
The Annals of Statistics
2008, Vol. 36, No. 3, 1090–1107
DOI: 10.1214/07-AOS518
© Institute of Mathematical Statistics, 2008

OPTIMAL DESIGNS FOR MIXED MODELS IN EXPERIMENTS
BASED ON ORDERED UNITS

BY DIBYEN MAJUMDAR1 AND JOHN STUFKEN2

University of Illinois at Chicago and University of Georgia

We consider experiments for comparing treatments using units that are
ordered linearly over time or space within blocks. In addition to the block
effect, we assume that a trend effect influences the response. The latter is
modeled as a smooth component plus a random term that captures departures
from the smooth trend. The model is flexible enough to cover a variety of
situations; for instance, most of the effects may be either random or fixed.
The information matrix for a design will be a function of several variance
parameters. While data will shed light on the values of these parameters, at
the design stage, they are unlikely to be known, so we suggest a maximin
approach, in which a minimal information matrix is maximized. We derive
maximin universally optimal designs and study their robustness. These de-
signs are based on semibalanced arrays. Special cases correspond to results
available in the literature.

1. Introduction. When planning an experiment to compare different treat-
ments, it is important that we carefully consider the possible presence of systemic
natural differences between the experimental units to be used. If such differences
are thought to exist, blocking and the use of covariates are two methods that may
help to increase the sensitivity of the experiment for detecting possible differences
between the treatments. These two methods are at the core of this paper.

Blocking always leads to a restricted randomization, in which, for each block,
a selected set of treatments is randomly assigned to the experimental units in that
block. The use of covariates only leads to a restriction on the randomization if
the covariates are already used at the design stage rather than just at the analysis
stage. If covariates are used at the design stage, the designs are often referred to
as systematic designs, even though there is usually still some opportunity for a
restricted randomization.

Cox [5] considered an experiment involving the processing of wool, using a
different treatment each week. The natural aging of the wool (which formed the
experimental units) caused a trend in the units over time and made time a con-
venient and useful covariate to account for systemic changes in the experimental
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units. Cox showed that a systematic assignment of treatments to the units that al-
lowed for estimating the treatment differences in the same way as without the trend
was preferable to a fully randomized assignment of the treatments to the units, or
to attempting to reduce the effect of the trend by blocking the units.

The covariates that we will consider in this paper are precisely of this type, that
is, they are based on a natural ordering of the experimental units, typically induced
by time or spatial location. However, our discussion is entirely in the context of
block designs, in which each block has the same number k of experimental units.
In each block, the units are labeled from 1 through k, which induces the covariate
(or possibly covariates). The designs in this paper are relevant if it is thought that
units may change gradually across this ordering in each of the blocks, although
this change may differ from one block to the next. This change could, for example,
occur as the result of a learning process, equipment or product deterioration, or
spatial location. For some examples and further discussion and references, we refer
the reader to Bradley and Yeh [1], Chai and Majumdar [3], Lin and Dean [11], Lin
and Stufken [12], Jacroux, Majumdar and Shah [7, 8] and Majumdar and Martin
[15]. Lin and Stufken [12] also contains some additional discussion on the pros
and cons of using systematic designs.

Thus, we consider the situation where experimental units are partitioned into
equally large groups of relatively homogeneous units, or blocks, and where, within
each block, the units are linearly ordered over time or space. We will build a model
that is more flexible than models thus far considered for this situation, and that con-
tains other models as special cases. The model will include random block effects
(which contains the model with fixed block effects as a special case), random trend
effects that may differ from one block to the next (which contains fixed trend ef-
fects, whether the same for each block or varying over the blocks, as a special case)
and unit-specific random deviations from the trend (motivated by our belief that a
smooth trend is often not very realistic). The latter is a feature hitherto not used in
this arena.

While this mixed-effects model will be very flexible, it will also typically con-
tain a considerable number of unknown covariance parameters. Data may help to
shed some light on these parameters at the analysis stage, but this is of little help
at the design stage. The determination of an optimal design for estimation of the
treatment differences, which is the objective of this paper, would therefore seem
to be a rather intractable problem since the information matrix for the treatment
effects will depend on the many unknown covariance parameters. We will address
this problem by identifying, for each design, a “minimal” information matrix for
the treatment effects. This minimal information matrix, which will be smaller in
the Löwner ordering than the actual information matrix for the treatment effects,
will depend on very few (no more than two) parameters, which are functions of
the original covariance parameters. It is this minimal information matrix that we
will maximize over all designs to obtain a “maximin” information matrix and an
optimal design. We note that our approach is in the spirit of Kiefer [9] and Kiefer
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and Wynn [10], who considered minimax optimal designs for models with autore-
gressive errors.

The maximin information matrix will be derived in Section 2. After charac-
terizing and identifying the optimal designs in Section 3 (with proofs deferred to
Section 5), we will investigate the robustness of this process to parameter misspec-
ification in Section 4.

2. Setup and basic results. Consider an experiment to compare v treatments
(i = 1, . . . , v) based on n = bk experimental units that are partitioned into b blocks
(j = 1, . . . , b) of k units each (p = 1, . . . , k). Suppose the units within blocks are
linearly ordered over time or space. The collection of units can be visualized as a
k × b array with rows labeled by units within blocks and columns by blocks, while
the entries of the array are treatments assigned to the units by the design, that is,
for design d , the entry in cell (p, j) is d(p, j), where d(p, j) ∈ {1, . . . , v}. The
design d itself will be viewed as a k × b matrix. Under a very general model, our
objective is to determine an optimal design for comparing the treatments.

For the model, in addition to a block effect, we assume that there is a trend over
time or space within each block. If ypj denotes the random variable corresponding
to the observation in row (unit) p and column (block) j , then the model is

ypj = μ + τd(p,j) + βb
j + ζpj + εpj ,

where τd(p,j) denotes an effect for treatment d(p, j), βb
j an effect for block j , ζpj

a trend effect for unit p in block j and εpj the measurement error. We assume that
the trend ζpj is composed of two parts, one that is smooth enough to be approxi-
mated by a polynomial in p and another that represents random fluctuations from
the polynomial. The smooth part, which we assume to be linear, will be written
as γ I

j + γjφ(p), where φ(p) is the linear orthonormal polynomial on {1, . . . , k},
specifically, φ(p) =

√
3/(k(k2 − 1))(2p − k − 1). If ψpj denotes the fluctuation

from the smooth trend then we may write ζpj = γ I
j + γjφ(p) + ψpj . The slope

γj is further decomposed into a fixed part (θ0) that is common to all blocks and a
random part (θj ) that may vary from block to block, that is, γj = θ0 + θj . Writing
βj = βb

j + γ I
j and δpj = ψpj + εpj , we arrive at our model,

ypj = μ + τd(p,j) + βj + θ0φ(p) + θjφ(p) + δpj .(2.1)

This is a mixed-effects model. The quantities τ1, . . . , τv and θ0 are considered to
be fixed effects while βj , θj , δpj for p = 1, . . . , k, j = 1, . . . , b are considered ran-
dom. Although (2.1) combines the two variables ψpj and εpj into one variable δpj ,
at the modeling stage, it may be useful to recognize their individual characteristics.
Generally, the measurement error εpj may be assumed to be homoscedastic, while
ψpj , the departure from the assumed trend, will depend on the strength, nature
and variability of the trend in the particular application. These considerations may



OPTIMAL DESIGNS FOR MIXED MODELS 1093

enable the experimenter to determine an appropriate variance–covariance structure
for the δpj ’s.

We assume that the random effects have zero expectations and are uncorre-
lated from one block to the next. Let σ 2

β and σ 2
θ denote the variances of βj

and θj , σβθ their covariance, Vδβ and Vδθ the k × 1 vectors of covariances of
δj = (δ1j , . . . , δkj )

′ with βj and θj and Vδδ the covariance matrix of the δ’s. Let 1k

denote the k × 1 vector of 1’s, τ = (τ1, . . . , τv)
′ and φ = (φ(1), . . . , φ(k))′. If Yj

denotes the k × 1 vector of observations from block j , then E(Yj ) = Xdjτ +Z0γ ,
where γ = (μ, θ0)

′, Z0 = (1k, φ) and Xdj is the k × v unit-treatment incidence
matrix for block j with entries

Xdj (p, i) =
{

1, if d(p, j) = i,
0, otherwise.

Also, V (Yj ) = � = σ 2
β 1k1′

k +σ 2
θ φφ′+Vδδ +σβθ (1kφ

′+φ1′
k)+(1kV

′
δβ +Vδβ1′

k)+
(φV ′

δθ + Vδθφ
′). Let Z = (1bk,1b ⊗ φ) and Xd = (X′

d1, . . . ,X
′
db)

′, where ⊗
denotes Kronecker product. The first and second moments of the observations
Y = (Y ′

1, . . . , Y
′
b)

′ are then

E(Y ) = Xdτ + Zγ,V (Y ) = V = Ib ⊗ �,(2.2)

where Ib is the identity matrix of order b. The parameter of interest is τ , the vector
of treatment effects. For a design d , the information matrix for τ is given by

Cd = X′
dV −1Xd − X′

dV −1Z(Z′V −1Z)−1Z′V −1Xd.

REMARK 2.1 [Special cases of (2.2)]. If Vδδ = a0Ik with a0 > 0 (equivalently,
Vδδ = a0Ik + a11k1′

k + a2φφ′ with a0 > 0), then the model is equivalent to one in
which the random trend in each block is known to be linear. If, in addition, σ 2

θ = 0,
then the model is equivalent to one in which the trend is fixed, linear and the same
for each block. This has been studied by several authors, including Bradley and
Yeh [1], Yeh and Bradley [21], Yeh, Bradley and Notz [22], Stufken [20], Lin
and Dean [11], Chai and Majumdar [3], Chai [2] and Lin and Stufken [12, 13].
Alternatively, if σ 2

θ = ∞, then the model is still equivalent to one in which the
trend is fixed and linear, but now possibly different in different blocks. This has
been studied by Jacroux, Majumdar and Shah [7, 8] and Majumdar and Martin
[14]. For any σ 2

θ , if σ 2
β = ∞, then the model corresponds to one in which the block

effects are fixed.

Our objective is to identify a universally optimal design for estimating τ . For
(2.2), Cd depends on the 4 + 2k + k(k + 1)/2 variance component parameters
in �. If these are all known at the planning stage, then the optimization problem
can be solved by numerical techniques. However, this will rarely be the case. Our
approach, therefore, is to work with few parameters at the design stage. To do this,
we first identify, for each design d , a minimal information matrix CL

d , and then



1094 D. MAJUMDAR AND J. STUFKEN

determine a universally optimal design based on the minimal information matrix.
This is, therefore, a maximin approach. We will derive a minimal information ma-
trix that depends on at most two parameters (other than v, b and k), which are
functions of the original variance components. Once the data has been collected,
however, we recommend a less parsimonious approach. At the inference stage,
the experimenter should work with a realistic model with all likely parameters
included and let the data decide.

We will use the Löwner ordering to identify the minimal information matrix,
that is, B � A if B −A is nonnegative definite. Formally, the first step is to identify,
for each d , a matrix CL

d such that Cd � CL
d , where CL

d is an information matrix
for the design d corresponding to a simplified model. The next step is to find the
optimal design d∗ such that

CL
d∗ is completely symmetric and trace(CL

d∗) = max
d∈D

(CL
d ).

To get CL
d , we utilize the representation Cd = X′

dQ(QV Q)−QXd , where Q =
In − Z(Z′Z)−1Z′, and observe that a lower bound for Cd may be obtained
by using an upper bound for �. To get an upper bound for �, we note that
in most situations, variances are easier to determine than covariances. It can
be shown that � = V (δj + βj 1k + θjφ) � 4V (δj ) + 4V (βj 1k) + 4V (θjφ) �
4Emax(Vδδ)Ik + 4σ 2

β 1k1′
k + 4σ 2

θ φφ′, where Emax(Vδδ) is the maximum eigenvalue
of Vδδ . This bound is generally conservative, and we can do better if there is ad-
ditional information. For example, if Vδβ = Vδθ = 0, that is, the fluctuations from
the trend δj are not correlated with the modeled part of the trend θj and the block
effect βj , then � � Emax(Vδδ)Ik +2σ 2

β 1k1′
k +2σ 2

θ φφ′. Hence, in general, we have

� � σ 2
0εIk + σ 2

0β1k1′
k + σ 2

0θφφ′,

using quantities σ 2
0ε, σ

2
0β and σ 2

0θ that take values in the intervals

Emaxa(Vδδ) ≤ σ 2
0ε ≤ 4Emaxa(Vδδ), σ 2

βa ≤ σ 2
0β ≤ 4σ 2

βa,

σ 2
θa ≤ σ 2

0θ ≤ 4σ 2
θa,

where σ 2
βa , σ 2

θa and Emaxa(Vδδ) are the assumed or prior values of σ 2
β , σ 2

θ and
Emax(Vδδ), respectively. If the correlations are believed to be negligible the values
of σ 2

0ε, σ
2
0β and σ 2

0θ should be taken at the lower endpoints of the intervals or close
to it, while for stronger correlations, these values should be assumed higher. We
will see in Section 4 that the optimal designs are remarkably robust, so an accurate
determination of σ 2

0ε, σ
2
0β and σ 2

0θ within their respective intervals is usually not
necessary.

Our first theorem gives the minimal information matrix. To state it, we use the
standard notation for a design d: rdi will denote the replication of treatment i,
rd = (rd1, . . . , rdv)

′, Rd = diag(rd1, . . . , rdv), Nd = (ndij ) the treatment × block
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(column) incidence matrix and Md = (mdip) the treatment × unit (row) incidence
matrix. Also, let

λ0 = σ 2
0β

σ 2
0ε + kσ 2

0β

, λ1 = σ 2
0θ

σ 2
0ε + σ 2

0θ

.(2.3)

THEOREM 2.2. The information matrix Cd for a design d based on the model
(2.2) satisfies Cd � CL

d , where

σ 2
0εC

L
d =

b∑
j=1

X′
djWXdj −

(
1 − kλ0

bk

)
rdr′

d −
(

1 − λ1

b

)
Mdφφ′M ′

d(2.4)

with

W = Ik − λ01k1′
k − λ1φφ′.(2.5)

The proof is straightforward and hence omitted.

REMARK 2.3. (i) CL
d is the information matrix for model (2.2) with uncor-

related random effects (Vδβ = Vδθ = 0, σβθ = 0), V (δj ) = Vδδ = σ 2
0εIn, V (βj ) =

σ 2
β = σ 2

0β and V (θj ) = σ 2
θ = σ 2

0θ .
(ii) The minimal information matrix may also be written as

σ 2
0εC

L
d = Rd − λ0NdN ′

d − λ1

b∑
j=1

X′
djφφ′Xdj

−
(

1 − kλ0

bk

)
rdr′

d −
(

1 − λ1

b

)
Mdφφ′M ′

d .

3. Optimal designs. In this section, we will explore optimal designs for
model (2.1). Our goal is to determine universally optimal designs using the mini-
mal information matrix (2.4), that is, a maximin universally optimal design. First,
we need a definition.

DEFINITION 3.1 (Rao [18, 19]). A t × b array in v symbols is called an
orthogonal array of type II (OAII) of strength 2 or a semibalanced array if the
columns of the array consist of distinct symbols and any two rows of the array
contain every pair of distinct symbols equally often.

For the construction of these arrays, see Hedayat, Sloane and Stufken [6].
We will establish the maximin universal optimality of judiciously selected de-

signs of the form

d̃ = �

(
d̃1
d̃2

)
,(3.1)
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where d̃1 is a semibalanced array with rows that are uniform in symbols, d̃2 is a
matrix with each row identical to some row of d̃1 and � is a permutation matrix
of order k. Note that the rows of a semibalanced array are always uniform when
there are three or more rows.

Universal optimality will be established by the technique outlined in Theorem 1
of Majumdar and Martin [14]. To establish complete symmetry (c.s.), note that
each treatment occurs equally often in each row of d̃ . Hence, for a design of
the form (3.1), Md̃φ = 0 and rd̃r′̃

d
is c.s. Also, it follows from Cheng [4] that∑b

j=1 X′̃
dj

WXd̃j is c.s. Hence, CL
d̃

in (2.4) is c.s.
For an arbitrary design d ∈ D, the trace of the maximin information matrix is

given by

σ 2
0ε trace(CL

d ) = trace

(
b∑

j=1

X′
djWXdj

)
−

(
1 − kλ0

bk

)
r′
drd

−
(

1 − λ1

b

)
φ′M ′

dMdφ.

Note that φ′M ′
dMdφ ≥ 0, r ′

drd ≥ (bk)2

v
and both of these lower bounds are attained

by designs of the form (3.1). Since

0 ≤ λ0 ≤ 1

k
, 0 ≤ λ1 ≤ 1,(3.2)

if there is a design of the form (3.1) that maximizes trace(
∑b

j=1 X′
djWXdj ) among

all designs, then this is maximin universally optimal.
Writing, W = (wpq) we get trace(X′

djWXdj ) = ∑k
p=1 wpp + 2

∑
(p,q) wpq ,

where the second summation is over all pairs of experimental units p,q , p < q ,
that are occupied by the same treatment in block j . Since

∑k
p=1 wpp does not

depend on the design, an order of assignment of treatments to block j that
maximizes the second sum will maximize trace(X′

djWXdj ). Note that since
wpq does not depend on the block subscript j , the pattern that is optimal for
block j is also optimal for any other block and, combined, will maximize
trace(

∑b
j=1 X′

djWXdj ).
Let O ={π = (π(1), . . . , π(k)) : π(p) ∈ {1, . . . , v}, p = 1, . . . , k} be the set of

orders π . For each order π ∈ O, there is a design of the form (3.1) in which π is
the first block as long as a k∗ × b semibalanced array based on v treatments exists,
where k∗ is the number of distinct treatments in π . For π ∈ O, let

P(π) = {(p, q) : 1 ≤ p < q ≤ k,π(p) = π(q)},
F (π) = ∑

p,q∈P(π)

wpq.

Note that F(π) depends on v, k, λ0 and λ1, but not on b.
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The trace maximization problem may be stated as, given v, k, λ0 and λ1 satis-
fying (3.2), maximize F(π) over all π ∈ O. An order π∗ that maximizes F(π)

will be called an optimal order. In the next two subsections, we will identify opti-
mal orders π∗. We will distinguish between the two cases k < 2v and k ≥ 2v. The
proofs are given in Section 5.

Before concluding this section, we give an alternate expression for F(π). Since
for p �= q , wpq = −λ0 − λ1φ(p)φ(q), we have

F(π) = −λ0s(π) − λ1T (π),(3.3)

where s(π) = |P(π)|, the cardinality of P(π), and T (π) = ∑
p,q∈P(π) φ(p)φ(q).

For i = 1, . . . , v, if we denote

ni = ni(π) = replication of treatment i in π,(3.4)

hi = hi(π) =
k∑

p=1

δipφ(p),(3.5)

where δip = δip(π) = 1 if π(p) = i and equals zero otherwise, then it follows from
(3.4) that

s = s(π) =
v∑

i=1

ni(ni − 1)

2
= 1

2

[
v∑

i=1

n2
i − k

]
.(3.6)

Also, since

2T (π) = ∑
p,q∈P(π)

2φ(p)φ(q) =
v∑

i=1

(
k∑

p=1

δipφ(p)

)2

−
k∑

p=1

φ2(p),

using (3.5), we get

T (π) = 1
2

[
v∑

i=1

h2
i − 1

]
.(3.7)

3.1. Optimal orders when k < 2v. For a positive integer q ≥ k − v, we define
πq to be an order of the form

πq = {i1, i2, . . . , iq, iq+1, . . . , ik−q, iq, . . . , i2, i1},(3.8)

where i1, i2, . . . , ik−q are k − q distinct treatments. We will also write π0 for an
order of k distinct treatments. We define

s∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Max

{
p :p integer, 1 ≤ p <

k + 1

2
, λ1φ

2(p) > λ0

}
,

if λ1φ
2(1) > λ0,

0, if λ1φ
2(1) ≤ λ0.

(3.9)

Note that s∗ is a function of k,λ0 and λ1, but not of v or b, and s∗ ≤ k/2.
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LEMMA 3.2. Suppose k < 2v.

(i) If k ≤ v + s∗, then πs∗ is an optimal order.
(ii) If k > v + s∗, let α = k − v. πα is then an optimal order.

Using (3.6) and (3.7), we note that πα minimizes s(π) over π ∈ O and mini-
mizes T (π) among all orders that minimize s(π). A proof of Lemma 3.2 is given
in Section 5.

3.2. Optimal orders when k ≥ 2v. For given k and v, k ≥ 2v, we define inte-
gers m and t by

k = mv + t where 0 ≤ t < v and m ≥ 2.(3.10)

Depending on the values of m and t , an optimal order will turn out to be either
a trend-free (TF) or nearly trend-free (NTF) order. An order is called trend-free
if all treatments are “orthogonal” to the fixed part of the trend, that is, for each
i = 1, . . . , v,

hi = 0.(3.11)

It is easy to see that a trend-free order can only exist if, for each i = 1, . . . , v,

ni(k + 1) ≡ 0 (mod 2).(3.12)

When k is odd, any integer ni satisfies (3.12). A TF order can be constructed
in this case if ni ≥ 2 for all i. The treatments with even replication are used at the
beginning and at the end of such an order π in such a way that π(p) = π(k−p+1)

for these positions. For treatments with odd ni , ni ≥ 3, (3.11) can be achieved by
filling the remaining positions using the construction of Phillips [17], which is also
reproduced in Lemma 3.2(a) of Jacroux, Majumdar and Shah [8]. It follows from
(3.7) that for a trend-free order, T (π) = −1/2, the lower bound.

When k is even, (3.12) implies that ni must be even for all i, in which case an
order π with the property π(p) = π(k − p + 1) for all p satisfies (3.11). If ni is
odd for some i, then it can be shown (see, e.g., Lemma 3.1 of Jacroux, Majumdar
and Shah [8]) that

|hi | ≥ φ

(
k + 2

2

)
= −φ

(
k

2

)
.(3.13)

Provided that ni ≥ 3 for treatments with an odd replication, using the construction
of Mukerjee and Sengupta [16], which is also reproduced in Lemma 3.2(b) of
Jacroux, Majumdar and Shah [8], the lower bound in (3.13) can be achieved for
each such treatment, while at the same time achieving hi = 0 for treatments with
even replications. For k even, orders that satisfy (3.11) and the lower bound in
(3.13) for treatments with even ni and odd ni , respectively, are called nearly trend-
free orders. Note that for a nearly trend-free order π in which u treatments have
odd replications, T (π) = 1

2 [u(φ(k
2))2 − 1].

The trend-free and nearly trend-free orders that are especially relevant to our
investigation are given in the following definitions.
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DEFINITION 3.3 (Trend-free orders).

(i) When k is odd, we use πA
TF to denote any order with the following two

properties.

(a) The replications are n1 = · · · = nt = m + 1, nt+1 = · · · = nv = m, there
being no treatment with replication m + 1 if t = 0. Treatments with even
replication occupy the “outer” positions [which are 1, . . . , (m + 1)t/2 and
k − (m + 1)t/2 + 1, . . . , k when m is odd and 1, . . . ,m(v − t)/2 and k −
m(v − t)/2 + 1, . . . , k when m is even]. The remaining, “inner,” positions are
occupied by treatments with odd replication.

(b) Treatments with even replication are arranged so that πA
TF(p) = πA

TF(k − p +
1). Treatments with odd replication are arranged using the construction of
Phillips [17] so that hi = 0.

(ii) When k is even and k/v is an even integer (so that m is even and t = 0),
we use πB

TF to denote any order with ni = m, i = 1, . . . , v, and πB
TF(p) = πB

TF(k −
p + 1) for p = 1, . . . , k/2.

(iii) When k is even and k/v is not an even integer, we use πC
TF to denote any

order with ni ∈ {ξ, ξ + 2} for all i = 1, . . . , v, where ξ is the even integer in {m −
1,m} and πC

TF(p) = πC
TF(k − p + 1) for p = 1, . . . , k/2.

DEFINITION 3.4 (Nearly trend-free orders). When k is even and k/v is not an
even integer, we use πNTF to denote any order with the following two properties.

(a) The replications are n1 = · · · = nt = m + 1, nt+1 = · · · = nv = m, there
being no treatment with replication m+1 if t = 0. Treatments with even replication
occupy the “outer” positions [which are 1, . . . , (m + 1)t/2 and k − (m + 1)t/2 +
1, . . . , k when m is odd and 1, . . . ,m(v − t)/2 and k −m(v − t)/2+1, . . . , k when
m is even]. The remaining, “inner,” positions are occupied by treatments with odd
replication.

(b) Treatments with even replication are arranged so that πNTF(p) =
πNTF(k − p + 1). Treatments with odd replication are arranged using the con-
struction of Mukerjee and Sengupta [16] so that |hi | = φ(k+2

2 ) = −φ(k
2).

Optimal orders are given in the following lemma, the proof of which is again
postponed to Section 5.

LEMMA 3.5. Suppose k ≥ 2v.

(i) If k is odd, then πA
TF is an optimal order.

(ii) If k is even and k/v is an even integer, then πB
TF is an optimal order.

(iii) If k is even and k/v is not an even integer, then

πC
TF is optimal if λ1φ

2
(

k

2

)
> λ0;

πNTF is optimal if λ1φ
2
(

k

2

)
≤ λ0.
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3.3. Optimal designs. The main result is formulated in Theorem 3.6 and is an
immediate consequence of the considerations in the previous subsections.

THEOREM 3.6. Given v, k and λ0, λ1 satisfying (3.2), suppose π∗ is an opti-
mal order given by Lemma 3.2 or 3.5. Suppose b is such that a k∗×b semibalanced
array based on v treatments exists, where k∗ is the number of distinct treatments
in π∗. Let

d̃∗ = �

(
d̃∗

1

d̃∗
2

)
be a k × b array, where d̃∗

1 is a k∗ × b semibalanced array, each row of d̃∗
2 is

identical to some row of d̃∗
1 and � is a permutation matrix such that, after relabel-

ing treatments if necessary, d̃∗(p,1) = π∗(p), p = 1, . . . , k. d̃∗ is then a maximin
universally optimal design.

REMARK 3.7. For the case σβθ = 0, Vδβ = Vδθ = 0, Vδδ = σ 2
0εIn, σ 2

0β = ∞
(λ0 = 1/k) and σ 2

0θ = ∞ (λ1 = 1), our results reduce to the results of Jacroux, Ma-
jumdar and Shah [8]. Therefore, Theorem 3.6 may be viewed as a generalization of
their Corollary 4.3 and Theorem 4.6. In particular, our results extend the results of
Jacroux, Majumdar and Shah [13] to models with random block and trend effects.
Moreover, our proofs are different from theirs and arguably less cumbersome.

REMARK 3.8. For the case σβθ = 0, Vδβ = Vδθ = 0, Vδδ = σ 2
0εIn, σ 2

0β = ∞
(λ0 = 1/k) and σ 2

0θ = 0 (λ1 = 0), Theorem 3.7 of [3], established the existence
and optimality of “strongly balanced” BIB designs. Our approach can be used to
generalize this result to models with an arbitrary σ 2

0β > 0 (λ0 ∈ (0,1/k]), that is,
models with random block effects.

4. Robustness. For given v, b and k, the existence and construction of the op-
timal designs in Section 3 may require knowledge of the covariance parameters λ0
and λ1. An important issue is whether the misspecification of these parameters can
lead to the choice of inefficient designs. We restrict ourselves to the case λ1 > 0.
As in Section 3, we will distinguish between the cases k < 2v and k ≥ 2v, starting
with the slightly simpler latter case.

For k ≥ 2v, if k is odd, or k is even and k/v is an even integer, then the optimal
design given by Theorem 3.6 does not depend on λ0 or λ1. Hence, provided b is
such that it accommodates the optimal design in the theorem, for these cases, there
is no need to specify λ0 or λ1 to select an optimal design. On the other hand, if
k is even and k/v is not an even integer, then the order for the optimal design in
Theorem 3.6 is

πC
TF if

λ0

λ1
< φ2

(
k

2

)
and πNTF if

λ0

λ1
≥ φ2

(
k

2

)
.



OPTIMAL DESIGNS FOR MIXED MODELS 1101

Thus, misspecification of λ0 or λ1 could lead to the selection of πC
TF in cases where

the design based on πNTF is optimal, or vice versa. How bad can this be?
Since k is normally rather large for this case, φ2(k

2) = (2
(k+1

3

)
)−1 will tend to be

small. Therefore, unless λ0 is near zero, which corresponds to the case of no block
effects, the optimal design will be based on πNTF . Moreover, that design turns out
to be very efficient when it is not optimal. To see this, a natural measure of the
relative efficiency of the design based on πNTF when the design based on πC

TF is
optimal is the ratio

E1 = trace(CL
d (πNTF))

trace(CL
d (πC

TF))
,(4.1)

where CL
d (π) stands for the matrix CL

d for a design as in equation (3.1) that is
based on the order π . When the design based on πNTF is optimal, we can use 1/E1
to measure the relative efficiency of the design based on πC

TF .
Expressions for the two traces in (4.1) can easily be computed from the results

in Section 3. This leads to

σ 2
0ε trace(CL

d (πNTF)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

b

(
k − kλ0 − 2λ0s

min − k

v
(1 − kλ0)

)
− btλ1φ

2
(

k

2

)
,

if m is even,

b

(
k − kλ0 − 2λ0s

min − k

v
(1 − kλ0)

)
− b(v − t)λ1φ

2
(

k

2

)
, if m is odd,

σ 2
0ε trace(CL

d (πC
TF)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b

(
k − kλ0 − 2λ0s

min − k

v
(1 − kλ0)

)
− btλ0,

if m is even,

b

(
k − kλ0 − 2λ0s

min − k

v
(1 − kλ0)

)
− b(v − t)λ0,

if m is odd,

where m and t are defined in (3.10) and

smin = 1

2
[(v − t)m2 + t (m + 1)2 − mv − t] = m

2
[k − v + t].(4.2)

Note that E1 does not depend on the value of b. It is immediately clear that E1
is virtually equal to 1 if λ0 = 0, so the design based on πNTF is often optimal and
always highly efficient. It is also seen from these expressions that the design based
on πC

TF is highly efficient when it is not optimal.
Turning to the case k < 2v, based on Lemma 3.2, we arrive at an optimal

sequence of the form πq in (3.8), where max{0, k − v} ≤ q ≤ 
k/2�. But, if
λ0 or λ1 are misspecified, then we could end up selecting a design with the
wrong value of q . To see how bad this could be, first note that for all values
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TABLE 1
Design efficiencies

λ0 0 1/40 5/40 10/40 10/40 10/40
λ1 1 1 1 1 1/2 1/10

π0 71 73 77 83 100 100
π1 97 98 100 100 98 86
π2 100 100 95 83 80 69

of λ0/λ1 within each of the following intervals, there is one order that is opti-
mal: (0, φ2(
k/2�], [φ2(q + 1), φ2(q)] for q = max{0, k − v}, . . . , 
k/2� − 1, and
[φ2(max{0, k − v} + 1),∞). Thus, if the misspecified value and the true value of
λ0/λ1 are in the same interval, then the chosen order is optimal. Next, observe that

σ 2
0ε trace(CL

d (πq)) = b

(
k − kλ0 − λ1 − k

v
(1 − kλ0)

)
+ 2b

q∑
p=1

(
λ1φ

2(p) − λ0
)
.

The efficiency of πq may be defined as

E2 = trace(CL
d (πq))

trace(CL
d (πq∗))

,

where q∗ is either s∗ or α, depending on which order is optimal, according to
Lemma 3.2. Note that again, E2 does not depend on b. It can be shown that the
efficiency gets smaller as we move away from the optimal order πq∗ . We will limit
our consideration of the magnitude of the efficiencies to a small example.

Let k = 4 and v = 7. Depending on the value of λ0/λ1, an optimal order is either
π0 = {1,2,3,4}, π1 = {1,2,3,1} or π3 = {1,2,2,1}. More precisely, π0 is opti-
mal if λ0/λ1 ≥ φ2(1) = 9/20, π1 is optimal if 1/20 = φ2(2) ≤ λ0/λ1 < φ2(1) =
9/20 and π2 is optimal if λ0/λ1 < φ2(2) = 1/20. Table 1 shows the efficiencies
(rounded to nearest percentages) of these designs for selected values of λ0 and λ1.

The conclusion is that we need to be a bit more careful in this case, but that a
design that is less extreme (in terms of the value of q) is more likely to keep a high
efficiency, except possibly for extreme values of λ0/λ1.

5. Proofs.

PROOF OF LEMMA 3.2. (i) Suppose s∗ > 0. For π ∈ O and j = 0,1, . . . , k,
let us define

sj = sj (π) = number of symbols that appear j times in π.(5.1)

It follows that v = s0 + s1 + · · · + sk , k = s1 + 2s2 + · · · + ksk and s = s(π) =
s2 + (3

2

)
s3 + · · · + (k

2

)
sk . Suppose positions p1, p2 are occupied by symbol i1,
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positions p3, p4, p5 are occupied by i2 and so on. We can then write

F(π) = −λ0s − λ1[φ(p1)φ(p2) + φ(p3)φ(p4)

+ φ(p3)φ(p5) + φ(p4)φ(p5) + · · ·]
= −λ0s − λ1

2

[(
φ(p1) + φ(p2)

)2 − φ2(p1) − φ2(p2)

(5.2)
+ (

φ(p3) + φ(p4) + φ(p5)
)2

− φ2(p3) − φ2(p4) − φ2(p5) + · · ·]
≤ −λ0s + λ1

2

[
h∑

i=1

φ2(pi)

]
,

where

h = h(π) = 2s2 + 3s3 + · · · + ksk = k − s1.(5.3)

Note that

s − h/2 =
k∑

l=2

(
l(l − 1)

2
− l

2

)
sl ≥ 0.(5.4)

Hence, we get from (5.2)

F(π) ≤ −λ0
h

2
+ λ1

2

[
h∑

i=1

φ2(pi)

]
= 1

2

h∑
i=1

[λ1φ
2(pi) − λ0].(5.5)

It follows from (3.9) that an upper bound for F(π) is given by

F(π) ≤
s∗∑

p=1

[λ1φ
2(p) − λ0],(5.6)

which is attained by the order πs∗ defined in (3.8).
When s∗ = 0, F(πs∗) = 0 and for any other order π , it follows from (5.5) and

(3.9) that F(π) ≤ 0. This establishes part (i) of Lemma 3.2.
(ii) If equality is attained in (5.6) by an order π̂ , then it is clear from (5.4) that

h(π̂) = 2s∗, sj (π̂) = 0 for j ≥ 3, s2(π̂) = s∗ and s1(π̂) = k − 2s∗. However, for
k > v + s∗, the number of treatments required by π̂ is k − 2s∗ + s∗ = k − s∗ > v

so that π̂ does not exist. To prove (ii), let us start by evaluating the possible range
of s(π) for an optimal order π . Since 1 < k/v < 2, it follows from (3.6) that s(π)

is minimized when ni ∈ {1,2}; It can hence be shown that Minπ∈O s(π) = α. On
the other hand, if s(π) > k/2, then the trend-free order πe defined by

πe =
{

(1,2, . . . , k/2, k/2, . . . ,2,1), if k is even,(
1,2, . . . , (k − 1)/2, (k + 1)/2, (k − 1)/2, . . . ,2,1

)
, if k is odd,
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satisfies s(π) > s( πe) = 
k/2� and T (π) ≥ T (πe) = −1/2 = Minπ∈O T (π),
hence F(π) < F(πe). Therefore, without loss of generality, we may assume α ≤
s(π) ≤ k/2.

Suppose π ∈ O is arbitrary with s(π) = α + g, where 0 ≤ g ≤ k/2 − α. It
follows from (5.3) and (5.4) that s1(π) ≥ k − 2(α + g). Therefore, from (3.7), we
get

T (π) = 1
2

[
v∑

i=1

h2
i (π) − 1

]
≥ 1

2

[ ∑
i:ni=1

h2
i (π) − 1

]
≥ −

α+g∑
p=1

φ2(p).

Using (3.3), we obtain F(π) ≤ Maxs(π)=α+g F (π) = ∑α+g
p=1[λ1φ

2(p) − λ0].
Since (k + 1)/2 > α + g ≥ α > s∗, (3.9) implies

∑α+g
p=1[λ1φ

2(p) − λ0] ≤∑α
p=1[λ1φ

2(p)−λ0]. It can be shown that
∑α

p=1[λ1φ
2(p)−λ0] = F(πα), with πα

as defined in (3.8). Hence, F(π) ≤ F(πα). This completes the proof of Lemma 3.2.
�

To prove Lemma 3.5, we need a result that is stated and proved below.

LEMMA 5.1. Let k ≥ 2v and k be even. With m and t as defined in (3.10)
and with u denoting an integer, 0 ≤ u ≤ v, let Ou denote the set of all orders with
precisely u treatments that have an odd replication. Then, an order π ∈ Ou with
the following properties minimizes

∑v
i=1 n2

i over Ou:

(i) when m is even,

sm = v − u + t

2
, sm+1 = u, sm+2 = t − u

2
if u ≤ t,

sm−1 = u − t

2
, sm = v − u, sm+1 = u + t

2
if u > t;

(ii) when m is odd,

sm−1 = v − u − t

2
, sm = u, sm+1 = v − u + t

2
if u ≤ v − t,

sm = u + v − t

2
, sm+1 = v − u, sm+2 = u − v + t

2
if u > v − t.

Here, the sj ’s are the quantities defined in (5.1).

PROOF. We will first show that an order that minimizes
∑v

i=1 n2
i in Ou

(a “minimizing order”) satisfies the following:

If sj0 > 0 and sj1 > 0 then |j1 − j0| ≤ 2.(5.7)

To see this, suppose π is an order such that sj0 > 0, sj1 > 0 for j1 ≥ j0 +3. Suppose
ni0 = j0 and ni1 = j1. Let π ′ be an order obtained from π by only changing two
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appearances of treatment i1 to treatment i0. For π ′, n′
i1

= j1 − 2, n′
i0

= j0 + 2,

n′
i = ni for all i �= i0, i1, hence π ′ ∈ Ou. Clearly,

∑v
i=1 n′2

i − ∑v
i=1 n2

i = (j0 +
2)2 − j2

0 + (j1 − 2)2 − j2
1 = 4(j0 − j1) + 8 ≤ −12 + 8 < 0. Hence, π ′ is “better”

than π . For π ′, s′
j0

= sj0 − 1, s′
j1

= sj1 − 1, s′
j0+2 = sj0+2 + 1, s′

j1−2 = sj1−2 + 1
and s′

j = sj for j /∈ {j0, j0 + 2, j1 − 2, j1}. Repeated application shows that (5.7)
must hold for a minimizing order.

Since k = mv + t , 0 ≤ t < v, for a minimizing order, we have two possibilities:

sj = 0 for j /∈ {m,m + 1,m + 2} or(5.8)

sj = 0 for j /∈ {m − 1,m,m + 1}.(5.9)

Suppose m is even, m ≥ 2. Clearly, u and t are even. For π ∈ Ou, if (5.8) holds,
then sm+1 = u. It follows from

sm + sm+1 + sm+2 = v, msm + (m + 1)sm+1 + (m + 2)sm+2 = k(5.10)

that an order π ∈ Ou with sm+1 = u must satisfy

sm = v − u + t

2
, sm+1 = u, sm+2 = t − u

2
.(5.11)

On the other hand, if (5.9) holds, then sm−1 + sm+1 = u. Identities (5.10) imply
that an order π ∈ Ou with sm−1 + sm+1 = u must satisfy

sm−1 = u − t

2
, sm = v − u, sm+1 = u + t

2
.(5.12)

It is clear that when u < t , (5.12) cannot hold and when u > t , (5.11) cannot hold.
When u = t , (5.11) and (5.12) both reduce to sm= v − t , sm+1 = t . This proves
Lemma 5.1 for even m. The proof for the case of odd m, m ≥ 3, is similar. �

PROOF OF LEMMA 3.5. To prove (i), note that since |ni − ni′ | ≤ 1, it follows
from (3.6) that πA

TF minimizes s(π) and since hi = 0 for i = 1, . . . , v, it follows
from (3.7) that πA

TF minimizes T (π). Hence, πA
TF maximizes F(π). The proof of

(ii) is similar.
To prove (iii), first consider an order π ∈ Ou. From (3.13), it follows that

T (π) ≥ 1

2

[
uφ2

(
k

2

)
− 1

]
.

Case 1: m is even, m ≥ 2. It follows from Lemma 5.1 that when π ∈ Ou, for
u ≤ t ,

s(π) ≥ 1

2

[(
v− u + t

2

)
m2 +u(m+1)2 + t − u

2
(m+2)2 −mv− t

]
= smin + t − u

2
,

with smin as defined in (4.2). Similarly, for u > t , s(π) ≥ smin + (u − t)/2. Hence,
from (3.3), we get, for π ∈ Ou,

F(π) ≤ −λ0

(
smin + |t − u|

2

)
− λ1

2

[
uφ2

(
k

2

)
− 1

]
.(5.13)
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If we denote the upper bound in (5.13) by F ∗(u), then F ∗(u) < F ∗(t) for u > t .
This implies that Max0≤u≤v F ∗(u) is attained at some u ≤ t . When u ≤ t ,

F ∗(u) = −λ0s
min − λ0t

2
+ λ1

2
+ u

2

[
λ0 − λ1φ

2
(

k

2

)]

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F ∗(0), when λ0 − λ1φ

2
(

k

2

)
< 0,

F ∗(t), when λ0 − λ1φ
2
(

k

2

)
≥ 0.

The lemma follows since F(πC
TF) = F ∗(0) and F(πNTF) = F ∗(t).

Case 2: m is odd, m ≥ 3. The proof is similar. It can be shown that when π ∈ Ou,

F(π) ≤ −λ0

(
smin + |v − t − u|

2

)
− λ1

2

[
uφ2

(
k

2

)
− 1

]
= F ∗∗(u), say.

Max0≤u≤v F ∗∗(u) is attained at some u ≤ v − t . When u ≤ v − t ,

F ∗∗(u) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F ∗∗(0), when λ0 − λ1φ

2
(

k

2

)
< 0,

F ∗∗(v − t), when λ0 − λ1φ
2
(

k

2

)
≥ 0.

Finally, in this case, F(πC
TF) = F ∗∗(0) and F(πNTF) = F ∗∗(v − t). �
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286.

[19] RAO, C. R. (1973). Some combinatorial problems of arrays and applications to experimental
designs. In A Survey of Combinatorial Theory (J. N. Srivastava, ed.) 349–359. North-
Holland, Amsterdam. MR0376398

[20] STUFKEN, J. (1988). On the existence of linear trend-free block designs. Comm. Statist. Theory
Methods 17 3857–3863. MR0968040

[21] YEH, C.-M. and BRADLEY, R. (1983). Trend-free block designs: Existence and construction
results. Comm. Statist. Theory Methods 12 1–24. MR0697622

[22] YEH, C.-M., BRADLEY, R. and NOTZ, W. I. (1985). Nearly trend-free block designs. J. Amer.
Statist. Assoc. 80 985–992. MR0819604

DEPARTMENT OF MATHEMATICS, STATISTICS

AND COMPUTER SCIENCE

UNIVERSITY OF ILLINOIS AT CHICAGO

CHICAGO, ILLINOIS 60607-7045
USA
E-MAIL: dibyen@uic.edu

DEPARTMENT OF STATISTICS

UNIVERSITY OF GEORGIA

ATHENS, GEORGIA 30602
USA
E-MAIL: jstufken@uga.edu

http://www.ams.org/mathscinet-getitem?mr=0740904
http://www.ams.org/mathscinet-getitem?mr=1126339
http://www.ams.org/mathscinet-getitem?mr=1737804
http://www.ams.org/mathscinet-getitem?mr=1705542
http://www.ams.org/mathscinet-getitem?mr=1927709
http://www.ams.org/mathscinet-getitem?mr=2160618
http://www.ams.org/mathscinet-getitem?mr=1309511
http://www.ams.org/mathscinet-getitem?mr=0234585
http://www.ams.org/mathscinet-getitem?mr=0376398
http://www.ams.org/mathscinet-getitem?mr=0968040
http://www.ams.org/mathscinet-getitem?mr=0697622
http://www.ams.org/mathscinet-getitem?mr=0819604
mailto:dibyen@uic.edu
mailto:jstufken@uga.edu

	Introduction
	Setup and basic results
	Optimal designs
	Optimal orders when k<2v
	Optimal orders when k>=2v
	Optimal designs

	Robustness
	Proofs
	References
	Author's Addresses

