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INFERENCE FOR CENSORED QUANTILE REGRESSION
MODELS IN LONGITUDINAL STUDIES

BY HUIXIA JUDY WANG1 AND MENDEL FYGENSON

North Carolina State University and University of Southern California

We develop inference procedures for longitudinal data where some of
the measurements are censored by fixed constants. We consider a semi-
parametric quantile regression model that makes no distributional assump-
tions. Our research is motivated by the lack of proper inference procedures
for data from biomedical studies where measurements are censored due to
a fixed quantification limit. In such studies the focus is often on testing hy-
potheses about treatment equality. To this end, we propose a rank score test
for large sample inference on a subset of the covariates. We demonstrate the
importance of accounting for both censoring and intra-subject dependency
and evaluate the performance of our proposed methodology in a simula-
tion study. We then apply the proposed inference procedures to data from
an AIDS-related clinical trial. We conclude that our framework and proposed
methodology is very valuable for differentiating the influences of predictors
at different locations in the conditional distribution of a response variable.

1. Introduction. Longitudinal studies, in which repeated measurements are
made on the same subject, are common in many areas of research. However, proper
quantile inference procedures have not been established for longitudinal data in
which some responses are left censored. This occurs, for example, when assessing
the concentration of a pollutant in the environment [27], the antibody concentra-
tion in blood serum [22] or the amount of viral RNA (i.e., viral load) in individuals
infected with Human Immunodeficiency Virus (HIV) [15]. In such cases, left cen-
soring is typically due to the detection limit of the diagnostic assay.

In this paper, we consider inferences in a quantile regression setup where some
of the responses are censored by fixed values and where repeated measurements
may be taken at different points across subjects. We anchor our investigation to an
AIDS-related clinical trial since many approaches proposed for dealing with left
censoring in longitudinal studies have been applied to such data.

Viral load is a measure of the amount of actively replicating virus and is used as
a marker of disease progression among HIV-infected people. Viral load measure-
ments are often subject to left censoring due to a lower limit of quantification. The
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detection limit depends upon the assay used, ranging from 500 copies/ml for the
first assays available in the mid-nineties to 50 copies/ml for today’s ultrasensitive
assay. Despite the improvement in assay sensitivity, left censoring remains a criti-
cal issue because anti-retroviral treatments have become so effective as to lead to
a steep decrease of HIV-RNA after their initiation.

Studies that measure HIV-RNA commonly incorporate repeated measurements
in order to (1) control for variation among individuals and (2) monitor tempo-
ral changes in viral load during treatment. Characterization of viral dynamics in
patients with different treatment regimens is essential to further development of
treatments and evaluation of their efficacy (e.g., [5]).

In the medical statistical literature several methods have been proposed to han-
dle the left censoring of HIV-RNA data. These include crude methods that use
either the threshold value or some arbitrary point, such as the mid-point between
zero and the cut off for the detection (e.g., [14]). These approaches usually lead to
biased predictions that are systematically higher than predictions based on the true
unknown values below the cut-off [8].

Other researchers considered mixed models and many applied a likelihood-
based approach while assuming Gaussian distribution for both random effects and
random errors; see, for example, [15, 16, 21, 32]. Chu et al. [4] considered mixture
models to study the correlation between a pair of viral load measurements from
each of a sample of patients assuming bivariate normal distributions. Compared
to simple imputation, likelihood-based methods produce estimators that are less
biased but with higher standard deviations. Even though the normality assumption
eases mathematical complications, it may be unrealistic as viral load measure-
ments are known to be highly skewed to the right, even after log transformation;
see [7, 13]. Some nonlikelihood-based approaches include Sun and Wu [28], which
considered a regression model with semi-parametric time-varying coefficients, and
Hogan and Lee [13], which studied marginal structural quantile models with time-
varying treatments. The former paper ignored the left censoring of the viral load
measurements, and the latter replaced the censored values with a random generated
number between zero and the detection limit.

In general, discarding censored measurements or ignoring them as such leads
to biased inferences. Treating longitudinal data as independent observations can
result in wrong nominal levels and/or power loss in testing hypotheses. In what
follows, we develop inference procedures within the semi-parametric framework
of quantile regression. In our analysis, we examine and account for both the effects
of fixed censoring in the dependent variable and the longitudinal nature of the ob-
servations. Since semi-parametric quantile regression models impose minimal as-
sumptions on the error term, our resulting inference procedures are robust to dis-
tributional misspecifications and most appropriate for applications with extremely
skewed observations. When the censored response variable is non-Gaussian, a tra-
ditional regression approach, which captures changes in the conditional mean, may
not effectively detect changes in the conditional distribution. This can be critical in
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applications where the upper/lower quantiles of the response variable may relate
differently to the covariates, leading to differing assessments of a factor’s impor-
tance or a treatment’s efficacy.

Powell [24, 25] pioneered inference procedures for quantile regression with
fixed censoring. Bilias, Chen and Ying [2] proposed a re-sampling-based infer-
ence procedure by convexifying Powell’s estimator in the resampling stage. Later,
Zhao [35] discussed several median inferential methods. Ying, Jung and Wei [34]
and Portnoy [23] provided quantile estimation procedures for random censoring.
While other papers have been written on censored quantile regression, all existing
inferential methods are developed for independent observations.

In this paper, we develop large sample inference procedures for longitudinal
data. Our focus is on testing hypotheses about treatment equality and covariate
significance in quantile regression models. When proposing test statistics, one
may either explore the asymptotic normality of the estimated coefficients or apply
likelihood ratio-based tests. However, the former requires estimating the corre-
sponding variance–covariance matrix, which is a challenge in our semi-parametric
framework because the variance–covariance matrix is a function of the unspecified
densities of error terms. The latter is, in general, difficult to develop for quantile
regression, and even more so in our framework because the limiting distribution
takes a complicated form involving the unknown error density function. We there-
fore extend the rank score test proposed in [9] to our setting and study its local
power theoretically and through simulations. A similar testing approach was suc-
cessfully implemented in [30] in the context of conditional growth charts and in
[29] for detecting differential expressions in GeneChip micoarray data.

This paper is organized as follows: In the next section we introduce notation,
review various models, provide the large sample properties of the corresponding
estimators, present the rank score test, and discuss the construction of confidence
intervals. In Section 3 we report results from a simulation study comparing our
method with two naïve methods and a bootstrap method. In Section 4, we demon-
strate our method through analysis of HIV-RNA data from an AIDS clinical trial
study. In Section 5, we discuss the merits of our methodology and outline future
research topics. Technical proofs of the theorems and other lemmas are relegated
to the Appendix.

2. Estimation and proposed test.

2.1. Model setup and notation. Longitudinal studies are typically character-
ized by a large number of subjects, N , that are each measured a relatively small
number of times, ni , resulting in a total of n = ∑N

i=1 ni observations. In this paper,
we focus on cases where some measurements are left censored at zero. However,
the proposed procedures can easily be modified to accommodate censoring from
the right and/or left as long as the censoring points are fixed.
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Let y∗
ij denote the potentially left censored j th response of the ith subject, and

let yij = max(0, y∗
ij ) be its corresponding observed values. We start with the fol-

lowing latent regression model:

y∗
ij = xT

ijα0 + zT
ijβ + uij , i = 1, . . . ,N, j = 1, . . . , ni,(2.1)

where xij and zij are the p × 1 and q × 1 design vectors, α0 and β are p- and
q-dimensional unknown parameters and uij is the random error whose distribution
may vary with (x, z). Throughout this paper, we assume that uij are independent
across i (subjects) but are dependent, via exchangeable correlation, within a sub-
ject. A typical example is the random intercept effect model with uij = ai + eij ,
where ai are i.i.d. random subject effects that are independent of the i.i.d. mea-
surement errors eij . We further assume that the first element of xij is 1, making
the first component of α0 an intercept.

From (2.1) and for a given 0 < τ < 1, we consider the following left censored
quantile regression model:

yij = max(0, xT
ijα0 + zT

ijβ + uij ), i = 1, . . . ,N, j = 1, . . . , ni.(2.2)

We assume that the τ th quantile of uij is zero. Other than that, no distribution
assumptions are made on u.

Since a major motivation for our study is to develop procedures for comparing
HIV treatments within model (2.2), we consider testing the following hypotheses:

H0 :β = 0 versus Hn :β = n−1/2β0,(2.3)

where α0 is unspecified and β0 ∈ R
q is fixed. This is equivalent to comparing the

null model

yij = max(0, xT
ijα0 + uij ),(2.4)

versus the local alternative model

yij = max(0, xT
ijα0 + n−1/2zT

ijβ0 + uij ).(2.5)

To derive the quantile estimate of α0 in (2.4), we follow Powell [25] and con-
sider the minimization of the objective function

Qn(α) = ∑
ij

ρτ {yij − max(0, xT
ijα)},(2.6)

where ρτ (u) = u · {τ − I (u < 0)} is the quantile loss function. Under mild con-
ditions, it is established in Theorem 2.1 below that the quantile estimator α̂0 is
strongly consistent and asymptotically normal in both models (2.4) and (2.5) even
though the objective function (2.6) treats all observations as if they were indepen-
dent.

In the absence of censored observations, minimization of (2.6) can be performed
efficiently by linear programming techniques. In fact, the solution to (2.6) in such
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cases only requires software for quantile regression in linear models. However,
with censored observations, the objective function in (2.6) is neither differentiable
nor convex, and this presents a computational challenge. A number of optimization
approaches have been proposed in the literature; see, for example, [1, 6, 20]. In this
paper we employ the BRECNS algorithm of [6] as implemented in the R package
quantreg.

2.2. Large sample properties of α̂0. Throughout the paper we suppose a typi-
cal longitudinal data set where ni (the number of repeated measurements for each
subject) is bounded, but N (the number of subjects) grows. Note that all results
are stated for a given τ , although dependence on τ is not explicit in the various
expressions. To establish all the large sample properties in this paper, we require
the following conditions:

A1. The parameter vector α0 is an interior point of a compact parameter space
A ∈ R

p .
A2. Let ‖x̃ij‖ denote the Euclidean norm of x̃ij , where x̃ij = (xT

ij , z
T
ij )

T , then

maxij ‖x̃ij‖ = O(n1/4) and n−1 ∑
ij ‖x̃ij‖3 = O(1) as n → ∞.

A3. There exists ε0 > 0 such that as n → ∞, lim infn−1 ∑
ij I (|xT

ijα| ≥ ε0) >

0 for any ‖α‖ �= 0 and D1n(α0) = n−1 ∑
ij I (xT

ijα0 ≥ ε0)xij x
T
ij → D1,

where D1 is a positive definite matrix.
A4. The uij have a common marginal distribution function F and a Lebesque

density f , which is Lipschitz in a neighborhood of 0. Also, there exist some
positive values �1 and �2 such that f (u) < �2 for all u, and f (u) > �1 for
|u| < �1.

A5. For any d ≥ 0, there exists a positive constant C such that n−1 ∑
ij I (|xT

ijα0| ≤
‖xij‖d) ≤ Cd .

A6. Let D2n(α0) = n−1 ∑
ij I (xT

ijα0 > 0)xij z
T
ij → D2, as n → ∞, where D2 is a

p × q matrix.
A7. The joint distribution function of uij1 and uij2 for any i and j1 �= j2, denoted

as F1,2, is Lipschitz in a neighborhood of (0,0).
A8. Let D3n(α0) = n−1 ∑

ij I (xT
ijα0 > 0)z∗

ij z
T
ij → D3, as n → ∞.

The following theorem states the large sample properties of α̂0 under models
(2.4) and (2.5):

THEOREM 2.1. For the longitudinal censored regression models (2.4)
and (2.5):

(i) If conditions A1–A4 hold, then the censored quantile estimator α̂0 con-
verges to α0 almost surely.

(ii) If conditions A1–A5 hold, then under model (2.4) the censored quantile
estimator α̂0 is asymptotically normal,

{�n(δ)}−1/2√n(α̂0 − α0)
D−→ N(0, I ).
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(iii) If conditions A1–A6 hold, then under model (2.5) the censored quantile
estimator α̂0 is asymptotically normal,

{�n(δ)}−1/2√n(α̂0 − α0 − D−1
1 D2β0)

D−→ N(0, I ),

where

�n(δ) = n−1{f (0)}−2D−1
1

×
{∑

ij

I (xT
ijα0 > 0)xij x

T
ij τ (1 − τ)

+ ∑
i

∑
j �=j ′

I (xT
ijα0 > 0, xT

ij ′α0 > 0)xij x
T
ij (−τ 2 + δ)

}
D−1

1

and δ = P(ui1 < 0, ui2 < 0) measures the intra-subject dependence.

REMARK 1. The common density assumption of uij in A4 is made for conve-
nience, but not necessary for the strong consistency nor the asymptotic normality
of α̂0. In order for Theorem 2.1 to hold, it suffices that the τ th quantile of uij is 0
for all i and j with density functions fij , which are continuously differentiable
in a neighborhood of zero and uniformly bounded away from zero and infinity.
When yij is left censored at some known values cij , the asymptotic results de-
veloped in this paper hold, but xT

ijα0 in conditions A3, A5, A6 and A8 must be

replaced with xT
ijα0 − cij .

2.3. Quantile rank score test. To test the hypotheses in (2.3), one can explore
the asymptotic normality of censored quantile estimators of the parameters (α0, β)

in model (2.2). However, following the proof of Theorem 2.1 part (ii), one can see
that the asymptotic variance–covariance matrix of these estimators is a function of
the unspecified density of error terms. This hampers the use of a Wald-type test.
Moreover, it has been shown that, in a quantile regression set up, a Wald-type test is
generally unstable at small sample sizes (e.g., [3, 18]). The use of likelihood ratio-
based tests is even more daunting for our setup because the limiting distribution
is a complicated function of the unknown error density. To avoid these problems
and the need for estimating a density, which is in our testing problem an infinite
dimensional nuisance parameter, we turn to the quantile rank score test proposed
in [9] for independent and uncensored data.

To present our test, we rewrite model (2.2) in matrix form

Y = max(0n,Xα0 + Zβ + U),(2.7)

where Y and U are n-dimensional vectors, 0n is an n×1 vector consisting of zeros
and X and Z are n × p and n × q matrices, respectively. Let X∗ = diag{I (Xα0 >

0)}X, H = X∗(X∗T X∗)−1X∗T and Z∗ = (z∗
ij )n×q = (I − H)Z. Note that Z∗,
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which is a linear combination of the design matrix Z, is orthogonal to the space
spanned by those xij ’s that satisfy xT

ijα0 > 0.
Our proposed quantile rank score test is based on

Sn = n−1/2
∑
ij

{I (xT
ij α̂0 > 0)z∗

ij ϕτ (ûij )},(2.8)

where ûij = yij − max(0, xT
ij α̂0), α̂0 is the censored quantile estimator of α0 in

model (2.4), and ϕτ (u) = τ − I (u < 0) is the quantile score function. It is worth
pointing out that ϕτ (u) is the piecewise gradient of the quantile loss function
ρτ (u), and that Sn only includes scores from those observations for which the
corresponding xT

ijα0 are estimated to be uncensored.
Let

Vn(δ; α̂0) = n−1

{∑
ij

I (xT
ij α̂0 > 0)z∗

ij z
∗T
ij τ (1 − τ)

(2.9)

+ ∑
i,j �=j ′

I (xT
ij α̂0 > 0, xT

ij ′ α̂0 > 0)z∗
ij z

∗T
ij ′ (−τ 2 + δ)

}
,

where δ is defined in Theorem 2.1(iii).
We define the Quantile Rank Score (QRS) test statistic as

Tn = ST
n {Vn(δ̂; α̂0)}−1Sn,(2.10)

where δ̂ = L−1 ∑
i,j �=j ′ I (xT

ij α̂0 > 0, xT
ij ′ α̂0 > 0)I (ûij < 0, ûij ′ < 0) and L denotes

the total number of pairs of repeated measurements that are predicted to be uncen-
sored. Note that when all the observations are uncensored and independent (i.e.,
δ = τ 2 and ni = 1), Tn reduces to the QRS test-statistic proposed in [9].

THEOREM 2.2. Assume that conditions A1–A8 hold, then as n → ∞, we
have:

(i) under H0, the statistic Tn is asymptotically χ2 with q degrees of freedom;
(ii) under Hn, Tn is asymptotically noncentral χ2 with q degrees of freedom

and with noncentrality parameter βT
0 D3[Vn(δ;α0)]−1D3β0f

2(0).

REMARK 2. The joint probability δ in (2.9) captures the sign correlation be-
tween errors from the same subject. When δ ∈ (τ 2, τ ] these errors are positively
correlated, when δ ∈ [0, τ 2) they are negatively correlated and when δ = τ 2 the
errors are independent. Ignoring the intra-subject dependence leads to a test T ∗

n ,
say. Depending on δ and/or Z, this test statistic is either invalid or lacks power. For
illustration, consider the case where q = 1 and δ ∈ (τ 2, τ ]. Then we have

Vn(δ;α0)

Vn(τ 2;α0)
= 1 +

∑
i=1

∑
j �=j ′ I (xT

ijα0 > 0, xT
ij ′α0 > 0)z∗

ij z
∗
ij ′(δ − τ 2)∑

ij I (xT
ijα0 > 0)z∗2

ij (τ − τ 2)
.(2.11)



INFERENCE FOR CENSORED QUANTILE REGRESSION MODELS 763

When testing the between-subject factor effect, for example in model (3.1) of
the simulation study, the signs of z∗

ij z
∗
ij ′ are positive for the same ith subject,

Vn(δ;α0)

Vn(τ 2;α0)
> 1 and T ∗

n leads to inflated Type I errors. For a given significance level
θ , the power of T ∗

n under Hn is

1 − 


{
Zθ/2

√
Vn(τ 2;α0)

Vn(δ;α0)
− μn√

Vn(δ;α0)

}

+ 


{
−Zθ/2

√
Vn(τ 2;α0)

Vn(δ;α0)
− μn√

Vn(δ;α0)

}
,

where μn = n−1f (0)
∑

ij I (xT
ijα0 > 0)z∗

ij zijβ0, 
 denotes the CDF of the stan-
dard normal distribution and Zθ is the upper θ th quantile of 
. Therefore, when
testing the within-subject factor effect, for example, we can have the signs of all
z∗
ij z

∗
ij ′ be negative for the same subject, thus Vn(δ;α0)

Vn(τ 2;α0)
< 1 and T ∗

n has diminished
power.

2.4. Construction of confidence intervals.

2.4.1. Confidence intervals via inversion of rank score tests. The developed
rank score test can be extended to test H0 :β = β0 by simply rewriting model (2.7).
We denote ỹij = yij − zT

ijβ0. The fact that yij is censored at 0 implies that ỹij

is censored from the left at −zT
ijβ0. It is clear that under H0, the τ th quantile

estimate of α can be obtained by minimizing
∑

ij ρτ {ỹij − max(−zT
ijβ0, x

T
ijα)}.

The quantile rank score test can be constructed following the same procedure as in
Section 2.3 by replacing y with ỹ.

For a quantile coefficient β ∈ R
1, the confidence interval can be constructed by

inverting the rank score test. Using the fact that the test statistic Tn is convex in β ,
we can obtain a 100(1 − θ)% confidence interval consisting of the β0’s at which
the test on H0 :β = β0 will not be rejected. The readers are referred to [18, 19] or
[3] for details of confidence interval construction for uncensored and independent
data.

2.4.2. Blockwise modified bootstrap method. The more computationally de-
manding resampling method offers an alternative approach for statistical inference.
Here we introduce a modified bootstrap approach through blockwise pairs resam-
pling, denoted by Boot. For easy presentation, we denote γ = (αT

0 , βT )T ∈ R
p+q .

In applications of quantile regression, the pairs bootstrap is often chosen over
the residual bootstrap because it is insensitive to model misspecification and het-
eroscedasticity. The idea of the pairs bootstrap is to draw pairs, in our case,
(yij , x̃ij ), at random from the original observations with replacement. Note that
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in model (2.1), the observations are dependent within each subject. To retain this
dependence structure, we treat the observations in each subject as a block and re-
sample the block pairs {(yij , x̃ij ), j = 1, . . . , ni}.

As we have seen, computation of Powell’s estimator is complicated by the
nonconvexity of the objective function (2.6). Therefore, direct implementation of
the bootstrap approach could be prohibitively expensive in terms of computation.
To reduce the computational cost, we employ a modified bootstrap method pro-
posed in [2] for median regression with independent data. From now on, we define
the bootstrap sample of (yij , x̃ij ) by (y#

ij , x
#
ij ). It is known that the solution of

mina∈Rp
∑

ij ρτ (yij − x̃T
ij γ )I (x̃T

ij γ0 > 0) is asymptotically equivalent to Powell’s
estimator. Making use of the γ̂ that result from fitting the model with the observed
data, the modified bootstrap estimator γ̂ # can be obtained by minimizing∑

ij

ρτ (y
#
ij − x#T

ij γ )I (x#T
ij γ̂ > 0).(2.12)

Note that (2.12) is a convex function, and thus γ̂ # can be calculated in the same
way as in uncensored quantile regression. A 100(1−θ )% confidence interval for γ

can be obtained with the lower and upper bound calculated as the (θ/2)th and
(1 − θ/2)th quantiles of those γ̂ #’s.

3. Simulation study. To assess the performance of the inference procedures
described in Section 2, we conduct a simulation study. We explore the effects of
different proportions of censoring and various degrees of intra-subject dependency
on estimation, testing and confidence intervals.

3.1. Model descriptions. In the simulation, the latent response variable y∗ is
generated from the following model:

y∗
ij = 1 + xijα + zijβ + σij {uij − F−1

u (τ )},(3.1)

i = 1, . . . ,N, j = 1, . . . ,10,

where uij = ai + eij is the random error and F−1
u (τ ) is the τ th quantile of u, ai is

the random subject effect, xij and eij are i.i.d. from the standard normal distribu-
tion, zij = 0 for the first N/2 subjects and zij = 1 for the rest. Four different cases
are considered:

Case 1. A fixed effect model (ai = 0) with homoscedastic term σij = 1.
Case 2. A random effect model with ai that are i.i.d. from the standard normal

and σij = 1. This yields a homoscedastic model with an intra-subject correlation
coefficient of 0.5.

Case 3. A random effect model with ai that are i.i.d. from N(0,9) and σij = 1.
This yields a homoscedastic model with an intra-subject correlation coefficient
of 0.9.
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Case 4. A heteroscedastic model with ai ∼ N(0,1) and σij = 1 + |xij |.
For all cases we consider both 20% and 40% censoring. The observed response

variable yij is generated from the maximum of 0 and y∗
ij , subtracting the 20th or

40th percentile of {y∗
ij }, respectively. Our analysis focuses on the effect of zij at

three quartiles, as per the main objective of Section 2. To evaluate Type I error
and power, the nominal significance level is set to 5%, α is fixed at 10, β is varied
from 0 to 1 and the simulation was repeated 500 times in all cases.

3.2. Evaluation of the proposed estimator for α. We first compare the finite
sample efficiency of the omniscient estimator, our estimator α̂ and two naïve es-
timators. The omniscient estimator is obtained by fitting the quantile regression
model with the latent response variable and thus serves as a gold standard. The
first naïve estimator, Naïve1, is obtained using all observations as if none were
censored. The second, Naïve2, is computed using only the uncensored observa-
tions.

Table 1 summarizes the bias and mean squared error (MSE) of these four esti-
mators in Cases 1–4 for N = 50 and β = 0. Compared to the omniscient estimator,
α̂ performs universally well, even when the data are highly correlated (Case 3). As
expected, the two naïve estimators have larger biases and mean squared errors
than α̂, even more so for the higher proportion of censoring.

3.3. Performance of the proposed quantile rank score test. We evaluate the
performance of our proposed Quantile Rank Score test (QRS) by comparing it to
five other test statistics: a rank score test for censored data that assumes indepen-
dence (Indep); a naïve rank score test (Naïve1) that assumes the observations are
uncensored; another naïve rank score test (Naïve2) that uses only the uncensored
observations; a bootstrap base test, Boot, with 500 resamplings; and the omniscient
rank score test, Omni, based on the latent response variable.

Table 2 summarizes the Type I error rates of all six test statistics in Cases 1–4
for N = 10 or 50. The Type I error of Boot is estimated by the proportion of cases
where 0 is not contained in the 95% confidence interval for β . It is obvious that the
rank score test Indep without the δ adjustment loses complete control of Type I er-
ror in Cases 2, 3 and 4, where the data are correlated due to the random effects ai .
Moreover, the size of the deterioration increases with the degree of intra-subject
dependency. As to the naïve tests, we find that, in general, Naïve2 has inflated
Type I errors at N = 10, and Naïve1 lacks power (see Figure 1). The modified
bootstrap method, Boot, preserves the nominal significance level well at N = 50,
but gives consistently inflated Type I errors in the smaller samples N = 10. Gener-
ally speaking, the QRS and omniscient methods preserve the nominal significance
level reasonably well in all cases.
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TABLE 1
Comparison of the omniscient estimator, our estimator α̂ and two naïve estimators for α at N = 50.

The Naïve1 is obtained by uncensored quantile regression and Naïve2 is obtained using only the
uncensored observations. The CP stands for the censoring proportion and MSE stands

for mean squared error

Omniscient α̂ Naïve1 Naïve2

CP MSE Bias MSE Bias MSE Bias MSE Bias

τ = 0.25

Case 1 0.2 0.004 0 0.008 0.008 0.360 −0.591 0.013 −0.072
0.4 0.004 0 0.015 0.014 6.791 −2.576 0.033 −0.135

Case 2 0.2 0.007 −0.007 0.017 0.001 0.719 −0.834 0.043 −0.159
0.4 0.007 −0.007 0.032 0.013 9.408 −3.039 0.119 −0.295

Case 3 0.2 0.037 −0.013 0.093 0.005 2.953 −1.685 0.699 −0.762
0.4 0.037 −0.013 0.180 0.019 20.953 −4.548 2.266 −1.427

Case 4 0.2 0.043 −0.014 0.098 0.017 2.621 −1.594 0.392 −0.550
0.4 0.043 −0.014 0.183 0.051 16.572 −4.045 0.584 −0.647

τ = 0.5

Case 1 0.2 0.003 0.001 0.007 0.006 0.717 −0.838 0.012 −0.067
0.4 0.003 0.001 0.014 0.004 10.878 −3.277 0.033 −0.136

Case 2 0.2 0.006 −0.001 0.013 0.002 1.142 −1.058 0.031 −0.138
0.4 0.006 −0.001 0.023 0.007 11.686 −3.401 0.094 −0.267

Case 3 0.2 0.032 −0.009 0.063 −0.006 2.782 −1.646 0.448 −0.610
0.4 0.032 −0.009 0.115 0.017 15.583 −3.931 1.434 −1.133

Case 4 0.2 0.021 0.002 0.040 0.009 2.218 −1.476 0.129 −0.304
0.4 0.035 −0.002 0.128 0.035 17.266 −4.141 0.436 −0.568

τ = 0.75

Case 1 0.2 0.004 0.002 0.008 0.006 2.408 −1.537 0.012 −0.062
0.4 0.004 0.002 0.015 0.002 15.134 −3.879 0.030 −0.123

Case 2 0.2 0.007 −0 0.013 0.005 2.724 −1.635 0.027 −0.118
0.4 0.007 −0 0.023 0.008 15.157 −3.883 0.080 −0.237

Case 3 0.2 0.038 −0.008 0.063 0.005 3.384 −1.818 0.340 −0.514
0.4 0.038 −0.008 0.101 −0.009 14.717 −3.824 0.998 −0.927

Case 4 0.2 0.040 −0.001 0.058 0.010 4.420 −2.085 0.222 −0.403
0.4 0.040 −0.001 0.116 0.019 20.051 −4.467 0.372 −0.509

Figure 1 plots the power curves of QRS, Boot, Omni and Naïve1 at τ = 0.75 with
N = 50 and 20% censoring. The Naïve1 loses a great deal of power by ignoring the
censoring. The QRS and Boot both perform as well as the omniscient method in all
cases. Using the modified bootstrap approach reduces the computational time as
compared to the direct implementation of bootstrap, but it is still much more com-
putationally intensive than QRS. For example, using R (version 2.3.1) in a 3.4 GHz
Dell computer with 3.0 GB of RAM to simulate Case 2 at τ = 0.75 with N = 10
and 20% censoring, the QRS took 23 seconds for 500 runs of simulation, compared
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TABLE 2
The Type I errors in Cases 1–4 at N = 10 and N = 50

Case 1 Case 2 Case 3 Case 4

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

CP = 0.2,N = 10

Indep 0.04 0.06 0.06 0.30 0.30 0.26 0.42 0.43 0.42 0.30 0.22 0.27
Naïve1 0.05 0.05 0.04 0.07 0.07 0.05 0.07 0.07 0.05 0.07 0.06 0.04
Naïve2 0.04 0.08 0.09 0.07 0.07 0.09 0.09 0.09 0.13 0.07 0.08 0.12
Omni 0.05 0.05 0.06 0.06 0.06 0.05 0.07 0.06 0.06 0.05 0.05 0.06
QRS 0.05 0.05 0.06 0.06 0.05 0.05 0.07 0.06 0.04 0.06 0.05 0.06
Boot 0.05 0.07 0.07 0.09 0.08 0.09 0.09 0.07 0.10 0.10 0.08 0.04

CP = 0.4,N = 10

Indep 0.05 0.07 0.05 0.26 0.24 0.23 0.37 0.39 0.38 0.26 0.19 0.22
Naïve1 0.04 0.06 0.04 0.05 0.04 0.04 0.06 0.06 0.05 0.06 0.05 0.05
Naïve2 0.05 0.09 0.10 0.10 0.09 0.12 0.12 0.14 0.23 0.11 0.12 0.13
Omni 0.05 0.05 0.06 0.06 0.06 0.05 0.07 0.06 0.06 0.05 0.05 0.06
QRS 0.04 0.08 0.05 0.06 0.07 0.06 0.07 0.07 0.07 0.06 0.07 0.05
Boot 0.05 0.08 0.06 0.08 0.07 0.10 0.10 0.08 0.13 0.09 0.10 0.10

CP = 0.2,N = 50

Indep 0.05 0.06 0.04 0.29 0.27 0.29 0.44 0.40 0.43 0.28 0.20 0.28
Naïve1 0.05 0.04 0.04 0.06 0.04 0.06 0.05 0.05 0.03 0.05 0.05 0.05
Naïve2 0.06 0.06 0.06 0.05 0.05 0.06 0.05 0.06 0.08 0.05 0.06 0.06
Omni 0.05 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.06 0.04
QRS 0.05 0.06 0.05 0.04 0.04 0.04 0.06 0.04 0.04 0.04 0.06 0.04
Boot 0.04 0.06 0.04 0.05 0.05 0.06 0.06 0.04 0.06 0.05 0.06 0.05

CP = 0.4,N = 50

Indep 0.06 0.05 0.05 0.22 0.24 0.22 0.37 0.33 0.35 0.23 0.17 0.23
Naïve1 0.05 0.04 0.06 0.04 0.04 0.08 0.05 0.04 0.06 0.06 0.06 0.05
Naïve2 0.05 0.06 0.06 0.06 0.05 0.08 0.07 0.08 0.10 0.05 0.06 0.09
Omni 0.05 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.06 0.04
QRS 0.05 0.05 0.04 0.04 0.04 0.04 0.06 0.04 0.04 0.04 0.04 0.04
Boot 0.04 0.06 0.05 0.04 0.04 0.05 0.06 0.06 0.07 0.03 0.05 0.05

to 3,013 seconds by Boot with 500 resamples. Furthermore, QRS is robust to the
heteroscedasticity considered in Case 4, even though it is developed for models
with homoscedastic errors.

We study the performance of QRS under the local alternative Hn :β = n−1/2β0

for n = 10N varying from 200 to 5000. We let β0 = 10 in Case 1, β0 = 20 in
Cases 2 and 4 and β0 = 50 in Case 3. Figure 2 shows that the local power of QRS
remains stable as n increases. This observation is consistent with the asymptotic
results in Section 2.3. Note that QRS exhibits different powers in four cases due to
the different variation used to generate the subject effects.
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FIG. 1. Power curves of QRS, Boot, Omni and Naïve1 in Cases 1–4 at τ = 0.75 with N = 50 and
20% censoring.

3.3.1. Assessment of confidence intervals for β . For each simulated data set
under the hypothesis β = 1, we obtain 95% confidence intervals for β using the
bootstrap method, Boot, and by inverting the QRS test following the procedure
described in Section 2.4. For comparison, we also obtain confidence intervals by
inverting the Omni test and the two naïve tests, Naïve1 and Naïve2. The estimated
mean lengths (EML) of these five confidence interval procedures and the empirical
coverage probabilities (ECP) across the 500 intervals in Case 2 at N = 50 are
summarized in Table 3.

The two naïve methods give poor confidence intervals at all quantile levels. The
empirical coverage probabilities of Omni, QRS and Boot are, in general, close to
the nominal level. Moreover, the mean lengths of the QRS confidence intervals are
comparable to those of the Omni.

4. Application to an HIV-RNA level study. In this section we apply the
methodology proposed in Section 2 to analyze the HIV-RNA data in [10]. This
clinical trial followed a total of 481 HIV-infected individuals with baseline HIV-
RNA levels in their plasma (viral load) greater than 1000 copies/ml. For each
individual, viral load was measured at time zero and then approximately 2, 4, 8,
16 and 24 weeks later. Due to the detection limit of the assay used to measure
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FIG. 2. Power curves of QRS under local alternative Hn :β = 50n−1/2 in Cases 1–4 at τ = 0.5
with 20% censoring. All the curves are generated by fitting smoothing splines over the estimated
powers against n.

viral load, 22% of measurements were censored from below at 200 copies/ml. We
refer the readers to [10] for a more thorough discussion of this AIDS-related clin-
ical trail. We seek to compare the viral load response (VL) to a double protease

TABLE 3
The empirical coverage probabilities (ECP) and estimated mean lengths (EML) for confidence

interval procedures in Case 2 at N = 50. The nominal level is 0.95

τ = 0.25 τ = 0.50 τ = 0.75

Method ECP Length ECP Length ECP Length

Omni 0.95 0.79 0.94 0.74 0.96 0.78
QRS 0.96 1.00 0.93 0.79 0.95 0.80
Boot 0.95 1.26 0.95 1.26 0.95 1.26
Naïve1 0.34 0.56 0.77 0.63 0.92 0.72
Naïve2 0.28 0.54 0.59 0.55 0.71 0.56
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inhibitor (DPI) regimen, herein referred to as the treatment, with that of a single
protease inhibitor (SPI) regimen, herein referred to as the control.

Our preliminary investigation shows that the log10VL from both regimens drops
sharply during the first two weeks, and then remains rather stable. To capture this
evolution pattern, we consider a model that includes an intercept, a slope for the
first two weeks, and a different slope for the remainder of the study. The working
model is

yij = max{log10(200), β0 + β1 min(tij ,2) + β2(tij − 2)I (tij > 2)
(4.1)

+ γ1 min(tij ,2)zi + γ2(tij − 2)I (tij > 2)zi + uij },
where yij is the observed log10VL of the ith subject at time tij , zi is the treatment
indicator taking 1 for the treatment group and 0 for the control.

We fit model (4.1) at different quantiles with τ varying from 0.25 to 0.9 to obtain
a profile of the regimens’ effects. Sun and Wu [28] analyzed the same data using
a partial linear model. However, they ignored the left censored observations and
used only those responses within the detectable range. We shall see that doing so
leads to biased results and distorted conclusions about the treatment’s efficacy.

Figure 3 shows the estimated quartiles of two regimens at each time point from
our method (curves with solid points), and those from Naïve2 that use only the
uncensored observations. As expected, the naïve method overestimates VL, espe-
cially in the lower quantiles. At τ = 0.25, our method shows that the VL drops
rapidly during the first two weeks, and it continues dropping afterward for both
regimens, while Naïve2 suggests an increasing trend after week 2.

To analyze the treatment effect and demonstrate the importance of accounting
for censoring and dependency in the data, we tested a series of hypotheses. Ta-
ble 4 describes these hypotheses and their p-values from QRS, Naïve2 and Indep
at several τ ’s. Note that these significance results are for individual τ ’s, but not
from simultaneous tests. For this data, the δ is estimated to be 0.37 at median cor-
responding to a sign correlation of (0.37 − 0.25)/0.25 = 0.48. The following are
highlights of the interesting findings in the table.

• At τ = 0.4 and 0.5, our method and the Indep method indicate that the treatment
is significantly better than the control after week 2. By contrast, the Naïve2
method indicates no significant difference.

• At τ = 0.6, our method indicates that the treatment is significantly more favor-
able (at the 5% level) than the control after week 2. By contrast, neither Naïve2
nor Indep indicates a significant difference.

• For the quantile level τ = 0.7, there is no significant difference between the
treatment and the control throughout the trial period—a conclusion supported
by all three methods.

Figure 4 highlights the importance of fitting a variety of quantile models to the
data. The solid line with open circles in each panel depicts the point estimates,
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FIG. 3. Estimated quartiles of log10 VL at six visits. The curves with solid dots are from the cen-
sored regression and those without dots are from Naïve2 method. The dashed, solid and dotted curves
are for τ = 0.25,0.5 and 0.75, respectively.

TABLE 4
Results of inference on γ1 and γ2 at several quantile levels

Coefficient estimation p-value

τ Parameter QRS Naïve2 Hypothesis QRS Naïve2 Indep

0.4 γ1 0.067 0.001 H0 :γ1 = γ2 = 0 0.022 0.965 0.100
γ2 −0.118 0.002 H0 :γ1 = 0 0.126 0.930 0.066

H0 :γ2 = 0 0.001 0.841 0.015

0.5 γ1 −0.009 −0.042 H0 :γ1 = γ2 = 0 0.001 0.717 0.001
γ2 −0.035 0.005 H0 :γ1 = 0 0.900 0.507 0.872

H0 :γ2 = 0 0 0.672 0.002

0.6 γ1 −0.058 0.033 H0 :γ1 = γ2 = 0 0.192 0.844 0.067
γ2 −0.016 −0.009 H0 :γ1 = 0 0.494 0.776 0.377

H0 :γ2 = 0 0.045 0.583 0.150

0.7 γ1 −0.051 −0.047 H0 :γ1 = γ2 = 0 0.291 0.653 0.213
γ2 −0.009 0.002 H0 :γ1 = 0 0.708 0.433 0.628

H0 :γ2 = 0 0.173 0.939 0.335
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FIG. 4. The quantile estimates (open circles) of γ1 and γ2. In each panel, the shaded area depicts
a 95% pointwise confidence band for the quantile coefficient, the dashed line represents the mean
coefficient estimate with two dotted lines representing a 95% pointwise confidence band for the mean
effect.

with the shaded area representing a 95% pointwise confidence band following our
method. The dashed line represents the mean effect obtained from Tobin’s normal
censored regression model, with two dotted lines representing a 95% pointwise
confidence band for that effect. The confidence interval for the mean effects is
computed using the bootstrap method and treating each subject as a single unit.
In [28], the p-value for testing the interaction effect was 0.0228, suggesting that
the log10VL of DPI drops significantly faster than that of SPI throughout the trial
period. Our method, however, suggests that two regimens do not differ during the
first two weeks across all the quantile levels [Figure 4(a)]. From week 2 to week 24,
the mean regression method shows that treatment is more favorable than the con-
trol. Quantile regression indicates that this difference mainly comes from the lower
tail of the log10VL distribution (0.25 < τ ≤ 0.45).

5. Discussion and conclusions. In this paper we introduced inference proce-
dures for longitudinal data with fixed censoring within the robust framework of
a semi-parametric quantile regression model. One main focus was on providing
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test procedures for comparing treatments and for assessing the influence of a sub-
set of the covariates. Our proposed quantile rank score test avoids the need for
estimating an unknown density. It is relatively easy to implement and performs
well in empirical investigations. In particular, by applying our test statistics to data
from an AIDS-related clinical trial, we demonstrated the importance of separately
considering the various quantiles when assessing the relative merits of different
treatments. Moreover, our conclusions could not have been reached by methods
that ignore either censoring or intra-subject dependency in the data.

The quantile estimate α̂ we employed in the current paper is derived under the
working assumption of independence. Efficiency might be gained by incorporating
appropriate weights to account for the intra-subject correlation structure, as done
in [17] for uncensored data. However, He, Fu and Fung [11] and Yin and Cai [33]
found, albeit in different contexts, that the efficiency gain in doing so is minimal
in finite samples unless the intra-subject correlation is extremely high.

In Section 3, we explored, via Case 4, the robustness of our proposed infer-
ence procedure to the assumption of homogeneity of the error terms. Our simula-
tions indicate that the proposed procedures, and the quantile rank test in particular,
perform robustly. These findings are encouraging. In a future study, we plan to
generalize our methodology to cover models with heteroscedastic errors. In the
mean time, it is clear from our proof in the Appendix that for such models our
estimator for α0 is still strongly consistent and asymptotically normal, but with a
modified asymptotic variance–covariance matrix. Without an appropriate weight-
ing, however, the limiting distribution of our rank score test is no longer that of a
chi-squared distribution.

In this paper, the focus was on an exchangeable correlation structure where
δ = P(uij < 0, uij ′ < 0) is taken to be the same for all pairs of errors. Indeed, one
can apply the methodology developed here to situations with more general intra-
subject dependency structures, as long as one can obtain a consistent estimator for
the variance–covariance matrix Cov(ϕ(U)).

APPENDIX

A.1. Proof of Theorem 2.1. We first show the strong consistency of α̂0 by
modifying the proof of Theorem 1 in [24] to cover censored regression models for
longitudinal data. By the continuity of Qn(α) defined in (2.6), it suffices to show
the strong consistency of α̂0 under H0.

Define

u∗
ij = yij − max(0, xT

ijα0) = max(0, xT
ijα0 + uij ) − max(0, xT

ijα0)

and

hij (α,α0) = max(0, xT
ijα) − max(0, xT

ijα0).



774 H. WANG AND M. FYGENSON

Note that the minimization of Qn(α) is equivalent to the minimization of

Q∗
n(α) = n−1

N∑
i=1

ni∑
j=1

ρτ {yij − max(0, xT
ijα)}

− n−1
N∑

i=1

ni∑
j=1

ρτ {yij − max(0, xT
ijα0)}

= n−1
N∑

i=1

ni∑
j=1

{ρτ (u
∗
ij − hij ) − ρτ (u

∗
ij )}

= n−1
N∑

i=1

ni∑
j=1

Rij .

Then each Rij = {ρτ (u
∗
ij − hij ) − ρτ (u

∗
ij )} is bounded by ‖xij‖(‖α‖ + ‖α0‖) =

O(‖xij‖). By condition A2, Lévy’s theorem [26] and Lemma 2.2 of [31], α̂0 will
be strongly consistent if the conditional expectation of Q∗

n(α) given the covariates

E[Q∗
n(α)|{xij }] ≡ Q̄n(α)(A.1)

is strictly positive for ‖α − α0‖ ≥ ε for arbitrary ε > 0 and all n sufficiently large.
From the derivation of the conditional expectation in (A.1), it can be shown that

Q̄n(α) ≥ n−1
∑
ij

I (xT
ijα0 ≥ 0, xT

ijα ≥ 0)

∫ xT
ij�

0
(xT

ij� − λ)f (λ) dλ

(A.2)

+ n−1
∑
ij

I (xT
ijα0 ≥ 0, xT

ijα < 0)

∫ 0

−xT
ij α0

(λ + xT
ijα0)f (λ) dλ,

where � = α − α0.
Following the same argument as in (A.10) of Powell [24], condition A4 and

inequality (A.2) yield

Q̄n(α) ≥ 1/2�1c
2n−1

∑
ij

I (xT
ijα0 ≥ ε0)I (|xT

ij�| ≥ c)(A.3)

for any positive number c < min(ε0, �1), where ε0 is defined in condition A3. This
completes the proof of strong consistency because the inequality in (A.3) is strictly
positive by conditions A2 and A3.

The asymptotic normality follows from the application of Liapunov’s central
limit theorem to the following lemma:

LEMMA A.1. Under (2.5) and conditions A1–A6, we have

n1/2(α̂0 − α0) = n−1/2{f (0)}−1D−1
1

∑
ij

I (xT
ijα0 > 0)xijϕτ (uij )

(A.4)
+ D−1

1 D2β0 + op(1).
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PROOF. Define

ψi(α) =
ni∑

j=1

I (xT
ijα > 0)xijϕτ {uij + n−1/2zT

ijβ0 − xT
ij (α − α0)},

�n(α) =
N∑

i=1

E{ψi(α)}, ui(α, d) = sup
‖γ−α‖≤d

‖ψi(γ ) − ψi(α)‖.

Note that ψi(α) are independent and

ψi(α̂0) =
ni∑

j=1

I (xT
ij α̂0 > 0)xijϕτ (yij − xT

ij α̂0).(A.5)

Since α̂0 minimizes the objective function Qn(α) in (2.6) for all α, the direc-
tional derivative of Qn(α) at α in the direction of a unit vector v is nonnegative.
That is, limh↓0{Qn(α̂0 + hv) − Qn(α̂0)}/h ≥ 0. This implies that

∑∑
yij �=xT

ij α̂0

I (xT
ij α̂0 > 0)ϕτ (yij − xT

ij α̂0)vT xij

≤ − ∑∑
yij=xT

ij α̂0

I (xT
ij v > 0)ϕτ (yij − xT

ij v)vT xij .

However, the right-hand side is bounded by∑∑
yij=xT

ij α̂0

‖xij‖.(A.6)

By conditions A4 and A5 and the strong consistency of α̂0, we have almost
surely a finite number of observations with zero residuals and therefore the quan-
tity in (A.6) is equal to o(n1/4γn) by condition A2, where γn is a sequence of
positive numbers going to infinity.

Thus, we have

N∑
i=1

ψi(α̂0) = o(n1/4γn).(A.7)

Since (A.7) is the same as (2.1) in [12], the Bahadur representation in (A.4) will
follow from their Theorem 2.2 if conditions B1–B4, B5′ and B8 in that theorem
hold.

B1. The measurability is trivially satisfied.
B2. This follows directly from the strong consistency of α̂0.
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B3. With some manipulations, we obtain

ui(α, d) ≤ sup
‖γ−α‖≤d

τ
∑
j

‖xij‖I {|xT
ijα| ≤ |xT

ij (α − γ )|}

+ sup
‖γ−α‖≤d

∑
j

‖xij‖I {|uij − xT
ijα + n−1/2zT

ijβ0| ≤ |xT
ij (α − γ )|}

≤ τCi1 + Bi,

where Bi = ∑
j ‖xij‖I (|uij − xT

ijα + n−1/2zT
ijβ0| ≤ ‖xij‖d) and Ci1 = ∑

j ‖xij‖
I (|xT

ijα| ≤ ‖xij‖d). Denote Ci2 = ∑
j ‖xij‖2I {|xT

ijα| ≤ ‖xij‖d}. Then, by condi-
tions A2 and A4, we have

E(Bi) = ∑
j

‖xij‖P {|uij − xT
ijα + n−1/2zT

ijβ0| ≤ ‖xij‖d}

= ∑
j

‖xij‖2�2d + O(d2) = Wi1d + O(d2),

E(B2
i ) ≤ ni

∑
j

‖xij‖3�2d = Wi2d + O(d2),

where Wi1 and Wi2 are some positive constants. Therefore, condition B3 follows
with ai = d−1τ 2niCi2 + 2τCi1Wi1 + Wi2.

B4. Under condition A2, we have An = ∑
i ai = O(n). Thus A2n = O(An).

B5′. By condition A2, maxi ui ≤ ni maxij ‖xij‖ = O(n1/4). B5′ follows by
taking dn = n−1/2(logn)4.

B8. Note that

�n(α) = ∑
ij

I (xT
ijα > 0)xij [τ − F {xT

ij (α − α0) − n−1/2zT
ijβ0}]

(A.8)
= −nf (0)D1n(α)(α − α0) + n1/2f (0)D2n(α)β0 + O(1).

Therefore we have

�n(α̂0) = −nf (0)D1n(α̂0)(α̂0 − α̃0) + O(1),(A.9)

where α̃0 = α0 + n−1/2{D1n(α̂0)}−1D2n(α̂0)β0. Thus B8 holds with bn = O(1)

and Dn = −nf (0)D1n(α̂0). It then follows from the consistency of α̂0 and Theo-
rem 2.2 of [12] that

n1/2(α̂0 − α̃0) = n−1/2{(f (0)}−1{D1n(α̂0)}−1
∑
i

ψi(α̃0) + op(1)

= n−1/2{f (0)}−1{D1n(α̂0)}−1
∑
ij

I (xT
ij α̃0 > 0)xij(A.10)

× ϕτ {uij + n−1/2zT
ijβ0 − xT

ij (α̃0 − α0)} + op(1).
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By expanding ϕτ (u + ε) around u, we obtain

n1/2(α̂0 − α̃0)

= n−1D−1
1

∑
ij

I (xT
ijα0 > 0)xij (z

T
ijβ0 − xT

ijD
−1
1 D2β0)

(A.11)
+ n−1/2{f (0)}−1D−1

1

∑
ij

I (xT
ijα0 > 0)xijϕτ (uij ) + op(1)

= n−1/2{f (0)}−1D−1
1

∑
ij

I (xT
ijα0 > 0)xijϕτ (uij ) + op(1).

This completes the proof of Lemma A.1. �

A.2. Proof of Theorem 2.2. The proof of Theorem 2.2 relies on the following
two lemmas:

LEMMA A.2. Define

S∗
n = n−1/2

∑
ij

z∗
ij I (xT

ijα0 + n−1/2zT
ijβ0 > 0)ϕτ (u

∗
ij ),

where u∗
ij = yij −max(0, xT

ijα0 +n−1/2zT
ijβ0). Then under Hn and conditions A1–

A7, we have Sn = S∗
n + n−1f (0)

∑
ij I (xT

ijα0 > 0)z∗
ij z

T
ijβ0 + op(1).

PROOF. First note that

S∗
n = n−1/2

∑
ij

z∗
ij I (xT

ijα0 + n−1/2zT
ijβ0 > 0)ϕτ

× {max(0, uij + xT
ijα0 + n−1/2zT

ijβ0)

− max(0, xT
ijα0 + n−1/2zT

ijβ0)}
= n−1/2

∑
ij

z∗
ij I (xT

ijα + n−1/2zT
ijβ0 > 0)ϕτ (uij ).

For any fixed t such that ‖t‖ ≤ C, we define

Ri(t) =
ni∑

j=1

z∗
ij [I (xT

ijα0 + n−1/2xT
ij t > 0)

× ϕτ {yij − max(0, xT
ijα0 + n−1/2xT

ij t)}
− I (xT

ijα0 + n−1/2zT
ijβ0 > 0)ϕτ (uij )]

(A.12)

=
ni∑

j=1

z∗
ij {I (xT

ijα0 + n−1/2xT
ij t > 0)
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× ϕτ (uij + n−1/2zT
ijβ0 − n−1/2xT

ij t)

− I (xT
ijα0 + n−1/2zT

ijβ0 > 0)ϕτ (uij )}.
By condition A4, each coordinate R

(k)
i (t), k = 1, . . . , q , satisfies∑

i

Var
{
R

(k)
i (t)

}

≤ ∑
i

ni

∑
j

E{Rij (t)}2

≤ ∑
i

ni

∑
j

‖z∗
ij‖2{�2|n−1/2xT

ij t − n−1/2zT
ijβ0| + I (| xT

ijα0 |≤ dn‖xi‖)},

where dn = n−1/2‖xij‖−1 max(‖xij‖,‖zij‖) · max(‖β0‖,‖t‖) = O(n−1/4). It then
follows from condition A5 that∑

i

Var
{
R

(k)
i (t)

} = O(n3/4).(A.13)

Under condition A2, it is clear that maxi ‖Ri(t)‖ ≤ Cn1/4 for some constant C. It
follows from the Hoeffding inequality and the chaining argument that

sup
‖t‖≤C

∥∥∥∥∥
∑
i

Ri(t) − E

{∑
i

Ri(t)

}∥∥∥∥∥ = Op(n3/8(logn)1/2).(A.14)

Under conditions A2 and A4 and using the orthogonality of Z∗ and {I (Xα0 >

0) ⊗ 1T
n }X, we obtain that

E

{∑
i

Ri(t)

}

= ∑
i

∑
j

z∗
ij

{
I (xT

ijα0 + n−1/2xT
ij t > 0)

(
τ − F(n−1/2xT

ij t − n−1/2zT
ijβ0)

)}

= ∑
ij

z∗
ij I (xT

ijα0 + n−1/2xT
ij t > 0)f (0)(n−1/2zT

ijβ0 − n−1/2xT
ij t) + O(1)

= n−1/2f (0)
∑
ij

z∗
ij I (xT

ijα0 > 0)zT
ijβ0 + O(1).

This, together with Theorem 2.1 and (A.14), completes the proof. �

LEMMA A.3. Under Hn and conditions A1–A7, we have δ̂
P−→ δ, as n → ∞.

PROOF. Recall that δ̂ = L−1 ∑
ij �=j ′ I (xT

ij α̂0 > 0, xT
ij ′ α̂0 > 0)I (ûij < 0, ûij ′ <

0). We define δ∗ = L−1 ∑
ij �=j ′ I (xT

ijα0 + n−1/2zT
ijβ0 > 0, xT

ij ′α0 + n−1/2zT
ij ′β0 >
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0)I (u∗
ij < 0, u∗

ij ′ < 0), where u∗
ij = yij − max(0, xT

ijα0 + n−1/2zT
ijβ0). Using

Lemma 4.1 of [12] and the root-n consistency of α̂0, we can establish that
δ̂ − δ∗ = op(1). Lemma A.3 thus follows by applying the weak law of large num-
bers. �

PROOF OF THEOREM 2.2. Denote Ri = ∑
j I (xT

ijα0 +n−1/2zT
ijβ0)z

∗
ij ϕτ (uij ).

Note that S∗
n = n−1/2 ∑

i Ri is the summation of independent entries. It follows
from the Lindberg–Feller central limit theorem (CLT) that

{Vn(δ;α0)}−1/2S∗
n

D−→ N(0q, Iq).(A.15)

The proof of Theorem 2.2 is therefore complete by combining (A.15), Lem-
mas A.2 and A.3. �
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