(λ◦),

(ii) sup‖λ−λ◦‖≤ε �(n)(λ) ≤ sup‖λ−λ◦‖<ε �(n)(λ),

(iii) there exists λ̃(n) ∈ B◦(λ◦ | ε) with Dλ�
(n)(λ̃(n)) = 0,

(iv) �(n)(λ) is strictly concave [cf. (6.1), (R2′)],
(v) there is a unique λ̃(n) ∈ B◦(λ◦ | ε) maximizing �(n)(λ),

(vi) λ̃(n) = λ̂(n) [cf. (C1)].

This proves (a), (b) and also (c), since ε was arbitrary. �

A.4. Proof of the results in Section 7.

PROOF OF THEOREM 5 (NORMALITY). The (standard) proof is only outlined.
For U(n) = DT

λ �(n) the central limit theorem and (5.6) give

n−1/2U(n)(λ◦)
L−−−→

n→∞ N(0,�(λ◦)).(A.17)

A first-order expansion about λ◦ yields

n−1/2U(n)(λ̂(n)) = n−1/2U(n)(λ◦) + Dn · √n
[
λ̂(n) − λ◦]

with

Dn := 1

n

∫ 1

0
DλU(n)(λ◦ + t

[
λ̂(n) − λ◦])dt

= −1

n

∫ 1

0
J(n)(λ◦ + t

[
λ̂(n) − λ◦])dt

and Condition (N1) implies

Dn · √n
[
λ̂(n) − λ◦] + n−1/2U(n)(λ◦)

P−−−→
n→∞ 0.

Dn can be replaced by its limit −I(λ◦) from Condition (N3), that is,

√
n
[
λ̂(n) − λ◦] − n−1/2I

−1
(λ◦)U(n)(λ◦)

P−−−→
n→∞ 0,

which together with (A.17) establishes (a). And (b) follows in view of Theo-
rem 3(b). �

PROOF OF THEOREM 6. Keeping the notation from Appendix A.3, the partial
derivatives of

ηk(z | λ) = log p̃k(z | λ) = γ ∗
k + Gk(z, θ) − log

(∑
l

exp[γ ∗
l + Gl(z, θ)]

)
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up to order 3 are given by

Dγ ∗
m
ηk(z | λ) = �km − p̃m(z | λ),

D2
γ ∗
mλs

ηk(z | λ) = −Dλs p̃k(z | λ),

D3
γ ∗
mλsλt

ηk(z | λ) = −D2
λsλt

p̃k(z | λ),

Dθr ηk(z | λ) = ∑
l

[�kl − p̃l(z | λ)] · Dθr Gl(z, θ),

D2
θr θs

ηk(z | λ) = ∑
l

([�kl − p̃l(z | λ)] · D2
θr θs

Gl(z, θ)

− Dθs p̃l(z | λ) · Dθr Gl(z, θ)
)
,

D3
θr θsθt

ηk(z | λ) = ∑
l

([�kl − p̃l(z | λ)] · D3
θr θsθt

Gl(z, θ)

− Dθt p̃l(z | λ) · D2
θrθs

Gl(z, θ)

− Dθs p̃l(z | λ) · D2
θr θt

Gl(z, θ)

− D2
θsθt

p̃l(z | λ) · Dθr Gl(z, θ)
)

with partial derivatives [cf. (A.1)]

Dλs p̃k(z | λ) = p̃k(z | λ) · Dλsηk(z | λ),

D2
λsλt

p̃k(z | λ) = p̃k(z | λ)[D2
λsλt

ηk(z | λ) + Dλsηk(z | λ) · Dλt ηk(z | λ)].
Next we deduce from Condition (MC) a weaker moment condition, from which
Conditions (N3) and (N4) will be derived (cf. Lemma A.4):

CONDITION (MC)∼ . There exists ε◦ > 0 such that for B(λ◦) = {λ | ‖λ −
λ◦‖ ≤ ε◦} and all k = 0, . . . ,K the following functions:

sup
λ∈B(λ◦)

|D3
λrλsλt

ηl(Zk | λ)| with Zk = hX(Xk)

have finite expectation for all r, s, t = 1, . . . , S and l = 0, . . . ,K .

For the above derivatives we successively get the following bounds, where the
fixed argument z is omitted:

|Dγ ∗
m
ηk(λ)| ≤ 1, |Dθr ηk(λ)| ≤ H+(θ),

|Dλr ηk(λ)| ≤ H ∗+(θ) := 1 + H+(θ),

|D2
γ ∗
mλs

ηk(λ)| = |Dλs p̃k(λ)| ≤ |Dλsηk(λ)| ≤ H ∗+(θ),

|D2
θrθs

ηk(λ)| ≤ H++(θ) + H+(θ)2,
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|D2
λsλt

ηk(λ)| ≤ H ∗+(θ)2 + H++(θ),

|D2
λsλt

p̃k(λ)| ≤ 2H ∗+(θ)2 + H++(θ),

|D3
γ ∗
mλsλt

ηk(λ)| = |D2
λsλt

p̃k(λ)| ≤ 2H ∗+(θ)2 + H++(θ),

|D3
θr θsθt

ηk(λ)| ≤ H+++(θ) + 3H ∗+(θ)H++(θ) + 2H ∗+(θ)3.

Taking (for fixed z) the supremum over the ball B(θ◦) gives

supH ∗+ ≤ 1 + ∑
r

supHr,

supH ∗2+ ≤ 1 + 2
∑
s

supHs + ∑
s

∑
t

supHst ,

supH ∗3+ ≤ 1 + 3
∑
r

supHr + 3
∑
r

∑
s

supHrHs + ∑
r

∑
s

∑
t

supHrHsHt ,

supH++ ≤ ∑
s

∑
t

supHst ,

supH+++ ≤ ∑
r

∑
s

∑
t

supHrst ,

supH ∗+ · H++ ≤ ∑
r

∑
s

∑
t

[supHst + supHrHst ].

Condition (MC) obviously implies for i = 1,2 that

sup
θ∈B(θ◦)

Hr(Zk | θ)i, sup
θ∈B(θ◦)

Hr(Zk | θ) · Hst (Zk | θ)

have finite expectation, too. Hence

sup
γ

sup
θ∈B(θ◦)

|D3
λrλsλt

ηl(Zk | θ ,γ )|

has finite expectation for any r, s, t and any k, l. This proves Condition (MC)∼ and
Lemma A.4 establishes the theorem. �

LEMMA A.4. Conditions (N2) and (MC)∼ imply Conditions (N3) and (N4).

PROOF. Using (6.1) for λ = λ◦ to establish Condition (N3), it suffices to show
for any s and t that

1

n

∫ 1

0

[
J

(n)
st

(
λ◦ + t

[
λ̂(n) − λ◦]) − J

(n)
st (λ◦)

]
dt

P−−−→
n→∞ 0.(A.18)

From

J
(n)
st (λ) = −∑

k

∑
i

D2
λsλt

ηk(Zki | λ) with Zki = hX(Xki)
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a Taylor expansion gives for any ε > 0 and ‖λ − λ◦‖ < ε

1

n

∣∣J (n)
st (λ) − Jst (λ

◦)
∣∣ ≤ εS

(n)
(ε),

S
(n)

(ε) = 1

n

∑
k

∑
i

sup
‖λ′−λ◦‖≤ε

‖D3
λλsλt

ηk(Zki | λ′)‖.

The strong law of large numbers yields

S
(n)

(ε)−−−→
n→∞

∑
k

rkE

(
sup

‖λ′−λ◦‖≤ε

‖D3
λλsλt

ηk(Zk | λ′)‖
)

almost surely,

where the limit is finite by Condition (MC)∼ for ε ≤ ε◦. For ‖λ̂(n) − λ◦‖ < ε we
thus have∣∣∣∣1

n

∫ 1

0

[
J

(n)
st

(
λ◦ + t

[
λ̂(n) − λ◦]) − J

(n)
st (λ◦)

]
dt

∣∣∣∣ ≤ 1

n
sup

‖λ−λ◦‖≤ε

∣∣J (n)
st (λ) − Jst (λ

◦)
∣∣

≤ εS
(n)

(ε)

which in view of Condition (N2) implies (A.18). And Condition (N4) follows
similarly. Note that if almost sure convergence λ̂(n) → λ◦ is assumed instead of
Condition (N2), then the above arguments establish almost sure convergence in
Conditions (N3) and (N4), too. �
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