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INFERENCE FOR THE LIMITING CLUSTER SIZE
DISTRIBUTION OF EXTREME VALUES

BY CHRISTIAN Y. ROBERT

CNAM and CREST, France

Any limiting point process for the time normalized exceedances of high
levels by a stationary sequence is necessarily compound Poisson under ap-
propriate long range dependence conditions. Typically exceedances appear
in clusters. The underlying Poisson points represent the cluster positions and
the multiplicities correspond to the cluster sizes. In the present paper we in-
troduce estimators of the limiting cluster size probabilities, which are con-
structed through a recursive algorithm. We derive estimators of the extremal
index which plays a key role in determining the intensity of cluster positions.
We study the asymptotic properties of the estimators and investigate their
finite sample behavior on simulated data.

1. Introduction. Many results in extreme value theory may be naturally dis-
cussed in terms of point processes. Typically, the distribution of extreme order
statistics may be obtained by considering the point process of exceedances of
a high level. More formally, let (Xn) be a strictly stationary sequence of ran-
dom variables (r.v.s) with marginal distribution F . We assume that for each
τ > 0 there exists a sequence of levels (un(τ )) such that limn→∞ nF̄ (un(τ )) = τ ,
where F̄ = 1 − F . It is necessary and sufficient for the existence of such a se-
quence that limx→xf

F̄ (x)/F̄ (x−) = 1, where xf = sup{u :F(u) < 1} (see The-
orem 1.7.13 in [28]). A natural choice is given by un(τ ) = F←(1 − τ/n), where
F← is the generalized inverse of F , that is, F←(y) = inf{x ∈ R :F(x) ≥ y}. The
point process of time normalized exceedances N

(τ)
n (·) is defined by N

(τ)
n (B) =∑n

i=1 1{i/n∈B,Xi>un(τ)} for any Borel set B ⊂ E := (0,1]. The event that Xn−k+1:n,

the kth largest of X1, . . . ,Xn, does not exceed un(τ ) is equivalent to {N(τ)
n (E) <

k} and the asymptotic distribution of Xn−k+1 : n is easily derived from the asymp-
totic distribution of N

(τ)
n (E).

If (Xn) is a sequence of independent and identically distributed (i.i.d.) r.v.s,
N

(τ)
n converges in distribution to a homogeneous Poisson process with intensity τ

(see, e.g., [13], Theorem 5.3.2). If the i.i.d. assumption is relaxed and a long range
dependence condition is assumed [�(un(τ)) defined below], the limiting point
process is necessarily a homogeneous compound Poisson process with intensity
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θτ (θ ≥ 0) and limiting cluster size distribution π [24]. The constant θ is referred
to as the extremal index and its reciprocal is equal to the mean of π under some
mild additional assumptions (see [36, 38] for some counterexamples). It may be
shown that θ ≤ 1 and that the compound Poisson limit becomes Poisson when
θ = 1.

If limn→∞ P(N
(τ)
n (E) = 0) = e−θτ , then a necessary and sufficient condi-

tion for convergence of N
(τ)
n is convergence of the conditional distribution of

N
(τ)
n (Bn) with Bn = (0, qn/n] given that there is at least one exceedance of un(τ )

in {1, . . . , qn} to π , that is,

lim
n→∞P

(
N(τ)

n (Bn) = m|N(τ)
n (Bn) > 0

) = π(m), m ≥ 1,(1.1)

where (qn) is a �(un(τ))-separating sequence (see Section 3). Moreover, if the
long range dependence condition �(un(τ)) holds for each τ > 0, then θ and π do
not depend on τ .

The natural approach to do inference on θ and π is to identify the clusters of
exceedances above a high threshold, then to evaluate for each cluster the char-
acteristic of interest and to construct estimates from these values. The two com-
mon methods that are used to define clusters are the blocks and runs declustering
schemes. The blocks declustering scheme consists in choosing a block length rn
and partitioning the n observations into kn = 	n/rn
 blocks, where 	x
 denotes the
integer part of x. Each block that contains an exceedance is treated as one cluster.
The runs declustering scheme consists in choosing a run length pn, and stipulat-
ing that any pair of extreme observations separated by fewer than pn nonextreme
observations belong to the same cluster. The block length rn and the run length
pn are termed the cluster identification scheme sequences and play a key role in
determining the asymptotic properties of the estimators.

The problem of inference on the extremal index has received a lot of attention in
the literature. The first blocks and runs estimators were constructed by using dif-
ferent probabilistic characterizations of the extremal index (see [13], Section 8.1,
[1, 39]). They are determined by two sequences: the sequence of the thresholds
un(τ ) and the cluster identification scheme sequence. Their major drawback is
their dependence on the threshold which is based on the unknown stationary dis-
tribution. Estimating this threshold is intricate since, by definition, it is exceeded
by very few observations [12]. To circumvent this issue, lower thresholds have to
be considered. The following characterizations (see [27, 31])

θ = lim
n→∞ snP

(
max

1≤i≤rn
Xi > usn(τ )

)/
(rnτ ),

and

θ = lim
n→∞P

(
max

2≤i≤pn

Xi ≤ usn(τ )
∣∣∣X1 > usn(τ )

)
,

where sn = o(n), rn = o(sn) and pn = o(sn), have motivated other blocks and runs
estimators [21, 22, 43]; the threshold usn(τ ) can be estimated by Xn−	nτ/sn
 : n.
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Note that the estimators are determined by two sequences as well: rn (or pn)
and sn. More recently, new methods for identifying clusters of extreme values
have been introduced in [26] and new estimators of the extremal index which
are less sensitive to cluster identification scheme sequences have been derived.
However, to exploit these methods, it is necessary to know whether the process
exhibits either an autoregressive or volatility driven dependence structure and to
choose an additional threshold to identify the clusters. In order to eliminate the
cluster identification scheme sequences, [16] (see also [15]) proposes estimators
which are based on the sequence of the thresholds urn(τ ) and on inter-exceedance
times: a least-squares estimator, a maximum-likelihood estimator and a moment
estimator. It is established that the last-mentioned estimator is weakly consistent
for m-dependent stationary sequences.

There are very few papers which investigate the inference for the limiting cluster
size probabilities. In [21], condition (1.1) is used to motivate the following blocks
estimators

π̂n,1(m; rn, usn(τ )) =
∑kn

j=1 1{Yn,j (usn (τ ))=m}∑kn

j=1 1{Yn,j (usn (τ ))>0}
,(1.2)

where Yn,j (usn(τ )) = ∑jrn
i=(j−1)rn+1 1{Xi>usn(τ )}, sn = o(n) and rn = o(sn). Let

Eπ(T ) = ∑∞
m=1 T (m)π(m), where T is a function supported on {1,2, . . .}. The

weak consistency of the estimators
rn∑

m=1

T (m)π̂n,1
(
m; rn,Xn−	nτ/sn
 : n

)
of Eπ(T ) is established. Note that they are determined by two sequences: rn and
sn. In [23] the following quantities are considered

π̂n,2(m; rn, usn(τ )) =
∑kn

j=1(R
(m)
j − R

(m+1)
j )1{Yn,j (usn (τ ))>0}∑kn

j=1 1{Yn,j (usn (τ ))>0}
,

where R
(m)
j = F̄ (M

(1)
j )/F̄ (M

(m)
j ) and M

(m)
j is the mth largest value of Xi , i =

(j − 1)rn + 1, . . . , jrn. A partial comparison with π̂n,1(m; rn, usn(τ )) is made un-
der the assumption that F is known. Recently a new method has been proposed
in [15]: a recursive algorithm forms estimates of the limiting cluster size proba-
bilities from empirical moments which are based on the joint distributions of the
inter-exceedance times separated by other inter-exceedance times. These estima-
tors are only determined by selecting the sequence of thresholds urn(τ ). A consis-
tency result for m-dependent stationary sequences is given.

In the present paper we introduce new blocks estimators of the limiting cluster
size probabilities. The approach is the following. First we estimate the compound
probabilities of the limiting point process. Second we use a declustering (decom-
pounding) algorithm to form estimates of the limiting cluster size probabilities.
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This idea has been proposed recently in [5] and [6] where it is assumed that a sam-
ple of the compound Poisson distribution is observed (which is unfortunately not
the case here).

More specifically, let us denote by N
(τ)
E the weak limit of N

(τ)
n (E) as n → ∞

when it exists and by p(τ) = (p(τ)(m))m≥0 its distribution. Let (ζi)i≥1 be a se-
quence of positive i.i.d. integer-valued r.v.s with distribution π and η(θτ) be a r.v.
with Poisson distribution and parameter θτ such that η(θτ) is independent of the

(ζi)i≥1. We have N
(τ)
E

d= ∑η(θτ)
i=1 ζi , with the convention that the sum equals 0 if the

upper index is smaller than the lower index. The distribution of N
(τ)
E is given by

p(τ)(0) = P
(
η(θτ) = 0

) = e−θτ ,(1.3)

p(τ)(m) =
m∑

j=1

P
(
η(θτ) = j

)
P

( j∑
i=1

ζi = m

)
=

m∑
j=1

e−θτ (θτ )j

j ! π∗j (m),(1.4)

m ≥ 1, where π∗j is the j th convolution of π , that is,

π∗j (m) =
⎧⎨⎩

0, m < j ,∑
i1+···+ij=m

π(i1) · · ·π(ij ), m ≥ j .

In risk theory the aggregate claim amount is often assumed to have a compound
Poisson distribution. Panjer’s algorithm [32] is a method to compute recursively
the aggregate claims distribution when the distribution of a single claim is discrete
and the distribution of the number of claims is Poisson, Binomial or Negative-
Binomial. For the limiting compound Poisson distribution (1.3)–(1.4), the recur-
sion is given by

p(τ)(0) = e−θτ ,

p(τ)(m) = − ln(p(τ)(0))

m

m∑
j=1

jπ(j)p(τ)(m − j), m ≥ 1.

Note that the p(τ)(m) can be expressed as a function of the π(j), j = 1, . . . ,m. It
is possible to reverse the algorithm and to evaluate recursively the π(m) from the
p(τ)(j), j = 0, . . . ,m, and the π(j), j = 0, . . . ,m − 1, in the following way

π(m) = −(p(τ)(m) + m−1 ln(p(τ)(0))
∑m−1

j=1 jπ(j)p(τ)(m − j))

ln(p(τ)(0))p(τ)(0)
,

(1.5)
m ≥ 1.

Hence, the inversion of Panjer’s algorithm provides an appealing recursive method
to estimate the limiting cluster size probabilities.

The content of the paper is organized as follows. In Section 2 we explain how
we construct the estimators of the limiting cluster size probabilities. We also derive
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estimators of the extremal index. We emphasize that all our estimators are deter-
mined by one sequence and one (or two) parameter(s). In Section 3 we present and
discuss technical conditions which are required for establishing the asymptotic
properties. In Section 4 we give results on weak convergence of the estimators. In
Section 5 we investigate the finite sample behavior of the estimators on simulated
data and we make a comparison with existing estimators. Proofs are gathered in a
last section.

2. Defining the estimators. In the remainder of the paper we assume that
un(τ ) = F←(1−τ/n). The present approach to estimating the limiting cluster size
distribution is based on the blocks declustering scheme. We divide {1, . . . , n} into
kn blocks of length rn, Ij = {(j − 1)rn + 1, . . . , jrn} for j = 1, . . . , kn, and a last
block Ikn+1 = {rnkn + 1, . . . , n}. The number of observations above the threshold
urn(τ ) within the j th block is denoted by

N
(τ)
rn,j = ∑

i∈Ij

1{Xi>urn(τ )}, j = 1, . . . , kn.

Since limn→∞ E(N
(τ)
rn,j ) = τ , the parameter τ can be interpreted as the asymptotic

mean number of observations which exceed the level urn(τ ) for each block. The
empirical distribution, p

(τ)
n , of the number of exceedances within a block is given

by

p(τ)
n (m) = 1

kn

kn∑
j=1

1{N(τ)
rn,j=m}, m ≥ 0.

As mentioned in the introduction, the main issue when using these quantities for
estimating p(τ) is that the threshold urn(τ ) is based on the unknown stationary
distribution. It has to be estimated from the data. We define the estimator of p(τ) by

p̂(τ )
n (m) = 1

kn

kn∑
j=1

1{N̂(τ )
rn,j=m}, m ≥ 0,

where N̂
(τ)
rn,j = ∑

i∈Ij
1{Xi>ûrn (τ )} and ûrn(τ ) = Xknrn−	knτ
:knrn .

Let us now consider the estimators of the limiting cluster size probabilities. To
ensure that the entries in (1.5) are nonnegative and that their sum does not exceed 1,
we define recursively

π̂ (τ )
n (m) = max

(
0,min

(
χ(τ)

n (m),1 −
m−1∑
j=1

π̂ (τ )
n (j)

))
, m ≥ 1,

where

χ(τ)
n (m) = −(p̂

(τ )
n (m) + m−1 ln(p̂

(τ )
n (0))

∑m−1
j=1 j π̂

(τ)
n (j)p̂

(τ )
n (m − j))

ln(p̂
(τ )
n (0))p̂

(τ )
n (0)

.
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We also define smoothed versions by

̂̄πn(m) = 1

φ − σ

∫ φ

σ
π̂ (τ)

n (m)dτ, m ≥ 1,

for given 0 < σ < φ (see [35] for a similar averaging technique used to reduce the
asymptotic variance of the moment estimator of the extreme value parameter).

Finally, let us derive estimators of the extremal index. This parameter appears
in different moments of the distributions of N

(τ)
E and ζ1 (when they exist)

P
(
N

(τ)
E = 0

) = e−θτ , E(ζ1) = θ−1, V
(
N

(τ)
E

) = θτE(ζ1)
2.

Fix an integer m ≥ 1. We consider two approximations of θ

θ2(m) = 1∑m
j=1 jπ(j)

and θ
(τ)
3 (m) =

∑m
j=0(j − τ)2p(j)

τ
∑m

j=1 j2π(j)
.

Estimators of θ , θ2(m) and θ
(τ)
3 (m) can be constructed by equating theoretical

moments to their empirical counterparts

θ̂
(τ )
1,n = − ln(p̂

(τ )
n (0))

τ
, θ̂

(τ )
2,n(m) = 1∑m

j=1 j π̂
(τ)
n (j)

,

θ̂
(τ )
3,n(m) =

∑m
j=0(j − τ)2p̂

(τ )
n (j)

τ
∑m

j=1 j2π̂
(τ )
n (j)

.

θ̂
(τ )
1,n can be seen as a slight modification of the estimator in equation (1.5) in [39].

θ̂
(τ )
2,n(m) has been studied in [21] with (1.2) as an estimator of the limiting cluster

size distribution and m = rn. To the best of our knowledge, θ̂
(τ )
3,n(m) seems to be

new. Finally, let us define ̂̄
θ1,n by the smoothed version of the first estimator

̂̄
θ1,n = 1

φ − σ

∫ φ

σ
θ̂

(τ )
1,n dτ.

All estimators (resp. smoothed versions of the estimators) introduced in this
section are determined by the sequence rn and the parameter τ (resp. φ and σ ).
They provide an interesting alternative to the estimators introduced in [16] and
[15] where it is only needed to select the sequence of the thresholds urn(τ ). Note
that both methods share the same parsimony since in our case urn(τ ) is estimated
by Xknrn−	knτ
 : knrn .

3. Technical conditions. In this section we present and discuss technical con-
ditions which are required for establishing the asymptotic properties of the estima-
tors. We begin by giving definitions which are essentially due to [20, 27, 33].
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The stationary sequence (Xn) is said to have extremal index θ ≥ 0 if, for each
τ > 0, limn→∞ P(N

(τ)
n = 0) = exp(−θτ).

Fix an integer r ≥ 1 and τ1 > · · · > τr > 0. Define F (τ1,...,τr )
p,q as the σ -algebra

generated by the events {Xi > un(τj )}, p ≤ i ≤ q and 1 ≤ j ≤ r , and write

αn,l(τ1, . . . , τr) ≡ sup
{|P(A ∩ B) − P(A)P (B)| :

A ∈ F (τ1,...,τr )
1,t ,B ∈ F (τ1,...,τr )

t+l,n ,1 ≤ t ≤ n − l
}
.

The condition �({un(τj )}1≤j≤r ) is said to hold if limn→∞ αn,ln(τ1, . . . , τr) = 0 for
some sequence ln = o(n). The long range dependence condition �({un(τj )}1≤j≤r )

implies that extreme events situated far apart are almost independent. Of course, it
is implied by strong mixing.

Suppose that �({un(τj )}1≤j≤r ) holds. A sequence of positive integers (qn) is
said to be �({un(τj )}1≤j≤r )-separating if qn = o(n) and there exists a sequence
(ln) such that ln = o(qn) and limn→∞ nq−1

n αn,ln(τ1, . . . , τr) = 0.
We now present the technical conditions. The first one will be considered for

“weak consistency” of the estimators.

CONDITION (C0). The stationary sequence (Xn) has extremal index θ > 0.
�(un(τ)) holds for each τ > 0 and there exists a probability measure π =
(π(i))i≥1, such that, for i ≥ 1,

π(i) = lim
n→∞P

(
N(τ)

n (Bn) = i|N(τ)
n (Bn) > 0

)
,(C0.a)

with Bn = (0, qn/n], for some �(un(τ))-separating sequence (qn). Moreover,
there exists a constant ρ > 2 such that, for each τ > 0,

sup
n≥1

E
(
N(τ)

n (E)
)ρ

< ∞.(C0.b)

Condition (C0) ensures that the exceedance point process N
(τ)
n converges

in distribution for every choice of τ > 0 (see [24], Theorem 4.2). Let 0 <

v < ρ. Condition (C0.b) implies that (N
(τ)
n (E))v are uniformly integrable and

limn→∞ E(N
(τ)
n (E))v = E(N

(τ)
E )v < ∞. In particular, the first and second mo-

ments of N
(τ)
E exist (see [4], page 338). They are given by E(N

(τ)
E ) = τ and

V (N
(τ)
E ) = θτE(ζ1)

2.
The following set of conditions will be considered for characterizing the distri-

butional asymptotics of the estimators.

CONDITION (C1). Condition (C0) holds. �(un(τ1), un(τ2)) holds for each
τ1 > τ2 > 0 and there exists a probability measure π2 = (π

(τ2/τ1)
2 (i, j))i≥j≥0,i≥1,

such that, for i ≥ j ≥ 0, i ≥ 1,

π
(τ2/τ1)
2 (i, j) = lim

n→∞P
(
N(τ1)

n (Bn) = i,N(τ2)
n (Bn) = j |N(τ1)

n (Bn) > 0
)
,(C1.a)

with Bn = (0, qn/n], for some �(un(τ1), un(τ2))-separating sequence (qn).
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Let us introduce the two-level exceedance point process N(τ1,τ2)
n = (N

(τ1)
n ,N

(τ2)
n )

for τ1 > τ2 > 0. Condition (C1) ensures that N(τ1,τ2)
n converges in distribution to a

point process with Laplace transform

E exp

(
−

2∑
i=1

∫
E

fi dN(τi)

)
= exp

(
−τ1θ

∫ 1

0

(
1 − L(f1(t), f2(t))

)
dt

)
,

where N(τi) is the ith marginal of the limiting point process, fi ≥ 0 and L is the
Laplace transform of π

(τ2/τ1)
2 (see Theorem 2.5 in [33] and its proof). Let us denote

by (N
(τ1)
E ,N

(τ2)
E ) the weak limit of (N

(τ1)
n (E),N

(τ2)
n (E)). By considering constant

functions fi , we deduce that

(
N

(τ1)
E ,N

(τ2)
E

) d=
(η(θτ1)∑

i=1

ζ
(τ2/τ1)
1,i ,

η(θτ1)∑
i=1

ζ
(τ2/τ1)
2,i

)
,

where (ζ
(τ2/τ1)
1,i , ζ

(τ2/τ1)
2,i )i≥1 is a sequence of i.i.d. integer vector r.v.s with distribu-

tion π
(τ2/τ1)
2 and η(θτ1) is a r.v. with Poisson distribution and parameter θτ1 such

that η(θτ1) is independent of the (ζ
(τ2/τ1)
1,i , ζ

(τ2/τ1)
2,i ) (see also Theorem 2 in [29]).

The distribution p
(τ1,τ2)
2 = (p

(τ1,τ2)
2 (i, j))i≥j≥0 of (N

(τ1)
E ,N

(τ2)
E ) is given by

p
(τ1,τ2)
2 (0,0) = P

(
η(θτ1) = 0

) = e−θτ1,

p
(τ1,τ2)
2 (i, j) =

i∑
k=1

P
(
η(θτ1) = k

)
P

(
k∑

l=1

ζ
(τ2/τ1)
1,l = i,

k∑
l=1

ζ
(τ2/τ1)
2,l = j

)

= e−θτ1

i∑
k=1

(θτ1)
k

k! π
(τ2/τ1),∗k
2 (i, j), i ≥ j ≥ 0, i ≥ 1,

where π
(τ2/τ1),∗k
2 is the kth convolution of π

(τ2/τ1)
2 , that is,

π
(τ2/τ1),∗k
2 (i, j)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, i < k,∑

i1+···+ik=i

j1+···+jk=j

iq≥jq≥0,iq≥1,1≤q≤k

π
(τ2/τ1)
2 (i1, j1) · · ·π(τ2/τ1)

2 (ik, jk), i ≥ k.

Condition (C0.b) implies that Cov(N
(τ1)
E ,N

(τ2)
E ) = θτ1E(ζ

(τ2/τ1)
1,1 ζ

(τ2/τ1)
2,1 ) is fi-

nite.

CONDITION (C2). Let r > 2 and φ > 0. There exists a constant D = D(r,φ)

such that, for φ ≥ τ1 ≥ τ2 ≥ 0,

sup
n≥1

E
(
N(τ1)

n (E) − N(τ2)
n (E)

)r ≤ D(τ1 − τ2).(C2.a)
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Let θd ≥ 3r/(r − (2 +μ)), where 0 < μ < ((r − 2)∧ 1/2). There exists a constant
C > 0 such that, for every choice of τ1 > · · · > τm > 0, m ≥ 1, 1 ≤ l ≤ n,

αn,l(τ1, . . . , τm) ≤ αl := Cl−θd .(C2.b)

(rn) is sequence such that rn → ∞ and rn = o(n) and there exists a sequence (ln)

satisfying

ln = o(r2/r
n ) and lim

n→∞nr−1
n αln = 0.(C2.c)

Note that condition (C2.a) provides an inequality which is quite natural to prove
tightness criteria. Condition (C2.b) is satisfied by strong-mixing stationary se-
quences where the mixing coefficients vanish at least with a hyperbolic rate. The
underlying idea to establish the asymptotic properties of the estimators is to split
the block Ij into a small block of length ln and a big block of length rn − ln.
Condition (C2.c) ensures that ln is sufficiently large such that blocks that are not
adjacent are asymptotically independent, but does not grow too fast such that the
contributions of the small blocks are negligible.

Finally, we need a condition on the convergence rate of rn to infinity to guaran-
tee that the extreme value approximations are sufficiently accurate.

CONDITION (C3). Let m be an integer. The sequence (rn) satisfies

lim
n→∞

√
kn

(
τ − rnF̄ (urn(τ ))

) = 0

and

lim
n→∞

√
kn

m∑
l=1

∣∣P (
N(τ)

rn
(E) = l

) − p(τ)(l)
∣∣ = 0

locally uniformly for τ > 0.

Note that, if F is continuous, then rnF̄ (urn(τ )) = τ and the first part of Condi-
tion (C3) is obviously satisfied. We now discuss the example of the first order sto-
chastic equations with random coefficients. A special case is the squared ARCH(1)

process introduced in [14]. This process is probably one of the most prominent fi-
nancial time series model of the last two decades.

EXAMPLE 3.1. Let X0 be a r.v. and let (An,Bn), n ≥ 1, be i.i.d. (0,∞)2-
valued random vectors independent of X0. Define Xn by means of the stochastic
difference equation

Xn = AnXn−1 + Bn, n ≥ 1.(3.1)

For sake of simplicity, we assume that the distribution of (A1,B1) is absolutely
continuous. Kesten [25] proved that there exists a r.v. X, independent of (A1,B1),
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such that X
d= A1X + B . Assume that X0 has the same distribution as X, so that

(Xn) is a strictly stationary sequence. According to Corollary 2.4.1 in [8], (Xn) is
also strongly mixing and absolutely regular with geometric rates.

Further, suppose that there exist κ > 0 and ξ > 0 such that

EAκ
1 = 1, E(Aκ

1 max(log(A1),0)) < ∞,

EA
κ+ξ
1 < ∞ and EB

κ+ξ
1 ∈ (0,∞).

Under these moment assumptions, results of Goldie [17] show that there exit c > 0
and ρ > 0 such that

F̄ (x) = cx−κ(
1 + O(x−ρ)

)
, as x → ∞.(3.2)

We deduce that un(τ ) = (cn/τ)1/κ(1+O(n−ρ/κ)) as n → ∞. The one-level point
process of exceedances was studied in [19] and the multi-level point process of
exceedances in [33].

Now we successively verify that our technical conditions hold. Let R(x) =
�{j ≥ 1 : X̃

∏j
i=1 Ai > x}, where P(X̃ > x) = x−κ , x ≥ 1, and define θk =

P(R(1) = k), k ≥ 0. Using results in [19] and in [33], we see that �(un(τ)) holds
for each τ > 0 and that θ = θ0 and π(k) = (θk−1 − θk)/θ0, k ≥ 1, for any (qn)

�(un(τ ))-separating sequence such that qn = nς with 0 < ς < 1. Moreover, by
Lemma 6.1 with τ1 = τ and τ2 = 0, we deduce that E(N

(τ)
n (E))3 < ∞ and that

Condition (C0) holds with ρ = 3.
By [33], �(un(τ1), un(τ2)) holds for each τ1 > τ2 > 0 and

θπ
(τ2/τ1)
2 (i, j) =

(
P

(
R(1) = i − 1,R

((
τ1

τ2

)1/κ)
= j

)

− P

(
R(1) = i,R

((
τ1

τ2

)1/κ)
= j

))

+ τ2

τ1

(
P

(
R

((
τ2

τ1

)1/κ)
= i − 1,R(1) = j − 1

)

− P

(
R

((
τ2

τ1

)1/κ)
= i − 1,R(1) = j

))
for any (qn) �(un(τ1), un(τ2))-separating sequence such that qn = nς with 0 <

ς < 1. Therefore, Condition (C1) holds.
By Lemma 6.1, E(N

(τ1)
n (E) − N

(τ2)
n (E))3 ≤ K(τ1 − τ2) for φ ≥ τ1 ≥ τ2 ≥ 0.

There exists a constant C satisfying (C2.b) for any θd ≥ 9/(1 − μ), where
0 < μ < 1/2 because (Xn) is a geometrically strong-mixing sequence. Moreover,
if rn = nς with 0 < ς < 1 and ln = nγ with 0 < γ < 2ς/3, then (C2.c) is satisfied.
Therefore, Condition (C2) holds.

Under the assumptions on (A1,B1), F is absolutely continuous and
rnF̄ (urn(τ )) = τ . Let us use Lemma 6.2 with qn = 	nα
, mn = 	nβ
, δn = 	nγ 
,
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xn = 	nδ
 and rn = 	nς
 with 0 < β < α < 1, 0 < γ < κ−1, δ > 0 and 0 < ς < 1,
then there exists a constant K such that√

kn

m∑
l=1

∣∣P (
N(τ)

rn
(E) = l

) − p(τ)(l)
∣∣

≤ Kn(1−ζ )/2(
n−χζ + n(1−α)ζ η2nβζ /3 + ϕnαζ

nδζξ )
locally uniformly for τ > 0, with χ = (α −β)∧ (1 −α)∧α ∧γ ∧ δ(κ − ε)∧ρ/κ ,
0 < η < 1, 0 < ϕ < 1 and 0 < ε < κ . Finally, choose 1/(1+2χ) < ζ < 1 such that
Condition (C3) holds.

4. Asymptotic properties of the estimators. To characterize the asymptotic
properties of the estimators, it is convenient to introduce Dm

σ,φ ≡ D([σ,φ],Rm)

[resp. Dm ≡ D((0,∞),Rm)], the space of functions from [σ,φ] [resp. (0,∞)] to
Rm which are càglàd (left-continuous with right-limits) equipped with the strong
J1-topology (see [44] where the spaces of càdlàg functions (right-continuous
with left-limits) are equivalently considered). Let us recall that weak convergence
(which will be denoted by ⇒) in Dm is equivalent to weak convergence of the
restrictions of the stochastic processes to any compact [σ,φ], 0 < σ < φ < ∞.

We start this section by giving a “weak consistency” result.

PROPOSITION 4.1. Suppose that (C0) holds. Let (rn) be a sequence such that
rn → ∞ and rn = o(n), and 0 < σ < φ < ∞. Then(

p̂(·)
n (0), . . . , p̂(·)

n (m)
) ⇒ (

p(·)(0), . . . , p(·)(m)
)

in Dm+1
σ,φ , (

π̂ (·)
n (1), . . . , π̂ (·)

n (m)
) ⇒ (π(1), . . . , π(m))

in Dm
σ,φ , (

θ̂
(·)
1,n, θ̂

(·)
2,n(m), θ̂

(·)
3,n(m)

) ⇒ (
θ, θ2(m), θ

(·)
3 (m)

)
in D3

σ,φ ,

̂̄πn(m)
P→ π(m), m ≥ 1 and ̂̄

θ1,n
P→ θ.

We continue with a series of results leading to a characterization of the distrib-
utional asymptotics of the estimators of the limiting cluster size probabilities. We
first introduce the following centered processes:

ej,n(·) = √
kn

(
p(·)

n (j) − P
(
N

(·)
rn,1 = j

))
, j ≥ 0,

ēn(·) = √
kn

(
p̄(·)

n − rnP
(
X1 > urn(·)

))
,
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where

p̄(τ )
n =

∞∑
i=1

ip(τ)
n (i) = 1

kn

kn∑
j=1

N
(τ)
rn,j = 1

kn

rnkn∑
i=1

1{Xi>urn(τ )}.

p̄
(·)
n is called the tail empirical distribution and ēn(·) the tail empirical process.

They are very useful tools for studying the asymptotic properties of tail index
estimators (see, e.g., [9, 34]) or for inference of multivariate extreme value dis-
tributions [18]. The weak convergence of the tail empirical process of strong-
mixing (resp. absolute regular) stationary sequences has been studied by [37]
(resp. by [37], [10] and [11]). Note that the absolute regularity condition implies
the strong-mixing condition which implies �({un(τj )}1≤j≤r ) for every choice of
τ1 > · · · > τr > 0, r ≥ 1. The following theorem deals with the weak convergence
of the process

Em,n(·) = (e0,n(·), . . . , em,n(·), ēn(·))
in Dm+2. It will be useful throughout this section.

THEOREM 4.1. Suppose that (C1) and (C2) hold. There exists a pathwise
continuous centered Gaussian process

Em(·) = (e0(·), . . . , em(·), ē(·))
with covariance functions defined for 0 < τ2 ≤ τ1 by:

• if i = 0, . . . ,m,

cov(ei(τ1), ei(τ2)) = p
(τ1,τ2)
2 (i, i) − p(τ1)(i)p(τ2)(i),

cov(ei(τ1), ē(τ2)) =
i∑

j=0

jp
(τ1,τ2)
2 (i, j) − τ2p

(τ1)(i),

cov(ē(τ1), ei(τ2)) =
∞∑
j=i

jp
(τ1,τ2)
2 (j, i) − τ1p

(τ2)(i),

• if 0 ≤ i < j ≤ m,

cov(ei(τ1), ej (τ2)) = −p(τ1)(i)p(τ2)(j),

• if 0 ≤ j < i ≤ m,

cov(ei(τ1), ej (τ2)) = p
(τ1,τ2)
2 (i, j) − p(τ1)(i)p(τ2)(i),

• and

cov(ē(τ1), ē(τ2)) = − ln
(
p(τ1)(0)

) ∑
0≤j≤i,1≤i

ijπ
(τ2/τ1)
2 (i, j),
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such that Em,n ⇒ Em in Dm+2.

Let us compare the conditions in [37] that are needed for convergence of ē(·) in
the case of strong-mixing sequences with our conditions. First we have to impose
that the threshold, un, in [37], is such that un = O(urn(τ )). Then Condition C1 in
[37] is equivalent to our condition (C2.a). Condition D2 in [37] is slightly weaker
than our condition (C2.b) and condition (C2.c) since we also assume that ln =
o(r

2/r
n ). Condition C3 in [37] is implied by our Condition (C1), but it appears as a

natural sufficient condition when un = O(urn(τ )).
Now let us consider the estimators of the compound probabilities and introduce

the following processes:

êj,n(·) = √
kn

(
p̂(·)

n (j) − p(·)(j)
)
, j ≥ 0.

THEOREM 4.2. Suppose that (C1), (C2) and (C3) hold. Let 0 < σ < φ < ∞.
Then

(ê0,n(·), . . . , êm,n(·)) ⇒ (ê0(·), . . . , êm(·))
in Dm+1

σ,φ , where

êj (·) = ej (·) − hj (·)ē(·)
and hj (τ ) = ∂p(τ̄ )(j)/∂τ̄ |τ̄=τ .

Note that the hj (·) satisfy the recursion

h0(·) = p(·)(0) lnp(1)(0),

hj (·) = − ln(p(·)(0))

j

j∑
i=1

iπ(i)

(
ln(p(1)(0))

ln(p(·)(0))
p(·)(j − i) + hj−i (·)

)
, j ≥ 1.

In order to address the asymptotic properties of the estimators of the limiting
cluster size probabilities, we construct several processes. Following [6], we define
recursively the processes d̂j (·) using the intermediate processes

wj(·) := p(·)(j)

(ln(p(·)(0))p(·)(0))2 ê0(·) − 1

jp(·)(0)

j−1∑
i=0

(j − i)π(j − i)êi(·)

− 1

ln(p(·)(0))p(·)(0)
êj (·) − 1

jp(·)(0)

j−1∑
i=1

ip(·)(j − i)d̂j (·)
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by d̂0(·) = −ê0(·)/p(·)(0) and for j ≥ 1,

d̂j (·) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wj(·), if π(j) > 0 and
j∑

i=1

π(i) < 1,

min

{
wj(·),−

j−1∑
i=1

d̂i (·)
}
, if π(j) > 0 and

j∑
i=1

π(i) = 1,

max{0,wj (·)}, if π(j) = 0 and
j∑

i=1

π(i) < 1,

max

{
0,min

{
wj(·),−

j−1∑
i=1

d̂i (·)
}}

, if π(j) = 0 and
j∑

i=1

π(i) = 1.

Note that the process d̂j (·) depends on the support of the limiting cluster size
distribution. It is not in general a Gaussian process because of the truncations in
its construction, except if π(i) > 0 for i = 1, . . . , j and

∑j
i=1 π(i) < 1.

In the following corollary we derive the weak convergence of the processes

d̂j,n(·) = √
kn

(
π̂ (·)

n (j) − π(j)
)
, j ≥ 1,

and the asymptotic behavior of

d̄j,n = √
kn

(̂̄πn(j) − π(j)
)
, j ≥ 1.

COROLLARY 4.1. Suppose that (C1), (C2) and (C3) hold. Let 0 < σ <

φ < ∞. Then

(d̂1,n(·), . . . , d̂m,n(·)) ⇒ (d̂1(·), . . . , d̂m(·))
in Dm

σ,φ and

(d̄1,n, . . . , d̄m,n)
d→

(
1

φ − σ

∫ φ

σ
d̂1(τ ) dτ, . . . ,

1

φ − σ

∫ φ

σ
d̂m(τ ) dτ

)
.

We end this section by focusing on the estimators of the extremal index.

COROLLARY 4.2. Suppose that (C1), (C2) and (C3) hold. Let 0 < σ <

φ < ∞. Then √
kn

(
θ̂

(·)
1,n − θ

) ⇒ − 1

(·)p(·)(0)
ê0(·)

in D1
σ,φ ,

√
kn

(
θ̂

(·)
2,n(m) − θ2(m)

) ⇒ −(θ2(m))2
m∑

j=1

j d̂j (·)
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in D1
σ,φ ,

√
kn

(
θ̂

(·)
3,n(m) − θ

(·)
3 (m)

) ⇒ (
∑m

j=0(j − (·))2êj (·) − θ
(·)
3 (m)

∑m
j=1 j2d̂j (·))

(·)∑m
j=1 j2π(j)

in D1
σ,φ and

√
kn(̂θ̄1,n − θ)

d→ − 1

φ − σ

∫ φ

σ

1

τp(τ)(0)
ê0(τ ) dτ.

Note that the asymptotic variance of θ̂
(τ )
1,n is given by

τ−2

(
eθτ − 2θτ − 1 + θ3τ

∞∑
j=1

j2π(j)

)
.

It can be estimated by using the estimators of the limiting cluster probabilities
π̂

(τ )
n (j) and the estimator of the extremal index θ̂

(τ )
1,n .

5. Simulation study. A simulation study is conducted to investigate the per-
formance of the estimators on large samples and to make a comparison with exist-
ing estimators.

(i) Performance on large samples. Data are simulated from three stationary
Markov processes:

• a squared ARCH(1) process: Xn = (η + λXn−1)Z
2
n, n ≥ 2, where Zn are i.i.d.

standard Gaussian r.v.s, η = 2 × 10−5, λ = 0.5 and X1 is a r.v. drawn from the
stationary distribution of the chain. The limiting cluster size probabilities and
the extremal index have been computed by simulations in [19]: π(1) = 0.751,
π(2) = 0.168, π(3) = 0.055, π(4) = 0.014, π(5) = 0.008, θ = 0.727.

• a max-AR(1) process: Xn = max{(1 − θ)Xn−1,Wn}, n ≥ 2, where Wn are i.i.d.
unit Fréchet r.v.s, θ = 0.5 and X1 = W1/θ . By [33], π(1) = 0.5, π(2) = 0.25,
π(3) = 0.125, π(4) = 0.0625, π(5) = 0.031, θ = 0.5.

• an AR(1) process with uniform marginal: Xn = r−1Xn−1 + εn, n ≥ 2, where
(εn) are i.i.d. r.v.s uniformly distributed on {0,1/r, . . . , (r − 1)/r}, r = 4 and
X1 is uniformly distributed on (0,1). By [33], π(1) = 0.75, π(2) = 0.1875,
π(3) = 0.0469, π(4) = 0.0117, π(5) = 0.0029, θ = 0.75.

To compare the performance of the estimators, 500 sequences of length
n = 2000 were simulated from the three processes. We have considered the ra-
tios π̂

(1)
n (j)/π(j) for j = 1, . . . ,5, θ̂

(1)
1,n/θ , and θ̂

(1)
j,n(m)/θ for j = 2,3 and m = 8.

The graphs show the average over the 500 samples.
In Figures 1 and 2 the means and the root mean squared errors (RMSE) of the

ratios are plotted as a function of kn. The bias of π̂
(1)
n (1) is small and approxima-

tively stable with respect to kn for the three processes. The biases of π̂
(1)
n (2) and
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FIG. 1. Means of the ratios of the cluster size probabilities π̂
(1)
n (1)/π(1), π̂

(1)
n (2)/π(2),

π̂
(1)
n (3)/π(3), π̂

(1)
n (4)/π(4), π̂

(1)
n (5)/π(5), and means of the ratios of the extremal index θ̂

(1)
1,n/θ ,

θ̂
(1)
2,n(8)/θ and θ̂

(1)
3,n(8)/θ as a function of kn = 50, . . . ,250 for the squared ARCH(1) process (—–),

the max-AR(1) process (- - - -) and the AR(1) process (· · · ·). The graphs show the average over
500 samples of length n = 2000.

π̂
(1)
n (3) are small for the squared ARCH(1) process and the max-AR(1) process

but large for the AR(1) process.
For j ≥ 4, the biases of the estimators can be relatively large and it seems very

difficult to have good estimates of π(j) in the case of a data set of length 2000.
The RMSE of the ratios increase dramatically with j because of the biases. Note
also that a minimum of the RMSE with respect to kn can not always be found. An
optimal choice of kn based on the RMSE criterion will depend on the process and
on the limiting cluster size probabilities.
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FIG. 2. RMSE of the ratios of the cluster size probabilities π̂
(1)
n (1)/π(1), π̂

(1)
n (2)/π(2),

π̂
(1)
n (3)/π(3), π̂

(1)
n (4)/π(4), π̂

(1)
n (5)/π(5), and RMSE of the ratios of the extremal index θ̂

(1)
1,n/θ ,

θ̂
(1)
2,n(8)/θ and θ̂

(1)
3,n(8)/θ as a function of kn = 50, . . . ,250 for the squared ARCH(1) process (—–),

the max-AR(1) process (- - - -) and the AR(1) process (· · · ·). The graphs show the average over
500 samples of length n = 2000.

The bias of θ̂
(1)
1,n is lower than those of θ̂

(1)
2,n(m) and θ̂

(1)
3,n(m) for the squared

ARCH(1) process and the max-AR(1) process. But for the AR(1) process, the
bias of θ̂

(1)
3,n(m) is the smallest. θ̂

(1)
1,n and θ̂

(1)
2,n(m) perform in the same way in terms

of RMSE and better than θ̂
(1)
3,n(m).

(ii) Comparison with existing estimators on large samples. Data are simu-
lated from the squared ARCH(1) process defined below. 500 sequences of length
n = 2000 were also used. For the limiting cluster probabilities comparisons are
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made between π̇n(i) = π̂
(1)
n (j), ̂̄πn(j) with σ = 0.7 and φ = 1.3, Hsing’s es-

timators π̂n,1(j) with n/sn = kn/2 and Ferro’s estimators π̃n(j) with N = kn

(see [15], equation (4.12)). For the extremal index comparisons are made between
θ̇n = θ̂

(1)
1,n, ̂̄θ1,n with σ = 0.7 and φ = 1.3, Ferro and Segers’ estimator θ̃n(u) with

u = Xn−kn+1:n (see [16], equation (5)), Hsing’s estimator θ̃n with n/sn = kn/2 (see
[21], page 137) and the runs estimator θ̂R

n (p,u) with p = 	rn/6
, u = Xn−	n/sn
:n
and n/sn = kn/2 (see [43], page 282).

In Figure 3 the RMSE of the ratios π̇n(i)/π(i) for i = 1, . . . ,5, and θ̇n/θ

are plotted. For the limiting cluster size probabilities and the extremal index, the

smoothed versions ̂̄πn and ̂̄
θ1,n perform uniformly better than the unsmoothed es-

timators π̂
(1)
n and θ̂

(1)
1,n which perform uniformly better than the other estimators

[except for π(2), where Hsing’s estimator should be preferred to the unsmoothed
estimator]. As Ferro and Segers’ estimators, our estimators only require the choice
of a sequence, but their performance is more favorable.

6. Proofs. Throughout we let K be a generic constant whose value may
change from line to line.

LEMMA 6.1. Consider the first order stochastic equation with random coef-
ficients of Example 3.1. There exists a constant K such that, for φ ≥ τ1 ≥ τ2 ≥ 0
and n ≥ 1,

E
(
N(τ1)

n (E) − N(τ2)
n (E)

)3 ≤ K(τ1 − τ2).

PROOF. Let In(τ1, τ2) = (un(τ1), un(τ2)]. By using the same arguments as in
the proof of Lemma 4.1 in [10], we can show that there exists a constant K such
that, for φ ≥ τ1 ≥ τ2 ≥ 0 and n ≥ 1,

ci,j = P
(
Xj ∈ In(τ1, τ2)|Xi ∈ In(τ1, τ2)

) ≤ K

(
1

n
+ ϕj−i

)
, j ≥ i ≥ 1,

where ϕ = EA
ξ
1 < 1 for ξ ∈ (0, κ). By the stationary and Markov property, we get

E
(
N(τ1)

n (E) − N(τ2)
n (E)

)3

≤ 3!n ∑
i,j≥1,i+j≤n+1

E1{X1∈In(τ1,τ2)}1{Xi∈In(τ1,τ2)}1{Xi+j−1∈In(τ1,τ2)}

≤ 3!(τ1 − τ2)
∑

i,j≥1,i+j≤n+1

c1,ici,i+j−1

≤ 3!(τ1 − τ2)K
2

∑
i,j≥1,i+j≤n+1

(
1

n
+ ϕj−1

)(
1

n
+ ϕi−1

)
≤ K(τ1 − τ2). �
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FIG. 3. RMSE of the ratios of the cluster size probabilities π̇n(1)/π(1), π̇n(2)/π(2), π̇n(3)/π(3),

π̇n(4)/π(4), π̇n(5)/π(5) as a function of kn = 50, . . . ,250, for π̇n = π̂
(1)
n (- - - -), π̇n = ̂̄πn (——),

π̇n = π̃n (Ferro’s estimators · · · ·) and π̇n = π̂n,1 (Hsing’s estimator – – –). RMSE of the ratios of

the extremal index θ̇n/θ as a function of kn = 50, . . . ,250, for θ̇n = θ̂
(1)
1,n (- - - -), θ̇n = ̂̄

θ1,n (——),

θ̇n = θ̃n (Ferro and Segers’ estimator · · · ·), θ̇n = θ̃n (Hsing’s estimator – – – ) and θ̇n = θ̂R
n (runs

estimator - – - –).

LEMMA 6.2. Consider the first order stochastic equation with random coeffi-
cients of Example 3.1. Let (qn), (mn), (δn), (xn) be sequences of integers such that
qn → ∞ and qn = o(n), mn → ∞ and mn = o(qn), δn → ∞ and nδ−κ

n → ∞ and
xn → ∞ as n → ∞. Then for each l ≥ 0, there exists a constant K such that∣∣P (

N(τ)
n (E) = l

) − p(τ)(l)
∣∣ ≤ K

(
mn

qn

+ qn

n
+ 1

qn

+ n

qn

η2mn/3 + q	nδ−κ
n 


nδ−κ
n
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+ δ−1
n + ϕqnxξ

n + x−(κ−ε)
n + n−ρ/κ

)
locally uniformly for τ > 0, where 0 < η < 1, 0 < ϕ < 1, 0 < ξ < κ and 0 < ε < κ .

PROOF. Write d(n, l) = |P(N
(τ)
n (E) = l) − p(τ)(l)|. Let θ

(τ)
n = n ×

P(N
(τ)
n (Bn) > 0)/(τqn), where Bn = (0;qn/n]. Let ζ

(τ)
i,n , i ≥ 1, be i.i.d. integer-

valued r.v.s such that

P
(
ζ

(τ)
i,n = m

) = P
(
N(τ)

n (Bn) = m|N(τ)
n (Bn) > 0

)
, m ≥ 1,

and η(θ
(τ)
n τ ) be a Poisson r.v. with parameter θ

(τ)
n τ and independent of the ζ

(τ)
i,n .

We have that

d(n, l) ≤
∣∣∣∣∣P (

N(τ)
n (E) = l

) − P

(η(θ
(τ)
n τ )∑

i=1

ζ
(τ)
i,n = l

)∣∣∣∣∣
+

∣∣∣∣∣P
(η(θ

(τ)
n τ )∑

i=1

ζ
(τ)
i,n = l

)
− p(τ)(l)

∣∣∣∣∣
=: Il + IIl .

By using Theorem 2 in [30], we deduce that

Il ≤ 2τ
mn

qn

+ 2τ
qn

n
+ n

qn

min{6α2/3
n,mn

(τ );βn,mn(τ )},
where

βn,l(τ ) ≡ sup
1≤t≤n−l

E sup
∣∣P (

B|F (τ )
1,t

) − P(B) :B ∈ F (τ )
t+l,n

∣∣.
Note that, since (Xn) is a geometrically absolute regular sequence, there exists a
constant 0 < η < 1 such that, for every choice of τ > 0 and 1 ≤ l ≤ n, αn,l(τ ) ≤
βn,l(τ ) ≤ O(ηl).

By (1.3) and (1.4), we deduce that there exist constants K1,l > 0 and K2,l > 0
such that, locally uniformly for τ > 0,

IIl ≤ K1,l

∣∣θ(τ)
n − θ0

∣∣ + K2,l

l∑
k=1

∣∣π(τ)
n (k) − π(k)

∣∣
≤ K1,l

∣∣θ(τ)
n − θ0

∣∣ + 2θ−1
0 K2,l

l+1∑
k=1

∣∣∣∣∣θ0

qn∑
j=k

π(τ)
n (j) − θk−1

∣∣∣∣∣.
Let θ

(τ)
k,n = P(N

(τ)
n (Bn) = k|X0 > un(τ)). Note that∣∣θ(τ)
n − θ0

∣∣ ≤ ∣∣θ(τ)
n − θ

(τ)
0,n

∣∣ + ∣∣θ(τ)
0,n − θ0

∣∣ =: IIa + IIb
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and for k ≥ 1,∣∣∣∣∣θ0

qn∑
j=k

π(τ)
n (j) − θk−1

∣∣∣∣∣ ≤
∣∣∣∣θ0

P(N
(τ)
n (Bn) ≥ k)

P (N
(τ)
n (Bn) ≥ 1)

− θ0

θ
(τ)
n

θ
(τ)
k−1,n

∣∣∣∣ + ∣∣∣∣ θ0

θ
(τ)
n

− 1
∣∣∣∣θ(τ)

k−1,n

+ ∣∣θ(τ)
k−1,n − θk−1

∣∣ =: IIck + IIdk + IIek.

By using the same arguments as for the proof of Lemma 2.4 in [33], we have for
k ≥ 1 ∣∣P (

N(τ)
n (Bn) ≥ k

) − (qn − k + 1)P
(
N(τ)

n (Bn) = k − 1,X0 > un(τ)
)∣∣

≤ kP
(
M0,qn > un(τ ),Mqn,2qn > un(τ )

)
,

where Mi,j = max{Xl : l = i + 1, . . . , j}. It follows that for k ≥ 1

IIck ≤ k
θ0

θ
(τ)
n

nP (M0,qn > un(τ ),Mqn,2qn > un(τ ))

τqn

+ k − 1

qn

θ0

θ
(τ)
n

and

IIa ≤ nP
(
M0,qn > un(τ ),Mqn,2qn > un(τ )

)
/(τqn).

Now observe that

P
(
M0,qn > un(τ ),Mqn,2qn > un(τ )

)
= P

({{M0,qn−mn > un(τ)} ∪ {Mqn−mn,qn > un(τ )}} ∩ {Mqn,2qn > un(τ )})
≤ P

(
Mqn−mn,qn > un(τ )

) + αn,mn(τ ) + P 2(
M0,qn > un(τ )

)
≤ τ

mn

n
+ αn,mn(τ ) +

(
τ
qn

n

)2

θ2
0

and, therefore,

IIa +
l+1∑
k=1

(IIck + IIdk) ≤ K

(
mn

qn

+ n

qn

αn,mn(τ ) + qn

n
+ 1

qn

)
.

Let σk = ∑∞
j=k θj = P(R(1) ≥ k) = ∫ ∞

1 P(�{j ≥ 1 :
∏j

i=1 Ai > x−1} ≥ k)κ ×
x−κ−1 dx. We have that θk−1 = σk − σk−1 for k ≥ 1. Then

IIb ≤
∣∣∣∣ qn∑
j=0

θ
(τ)
j,n − σ0

∣∣∣∣∣ +
∣∣∣∣∣

qn∑
j=1

θ
(τ)
j,n − σ1

∣∣∣∣∣
IIek ≤

∣∣∣∣∣
qn∑

j=k−1

θ
(τ)
j,n − σk−1

∣∣∣∣∣ +
∣∣∣∣∣

qn∑
j=k

θ
(τ)
j,n − σk

∣∣∣∣, k ≥ 1.

Let us define the probability measure, Qn, on (1,∞) by

Qn(dx) = P
(
(un(τ ))−1X0 ∈ dx

)
/P

(
(un(τ ))−1X0 > 1

)
.
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As in [19], we introduce the process (�n) defined by �0 = 0 and �n = An�n−1 +
Bn, n ≥ 1. We have that �n ≥ 0 and Xn = X0

∏n
i=1 Ai + �n for n ≥ 1. Let

Bk(qn, (�j )j=1,...,qn,Qn)

=
∫ ∞

1
P

(
�

{
1 ≤ j ≤ qn :X0

j∏
i=1

Ai + �j > un(τ)

}

≥ k|(un(τ ))−1X0 = x

)
Qn(dx).

Note that P(N
(τ)
n (Bn) ≥ k|X0 > un(τ)) = Bk(qn, (�j )j=1,...,qn,Qn) and that∣∣∣∣∣

qn∑
j=k

θ
(τ)
j,n − σk

∣∣∣∣∣ ≤ |Bk(qn, (�j )j=1,...,qn,Qn) − Bk(qn, (0)j=1,...,qn,Qn)|

+ |Bk(qn, (0)j=1,...,qn,Qn) − Bk(∞, (0)j=1,...,∞,Qn)|
+ |Bk(∞, (0)j=1,...,∞,Qn) − Bk(∞, (0)j=1,...,∞,Q)|.

We now consider successively each term of the upper bound:
(i) On the one hand, we have that∫ ∞

1
P

(
�

{
1 ≤ j ≤ qn :X0

j∏
i=1

Ai + �j > un(τ)

}
≥ k

∣∣∣∣∣(un(τ ))−1X0 = x

)
× Qn(dx)

≥
∫ ∞

1
P

(
�

{
1 ≤ j ≤ qn :X0

j∏
i=1

Ai > un(τ)

}
≥ k

∣∣∣∣∣(un(τ ))−1X0 = x

)
× Qn(dx).

On the other hand, we have that{
�

{
1 ≤ j ≤ qn :X0

j∏
i=1

Ai + �j > un(τ)

}
≥ k

}

⊂
{
�

{
1 ≤ j ≤ qn :

{{
X0

j∏
i=1

Ai > un(τ)(1 − δ−1
n )

}

∪ {�j > δ−1
n un(τ )}

}
≥ k

}

⊂
{
�

{
1 ≤ j ≤ qn :X0

j∏
i=1

Ai > un(τ)(1 − δ−1
n )

}
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+ �{1 ≤ j ≤ qn :�j > δ−1
n un(τ )} ≥ k

}

⊂
qn⋃
l=0

{
�{1 ≤ j ≤ qn :�j > δ−1

n un(τ )} = l
}

∩ {
�{1 ≤ j ≤ qn :�j > δ−1

n un(τ )} ≥ (k − l) ∨ 0
}
.

Then∫ ∞
1

P

(
�

{
1 ≤ j ≤ qn :X0

j∏
i=1

Ai + �j > un(τ)

}
≥ k

∣∣∣∣∣(un(τ ))−1X0 = x

)
× Qn(dx)

≤
∫ ∞

1
P

(
�

{
1 ≤ j ≤ qn :X0

j∏
i=1

Ai > un(τ)(1 − δ−1
n )

}
≥ k

∣∣∣∣∣
(un(τ ))−1X0 = x

)
Qn(dx)

+
∫ ∞

1
P

(
�
{
1 ≤ j ≤ qn : {�j > δ−1

n un(τ )}} > 0
)
Qn(dx).

Note that �j ≤ Xj for j ≥ 1 and, therefore,∫ ∞
1

P
(
�
{
1 ≤ j ≤ qn : {�j > δnun(τ )}} > 0

)
Qn(dx)

≤ P
(
Mqn > δ−1

n un(τ )
) ≤ K

q	nδ−κ
n 


nδ−κ
n

if qn → ∞ and nδ−κ
n → ∞ as n → ∞. Moreover, by a change of variable, we

have that∫ ∞
1

P

(
�

{
1 ≤ j ≤ qn :X0

j∏
i=1

Ai > un(τ)(1 − δ−1
n )

}
≥ k

∣∣∣∣∣(un(τ ))−1X0 = x

)
× Qn(dx)

= (1 + o(1))

(1 − δ−1
n )κ

∫ ∞
(1−δ−1

n )−1
P

(
�

{
1 ≤ j ≤ qn :

j∏
i=1

Ai > x−1

}
≥ k

)
Qn(dx).

Since the density function of Qn is uniformly bounded in a neighborhood of 1, we

deduce that
∫ (1−δ−1

n )−1

1 Qn(dx) ≤ Kδ−1
n and it follows that

|Bk(qn, (�j )j=1,...,qn,Qn) − Bk(qn, (0)j=1,...,qn,Qn)| ≤ K

(q	nδ−κ
n 


nδ−κ
n

+ δ−1
n

)
.
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(ii) Let ϕ = EA
ξ
1 < 1 for ξ ∈ (0, κ). We have that∫ ∞

1
P

(
�

{
j ≥ 1 :

j∏
i=1

Ai > x−1

}
≥ k

)
Qn(dx)

=
∫ ∞

1
P

(
�

{
1 ≤ j ≤ qn :

j∏
i=1

Ai > x−1

}
+

{
j > qn :

j∏
i=1

Ai > x−1

}
≥ k

)
× Qn(dx)

≤
∫ ∞

1
P

(
�

{
1 ≤ j ≤ qn :

j∏
i=1

Ai > x−1

}
≥ k

)
Qn(dx)

+
∫ ∞

1
P

(
�

{
j > qn :

j∏
i=1

Ai > x−1

}
> 0

)
Qn(dx).

It follows that

|Bk(qn, (0)j=1,...,qn,Qn) − Bk(∞, (0)j=1,...,∞,Qn)|

≤
∫ ∞

1
P

(
�

{
j > qn :

j∏
i=1

Ai > x−1

}
> 0

)
Qn(dx)

≤
∫ xn

1
P

( ∞∨
j=qn+1

j∏
i=1

Ai > x−1

)
Qn(dx) + Qn(xn,∞)

≤
∞∑

j=qn+1

ϕjxξ
n + Qn(xn,∞) ≤ ϕqnx

ξ
n

1 − ϕ
+ K

xκ−ε
n

by Chebyshev’s inequality and Potter’s bounds.
(iii) Let fk(x) = P(�{{j ≥ 1 :

∏j
i=1 Ai > x−1} ≥ k). Since the distribution of

A1 is absolutely continuous, fk is differentiable. Then we have

Bk(∞, (0)j=1,...,∞,Qn) − Bk(∞, (0)j=1,...,∞,Q)

=
∫ ∞

1
fk(x)

(
Qn(dx) − Q(dx)

) =
∫ ∞

1
f

(1)
k (x)

(
Qn(x,∞) − Q(x,∞)

)
dx,

where f
(1)
k is the first derivative of fk . But, by equation (3.2), supx≥1 |(Qn(x,∞)×

Q−1(x,∞) − 1)| ≤ Kn−ρ/κ and we deduce that

|Bk(∞, (0)j=1,...,∞,Qn) − Bk(∞, (0)j=1,...,∞,Q)| ≤ Kn−ρ/κ .

Putting the inequalities together yields

IIb +
l+1∑
k=1

IIek ≤ K

(q	nδ−κ
n 


nδ−κ
n

+ δ−1
n + ϕqnxξ

n + x−(κ−ε)
n + n−ρ/κ

)
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and the result follows. �

We now define the big blocks I
�
j and the small blocks I ∗

j by

I
�
j = {(j − 1)rn + 1, . . . , jrn − ln},
I ∗
j = {jrn − ln + 1, . . . , jrn}, j = 1, . . . , kn.

Let us introduce the following r.v.s associated with the big and small blocks:

N
(τ),�
rn,j = ∑

i∈I
�
j

1{Xi>urn(τ )},

N
(τ),∗
rn,j = ∑

i∈I∗
j

1{Xi>urn(τ )}, j = 1, . . . , kn,

p(τ),�
n (i) = 1

kn

kn∑
j=1

1{N(τ),�
rn,j =i},

p(τ),∗
n (i) = 1

kn

kn∑
j=1

(
1{N(τ),�

rn,j =i−N
(τ),∗
rn,j ,N

(τ),∗
rn,j >0} − 1{N(τ),�

rn,j =i,N
(τ),∗
rn,j >0}

)
,

p̄(τ ),�
n = 1

kn

kn∑
j=1

N
(τ),�
rn,j ,

p̄(τ ),∗
n = 1

kn

kn∑
j=1

N
(τ),∗
rn,j .

It is easily seen that p
(τ)
n (i) = p

(τ),�
n (i) + p

(τ),∗
n (i) and p̄

(τ )
n = p̄

(τ ),�
n + p̄

(τ ),∗
n .

To prove Proposition 4.1, we will need the three following lemmas. The first
lemma can be derived from Lemma 1 in [7].

LEMMA 6.3. Let p1, p2, p3 be positive numbers such that p−1
1 + p−1

2 +
p−1

3 = 1. Suppose that Y and Z are random variables measurable with respect

to the σ -algebra F (τ1,...,τr )
1,m , F (τ1,...,τr )

m+l,n respectively (1 ≤ m ≤ n − l) and assume

further that ‖Y‖p1 = (E|Y |p1)1/p1 < ∞, ‖Z‖p2 = (E|Z|p2)1/p2 < ∞. Then

|Cov(Y,Z)| ≤ 10(αn,l(τ1, . . . , τr))
1/p3‖Y‖p1‖Z‖p2 .

LEMMA 6.4. Suppose that (C0) holds. Let (rn) be a sequence such that

rn → ∞ and rn = o(n). Then p
(τ)
n (i)

P→ p(τ)(i) and p̄
(τ )
n

P→ τ .
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PROOF. Since rn → ∞, �(urn(τ )) holds and there exists a sequence (ln) such
that ln → ∞, ln = o(rn) and αrn,ln(τ ) → 0. Let ε > 0. By Chebyshev’s inequality,

P
(∣∣p(τ),∗

n (i)
∣∣ > ε

)
≤ ε−1(

P
(
N

(τ),�
rn,1 = i − N

(τ),∗
rn,1 ,N

(τ),∗
rn,1 > 0

) + P
(
N

(τ),�
rn,1 = i,N

(τ),∗
rn,1 > 0

))
≤ 2ε−1P

(
N

(τ),∗
rn,1 > 0

) ≤ 2ε−1P

( ⋃
i∈I∗

1

{Xi > urn(τ )}
)

≤ 2ε−1τ ln/rn → 0

and

P
(∣∣p̄(τ ),∗

n

∣∣ > ε
) ≤ ε−1E

(
N

(τ),∗
rn,1

) ≤ ε−1τ ln/rn → 0.

Hence, p
(τ),∗
n (i)

P→ 0 and p̄
(τ ),∗
n

P→ 0. Now let us show that p
(τ),�
n (i)

P→ p(τ)(i)

and p̄
(τ ),�
n

P→ τ . Since limn→∞ P(N
(τ),∗
rn,1 = i) = 0 and limn→∞ E(N

(τ),∗
rn,1 ) =

0, we deduce by condition (C0.b) that limn→∞ P(N
(τ),�
rn,1 = i) = p(τ)(i) and

limn→∞ E(N
(τ),�
rn,1 ) = τ . Therefore, it suffices to show that

p(τ),�
n (i) − P

(
N

(τ),�
rn,1 = i

) P→ 0 and p̄(τ ),�
n − E

(
N

(τ),�
rn,1

) P→ 0.

We have

P
(∣∣p(τ),�

n (i) − P
(
N

(τ),�
rn,1 = i

)∣∣ > ε
)

≤ ε−2E
(
p(τ),�

n (i) − P
(
N

(τ),�
rn,1 = i

))2

≤ 2(knε)
−2

∑
1≤j≤l≤kn

∣∣Cov
(
1{N(τ),�

rn,l =i},1{N(τ),�
rn,j =i}

)∣∣.
By using Lemma 6.3 with p1 = ∞, p2 = ∞, p3 = 1, we get

P
(∣∣p(τ),�

n (i) − P
(
N

(τ),�
rn,1 = i

)∣∣ > ε
)

≤ K(knε)
−2

(
kn +

kn−1∑
j=1

(kn − j)αrn,ln+(j−1)rn(τ )

)∥∥1{N(τ),�
rn,1 =i}

∥∥2
∞

≤ Kε−2(
k−1
n + αrn,ln(τ )

) → 0.

In the same way, by using Lemma 6.3 with p1 = ρ, p2 = ρ, p3 = ρ/(ρ − 2), we
get

P
(∣∣p̄(τ ),�

n − E
(
N

(τ),�
rn,1

)∣∣ > ε
)

≤ ε−2E
(
p̄(τ ),�

n − E
(
N

(τ),�
rn,1

))2 ≤ 2(knε)
−2

∑
1≤j≤l≤kn

∣∣Cov
(
N

(τ),�
rn,j ,N

(τ),�
rn,l

)∣∣
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≤ K(knε)
−2

(
kn +

kn−1∑
j=1

(kn − j)
(
αrn,ln+(j−1)rn(τ )

)1−2ρ−1
)∥∥N(τ),�

rn,1

∥∥2
ρ

≤ Kε−2(
k−1
n + (αrn,ln(τ ))1−2ρ−1)∥∥N(τ)

rn,1

∥∥2
ρ.

Observe that supn≥1 E(N
(τ)
rn,1)

ρ < ∞ by condition (C0.b) and 1 − 2ρ−1 > 0 to
conclude. �

LEMMA 6.5. Suppose that (C0) holds. Let (rn) be a sequence such that
rn → ∞ and rn = o(n). Then(

p(·)
n (0), . . . , p(·)

n (m), p̄(·)
n

) ⇒ (
p(·)(0), . . . , p(·)(m), (·)) in Dm+2.

PROOF. Let us first recall that convergence in Dm+2 is equivalent to conver-
gence in Dm+2

σ,φ for all choice of positive σ and φ, 0 < σ < φ < ∞. Moreover,

since (p(·)(0), . . . , p(·)(m), (·)) is a deterministic element of Dm+2
σ,φ , we only need

to prove that p
(·)
n (i) ⇒ p(·)(i) in D1

σ,φ , i = 0, . . . ,m, and p̄
(·)
n ⇒ (·) in D1

σ,φ .
By Theorem 13.1 in [3], it suffices to prove that the finite-dimensional distri-
butions converge and that a tightness criterion holds. It is easily seen that the
first condition is satisfied by using Lemma 6.4. We only need to check that the
(p

(·)
n (i))n≥1, i = 0, . . . ,m, and (p̄

(·)
n )n≥1 are tight in D1

σ,φ . Following Section 12
in [3], we call a set {τi} a δ-sparse if it satisfies σ = τ0 < · · · < τw = φ and
min1≤i≤w(τi − τi−1) ≥ δ, and we define for q ∈ D1

σ,φ

w′(q, δ) = inf{ti}
max

1≤i≤w
sup

s,t∈(τi−1,τi ]
|q(s) − q(t)|.

By using Theorem 13.2 in [3] and its corollary, p
(·)
n (i) is tight in D1

σ,φ if and only
if the two following conditions hold:

(i) for each τ in a set that is dense in [σ,φ] and contains σ ,

lim
a→∞ lim sup

n
P

(
p(τ)

n (i) > a
) = 0,

(ii) for each ε > 0, limδ→0 lim supn P (w′(p(·)
n (i), δ) > ε) = 0.

Condition (i) is satisfied since p
(τ)
n (i)

P→ p(τ)(i) < 1 for each τ ∈ [σ,φ] (by
Lemma 6.4). Let us now consider condition (ii). Let δ < φ − σ and define Mδ =
	(φ − σ)δ−1
 + 1, τ δ

l = σ + lδ for 0 ≤ l < Mδ and τ δ
Mδ

= φ. Note that τ �→∑i
j=0 p

(τ)
n (j) is a nonincreasing function, and then

sup
τ,τ ′∈(τ δ

l−1,τ
δ
l ]

∣∣∣∣ i∑
j=0

(
p(τ)

n (j) − p(τ ′)
n (j)

)∣∣∣∣ ≤
i∑

j=0

(
p

(τδ
l−1)

n (j) − p
(τδ

l )
n (j)

)
.
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It follows that

w′
(

i∑
j=0

p(·)
n (j), δ

)
≤ max

1≤l≤Mδ

i∑
j=0

(
p

(τδ
l−1)

n (j) − p
(τδ

l )
n (j)

)
.

If i ≥ 1, we have

P
(
w′(p(·)

n (i), δ
)
> ε

)
≤ P

(
w′

(
i∑

j=0

p(·)
n (j), δ

)
>

ε

2

)
+ P

(
w′

(
i−1∑
j=0

p(·)
n (j), δ

)
>

ε

2

)

≤ P

(
max

1≤l≤Mδ

i∑
j=0

(
p

(τδ
l−1)

n (j) − p
(τδ

l )
n (j)

)
>

ε

2

)

+ P

(
max

1≤l≤Mδ

i−1∑
j=0

(
p

(τδ
l−1)

n (j) − p
(τδ

l )
n (j)

)
>

ε

2

)
.

If i = 0, we have

P
(
w′(p(·)

n (i), δ
)
> ε

) ≤ P

(
max

1≤l≤Mδ

(
p

(τδ
l−1)

n (0) − p
(τδ

l )
n (0)

)
> ε

)
.

By using Lemma 6.4, we get

max
1≤l≤Mδ

i∑
j=0

(
p

(τδ
l−1)

n (j) − p
(τδ

l )
n (j)

) P→ max
1≤l≤Mδ

i∑
j=0

(
p(τδ

l−1)(j) − p(τδ
l )(j)

)
,

which is less than ε/2 for small δ, since τ �→ ∑i
j=0 hj (τ ) is a continuous and

bounded function on [σ,φ]. Thus, we deduce that

lim
δ→0

lim sup
n

P
(
w′(p(·)

n (i), δ
)
> ε

) = 0.

Condition (ii) is satisfied and p
(·)
n (i) is tight in D1

σ,φ .

Now note that τ �→ p̄
(τ )
n is a nondecreasing function and ∂p̄(τ)/∂τ = 1. The

arguments for p̄
(·)
n run similarly. We conclude that (p

(·)
n (0), . . . , p

(·)
n (m), p̄

(·)
n )

weakly converges in Dm+2
σ,φ , and then in Dm+2. �

PROOF OF PROPOSITION 4.1. The generalized inverse of p̄
(·)
n is given by

p̄(τ̄ ),←
n = inf

{
τ ≥ 0 :

rnkn∑
i=1

1{Xi>F←(1−τ/rn)} ≥ knτ̄

}
= rnF̄

(
Xknrn−	knτ̄
:knrn

)
since F←(F (Xknrn−	knτ̄
:knrn)) = Xknrn−	knτ̄
 : knrn . It is a càglàd function on
[σ,φ]. Note that for τ̄ ∈ [σ,φ] and n such that 	knτ̄
 ≤ knrn,

p̂(τ̄ )
n (m) = p(p̄

(τ̄ ),←
n )

n (m), m ≥ 0.
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Let D↑,σ,φ (resp. D
σ,φ
↑,σ,φ , C↑,σ,φ , C

σ,φ
↑,σ,φ) be the space of nondecreasing func-

tions from [σ,φ] to R (resp. nondecreasing functions from [σ,φ] to [σ,φ], contin-
uous nondecreasing functions from [σ,φ] to R, continuous nondecreasing func-
tions from [σ,φ] to [σ,φ]).

Let us introduce the map ϒ from D↑,σ,φ to D
σ,φ
↑,σ,φ taking h into max(σ,

min(h←, φ)). It is continuous at C
σ,φ
↑,σ,φ . Let us denote by p̄

(·),←
n,b the function

ϒ(p̄
(·)
n ). By Lemma 6.5 and the continuous mapping theorem (CMT), it follows

that p̄
(·),←
n,b ⇒ ϒ((·)) = (·) in D

σ,φ
↑,σ,φ .

Moreover, the composition map from Dm+1
σ,φ × D

σ,φ
↑,σ,φ to Dm+1

σ,φ taking (g,h)

into g ◦ h is continuous at (g,h) ∈ Cm+1
σ,φ × C

σ,φ
↑,σ,φ (see, e.g., [2], page 145). It

follows by the CMT that

(
p

(p̄
(·),←
n,b )

n (0), . . . , p
(p̄

(·),←
n,b )

n (m)
) ⇒ (

p(·)(0), . . . , p(·)(m)
)

in Dm+1
σ,φ . Now we have

sup
τ∈[σ,φ]

∣∣p(p̄
(τ),←
n )

n (j) − p
(p̄

(τ),←
n,b )

n (j)
∣∣

≤ sup
τ,τ̄∈[p̄(σ ),←

n ,σ ]

∣∣p(τ)
n (j) − p(τ̄ )

n (j)
∣∣1{p̄(σ ),←

n <σ }

∨ sup
τ,τ̄∈[φ,p̄

(φ),←
n ]

∣∣p(τ)
n (j) − p(τ̄ )

n (j)
∣∣1{p̄(φ),←

n >φ}.

Since the weak limit of (p
(·)
n (j))n≥1 is continuous at σ and φ, p̄

(σ ),←
n

P→ σ and

p̄
(φ),←
n

P→ φ, we deduce that

sup
τ∈[σ,φ]

∣∣p(p̄
(τ̄ ),←
n )

n (j) − p
(p̄

(τ),←
n,b )

n (j)
∣∣ P→ 0,

or, equivalently, p
(p̄

(·),←
n )

n (j) − p
(p̄

(·),←
n,b )

n (j) ⇒ 0 in D1
σ,φ . Finally, we get(

p̂(·)
n (0), . . . , p̂(·)

n (m)
) ⇒ (

p(·)(0), . . . , p(·)(m)
)

in Dm+1
σ,φ .

To prove weak convergence of (π̂
(·)
n (1), . . . , π̂

(·)
n (m)) in Dm

σ,φ , we proceed by

induction. First note that by Lemma 6.5 limn→∞ P([p̂(φ)
n (0), p̂

(σ )
n (0)] ∈ (0,1)) =

1. We deduce by the CMT that

χ(·)
n (1) = − p̂

(·)
n (1)

ln(p̂
(·)
n (0))p̂

(·)
n (0)

⇒ − p(·)(1)

ln(p(·)(0))p(·)(0)
= π(1)
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in D1
σ,φ ,

π̂ (·)
n (1) = max

(
0,min

(
χ(·)

n (1),1
)) ⇒ π(1)

in D1
σ,φ and (

p̂(·)
n (0), p̂(·)

n (1), π̂ (·)
n (1)

) ⇒ (
p(·)(0),p(·)(1),π(1)

)
in D3

σ,φ . Now assume that we have already shown that(
p̂(·)

n (0), . . . , p̂(·)
n (j), π̂ (·)

n (1), . . . , π̂ (·)
n (j − 1)

)
⇒ (

p(·)(0), . . . , p(·)(j),π(1), . . . , π(j − 1)
)

in D
2j
σ,φ . Let us define the maps �j from D

2j
σ,φ to D1

σ,φ taking f (·) = (fi(·))i=1,...,2j

into

�j(f (·)) = −(fj+1(·) + j−1 ln(f1(·))∑j−1
i=1 ifi+j+1(·)fj−i+1(·))

ln(f1(·))f1(·) .

Note that

χ(·)
n (j) = �j

(
p̂(·)

n (0), . . . , p̂(·)
n (j), π̂ (·)

n (1), . . . , π̂ (·)
n (j − 1)

)
and that �j is continuous on the space of continuous functions from [σ,φ] to

(0,1) × R2j−1. It follows by the CMT that χ
(·)
n (j) ⇒ π(j) in D1

σ,φ . Let us recall
that

π̂ (·)
n (j) = max

(
0,min

(
χ(·)

n (j),1 −
j−1∑
i=1

π̂ (·)
n (i)

))
.

We conclude by the CMT that π̂
(·)
n (j) ⇒ π(j) in D1

σ,φ and(
p̂(·)

n (0), . . . , p̂(·)
n (j + 1), π̂ (·)

n (1), . . . , π̂ (·)
n (j)

)
⇒ (

p(·)(0), . . . , p(·)(j + 1),π(1), . . . , π(j)
)

in D
2(j+1)
σ,φ . The induction is established and(

π̂ (·)
n (1), . . . , π̂ (·)

n (m)
) ⇒ (π(1), . . . , π(m))

in Dm
σ,φ . Finally, by using again the CMT, we deduce that(

θ̂
(·)
1,n, θ̂

(·)
2,n(m), θ̂

(·)
3,n(m)

) ⇒ (
θ, θ2(m), θ

(·)
3 (m)

)
in D3

σ,φ , ̂̄πn(m)
P→ π(m), m ≥ 1, and ̂̄

θ1,n
P→ θ . �
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Let us now define

e
�
i,n(τ ) = √

kn

(
p(τ),�

n (i) − P
(
N

(τ),�
rn,j = i

))
,

e∗
i,n(τ ) = √

kn

(
1{N(τ),�

rn,j =i−N
(τ),∗
rn,j ,N

(τ),∗
rn,j >0} − P

(
N

(τ),�
rn,j = i − N

(τ),∗
rn,j ,N

(τ),∗
rn,j > 0

))
− √

kn

(
1{N(τ),�

rn,j =i,N
(τ),∗
rn,j >0} − P

(
N

(τ),�
rn,j = i,N

(τ),∗
rn,j > 0

))
,

ē�
n (τ ) = √

kn

(
p̄(τ ),�

n − (rn − ln)P
(
Xi > urn(τ )

))
,

ē∗
n(τ ) = √

kn

(
p̄(τ ),∗

n − lnP
(
Xi > urn(τ )

))
,

E�
m,n(τ ) = (

e
�
0,n(τ ), . . . , e�

m,n(τ ), ē�
n (τ )

)
,

E∗
m,n(τ ) = (

e∗
0,n(τ ), . . . , e∗

m,n(τ ), ē∗
n(τ )

)
.

We have ej,n(·) = e
�
j,n(·) + e∗

j,n(·) and ēn(·) = ē
�
n (·) + ē∗

n(·). The proof of Theo-
rem 4.1 is now presented in a series of three lemmas.

LEMMA 6.6. Suppose that (C2) holds. Let τ > 0. Then E∗
m,n(τ )

P→ 0.

PROOF. By (C2.c), there exists a sequence (ln) satisfying ln = o(r
2/r
n ) and

limn→∞ nr−1
n αln = 0. We have that

E(e∗
i,n(τ ))2

≤ 2k−1
n E

(
kn∑

j=1

(
1{N(τ),�

rn,j =i−N
(τ),∗
rn,j ,N

(τ),∗
rn,j >0}

− P
(
N

(τ),�
rn,j = i − N

(τ),∗
rn,j ,N

(τ),∗
rn,j > 0

)))2

+ 2k−1
n E

(
kn∑

j=1

(
1{N(τ),�

rn,j =i,N
(τ),∗
rn,j >0} − P

(
N

(τ),�
rn,j = i,N

(τ),∗
rn,j > 0

)))2

=: 2(I1 + I2).

Let 2 < v < r . By using Lemma 6.3 with p1 = v, p2 = v, p3 = v/(v − 2), we get

I1 ≤ 2k−1
n

∑
1≤j≤l≤kn

Cov
(
1{N(τ),�

rn,j =i−N
(τ),∗
rn,j ,N

(τ),∗
rn,j >0},1{N(τ),�

rn,l =i−N
(τ),∗
rn,l ,N

(τ),∗
rn,l >0}

)

≤ Kk−1
n

(
kn +

kn−1∑
j=1

(kn − j)
(
αrn,(j−1)rn(τ )

)1−2v−1
)
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× ∥∥1{N(τ),�
rn,1 =i−N

(τ),∗
rn,1 ,N

(τ),∗
rn,1 >0}

∥∥2
v

≤ K

(
1 +

kn−1∑
j=1

α1−2v−1

(j−1)rn

)(
P

(
N

(τ),∗
rn,1 > 0

))2/v

≤ K

(
1 +

∞∑
j=0

α1−2v−1

j

)
(lnF̄ (urn(τ )))2/v ≤ K

(
ln

rn

)2/v

,

since
∑∞

j=0 α1−2v−1

j < ∞. Similarly, I2 ≤ K(ln/rn)
2/v . Therefore,

P(|e∗
i,n(τ )| > ε) ≤ ε−2E(e∗

i,n(τ ))2 ≤ K(ln/rn)
2/v → 0.

By using Lemma 6.3 with p1 = v, p2 = v, p3 = v/(v − 2), we get

E(ē∗
n(τ ))2 ≤ K

kn

(
kn +

kn−1∑
j=1

(kn − j)
(
αrn,(rn−ln)+(j−1)rn(τ )

)1−2v−1
)

× ∥∥N(τ),∗
rn,1 − lnF̄ (urn(τ ))

∥∥2
v

≤ K

(
1 +

kn−1∑
j=1

(
αrn,(rn−ln)+(j−1)rn(τ )

)1−2v−1
)

× ∥∥N(τ),∗
rn,1 − lnF̄ (urn(τ ))

∥∥2
v.

By Theorem 4.1 in [40] [equation (4.4)], we have

E
∣∣N(τ),∗

rn,1 − lnF̄ (urn(τ ))
∣∣v ≤ Klv/2

n

∥∥1{X1>urn(τ )} − F̄ (urn(τ ))
∥∥v
r

≤ K

(
ln

r
2/r
n

)v/2

→ 0.

Putting the inequalities above together yields E∗
m,n(τ )

P→ 0. �

LEMMA 6.7. Suppose that (C1) and (C2) hold. Let r ≥ 1 and τ1 > · · · >

τr > 0. Then

(Em,n(τ1), . . . ,Em,n(τr))
d→ (Em(τ1), . . . ,Em(τr)).

PROOF. Since by Lemma 6.6 E∗
m,n(τ )

P→ 0, we only prove that

(E�
m,n(τ1), . . . ,E

�
m,n(τr))

d→ (Em(τ1), . . . ,Em(τr)).

By applying the Cramer–Wold device, it suffices to prove that, for λh,j ∈ R,
h = 1, . . . , r and i = 0, . . . ,m + 1,

r∑
h=1

(
m∑

i=0

λh,ie
�
i,n(τh) + λh,m+1ē

�
n (τh)

)
d→

r∑
h=1

(
m∑

i=0

λh,iei(τh) + λh,m+1ē(τh)

)
.
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Let

fj,n =
r∑

h=1

m∑
i=0

λh,i

(
1{N(τh),�

rn,j =i} − P
(
N

(τh),�
rn,j = i

))

+
r∑

h=1

λh,m+1
(
N

(τh),�
rn,j − (rn − ln)P

(
X1 > urn(τh)

))
.

By using recursively Lemma 6.3 with p1 = ∞, p2 = ∞, p3 = 1, we get∣∣∣∣∣E exp

{
− iu√

kn

kn∑
j=1

fj,n

}
−

kn∏
j=1

E exp
{
− iu√

kn

fj,n

}∣∣∣∣∣ ≤ Kknαrn,ln(τ1, . . . , τr),

which tends to 0 by condition (C2.c). This implies that the fj,n can be considered
as i.i.d. r.v.s. By condition (C0.b) and Minkowski’s inequality, limn→∞ E|fj,n|ρ <

∞ where ρ > 2. Therefore,∑kn

j=1 E|fj,n|ρ
(
∑kn

j=1 E(fj,n)2)ρ/2
= 1

k
ρ/2−1
n

E|f1,n|ρ
(E(f1,n)2)ρ/2 → 0

and Lyapounov’s condition holds (see, e.g., [4], page 362). It follows that
(knE(f1,n)

2)−1/2 ∑kn

i=1 fi,n converges in distribution to a standard Gaussian ran-
dom variable.

By Condition (C1), (N(τ1)
n (E),N

(τ2)
n (E)) ⇒ (N

(τ1)
E ,N

(τ2)
E ) and the limiting sec-

ond central moments of the r.v.s 1{N(τh),�
rn,1 =i} and N

(τh),�
rn,1 , h = 1, . . . , r , exist. Sim-

ple calculations yield the covariance functions given in Theorem 4.1. �

LEMMA 6.8. Suppose that (C1) and (C2) hold. Then (Em,n(·))n≥1 is tight in
Dm+2

σ,φ .

PROOF. We use similar arguments as for the second part of the proof of The-
orem 22.1 in [2]. The tightness criterion which is considered is the following (see
Theorem 15.5 and Theorem 8.3 in [2]): (Em,n(·))n≥1 is tight in Dm+2

σ,φ if:

(i) for each positive η, there exists an a such that

P
(|Em,n(φ)|1 > a

) ≤ η, n ≥ 1,

where |E|1 = ∑m+1
j=0 |Ej |;

(ii) letting ε > 0 and η > 0, there exists δ > 0 and an integer n0 such that

P

(
sup

τ2≤τ1≤τ2+δ

|Em,n(τ1) − Em,n(τ2)|1 > ε

)
≤ ηδ, n ≥ n0,

for all τ2 ∈ [σ,φ].
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Moreover, by Theorem 15.5 in [2], it follows that the weak limit of a subse-
quence Em,n′(·) belongs a.s. to Cm+2

σ,φ .

Condition (i) is satisfied since Em,n(φ)
d→ Em(φ). Let us consider condition (ii).

Note that

P

(
sup

τ2≤τ1≤τ2+δ

|Em,n(τ1) − Em,n(τ2)|1 > ε

)

≤
m∑

i=0

P

(
sup

τ2≤τ1≤τ2+δ

|ei,n(τ1) − ei,n(τ2)| > ε

m + 1

)

+ P

(
sup

τ2≤τ1≤τ2+δ

|ēn(τ1) − ēn(τ2)| > ε

m + 1

)

≤ 2
m∑

i=0

P

(
sup

τ2≤τ1≤τ2+δ

∣∣∣∣∣
i∑

j=0

(
ej,n(τ1) − ej,n(τ2)

)∣∣∣∣∣ >
ε

2(m + 1)

)

+ P

(
sup

τ2≤τ1≤τ2+δ

|ēn(τ1) − ēn(τ2)| > ε

m + 1

)
and it suffices to check the tightness criterion for each

∑i
j=0 ej,n(·), i = 0, . . . ,m

and for ēn(·). Now we simply indicate the modifications to be made in the proof
of Theorem 22.1 in [2] to establish that condition (ii) holds.

Let 2 < v < p < r ≤ ∞ and ε > 0. Assume that θd > v/(v − 2) and θd ≥
(p − 1)r/(r − p).

(i) Let σ ≤ τ2 < τ1 ≤ φ and define

Si(τ1, τ2;kn) := √
kn

(
i∑

j=0

(
ej,n(τ1) − ej,n(τ2)

))
.

By Theorem 4.1 in [40] [equation (4.3)], we have that

E|Si(τ1, τ2;kn)|p
≤ K

(
kp/2
n

(
P

(
N

(τ2)
rn,1 ≤ i < N

(τ1)
rn,1

))p/v + k1+ε
n

(
P

(
N

(τ2)
rn,1 ≤ i < N

(τ1)
rn,1

))p/r)
≤ K

(
kp/2
n

(
P

(
N

(τ1)
rn,1 − N

(τ2)
rn,1 > 1

))p/v + k1+ε
n

(
P

(
N

(τ1)
rn,1 − N

(τ2)
rn,1 > 1

))p/r)
≤ K

(
kp/2
n

(
E

(
N

(τ1)
rn,1 − N

(τ2)
rn,1

))p/v + k1+ε
n

(
E

(
N

(τ1)
rn,1 − N

(τ2)
rn,1

))p/r)
≤ K

(
kp/2
n (τ1 − τ2)

p/v + k1+ε
n (τ1 − τ2)

p/r).
Let η = p/2 − (1 + ε). If 0 < ε < 1 and ε/k

η
n ≤ (τ1 − τ2)

p(1/v−1/r), we get

E

(∣∣∣∣∣
i∑

j=0

(
ej,n(τ1) − ej,n(τ2)

)∣∣∣∣∣
p)

≤ Kε−1(τ1 − τ2)
p/v,
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which replaces equation (22.15) of [2].
(ii) Let ξj,n := (N

(τ1)
rn,j − N

(τ2)
rn,j − (EN

(τ1)
rn,j − EN

(τ2)
rn,j )) and define

S(τ1, τ2;kn) := √
kn

(
ēn(τ1) − ēn(τ2)

) =
kn∑

j=1

ξj,n.

By Theorem 4.1 in [40] [equation (4.3)], we have that

E|S(τ1, τ2;kn)|p ≤ K(kp/2
n ‖ξ1,n‖p

v + k1+ε
n ‖ξ1,n‖p

r ).

Now for v > 2,

|ξ1,n|v ≤ 2v((
N

(τ1)
rn,1 − N

(τ2)
rn,1

)v + (
EN

(τ1)
rn,1 − EN

(τ2)
rn,1

)v)
.

For large n and for σ ≤ τ2 < τ1 ≤ φ,

|ξ1,n|v ≤ K
((

N
(τ1)
rn,1 − N

(τ2)
rn,1

)v + (τ1 − τ2)
)
.

By condition (C2.a), we get E(|ξ1,n|λ) ≤ K(τ1 − τ2) for 2 ≤ λ ≤ r and we deduce
that

E|S(τ1, τ2;kn)|p ≤ K
(
kp/2
n (τ1 − τ2)

p/v + k1+ε
n (τ1 − τ2)

p/r).
Therefore, if ε < 1 and ε/k

η
n ≤ (τ1 − τ2)

p(1/v−1/r), we have that

E
(|ēn(τ1) − ēn(τ2)|p) ≤ Kε−1(τ1 − τ2)

p/v,

which also replaces equation (22.15) of [2].
(iii) We replace equation (22.17) in [2] by∣∣∣∣∣

i∑
j=0

(
ej,n(τ1) − ej,n(τ2)

)∣∣∣∣∣ ≤
∣∣∣∣∣

i∑
j=0

(
ej,n(τ2 + δ) − ej,n(τ2)

)∣∣∣∣∣ + δ
√

kn,

|ēn(τ1) − ēn(τ2)| ≤ |ēn(τ2 + δ) − ēn(τ2)| + δ
√

kn,

for τ2 ≤ τ1 ≤ τ2 + δ, by using monotony arguments as in [2].
(iv) We need to replace (22.19) of [2] by(

ε

k
η
n

)rv/(p(r−v))

≤ p <
ε√
kn

and to assume that
ηrv

p(r − v)
= rv

(r − v)

(
1

2
− (1 + ε)

p

)
>

1

2
.

Since θd has to be larger than (p−1)r/(r −p) which is increasing in p and p > v,
we let p = v(1 + ε) and choose v such that

rv

(r − v)

(
1

2
− (1 + ε)

p

)
= 1

2
(1 + ε).



306 C. Y. ROBERT

It follows that v = (3 + ε)r/(r + (1 + ε)). Then the inequalities θd > v/(v − 2)

and θd ≥ (p − 1)r/(r − p) become

θd >
3 + ε

1 + ε

r

r − 2
and θd ≥ ((2 + ε)2 − 2)r − (1 + ε)

r − (2 + ε)(1 + ε)
,

which are satisfied if ε < ((r − 2) ∧ 1/2)/4 and

θd ≥ 3r

r − 2(1 + 2ε)
.

Everything else remains the same as for the proof of Theorem 22.1 in [2]. Finally,
choose μ = 4ε. �

PROOF OF THEOREM 4.1. Weak convergence in Dm+2 of a stochastic process
is equivalent to weak convergence of the restrictions of the stochastic process to
any compact [σ,φ] with 0 < σ < φ < ∞ in Dm+2

σ,φ . The convergence of the finite
dimensional distributions of Em,n(·) is established by Lemma 6.7 and the tightness
of (Em,n(·))n≥1 in Dm+2

σ,φ by Lemma 6.8. Weak convergence in Dm+2
σ,φ follows by

Theorem 13.1 in [3]. By Theorem 15.5 in [2], we deduce that Em(·) ∈ Cm+2. �

PROOF OF THEOREM 4.2. Let

ẽj,n(·) := √
kn

(
p(·)

n (j) − p(·)(j)
) = ej,n(·) + √

kn

(
P

(
N

(·)
rn,1 = j

) − p(·)(j)
)
.

Since supτ∈[σ,φ] |
√

kn(P (N
(τ)
rn,1 = j) − p(τ)(j))| → 0 [by Condition (C3)], we de-

duce that (ẽ0,n(·), . . . , ẽm,n(·)) ⇒ (e0(·), . . . , em(·)) in Dm+1
σ,φ . By using the func-

tion ϒ , the composition map, the same arguments as in the proof of Proposition 4.1
and Theorem 4.1, we deduce that(

ẽ0,n

(
p̄

(·),←
n,b

)
, . . . , ẽm,n

(
p̄

(·),←
n,b

)) ⇒ (e0(·), . . . , em(·))
in Dm+1

σ,φ . Now note that

sup
τ∈[σ,φ]

∣∣ẽj,n

(
p̄(·),←

n

) − ẽj,n

(
p̄

(·),←
n,b

)∣∣
≤ sup

τ,τ̄∈[p̄(σ ),←
n ,σ ]

|ẽj,n(τ ) − ẽj,n(τ̄ )|1{p̄(σ ),←
n <σ }

∨ sup
τ,τ̄∈[φ,p̄

(φ),←
n ]

|ẽj,n(τ ) − ẽj,n(τ̄ )|1{p̄(φ),←
n >φ}.

Since the weak limit of (ẽj,n(·))n≥1 is continuous at σ and φ, p̄
(σ ),←
n

P→ σ and

p̄
(φ),←
n

P→ φ, it follows that supτ∈[σ,φ] |ẽj,n(p̄
(·),←
n ) − ẽj,n(p̄

(·),←
n,b )| P→ 0 and that

ẽj,n(p̄
(·),←
n ) − ẽj,n(p̄

(·),←
n,b ) ⇒ 0 in D1

σ,φ . Let

ẽn(·) := √
kn

(
p̄(·)

n − (·)) = ēn(·) + √
kn

(
rnF̄ (urn(·)) − (·)).
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By Condition (C3), supτ∈[σ,φ]
√

kn|rnF̄ (urn(τ )) − τ | → 0. It follows by Theo-
rem 4.1 that ẽn(·) ⇒ ē(·) in D1

σ,φ . Now by using Vervaat’s lemma [42], we get√
kn

(
p̄(·),←

n − (·)) ⇒ −ē(·) in D1
σ,φ.

We deduce from the differentiability of p(·)(j) and the finite increments formula
that √

kn

(
p(p̄

(·),←
n )(j) − p(·)(j)

) ⇒ −hj (·)ē(·)
in D1

σ,φ . Finally, we get

êj,n(·) = (
ẽj,n

(
p̄(·),←

n

) − ẽj,n

(
p̄

(·),←
n,b

)) + ẽj,n

(
p̄

(·),←
n,b

)
+ √

kn

(
p(p̄

(·),←
n )(j) − p(·)(j)

)
⇒ ej (·) − hj (·)ē(·) = êj (·)

in D1
σ,φ and

(ê0,n(·), . . . , êm,n(·)) ⇒ (ê0(·), . . . , êm(·)) in Dm+1
σ,φ . �

PROOF OF COROLLARY 4.1. We first recall that a map T between topological
vector spaces Bi , i = 1,2, is called Hadamard differentiable tangentially to some
subset S ⊂ B1 at x ∈ B1 if there exists a continuous linear map T ′(x) from B1 to
B2 such that

T (x + tnyn) − T (x)

tn
→ T ′(x) · y

for all sequences tn ↓ 0 and yn ∈ B1 converging to y ∈ S. Note that the map �j

introduced in the proof of Proposition 4.1 is Hadamard differentiable tangentially
to C

2j
σ,φ at f ∈ C

2j
σ,φ and that

� ′
j (f (·)) · g(·) =

(
fj+1(·)

(ln(f1(·))f1(·))2 − �j(f (·))
f1(·)

)
g1(·)

− 1

jf1(·)
j−1∑
i=1

(j − i)f2j−i+1(·)gi+1(·)

− 1

ln(f1(·))f1(·)gj+1(·) − 1

jf1(·)
j−1∑
i=1

ifj−i+1(·)gi+j+1(·).

We now proceed by induction. By Theorem 4.2,

(ê0,n(·), . . . , êm,n(·)) ⇒ (ê0(·), . . . , êm(·))
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in Dm+1
σ,φ . First, we deduce by the δ-method (see Theorem 3.9.4 in [41]) that√

kn

(
χ(·)

n (1) − π(1)
) ⇒ � ′

1
(
p(·)(0),p(·)(1)

) · (ê0(·), ê1(·)) = w1(·)
in D1

σ,φ . Then

d̂1,n(·) = max
(−√

knπ(1),min
(√

kn

(
χ(·)

n (1) − π(1)
)
,
√

kn

(
1 − π(1)

))) ⇒ d̂1(·)
in D1

σ,φ and

(ê0,n(·), ê1,n(·), d̂1,n(·)) ⇒ (ê0(·), ê1(·), d̂1(·))
in D3

σ,φ . Assume that we have already shown that

(ê0,n(·), . . . , êj,n(·), d̂1(·), . . . , d̂j−1(·)) ⇒ (ê0(·), . . . , êj (·), d̂1(·), . . . , d̂j−1(·)).
The δ-method yields√

kn

(
χ(·)

n (j) − π(j)
) ⇒ � ′

j

(
p(·)(0), . . . , p(·)(j),π(·)(1), . . . , π(·)(j − 1)

)
× (

ê0(·), . . . , êj (·), d̂1(·), . . . , d̂j−1(·))
in D1

σ,φ , and a straightforward computation shows that the limit is equal to wj(·).
Let us recall that

d̂j,n(·) = max

(
−√

knπ(j),

min

(√
kn

(
χ(·)

n (j) − π(j)
)
,
√

kn

(
1 −

j∑
i=1

π(i)

)
− ψ̂j,n(·)

))
,

where ψ̂j,n(·) = ∑j−1
i=1 d̂i,n(·). It follows that d̂j,n(·) ⇒ d̂j (·) in D1

σ,φ , and

(ê0,n(·), . . . , êj+1,n(·), d̂1(·), . . . , d̂j (·)) ⇒ (ê0(·), . . . , êj+1(·), d̂1(·), . . . , d̂j (·))
in D

2(j+1)
σ,φ . The induction is established and

(d̂1,n(·), . . . , d̂m,n(·)) ⇒ (d̂1(·), . . . , d̂m(·))
in Dm

σ,φ . By the CMT, we deduce that

(d̄1,n, . . . , d̄m,n)
d→

(
1

φ − σ

∫ φ

σ
d̂1(τ ) dτ, . . . ,

1

φ − σ

∫ φ

σ
d̂m(τ ) dτ

)
. �

PROOF OF COROLLARY 4.2. The assertions follow from the δ-method and
the CMT. �
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