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We consider the following problem in one-dimensional diffusion-limited
aggregation (DLA). At time t , we have an “aggregate” consisting of Z ∩
[0,R(t)] [with R(t) a positive integer]. We also have N(i, t) particles at i,
i > R(t). All these particles perform independent continuous-time symmetric
simple random walks until the first time t ′ > t at which some particle tries to
jump from R(t) + 1 to R(t). The aggregate is then increased to the integers
in [0,R(t ′)] = [0,R(t)+1] [so that R(t ′) = R(t)+1] and all particles which
were at R(t) + 1 at time t ′− are removed from the system. The problem is
to determine how fast R(t) grows as a function of t if we start at time 0 with
R(0) = 0 and the N(i,0) i.i.d. Poisson variables with mean μ > 0. It is shown
that if μ < 1, then R(t) is of order

√
t , in a sense which is made precise. It is

conjectured that R(t) will grow linearly in t if μ is large enough.

1. Introduction. Before we begin the discussion of the speed at which the
aggregate in the diffusion-limited aggregation (DLA) model grows, we explain
how we came to this problem from studying another growth model. In Kesten and
Sidoravicius (2005), we studied the following model for the spread of an infec-
tion. There is a “gas” of particles, each of which performs a continuous-time sim-
ple random walk on Z

d with jump rate DA. These particles are called A-particles
and move independently of each other. They are regarded as healthy individuals.
We assume that we start the system with NA(x,0−) A-particles at x and that
the NA(x,0−), x ∈ Z

d , are i.i.d., mean-μA Poisson random variables. In addi-
tion, there are B-particles which perform continuous-time simple random walks
with jump rate DB . We start with a finite number of B-particles in the system at
time 0. B-particles are interpreted as infected individuals. The B-particles move
independently of each other. The only interaction is that when a B-particle and an
A-particle coincide, the latter instantaneously turns into a B-particle.

In Kesten and Sidoravicius (2005), we investigated how fast the infection
spreads. Specifically, if B̃(t) := {x ∈ Z

d : a B-particle visits x during [0, t]} and
B(t) = B̃(t)+[−1/2,1/2]d , then we investigated the asymptotic behavior of B(t).
The principal result in Kesten and Sidoravicius (2005) states that if DA = DB (so
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that the A- and B-particles perform the same random walk), then there exist con-
stants 0 < Ci < ∞ such that almost surely C(C2t) ⊂ B(t) ⊂ C(C1t) for all large t ,
where C(r) = [−r, r]d . In a further paper, Kesten and Sidoravicius (2006), we
proved a full “shape theorem” which states that t−1B(t) converges almost surely
to a nonrandom compact set B0 with the origin as an interior point, so the true
growth rate for B(t) is linear in t .

If DA �= DB , then we could only prove the upper bound that B(t) ⊂ C(C1t)

eventually. However, there is one extreme case for which a shape theorem and
linear growth of B(t) has also been proven. This is the so-called frog model in
which DA = 0, that is, the healthy particles stand still until they are infected [see
Alves, Machado and Popov (2002) and Ramirez and Sidoravicius (2004)].

To get a better feel for the problem, we wanted to investigate the other extreme
case, namely when DB = 0. Taken literally, this is not an interesting case. In this
case, the infected particles stand still and act as traps for the healthy particles. All
that happens with any given A-particle is that it walks around until it coincides
with one of the B-particles, after which it also stands still. The infected set B̃(t)

equals B̃(0) at all t ≥ 0 and the speed at which the infection spreads is 0. To obtain
something interesting, we have to allow the B-particles to move, at least at some
times. The simplest situation is the one-dimensional one, that is, when d = 1. We
chose to let a B-particle move one unit to the right when an A-particle jumps on
top of it. According to our rules, all A-particles which were one unit to the right
of the B-particle are turned into B-particles at the time of this jump. This leads to
the model described in the abstract.

The model described in the abstract is of further interest because it is a one-
dimensional version of the celebrated DLA model of Witten and Sander (1981). In
this model on Z

d , one again has a growing aggregate A(t) ⊂ Z
d and one starts with

A(1) = {0} = the origin. Usually, t is taken to run through the integers and A(t)

has cardinality t . A(t + 1) is obtained from A(t) by adding one point of Z
d . This

added point is the first point of the boundary of A(t) which is reached by a random
walker which starts at infinity [see Kesten (1987) for a more precise description].
The main difference between the model in the abstract and the DLA model of
Witten and Sander is that the latter adds one A-particle to the system at a time,
while in the former, there are infinitely many A-particles from the start. However,
there have been various investigations for related models in which new A-particles
are added to the system before all previously released A-particles have reached
the boundary of the aggregate and are removed from the system; see, for instance,
Lawler, Bramson and Griffeath (1992). In the physics literature, almost the same
model as we discuss here was already studied by simulations in Voss (1984). How-
ever, in that paper, the A-particles do not perform independent random walks, but
the system of A-particles evolves as an exclusion process; moreover, Voss (1984)
considers the two-dimensional case. Also, Chayes and Swindle (1996) investigated
hydrodynamic limits for the one-dimensional case in which the A-particles follow
exclusion dynamics. We remark that the particle density in an exclusion process
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is necessarily at most 1. As we shall see, in our model, the case when the particle
density μ is less than 1 can be handled much better than the case with μ ≥ 1. We
have few results in the latter case.

As a side remark, we point out that DLA is usually considered in dimension
d > 1, in which there is a whole new level of difficulty because we do not know
how to describe the “shape” of A(t).

Let us now turn to the problem raised in the abstract, namely the rate at which
R(t) grows. We take τ0 = 0. As stated, we take R(0) = R(τ0) = 0 and N(i,0),
i ≥ 1, an i.i.d. sequence of mean-μ Poisson random variables. All particles per-
form independent continuous-time simple random walks with jump-rate D until
they are absorbed by the aggregate. Unless otherwise stated, by “simple random
walk,” we mean a symmetric simple random walk. It is convenient to let the par-
ticles continue as a simple random walk, even after absorption, by giving the par-
ticles also a color, white or black. We start with all particles white, but absorption
of the particle by the aggregate is now represented by changing the color of the
particle from white to black at the time of its absorption. However, the particle’s
path is not influenced by its color. After a particle turns black, it continues with
a continuous-time simple random walk path. A black particle has no interaction
with any other particle, nor does it influence the motion of R(·). Thus, R is not
increased at a time t when a black particle jumps to R(t). In the sequel, we shall
always use this description of the system with colored particles.

N(i, t) denotes the number of white particles at the space–time point (i, t).
We successively define stopping times τk and take R(t) = k on the time interval
[τk, τk+1). Moreover, it will follow by induction on k that

at time τk , there are no white particles in [0,R(τk)] = [0, k].(1.1)

We take τ0 = 0. If τk and the N(i, τk) have been determined, and R(τk) = k

and (1.1) holds, then we take

τk+1 = inf{t > τk : some white particle jumps to position R(τk) = k}.(1.2)

Since the particles perform simple random walk and (1.1) holds, only white parti-
cles at position k + 1 at time τk+1− can jump to k at time τk+1. If such a jump oc-
curs, we take R(τk+1) = k+1 [i.e., R(·) jumps up by 1 at time τk+1] and change to
black the color of all white particles which were at R(τk)+1 = k+1 at time τk+1−
(this includes the particle which jumped to k at τk+1). It is clear that then (1.1) with
k replaced by k + 1 holds so that we can now define τk+2, etc. It also follows from
this description that

R(t) = k for τk ≤ t < τk+1.(1.3)

REMARK 1. We briefly indicate in this remark how our process can be con-
structed as a Markov process with the strong Markov property. However, anyone
willing to accept the strong Markov property without proof will want to skip such
a construction.
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As our sample space, we take

� :=
∞∏
i=1

D([0,∞),Z+),

that is, the countable product of cadlag paths from [0,∞) to the nonnegative inte-
gers. All our random variables are functions on �. We start with a countably infi-
nite number of particles, which we order in some way as ρ1, ρ2, . . . . At the sample
point (ω1,ω2, . . .) ∈ �, the ith coordinate, ωi , is the path of the particle ρi . The
starting positions, ωi(0), of the various particles are specified by the initial point of
our process and the displacements {ωi(t)−ωi(0)}t≥0, i = 1,2, . . . , are i.i.d. simple
continuous-time random walk paths. Thus, a sample point specifies the positions
of all particles at all times. The colors of all particles at any given time t and R(t)

are then also determined, but we do not attempt to write down an explicit expres-
sion for these random variables. If Y(t) is the state of our process at time t , then
Y(t) is a point of �, which is the collection of all sequences {r, (ni, ηi), i ≥ 1} with
r, ni ∈ Z+ and ηi ∈ {W,B}. Y(t) = {r, (ni, ηi), i ≥ 1} means that R(t) = r and the
position and color of ρi are ni and ηi , respectively. Of course, the process of the
i.i.d. paths of the particles ρi,1 ≤ i < ∞, is a Markov process and this makes {Yt }
also into a process with the simple Markov property. However, we have to allow
the possibility of explosion; we must add a cemetery point ∂ to our state space to
define Y(t) as a Markov process for all time t . We do not know whether this alone
will make {Y(t)} into a strong Markov process which can start at each point in �.
We shall therefore choose a smaller state space than �.

Explosion can happen in two ways. First, τ∞ := limk→∞ τk may be finite. Sec-
ond, it may be that τk+1 = τk . This happens if and only if at some time t , there are
infinitely many white particles at R(t)+1. We do not want to continue our process
after such a time. In fact, we shall not continue our process beyond the time

τ̂ = inf{t : there are infinitely many particles of any color at some site z}.
Let P σ denote the measure governing the process {Y(t)} conditioned to start at σ .
We then choose as our state space for {Y(t)} the set

�0 := {
σ ∈ � :P σ {τ̂ ∧ τ∞ < ∞} = 0

}
.

This description of the state space is rather indirect, but one can now prove that if
the process {Y(t)} starts at a point σ ∈ �0, then it does not explode and stays in
�0 for all time a.s. [P σ ]. Moreover, the restricted process has the strong Markov
property. Finally, �0 is nonempty. If the starting point σ is chosen by taking

R(0) = 0 and all particles initially white and N(i,0), i ≥ 1,
(1.4)

as i.i.d. Poisson random variables with mean μ,

then σ lies a.s. in �0.
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We shall not prove any of these statements here. Proofs can be given in the same
manner (but actually simpler) as in Section 2 of Kesten and Sidoravicius (2003b).
The principal step which makes this proof work is showing that for any σ ∈ �0,
any L,T ≥ 0 and ε > 0, one can find a K ≥ L such that

P σ {some particle which starts in [K + 1,∞) enters [0,L] during [0, T ]} ≤ ε.

The same is true if the initial state is chosen as in (1.4).
Let us now state our results. Throughout, 0 denotes the origin and {S(t)}t≥0 is

a continuous-time simple symmetric random walk on Z with jump rate D. Unless
otherwise stated, S(0) = 0. We use P {A} for the probability of the event A in
various probability models and E for expectation with respect to P . It should be
unambiguous from the context which probability measure we are discussing. Ci

will denote a constant with value in (0,∞). Its value may vary from formula to
formula. Our first theorem states that for any value of μ, the common expectation
of the N(k,0), it is the case that

lim sup
t→∞

1

t
R(t) < ∞ a.s.(1.5)

THEOREM 1. Assume that R(0) = 0 and that the N(i,0), i ≥ 1, are i.i.d.
mean-μ Poisson variables. Then (1.5) holds. In fact, there exist constants 0 <

Ci < ∞ such that

P {R(t) > C1t} ≤ C2 exp[−C3t].(1.6)

REMARK 2. Theorem 1 remains valid if the particles perform an asymmetric
simple random walk, that is, each jump of the random walk is +1 or −1 with
probability p+ and p− = 1 − p+, respectively. No change in the proof is required
for this more general case.

In view of Theorem 1, it is reasonable to conjecture that limt→∞(1/t)R(t) ex-
ists and is constant a.s. One might even assume that this limit is strictly positive,
but a quick (and quite general) argument in the next theorem shows that if μ < 1,
then “there are not enough particles around” to make R(t) grow linearly with time.

THEOREM 2. Assume that {N(i,0)}i≥1 is a stationary ergodic sequence and
that E{N(i,0)} = μ. If 0 < μ < 1, then

lim
t→∞

R(t)

(log t)2
√

t
= 0 a.s.(1.7)

Moreover, R(t)/
√

t , t ≥ 1, is a tight family, that is,

P
{
R(t) ≥ x

√
t
} → 0 as x → ∞, uniformly in t ≥ 1.(1.8)
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If we assume that the initial conditions satisfy (1.4), then (1.7) can be strengthened
to

lim sup
t→∞

R(t)√
t

< ∞ a.s.(1.9)

REMARK 3. One can formulate a d-dimensional analog of our model and of
Theorem 2. In this version, one works on Z

d and at time 0, the aggregate con-
sists of the origin only, while at the site x �= 0, there are N(x,0) particles, with
the N(x,0), x ∈ Z

d \ {0} i.i.d. Poisson variables of mean μ. Again, all particles
perform independent continuous-time simple random walks. They all start out as
white particles. We denote the aggregate at time t by A(t). If, at some time t ,
a white particle jumps from a site x /∈ A(t−) onto the aggregate, then we set
A(t) = A(t−) ∪ {x} and all particles which were at x at time t− are changed
to black at time t .

We define an outer radius of the aggregate by

R(o,d) := sup{‖x‖2 :x ∈ A(t)}
and an inner radius as

R(i,d)(t) := inf{‖x‖2 :x /∈ A(t)}.
The latter is the distance from the origin to the nearest vertex outside A(t). For this
model Theorem 1 remains valid. More precisely, (1.6) and (1.5) with R(t) replaced
by R(o,d)(t) still hold. Theorem 2 has the following analogue: if μ < 1, then

lim sup
t→∞

R(i,d)(t)√
t

< ∞ a.s.(1.10)

[Note that (1.10) is trivially true if there exists a site x0 which is never occupied by
A(t).] We shall not give the proofs of these results here. They are essentially the
same as for Theorem 1 and for (1.9).

If we strengthen our assumptions on the N(i,0), then we can show that in the
one-dimensional model, R(t)/

√
t is actually bounded away from 0 in distribution.

This holds for all μ > 0.

THEOREM 3. Assume that the N(i,0), i ≥ 1, are i.i.d. with finite second mo-
ment μ2 > 0. Then, for all ε > 0, there exists an η = η(ε) > 0 and a t0 = t0(ε)

such that

P

{
R(t)√

t
> η

}
≥ 1 − ε for all t ≥ t0.(1.11)
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FIG. 1. Graph of log[(1/n)
∑n

i=1 Ri(t)] against log t when μ = 0.5 and n = 1000 (at least for
part of the graph). The Ri(·) are independent runs of the process. The slope of the regression line is
0.503. The theory predicts a slope of 0.5.

Unfortunately, the simple proof of (1.7) breaks down when μ > 1 and we there-
fore conjecture that there exists a critical value μc ≥ 1 such that

lim
t→∞

1

t
R(t) exists and is a.s. a constant which is

{
> 0, if μ > μc,
= 0, if μ < μc.

(1.12)

A stronger conjecture would be that

μc = 1.(1.13)

Simulations certainly indicate that this is the case; see Figures 1–3 which plot
log[(1/n)

∑n
i=1 Ri(t)] for various values of n, t , as a function of log t , where

R1, . . . ,Rn are independent copies of R(t). We nevertheless marked the verti-
cal axis as logER(t) because we regard (1/n)

∑n
i=1 Ri(t) as an approximation

of ER(t).
We have made only little progress toward proving (1.12), so we pose this as a

problem.

OPEN PROBLEM 1. Prove (1.12) and, if this holds, determine μc. If one be-
comes even more ambitious, one can ask whether power laws exist as μ ↓ μc and
what the critical exponents are. To formulate this problem, we have to assume that
limt→∞(1/t)R(t) exists. Let us write Z(μ) for this limit.

OPEN PROBLEM 2. Does

lim
μ↓μc

logZ(μ)

log(μ − μc)

exist and if so, what is its value?

A final problem about the DLA model is motivated by Theorems 2 and 3.
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FIG. 2. Graph of log[(1/n)
∑n

i=1 Ri(t)] against log t when μ = 1 and n = 1000. The slope of the
regression line is 0.664.

OPEN PROBLEM 3. Does t−1/2R(t) have a limit distribution as t → ∞ when
μ < 1? It has been suggested to us that this problem could perhaps be handled
by means of the techniques for establishing a hydrodynamic limit result for R(t).

FIG. 3. Graph of log[(1/n)
∑n

i=1 Ri(t)] against log t when μ = 1.1 and n = 100. The slope of the
fitted curve approaches 0.999 as t becomes large.
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Because of ignorance, we have made only a weak and unsuccessful effort in this
direction.

The obvious approach to proving that R(t) grows linearly in t is to study our
system as seen from the right edge of the aggregate. Indeed, the collection of po-
sitions of the white particles relative to R(t) forms a Markov process. Does this
Markov process have a nontrivial invariant probability distribution and, if so, is the
invariant distribution unique? (By “nontrivial,” we mean that we exclude the dis-
tribution which puts no particles at all to the right of the aggregate.) On an intuitive
level, one would like to say that the invariant measure puts at position R(t) + x

roughly a Poisson number of particles with mean equal to μ times the probabil-
ity that a particle at R(t) + x is white. That is, the mean number of particles at
R(t) + x should be limt→∞ μν(x, t), where

ν(x, t) = P {R(t) + x − S(s) > R(t − s) for 0 ≤ s ≤ t}.
Actually, all we want to know in first instance is that the density of white particles
directly in front of R(t) is bounded away from 0 as t → ∞. We want to show that
the system does not develop large holes without white particles in front of R(t).
To obtain such a result, we need some a priori control of R(t) − R(t − s), which
we do not know how to control. T. Kurtz (private communication) showed us that,
conditionally on the σ -field generated by {R(s) : s ≤ t}, the N(R(t) + x, t) have a
Poisson distribution with a mean μ(x, t), say, even derived a system of differential
equations for the μ(x, ·). Unfortunately, this system still involves the unknown
random function R(·) in boundary conditions and we have been unable to make
use of these differential equations.

Since we were unsuccessful in proving the existence of a nontrivial invariant
probability measure for the Markov process of the last paragraph, we designed
some caricatures of the model. We hope that these caricatures can be regarded as
“approximations” to the true model and will help us to treat the true model. These
caricatures have built-in mechanisms that make it more difficult for a large hole to
form in front of the aggregate.

CARICATURE I. In this version, we still have an aggregate A(t) = [0,

R(t)] ∩ Z. At time 0, we again put N(i,0) white particles at i, with {N(i,0)},
i ≥ 1, an i.i.d. sequence of mean-μ Poisson variables. In addition, we add J par-
ticles to the system at some deterministic positions x1 ≥ 1, . . . , xJ ≥ 1. Again, the
right edge of the aggregate [i.e., R(t)] will increase at the successive times τk at
which a particle jumps from R(τk−)+1 to R(τk−). As before, at such a time, R(·)
increases by 1 and changes to black the color of all the particles at R(τk−) + 1.
Equation (1.3) again holds in this caricature. The difference between this model
and the true one is in the motion of the particles, or rather in the time at which the
particles start moving. This can be described by introducing another color. At the
start, only the J additional particles placed at x1, . . . , xJ will be white. The other
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particles [N(i,0) of them at position i] will be colored red. Red particles do not
move. Once a particle turns white or black, it performs a continuous-time simple
random walk, as in the true model. These random walks are independent of each
other. A particle changes from red or white to black when it is first at position k

at time τk− for some k. At all times, there will be exactly J white particles in
the system. If, at time τk , m white particles change to black, then we replenish
the system by changing m red particles to white, which then begin their random
walks. To complete the description, we have to specify how the m red particles
which become white are chosen. We will pick these as close to the right edge as
possible. That means that at time τk , we first change particles at k + 1 from red
to white. If there are at least m red particles at k + 1 at time τk−, then we change
exactly m of these to white and no other red particles turn white at this moment.
If there are m1 < m red particles at k + 1 at time τk−, then we change all m1 of
these red particles to white. We then look for m − m1 red particles at k + 2. As
before, if there are m2 red particles at k+2 and m2 ≥ m−m1, then we turn exactly
m−m1 red particles at k +2 into white and do not change any further red particles
to white. If m2 < m − m1, then we change all m2 of the red particles at k + 2 to
white and we still need to change m−m1 −m2 particles. We now search for these
at k + 3, etc., until we have changed m red particles to white.

This version indeed has some of the desirable properties. Equation (1.5) still
holds for this model. In fact, since, at any time, there are only J white particles
present in the system, the rate at which R(·) jumps is at most JD/2, so

lim sup
t→∞

1

t
R(t) ≤ JD

2
a.s.(1.14)

Furthermore, if 0 < μ < 1, then (1.7) and (1.8) hold for this caricature. No essen-
tial changes in the proof of Theorem 2 are needed for these. It is, however, not
clear whether (1.11) holds when μ < 1. Most importantly, we can show in this
model that there exists a J0 such that if J ≥ J0 and μ ≥ 2J , then

lim
t→∞

1

t
R(t) exists and is strictly positive a.s.(1.15)

Thus, there is a phase transition in the large-time growth rate of R(t) in this model.

Unfortunately, the proof of (1.15) for this caricature is still rather complicated.
Since this is only a caricature, we shall not give this proof, but instead treat a
simpler caricature, one which is a bit further removed from the true model.

CARICATURE II. This caricature corresponds more or less to Caricature I with
μ = ∞. That is, we start with infinitely many red particles at each i ≥ 1, plus J

additional white particles at x1, . . . , xJ . Everything but the choice of which red
particles to turn into white ones is as in Caricature I. However, if at time τk , m red
particles have to be turned into white ones, then we select these at positions k +
Y1, k+Y2, . . . , k+Ym with the Y1, . . . , Ym i.i.d. with some common distribution G,
where G is concentrated on {1,2, . . .}. In Section 4, we shall show that if J is large
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and G has a suitable number of moments, then (1.15) again holds for this caricature
(see Theorem 4). Also, (1.1) still holds in this model.

The reason why this caricature is relatively simple to treat is that the positions
of the J white particles (as seen from the front of the aggregate) form a Markov
process with a countable state space. There is a standard method to prove positive
recurrence of such processes, namely to apply Foster’s criterion after finding a
suitable positive supermartingale or Lyapounov function [see Fayolle, Malyshev
and Menshikov (1995), Section 2.2]. This is indeed the method which we shall use
in Section 4.

2. A linear upper bound for R(t).

PROOF OF THEOREM 1. This proof is actually contained in the proof of
Proposition 4 and Theorem 1 of Kesten and Sidoravicius (2005). However, in the
special case with which we deal here, the proof simplifies and we can quickly show
the principal step. Basically, this is a Peierls argument, in that it estimates the ex-
pected number of certain paths. For the proof of Theorem 1, it is convenient to
label the particles in a different way than in Section 1. We shall order the particles
at i at time 0 in an arbitrary way and denote the j th particle at i at time 0 by 〈i, j〉.
We say that 〈i, j〉 exists if N(i,0) ≥ j . Then, if we take k = �C1t�,

P {R(t) ≥ C1t} ≤ P {τk ≤ t}
≤

∫
· · ·

∫
0≤t1≤t2≤···≤tk≤t

P {some existing particle 〈ui, vi〉 jumps

(2.1)
from i to i − 1 during dti,1 ≤ i ≤ k,

and 〈ui, vi〉,1 ≤ i ≤ k, are distinct}.
Note that the 〈ui, vi〉 have to be distinct because a given particle can change from
white to black at most once. As in (2.51) of Kesten and Sidoravicius (2005), the
right-hand side here equals∫

· · ·
∫

0≤t1≤t2≤···≤tk≤t

[D/2]k dt1 · · ·dtk

× ∑
〈ui,vi〉 distinct

E

k∏
i=1

[
I [〈ui, vi〉 exists]P {S(ti−) = i + 1 − ui}]

(2.2)

≤
∫

· · ·
∫

0≤t1≤t2≤···≤tk≤t

dt1 · · ·dtk

[
Dμ

2

]k

=
[
Dμt

2

]k 1

k!

≤ C2

[
Deμt

2k

]k

.
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The bound (1.6) with C1 = Deμ now follows (recall that k = �C1t�) and C3 =
C1 log 2. �

We already stated in Remark 1 that min(τ̂ , τ∞) is almost surely infinite. The-
orem 1 confirms that [under (1.4)] τ∞ = ∞. The next lemma confirms that also
τ̂ = ∞. We show the short proof [which is also part of the proof of Proposition 4
in Kesten and Sidoravicius (2005)] because some of the computations in the proof
will be needed again in the next section. Define

αs(z) = P {S(s) = −z}.
Note that

αs+u(z) ≥ e−Duαs(z) and αs+u(z) ≥ αu(z
′)αs(z − z′)(2.3)

for any z, z′ ∈ Z and that∫ t+1

0
αs(y − z) ds

= E{amount of time spent by S(·) at z during [0, t + 1]|S(0) = y}
≥ P {y + S(s) reaches z at some s ≤ t(2.4)

and stays at z at least one unit of time}
≥ e−DP {y + S(s) = z for some s ≤ t}.

LEMMA 1. Assume that the N(i,0), i ≥ 1, are i.i.d. mean-μ Poisson vari-
ables. Then τ̂ = ∞ almost surely.

PROOF. For any t ≥ 0, z ∈ Z,

E

{
sup
s≤t

N(z, s)

}
≤ E{number of particles which visit z during [0, t]}

≤ ∑
y∈Z

μP {y + S(s) = z for some s ≤ t}

≤ ∑
y∈Z

μeD
∫ t+1

0
αs(y − z) ds [by (2.4)]

= μeD(t + 1) < ∞.

Thus, P {N(z, s) = ∞ for some z ∈ Z and s < ∞} = 0. �
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3. A sublinear upper bound for R(t) when μ < 1. In this section, we show
that R(t) cannot grow linearly with t when μ < 1. This results requires far less
than (1.4), as shown in Theorem 2. If (1.4) is assumed and μ < 1, then Theorems
2 and 3 show that R(t) is of order

√
t .

PROOF OF THEOREM 2. Define

U(t) = (number of black particles in the system at time t)

and

V (r, t) = (number of particles which moved into [0, r] during [0, t]).
Note that V (r, t) only counts particles which were outside [0, r] at time 0 and that
a particle does not have to be in [0, r] at time t to be counted in V (r, t). A particle
can be black at time t only if it started in [0, r] or if it coincided with R(s) at some
time s ≤ t . Therefore, one has, on the event {R(t) = r},

U(t) ≤
r∑

i=0

N(i,0)

+ (number of particles which moved into [0, r] during [0, t])(3.1)

=
r∑

i=0

N(i,0) + V (r, t).

On the other hand, we must have

U(t) ≥ r(3.2)

since at least one new particle turns black at each time when R(t) increases by 1.
Thus, still on {R(t) = r},

r ≤
r∑

i=1

N(i,0) + V (r, t).(3.3)

Now, if the N(i,0) form a stationary ergodic sequence with common mean μ, then
r∑

i=0

N(i,0) = μr + o(r) ≤ [μ + (1 − μ)/2]r

for r ≥ some (random) r0 almost surely. Thus, for such r ,
1
2(1 − μ)r ≤ V (r, t).

Now, the event {R(t) ≥ A} (with A a positive integer) can occur only if, for some
s ≤ t , R(s) = A. Therefore, for such an s,

{R(t) ≥ A} ⊂ {A ≤ r0} ∪
{
A ≤ 2

(1 − μ)
V (A, s)

}
(3.4)

⊂ {A ≤ r0} ∪
{
A ≤ 2

(1 − μ)
V (A, t)

}
.
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Now, let us estimate E{V (A, t)}. This is the expected number of particles which
start in [A+1,∞) and which enter [0,A] during [0, t]. Thus, for suitable constants
0 < Ci < ∞, independent of A, and t ≥ 1,

E{V (A, t)} = ∑
i≥A+1

E{N(i,0)}P
{

inf
s≤t

[i + S(s)] ≤ A

}

= μ

∞∑
i=A+1

P

{
inf
s≤t

S(s) ≤ A − i

}
(3.5)

≤ μ

∞∑

=1

C1 exp
[
−C2


2

t + 


]
[e.g., by the inequality (2.42) in Kesten and Sidoravicius (2003a)]

≤ C3
√

t .

Consequently,

P

{
A ≤ 2

(1 − μ)
V (A, t)

}
≤ C4

√
t

A
.(3.6)

In particular, we obtain for t = 4k and A = �εk22k�, that for any fixed ε > 0,

P

{
�εk22k� ≤ 2

(1 − μ)
V (�εk22k�,4k)

}
≤ C4

εk2 .

Thus, by Borel–Cantelli, almost surely 2
(1−μ)

V (εk22k,4k) ≤ �εk22k� for all

large k. Also, εk22k > r0 for all large k almost surely. (3.4) now tells us that almost
surely,

R(4k) ≤ �εk22k�, eventually.

Since R(·) is nondecreasing, this implies (1.7).
The tightness in (1.8) follows in a similar way from (3.4) and (3.6).
If (1.4) holds, then V (A, t) is actually bounded by a Poisson random variable

with mean at most∑
i≥A+1

E{N(i,0)}P
{

inf
s≤t

[i + S(s)] ≤ A

}
= μ

∑
i≥1

P

{
inf
s≤t

S(s) ≤ −i

}
≤ C3

√
t .

If we then take t = 4k and A = Ak =: [4C3/(1 − μ)]2k , we get, instead of (3.6),

P

{
V (Ak,4k) ≥ (1 − μ)Ak

2

}
≤ exp

[
−θ

2
(1 − μ)Ak + (eθ − 1)C32k

]
for any θ ≥ 0. In particular, if θ > 0 is taken such that eθ − 1 ≤ 3θ/2, then we
obtain

P

{
V (Ak,4k) ≥ (1 − μ)Ak

2

}
≤ exp

[
−θ

2
C32k

]
.
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Thus, in this situation, a.s. V (Ak,4k) < (1 − μ)Ak/2 and R(4k) < Ak , eventually,
and (1.9) follows from the monotonicity of R(·) as before. �

PROOF OF THEOREM 3. We shall give a proof by contradiction. Let ε > 0
be given and assume that (1.11) fails for this ε. There then exists some sequence
tn → ∞ such that for all η > 0,

P

{
R(tn)√

tn
> η

}
< 1 − ε for all large n.(3.7)

This, together with the monotonicity of R(·), implies that for all 0 < γ ≤ 1, η > 0
and large enough n,

P

{
R(γ tn)√

tn
≤ η

}
≥ P

{
R(tn)√

tn
≤ η

}
≥ ε.(3.8)

In order to choose γ and η, we need some preparations. Fix α > 0 such that

P

{
inf
s≤t

S(s) ≤ −2
√

t

}
≥ α for all t ≥ 1.

Such an α > 0 exists by the central limit theorem. Define

W(t) = (
number of particles which start in

[√
t,2

√
t
]

at time 0 and reach the origin during [0, t]).
Then each particle which starts in [√t,2

√
t] at time 0 has a probability of at least

α of reaching the origin during [0, t]. Thus, conditionally on
∑

i∈[√t,2
√

t] N(i,0) =
N , W(t) is stochastically larger than B(N,α), where B(N,α) is a binomially dis-
tributed random variable corresponding to N trials, each with success probabil-
ity α. In particular,

P
{
W(t) ≤ 1

2αμ
√

t
} ≤ P

{ ∑
i∈[√t ,2

√
t]

N(i,0) ≤ 3
4μ

√
t

}

+ P
{
B

(3
4μ

√
t, α

) ≤ 1
2αμ

√
t
}
.

By simple weak law of large numbers estimates (i.e., Chebyshev’s inequality), the
right-hand side here tends to 0 as t → ∞ so that for all large n,

P
{
W(tn) ≤ 1

2αμ
√

tn
} ≤ ε

4 .(3.9)

We also define

W̃ (γ, t) := (
number of particles which start in

[√
t,2

√
t
]

at time 0 and enter
(−∞, 1

2

√
t
]

during [0, γ t])
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and let β be such that

P

{
inf

s≤γ t
S(s) ≤ −1

2

√
t

}
≤ β for all t ≥ 1.

Then

E{W̃ (γ, t)} ≤ ∑
i∈[√t ,2

√
t]

EN(i,0)P

{
inf

s≤γ t
S(s) ≤ −1

2

√
t

}
≤ (

μ
√

t + 2
)
β,

where μ = EN(i,0). Note that we can take β arbitrarily small by taking γ small
[by means of (2.42) in Kesten and Sidoravicius (2003a)]. We can therefore also fix
γ > 0 and β correspondingly small such that

P
{
W̃ (γ, tn) ≥ 1

4αμ
√

tn
} ≤ ε

4
(3.10)

for all large n. With γ and β fixed in this way, we have from (3.8)–(3.10), for any
fixed η > 0 and large n, that

P

{
R(γ tn)√

tn
≤ R(tn)√

tn
≤ η,

(3.11)

W(tn) ≥ 1

2
αμ

√
tn and W̃ (γ, tn) ≤ 1

4
αμ

√
tn

}
≥ ε

2
.

For the remainder of this proof, t will always be restricted to belong to the
sequence {tn}, even if we do not attach a subscript to t . We now define

Cj = collection of particles which start in
[√

t,2
√

t
]

and which

turn black at the j th jump of R(·) after time γ t.

We use |B| to denote the cardinality of a collection B . We claim that on the event
in the left-hand side of (3.11), we have

R(t)−R(γ t)∑
j=1

|Cj | ≥ (1/4)αμ
√

t .(3.12)

Note that the jumps of R(·) in the time interval (γ t, t] are precisely the j th jump
after γ t for some 1 ≤ j ≤ R(t)−R(γ t). To see (3.12), note that any particle which
reaches the origin during [0, t] must have coincided with R(s) for some s ≤ t and
must therefore be black at time t . In particular, this holds for the W(t) particles
which start in [√t,2

√
t] and which reach the origin during [0, t]. If we restrict

ourselves to η < 1/2, then, on the event in the left-hand side of (3.11), it is the
case that R(s) ≤ R(γ t) ≤ η

√
t ≤ (1/2)

√
t for s ≤ γ t , so the particles which do

not enter (−∞, (1/2)
√

t] during [0, γ t] cannot have turned black yet at time γ t .
Thus, on the event (3.11), we have at least W(t)− W̃ (γ, t) ≥ (1/4)αμ

√
t particles

which start in [√t,2
√

t] and which turn black during (γ t, t]. All these particles
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belong to some C
 with γ t < τ
 ≤ t and are therefore counted in the left-hand side
of (3.12) so that (3.12) follows.

Finally, we will show that we can choose δ > 0 such that

P

{R(t)−R(γ t)∑
j=1

|Cj |2 ≤ δ
√

t

}
≥ 1 − ε

4
.(3.13)

Then the probability that the events in the left-hand sides of (3.11) and (3.13) both
occur is at least ε/4. However, on the intersection of these two events, we have,
by (3.12) and Schwarz’ inequality,

1
16α2μ2t ≤

[R(t)−R(γ t)∑
j=1

|Cj |
]2

≤ [R(t) − R(γ t)]
R(t)−R(γ t)∑

j=1

|Cj |2 ≤ R(t)δ
√

t .

In particular, this implies that

R(t) ≥ α2μ2

16δ

√
t

on the intersection of the left-hand sides of (3.11) and (3.13). This, however, is
impossible for η < α2μ2/(16δ) since one cannot simultaneously have R(t) ≤ η

√
t

and R(t) ≥ α2μ2√t/(16δ). Thus, the assumption that (1.11) fails leads to a con-
tradiction.

It remains to show (3.13). This will follow from a bound, on E{∑R(t)−R(γ t)
j=1

|Cj |2}. Before we prove such a bound, we remind the reader of some basic in-
equalities. First, for some constant C1 < ∞ depending on D only, we have

sup
k

P {S(s) = k} ≤ C1√
s + 1

for s > 0.

This follows from the local central limit theorem [see also the proof of Lemma 12
in Kesten and Sidoravicius (2003a) and Proposition 7.10 in Spitzer (1976)]. This
estimate can be slightly refined. Indeed, for some further constants 0 < Ci < ∞
depending on D only, it holds uniformly in k that

P {S(s) = k} = ∑



P {S(s/2) = 
}P {S(s) − S(s/2) = k − 
}

= ∑

≤|k|/2

P {S(s/2) = 
}P {S(s/2) = k − 
}

+ ∑

>|k|/2

P {S(s/2) = 
}P {S(s/2) = k − 
}

≤ C1√
s/2 + 1

P {S(s/2) ≥ |k|/2} + P {S(s/2) > |k|/2} C1√
s/2 + 1

≤ C2√
s + 1

exp
[
−C3

k2

s + |k|
]
,
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where, in the last step, we used (2.42) of Kesten and Sidoravicius (2003a). In
particular, if π(ξ, s) denotes the position of a particle ξ at time s, then for k ≥ 0,
γ t ≤ s ≤ t and z ∈ [√t,2

√
t],

P {π(ξ, s) = k + 1|π(ξ,0) = z} ≤ C4√
γ t

exp
[
−C3(k + 1 − z)2

t + |k + 1 − z|
]

(3.14)

≤ C4√
γ t

exp
[
−C5k

2

t + k

]
.

We turn to the proof of (3.13) proper. We start with the basic relation

R(t)−R(γ t)∑
j=1

|Cj |2 =
R(t)−R(γ t)∑

j=1

|Cj |
∑

ρ∈Cj

1

=
R(t)−R(γ t)∑

j=1

∑
ρ1

∑
ρ2

I
[
ρ1 and ρ2 both turn black at

time τR(γ t)+j when all

particles of Cj turn black(3.15)

and this happens during [γ t, t]]
= ∑

ρ1

∑
ρ2

I
[
ρ1 and ρ2 turn black

simultaneously at some time in (γ t, t]].
Here, the sum over each ρi is over all particles ρ which start in [√t,2

√
t] and

which change color during (γ t, t]. We denote the σ -field generated by the ini-
tial {N(i,0), i ≥ 1} by F0. We then have the following bound on the conditional
expectation of (3.15), given the initial data:

E

{R(t)−R(γ t)∑
j=1

|Cj |2|F0

}
(3.16)

≤ ∑
ρ1

∑
ρ2

P {ρ1 and ρ2 change color at the same time in (γ t, t]|F0}.

Here, the sum in the right-hand side is over all ρ1 and ρ2 which start in
[√t,2

√
t]. After taking the expectation over the initial state, the contribution to

E{∑R(t)−R(γ t)
j=1 |Cj |2} from pairs with ρ1 = ρ2 is at most

E

{∑
ρ1

1

}
= E

{ ∑
i∈[√t,2

√
t]

N(i,0)

}
≤ μ

(√
t + 2

)
.(3.17)
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To handle pairs ρ1 �= ρ2, define Rr(s;ρ1) and Rr(s;ρ1, ρ2) to be the values of
R(s) in the system from which ρ1, respectively ρ1 and ρ2, have been removed at
time 0. Now ρ1 and ρ2 may change color simultaneously in ds in three ways: (i) ρ2
jumps during ds from Rr(s−;ρ1) + 1 to Rr(s−;ρ1) and ρ1 is at Rr(s−;ρ1) + 1
at time s− and then changes color at the time when ρ2 jumps and Rr(·;ρ1) in-
creases by 1; (ii) the scenario in (i) with the roles of ρ1 and ρ2 interchanged is
followed; (iii) some white particle ρ3, different from ρ1 and ρ2, jumps during ds

from Rr(s−;ρ1, ρ2)+1 to Rr(s−;ρ1, ρ2), and ρ1 and ρ2 are at Rr(s−;ρ1, ρ2)+1
at time s− and then change color at the time when ρ3 jumps and Rr(·;ρ1, ρ2) in-
creases by 1.

Now, observe that for ρ1 �= ρ2, Rr(·;ρ1) and π(ρ2, ·) are independent of the
path of ρ1. Therefore, the conditional probability of (i) taking place, given F0, and
for a given ρ1, ρ2 with ρ2 �= ρ1 which start in [√t,2

√
t], is at most∑

k≥0

∫ t

γ t
P {Rr(s−;ρ1) = k,

π(ρ2, s−) = k + 1 and ρ2 is white at time s−|F0}
× P {π(ρ1, s−) = k + 1}D

2
ds

(3.18)

≤ ∑
k≥0

∫ t

γ t
P {Rr(s−;ρ1) = k,

π(ρ2, s−) = k + 1 and ρ2 is white at time s−|F0}

× C4D

2
√

γ t
exp

[
−C5k

2

t + k

]
ds [by (3.14)].

We now sum this first over the ρ2 �= ρ1 which start in [√t,2
√

t]. For fixed ρ1
and k, the events that R jumps from k to k + 1 due to a jump of ρ2 in ds are
disjoint for different ρ2 and s. Therefore, the sum of (3.18) over ρ2 and integral
over s is at most

C4D

2
√

γ t

∑
k≥0

∫ t

γ t
P {Rr(·;ρ1) jumps from k to k + 1 during ds due to

a jump of some particle other than ρ1}
(3.19)

× exp
[
−C5k

2

t + k

]

≤ C4D

2
√

γ t

∑
k≥0

exp
[
−C5k

2

t + k

]
.

Now, taking the sum over k and ρ1 and taking the expectation over the initial state,
we find that the contribution to E{∑R(t)−R(γ t)

j=1 |Cj |2} coming from scenario (i) is
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at most

C4D

2
√

γ t

∑
k≥0

exp
[
−C5k

2

t + k

]
E

{ ∑
i∈[√t ,2

√
t]

N(i,0)

}
≤ C6

√
t√

γ
(3.20)

for a suitable constant C6. By interchanging the roles of ρ1 and ρ2, we get the
same contribution from scenario (ii).

The contribution from scenario (iii) can be estimated similarly. For fixed distinct
ρ1 − ρ3 we now replace (3.18) by the bound∑

k≥0

∫ t

γ t
P {Rr(s−;ρ1, ρ2) = k,

π(ρ3, s−) = k + 1 and ρ3 is white at time s−|F0}
× P {π(ρ1, s−) = π(ρ2, s−) = k + 1}D

2
ds

(3.21)

≤ C2
4D

2γ t

∑
k≥0

P {in system without ρ1, ρ2,R
r(·;ρ1, ρ2) increases

from k to k + 1 by 1 due to jump of ρ3|F0}

× exp
[
−2C5k

2

t + k

]
.

Analogously to (3.19), the sum of the right-hand side of (3.21) over ρ3 is at most

C2
4D

2γ t

∑
k≥0

exp
[
−2C5k

2

t + k

]
≤ C7

γ
√

t
.

After summing over those ρ1, ρ2 which start in [√t,2
√

t] and taking expectation
over the initial state, we find that scenario (iii) contributes at most

C7

γ
√

t
E

{[ ∑
i∈[√t ,2

√
t]

N(i,0)

]2}
≤ C8

γ

√
t

to E{∑R(t)−R(γ t)
j=1 |Cj |2}. Adding this to the contributions in (3.17) and (3.20), we

find that

E

{R(t)−R(γ t)∑
j=1

|Cj |2
}

≤ C9

γ

√
t .(3.22)

Thus, (3.13) with δ = 4C9/(γ ε) follows from Markov’s inequality. �

REMARK 4. Consider the system in which all particles perform asymmetric
random walks, as described in Remark 2. Assume that 0 < p+ < 1/2 < p− < 1
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so that the particles have a drift to the left. It is intuitively clear that in this case,
R(t) should go to infinity at least linearly in t . In fact, by Remark 2 it cannot grow
faster than linearly in t . It is possible to prove that there exists a constant C10 > 0
such that

lim inf
1

t
R(t) ≥ C10 = C10(p+) a.s.(3.23)

To prove (3.23), we use the same “second moment method” as in the proof of
Theorem 3. To be precise, we use the following analogues of (3.12) and (3.22):
this time let Cj be the collection of particles which turn black at the j th jump of
R(·). Then for

R(t)∑
j=1

|Cj | ≥ C11t(3.24)

and
R(t)∑
j=1

|Cj |2 ≤ C12t.(3.25)

If both these relations hold, then by Schwarz’ inequality, as in the proof of Theo-
rem 3,

C2
11t

2 ≤ R(t)C12t, whence R(t) ≥ C2
11

C12
t.(3.26)

Now, (3.24) is trivial since all white particles have a drift (p− −p+) toward the
origin. Thus, the number of particles which reach the origin during [0, t] is at least∑

1≤x≤(p−−p+)Dt/2

N(x,0) ≥ μD

4
(p− − p+)t,

outside an event of exponentially (in t) small probability. Again as in the proof
of Theorem 3, all these particles will have coincided with the right edge of the
aggregate and have changed color by time t , and are counted in

∑
j≤R(t) |Cj |.

Thus, (3.24) with C11 = μD(p− − p+)/4 holds for all large t , a.s.
To prove (3.25), we need much of the machinery developed in Kesten and Sido-

ravicius (2003a) and we do not give this proof here.

4. Positive recurrence in Caricature II. In this section, we consider Cari-
cature II, as described at the end of the Introduction. We denote the locations at
time t of the J white particles relative to R(t) as X1(t),X2(t), . . . ,XJ (t). We
stress that these are the relative locations with respect to R(t). The actual locations
of the white particles in Z+ are R(t) + X1(t), . . . ,R(t) + XJ (t). The process can
be constructed in the following way. Let {S(t)}t≥0 and {Sj (t)}t≥0,1 ≤ j ≤ J , be
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i.i.d. continuous-time simple random walks which start at 0 and have jump rate D.
Also, let {Yj,k,1 ≤ j ≤ J, k ≥ 1} be i.i.d. random variables with common distribu-
tion G, concentrated on {1,2, . . .}. The {Yj,k} are taken independent of the {Sj (t)}.
Let R(0) = 0, τ0 = 0 and Xj(0) = Aj,0 ∈ {1,2, . . .}, 1 ≤ j ≤ J . These Xj(0) are
regarded as nonrandom, but are otherwise arbitrary integers ≥ 1. Then, when τk

and Xj(τk) have already been determined for some k ≥ 0, define

τk+1 = inf{t > τk :Xj(τk) + [Sj (t) − Sj (τk)] = 0 for some 1 ≤ j ≤ J }(4.1)

and let r(k + 1) be the value of j for which Xj(τk) + [Sj (τk+1) − Sj (τk)] = 0.
Since almost surely only one of the random walks jumps at any time t , this index
r(k + 1) is a.s. unique. Sr(k+1) is the a.s. unique Sj which has a jump at time τk+1.
Further, let

Xj(t) = Xj(τk) + [Sj (t) − Sj (τk)] for τk ≤ t < τk+1,1 ≤ j ≤ J(4.2)

and

Xj(τk+1) = Xj(τk+1−) − I [j = r(k + 1)] + Aj,k+1, 1 ≤ j ≤ J,(4.3)

where the so-called adjustments Aj,k+1 are defined by

Aj,k+1 =
⎧⎪⎨⎪⎩

Yr(k+1),k+1, if j = r(k + 1),
Yj,k+1 − 1, if Xj(τk+1−) = 1, but j �= r(k + 1),
−1, if Xj(τk+1−) ≥ 2.

(4.4)

Note that a jump of a simple random walk is +1 or −1, so the Xr(k+1), which
jumps to 0 at time τk+1, must satisfy

Xr(k+1)(τk+1−) = 1.(4.5)

Thus, the adjustments have been defined in such a way that

Xj(t) = Sj (t) + ∑
k≥0 : τk≤t

Aj,k.(4.6)

R(t) is defined by (1.3). We point out that we make no adjustments at time 0, but
start with the nonrandom Xj(0) = Aj,0, find Xj(τ1) from (4.1)–(4.3) and then find
Xj(τk) successively for k = 2,3, . . . .

The preceding paragraph almost surely defines the Xj for all time. It is clear
from the description of the model that the (ordered) J -tuple {X1(t), . . . ,XJ (t)}t≥0
is a strong Markov process. Its countable state space is {1,2, . . .}J . In a sequence
of lemmas, we shall prove the following theorem.

THEOREM 4. Consider Caricature II. If

μ10 :=
∞∑

n=1

n10G({n}) < ∞,(4.7)
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then there exists a J0 such that for all J ≥ J0, {Xj(t),1 ≤ j ≤ J }t≥0 is irreducible
and positive recurrent. Moreover, under condition (4.7) and J ≥ J0, it holds almost
surely that

lim
t→∞

R(t)

t
exists and is strictly greater than 0.(4.8)

We need more notation. 
1(t), . . . , 
J (t) will be the values X1(t), . . . ,XJ (t) in
increasing order, so


1(t) ≤ 
2(t) ≤ · · · ≤ 
J (t).(4.9)

We set L̃0 = L0 = 
1(0) + · · · + 
J (0) and

L̃k := 
1(τk−) + · · · + 
J (τk−) − 1, k ≥ 1.

The values in the right-hand side here are the values of the 
j “just before the
r(k)th particle has jumped at time τk and before the adjustments at τk have been
made.” For later use, we note that


j (τk−) ≥ 1, 1 ≤ j ≤ J, and L̃k ≥ J − 1(4.10)

because each Xj(t) ≥ 1. We also define the J -vectors

Uk := (
X1(τk−), . . . ,XJ (τk−)

)
(4.11)

at this time. The values after the adjustments give us

Lk := 
1(τk) + · · · + 
J (τk) = L̃k +
J∑

j=1

Aj,k.

We further define

� = �(α) =
{
(x1, . . . , xJ ) :xj ∈ {1,2, . . .},

J∑
j=1

xj ≤ α + 1

}
,

ν1 = ν1(α) = inf{k ≥ 1 :Uk ∈ �(α)} = inf{k ≥ 1 : L̃k ≤ α}
and

νn+1 = νn+1(α) = inf{k > νn :Uk ∈ �(α)}.
We can now outline the proof of Theorem 4. The J -vectors Uk, k ≥ 1, form a

Markov chain with the countable state space

� :=
{
(x1, x2, . . . , xJ ) :xi ∈ Z+,min

i
xi = 1

}
.

The minimal coordinate of any Uk = mini Xi(τk−) must equal 1 because a particle
can jump to 0 at time τk only if it is at 1 just before the jump. The Markov chain
{Uk} visits the finite set �(α) successively at the times ν1, ν2, . . . . It is not hard to
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prove that the chain {Uk} is irreducible (see below) and, in fact, even the embedded
Markov chain {Uνi

}i≥1 is irreducible. The latter has the finite set � ∩ � as state
space and therefore has a unique invariant probability measure, ρ, say, on � ∩ �.
We shall prove that under condition (4.7), and for J ≥ J0 for a suitable J0 < ∞,
for any choice of the initial state (X1(0), . . . ,XJ (0)), we have

ν2 < ∞ a.s. and E{ν2} < ∞,(4.12)

and

τν2 < ∞ a.s. and E{τν2} < ∞.(4.13)

Let us write Eρ for the expectation when the Markov chain {Uνi
} starts with the

distribution ρ for Uν1 . We shall prove that (4.12) and (4.13) also imply that

Eρ{ν2 − ν1} < ∞(4.14)

and

Eρ{τν2 − τν1} < ∞.(4.15)

It then follows from the law of large numbers for Markov additive processes that

1 ≤ lim
n→∞

1

n
νn = Eρ{ν2 − ν1} < ∞ and

(4.16)

0 < lim
n→∞

1

n
τνn = Eρ{τν2 − τν1} < ∞.

A proof of (4.16) can easily be given by a slight generalization of Chung (1967),
Theorems I.15.1 and 2. One must apply the argument there to the Markov chain
{Uνi

} with the deterministic function f (·) in Chung (1967) replaced by the random
function [νi+1 − νi] for (4.14), or τνi+1 − τνi

for (4.15).
It follows from (4.16) that

0 < lim
n→∞

νn

τνn+1

= lim
n→∞

νn+1

τνn

= Eρ{ν2 − ν1}
Eρ{τν2 − τν1}

< ∞.

But, for τνn ≤ t < τνn+1 , it holds that νn ≤ R(t) < νn+1 [see (1.3)] and

νn

τνn+1

≤ R(t)

t
≤ νn+1

τνn

so that a.s.

0 < lim
t→∞

R(t)

t
= Eρ{ν2 − ν1}

Eρ{τν2 − τν1}
< ∞.(4.17)

This will prove (4.8).
To start on the details, let us take care of the irreducibility of {Uk} and {Uνi

},
and the proof of (4.14) and (4.15) from (4.12) and (4.13). Let x′ = (x′

1, . . . , x
′
J ) and
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y = (y1, . . . , yJ ) be points in �. Assume, without loss of generality, that y1 = 1.
Suppose Uk = (x′

1, . . . , x
′
J ) at time τk− and that after the adjustments at time τk ,

(X1(τk), . . . ,XJ (τk)) = (x′′
1 , . . . , x′′

J ) with x′′
i ≥ 1, 1 ≤ i ≤ J . It is clear that the

random walks Si , 1 ≤ i ≤ J , can then move from x′′
i to yi , for 1 ≤ i ≤ J , in

such a way that x′′
i + Si stays ≥ 1. Suppose that this happens over a time interval

[τk, τk + s) so that Xi(τk + s) = yi,1 ≤ i ≤ J . Assume that the next jump of some
Xi occurs at time τk +s+u and that it is X1 which jumps at that time from X1(τk +
s + u−) = y1 = 1 to 0. In this case, τk+1 = τk + s + u and Uk+1 = (y1, . . . , yJ ).
Since (y1, . . . , yJ ) is an arbitrary point in �, this proves the irreducibility of the
chain {Uk}. In fact, it proves that P {Uk+1 = y|Uk = x′} > 0 for any x′, y ∈ �.
We then automatically also have P {Uνi+1 = y|Uνi

= x} > 0 for any x, y ∈ � ⊂ �.
Thus, {Uνi

} is irreducible, as claimed.
As for (4.14) and (4.15), these are not immediately obvious because we have

treated X(τ0−) differently from the X(τk−) for k ≥ 1 by not applying any adjust-
ments at time τ0 = 0. However, the preceding paragraph shows that if we start in
any (nonrandom) state X(0) = x = (x1, . . . , xJ ), and y = (y1, . . . , yJ ) ∈ � ∩ �,
then P {ν1 = 2,U2 = y|X(0) = x} > 0. We then also have

E{ν2|X(0) = x} ≥ E{ν2 − ν1|X(0) = x}
≥ P {ν1 = 2,U2 = y|X(0) = x}E{ν2 − ν1|Uν1 = y}.

Thus, (4.12) implies E{ν2 − ν1|Uν1 = y} < ∞ for any y ∈ � ∩ � and this, in turn,
implies (4.14), because there are only finitely many y in � ∩ �. In a similar way,
one deduces (4.15) from (4.13).

We now start on the proof of (4.12) and (4.13). We define

δk = τk+1 − τk

and the σ -fields

F (t) = σ -field generated by {Sj (s) : 1 ≤ j ≤ J,0 ≤ s ≤ t},
Gk = F (τk) ∨ {Yj,n,1 ≤ j ≤ J,n ≤ k − 1}.

Note that the Yj,k are not included in the set of variables which generate Gk . Thus,
the information in Gk determines τk,Xj (τk−) and L̃k , but not the adjustments
Aj,k or the values of Xj(τk),Lk . The σ -field which also includes the information
on Yj,k,1 ≤ j ≤ J , is

Hk := σ -field generated by Gk ∨ {Yj,k,1 ≤ j ≤ J }.
Throughout, Di will denote various constants with values in (0,∞) which are
independent of J . The same symbol Di may have different values in different for-
mulae. For an event A, I [A] denotes the indicator function of A. For real numbers
a, b, we write a ∧ b for min(a, b) and a ∨ b for max(a, b).
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LEMMA 2. Assume that 2q ∈ {2,3, . . .} and that p ≥ 0 is such that

∞∑
n=1

n2q+pG({n}) < ∞.(4.18)

Then, for all ε > 0, there exists a J (q, ε) such that for all J ≥ J (q, ε) and k ≥ 0,
it holds that

E{δq
k [Xj(τk)]p|Gk} ≤ ε

(
L̃k

J

)2q−1

[Xj(τk−)]p.(4.19)

[For k = 0, we interpret Xj(τ0−) as Xj(0) and J (q, ε) will depend also on 
1 if
k = 0.]

PROOF. We fix k and abbreviate 
j (τk) to 
j . For the time being, we condition
on Hk and consequently regard 
j , and also L̃k,Lk , as fixed. The main part of the
proof is to show that

E{δq
k |Hk} ≤ ε
1

(
Lk

J

)2q−1

.(4.20)

The proof is based on the following well-known estimate: for x ∈ {1,2, . . .},

P {Sj (u) < −x} ≤ 1
2P

{
inf
s≤u

Sj (s) ≤ −x

}
(4.21)

[see Doob (1953), proof of Theorem III.2.2]. This implies that

P {xj + Sj (s) > 0 for 0 ≤ s ≤ u}

= P

{
inf
s≤u

Sj (s) ≥ 1 − xj

}
(4.22)

= 1 − P

{
inf
s≤u

Sj (s) ≤ −xj

}
≤ 1 − 2P {Sj (u) < −xj }

= P {−xj ≤ Sj (u) ≤ xj } ≤ 1 ∧ D1xj√
u

, u ≥ 1, xj ∈ {1,2, . . .}

(by the local central limit theorem). Since δk > u occurs if and only if Xj(t) =
Xj(τk) + [Sj (t) − Sj (τk)] > 0 for τk ≤ t ≤ τk + u, for 1 ≤ j ≤ J , it follows that

P {δk > u|Hk} ≤
J∏

j=1

[
1 ∧ D1
j√

u

]
.(4.23)

For the remainder of this proof, we restrict ourselves to the case when q is an
integer. The case when q is not an integer is actually easier. We set 
0 = 0 and
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J+1 = ∞ and, without loss of generality, we assume J ≥ 8q +2 ≥ 10. We further
interpret the product 
1 · · ·
0 as 1. Then (4.23) gives

E{δq
k |Hk} = q

∫ ∞
0

uq−1P {δk > u|Hk}du

≤ q
∑

0≤j<2q


1 · · ·
j [D1]j
∫ [D1
j+1]2

[D1
j ]2
uq−1−j/2 du

+ q
1 · · ·
2q[D1]2q
∫ [D1
2q+1]2

[D1
2q ]2
u−1 du

+ q
1 · · ·
2q+1[D1]2q+1
∫ ∞
[D1
2q+1]2

u−3/2 du(4.24)

≤ D2
∑

0≤j<2q


1 · · ·
j [
j+1]2q−j

+ D2
1 · · ·
2q log

2q+1


2q

+ D2
1 · · ·
2q

≤ D3
1 · · ·
2q

[
1 + log


2q+1


2q

]
(since 
1 ≤ 
2 ≤ · · · ≤ 
J ).

It further follows from 
1 ≤ 
2 ≤ · · · ≤ 
J that


1 ≤ 
2 ≤ · · · ≤ 
2q+1 ≤ Lk/(J − 2q) ≤ 2Lk/J for J ≥ 4q.(4.25)

Substitution into (4.24) yields

E{δq
k |Hk} ≤ D3
1 · · ·
2q−1

Lk

J

[
J
2q

Lk

+ J
2q

Lk

log
(

2Lk

J
2q

)]
(4.26)

≤ D3
1[
2q]2q−2 Lk

J

[
J
2q

Lk

+ J
2q

Lk

log
(

2Lk

J
2q

)]
.

Now, fix 0 < η = η(ε) < 2/e such that

D3λ
2q−2[λ + λ log(2/λ)] ≤ ε for 0 ≤ λ ≤ η

and define the event

Ak =
{

2q ≤ ηLk

J

}
.

Note that Ak ∈ Hk and that the desired inequality (4.20) certainly holds on the
event Ak .

In order to deal with the conditional expectation on the complement of Ak , we
shall refine the estimate (4.24). First, we note that on Ac

k , for all j ≤ J/2, it holds
that


2q ≥ ηLk

J
≥ η

J
(J − j + 1)
j ≥ η

2

j .(4.27)
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Thus, if we set D4 = (2/η) ∨ 1, then on Ac
k ,


j ≤ D4
2q, 1 ≤ j ≤ J/2.

For such 
j , 
2q , there exists, for each ζ > 0, some f (ζ ) = f (ζ, ε) > 0 such that

P {
j + Sj (t) > 0 for t ≤ [ζD1
2q]2} ≤ P {S([ζD1
2q]2) > −D4
2q}
(4.28)

≤ 1 − f (ζ ), 1 ≤ j ≤ J/2.

We shall soon fix a number ζ ∈ (0,1), but we need some inequalities before we
can do so. If 0 < ζ ≤ 1 and 
2q−1, 
2q are such that ζ
2q ≥ 
2q−1, then we re-
place (4.24) on Ac

k by (recall 
0 = 0)

E{δq
k |Hk} ≤ q

∑
0≤j≤2q−2

D
j
1
1 · · ·
j

[[D1
j+1]2q−j − [D1
j ]2q−j ]

+ D2
1 · · ·
2q−1

∫ [ζD1
2q ]2

[D1
2q−1]2
uq−1−(2q−1)/2 du

+ D2
1 · · ·
2q−1

×
∫ [D1D4
2q ]2

[ζD1
2q ]2
uq−1−(2q−1)/2[1 − f (ζ )]�J/2�−2q+1 du

+ D2
1 · · ·
2q−1
(4.29)

×
∫ ∞
[D1D4
2q ]2

uq−1−q+1/2
[
D1D4
2q√

u

]�J/2�−2q+1

du

≤ D5
1 · · ·
2q−2[
2q−1]2 + D5ζ
1 · · ·
2q

+ 2D1D2D4
1 · · ·
2q[1 − f (ζ )]�J/2�−2q+1

+ D1D2D4
1 · · ·
2q

[�J/2�/2 − q
]−1

≤ D6
1 · · ·
2q

[
ζ + [1 − f (ζ )]�J/2�−2q+1 + J−1]

.

Here, we used the fact that J ≥ 8q + 2. We also used (4.28) to conclude that

P {
j + Sj (s) > 0 for s ≤ u} ≤ min
{
D1
j√

u
,1 − f (ζ )

}
for all j ≤ J/2 and u in the domain of integration in the second and third integral
in the first right-hand side (4.29). The constant D6 depends on q and η (or ε) only
and not on ζ or J , provided J ≥ 8q + 2. Without loss of generality, we take ε ≤ 1
and D6 ≥ 1.

Finally, we take

ζ = ε

3 · 22q−1D6
≤ 1
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and use (4.25). We then see from (4.29) that there exists an J = J (q, ε) such that
for J ≥ J (q, ε) on Ac ∩ {
2q−1 ≤ ζ
2q},

E{δq
k |Hk} ≤ D6
1

(
2Lk

J

)2q−1

3ζ ≤ ε
1

(
Lk

J

)2q−1

.

If 
2q−1 > ζ
2q , then let

j0 = max{j ≥ 0 :
j ≤ ζ
2q}.
Recall that 
0 = 0, so j0 is well defined. Also, j0 ≤ 2q − 2 since 
2q ≥ 
2q−1 >

ζ
2q . Instead of (4.29), we now use

E{δq
k |Hk} ≤ q

∑
0≤j≤j0−1

D
j
1
1 · · ·
j

[[D1
j+1]2q−j − [D1
j ]2q−j ]

+ D2
1 · · ·
j0

∫ [ζD1
2q ]2

[D1
j0 ]2
uq−1−j0/2 du

+ D2
1 · · ·
2q−2

×
∫ [D1D4
2q ]2

[ζD1
2q ]2
uq−1−(2q−2)/2[1 − f (ζ )]�J/2�−2q+2 du

+ D2
1 · · ·
2q−1
(4.30)

×
∫ ∞
[D1D4
2q ]2

uq−1−q+1/2
[
D1D4
2q√

u

]�J/2�−2q+1

du

≤ D5ζ
1[
2q]2q−1

+ D5
1 · · ·
2q−2[
2q]2[1 − f (ζ )]�J/2�−2q+2

+ D1D2D4
1 · · ·
2q

[�J/2�/2 − q
]−1

≤ D6
1[
2q]2q−1[
ζ + ζ−1[1 − f (ζ )]�J/2�−2q+2 + J−1]

.

The factor ζ−1 multiplying [1 − f (ζ )]�J/2�−2q+2 in the last member of (4.30) has
been inserted to deal with the case q = 1. Note that (4.30) is also valid in the
case j0 = 0 (which contains the case q = 1, ζ 
2 < 
1). Indeed, j0 = 0 means that
ζ
2q < 
1 and then the sum in the first right-hand side of (4.30) is empty, while
the first integral becomes

D2

∫ [ζD1
2q ]2

0
uq−1 du = D2

q
[ζD1
2q]2q ≤ D2

q
D1
1[ζD1
2q]2q−1.

We leave it to the reader to check that in all these cases, there exists a J (q, ε) such
that for J ≥ J (q, ε), on Ac ∩ {
2q−1 > ζ
2q}, (4.20) holds so that (4.20) has been
proven in general.
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To go from (4.20) to (4.19), we take conditional expectations with respect to Gk ,
which is a sub-σ -field of Hk . This gives

E{δq
k [Xj(τk)]p|Gk} = E

{
E{δq

k [Xj(τk)]p|Hk}|Gk

}
(4.31)

≤ εE

{

1

(
Lk

J

)2q−1

[Xj(τk)]p|Gk

}
.

Taking this conditional expectation amounts to integrating out the Yj,k , which are
independent of Gk . For the remainder of this proof, we restrict ourselves to the
case k ≥ 1; when k = 0, the proof simplifies. We use the facts that

0 ≤ Xj(τk) = Xj(τk−) − I [j = r(k)] + Aj,k ≤ Xj(τk−) + Yj,k(4.32)

[see (4.3)] and

Lk = L̃k +
J∑

j=1

Aj,k ≤ L̃k +
J∑

j=1

Yj,k,(4.33)

and 
1(τk) ≤ Yr(k),k since 
1(τk) is the minimum of the Xj(τk),1 ≤ j ≤ J , and
Xr(k)(τk) = Yr(k),k by (4.3)–(4.5). Note that both r(k) and L̃k are Gk-measurable.
Moreover, Yr(k),k is independent of Gk (and hence of L̃k) and has the distribution
G. Also, for j �= r(k), Yj,k and Yr(k),k are independent. Thus,

E{
1(Lk)
2q−1[Xj(τk)]p|Gk}

(4.34)

≤ E

{
Yr(k),k

[
L̃k +

J∑

=1

Y
,k

]2q−1

[Xj(τk−) + Yj,k]p|Gk

}
.

We shall frequently use the following special case of Hölder’s inequality: for any
aj ≥ 0 and for p ≥ 1, [

n∑
j=1

aj

]p

≤ np−1
n∑

j=1

a
p
j .(4.35)

In particular, as a case with n = 2 and with n = J , we have[
L̃k +

J∑

=1

Y
,k

]2q−1

≤ 22q−2

{
[L̃k]2q−1 +

[
J∑


=1

Y
,k

]2q−1}

≤ 22q−2[L̃k]2q−1 + (2J )2q−2
J∑


=1

[Y
,k]2q−1.

Also, for p ≥ 0,

[Xj(τk−) + Yj,k]p ≤ 2p[Xj(τk−)]p + 2p[Yj,k]p.(4.36)

(We have a factor 2p instead of 2p−1 here to deal with the case 0 ≤ p < 1.) In
agreement with the notation of (4.7), we write μκ for the κ th moment of G and
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use the fact that E{[Y
,k]a[Ym,k]b} ≤ μa+b for any 1 ≤ 
,m ≤ J and a, b ≥ 0, by
Hölder’s inequality. We can therefore continue (4.31) with

E{
1(Lk)
2q−1[Xj(τk)]p|Gk}

≤ 22q+p−2[L̃k]2q−1[Xj(τk−)]pE
{
Yr(k),k

}
+ 22q+p−2[L̃k]2q−1E

{
Yr(k),k[Yj,k]p}

+ 22q+p−2J 2q−2[Xj(τk−)]p
J∑


=1

E
{
Yr(k),k[Y
,k]2q−1}

+ 22q+p−2J 2q−2
J∑


=1

E
{
Yr(k),k[Y
,k]2q−1[Yj,k]p}

≤ 22q+p−2μ1[L̃k]2q−1[Xj(τk−)]p + 22q+p−2μp+1[L̃k]2q−1

+ 22q+p−2J 2q−1[Xj(τk−)]pμ2q + 22q+p−2J 2q−1μ2q+p.

Substitution of this estimate into (4.31) shows that if we take J ≥ J (q, ε) ≥ 2, then
for J ≥ J (q, ε),

E{δq
k [Xj(τk)]p|Gk} ≤ ε22q+p−2

(
L̃k

J

)2q−1[
μ1[Xj(τk−)]p + μp+1

]
+ ε22q+p−2[[Xj(τk−)]pμ2q + μ2q+p

]
(4.37)

≤ D7ε

(
L̃k

J

)2q−1

[Xj(τk−)]p

[recall that Xj(τk−) ≥ 1 and L̃k ≥ J − 1; see (4.10)]. The lemma follows by
replacing ε by ε/D7. �

We define

Qq(t) =
J∑

j=1

[Xj(t)]q, Q̃q,0 =
J∑

j=1

[Xj(0)]q and for k ≥ 1,

Q̃q,k =
J∑

j=1

[
Xj(τk−) − I [j = r(k)]]q.

The quantity Q̃q,k is a qth power analog of L̃k . Q̃q,k is the sum of the qth powers
of the coordinates “just before” the adjustments at τk , but taking into account the
jump of one coordinate from 1 to 0 at τk .

LEMMA 3. Let the Xj(0) ≥ 1 be fixed (nonrandom) and let q ∈ {2,3, . . .}
and k ≥ 1. Assume that μq := ∑∞

n=1 nqG({n}) < ∞. There then exists some J (q)
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and for J ≥ J (q), there exists an α(q) = α(q, J ) such that for J ≥ J (q) and
α ≥ α(q, J ),

E{Q̃q,k+1|Gk} ≤ Q̃q,k − q2−q−1Q̃(q−1),k
(4.38)

≤ Q̃q,k − 1 on the event {L̃k > α}.
Consequently, ν1(α) < ∞ a.s. and the process {X(τk−)}k≥0 is recurrent. Also,
there exists some constant C1 = C1(J, q,α,X(0)) < ∞ such that for J ≥ J (q)

and k ≥ 0,

E{Q̃q,k+1I [ν2(α) > k]} ≤ C1.(4.39)

PROOF. First, observe that all τ
 are almost surely finite. This follows by in-
duction on 
 from the fact that

τ
 =

−1∑
k=1

δk(4.40)

and the estimate (4.23) for the tail of the conditional distribution of δk . If τ
 < ∞,
then almost surely 
j (τ
) < ∞, and then δ
 < ∞ by (4.23), and hence τ
+1 < ∞.

We shall need the following inequality. For v ≥ 2, there exists a constant D8 =
D8(v,D) such that on the event {τk < ∞},

E{|Sj (τk+1) − Sj (τk)|v|Hk} ≤ D8[1 + E{δv/2
k |Hk}].(4.41)

This inequality is probably well known. For completeness, we shall outline a proof.
Introduce

Z(s,n) = Sj

((
τk + s + 1

n

)
∧ τk+1

)
− Sj

((
τk + s

n

)
∧ τk+1

)
.

Then

Sj (τk+1) − Sj (τk) = lim
N→∞ lim

n→∞
Nn∑
s=0

Z(s,n).(4.42)

Moreover, for fixed n, the Z(s,n), s ≥ 0, form a sequence of martingale differ-
ences with respect to the σ -fields

F

((
τk + s

n

)
∧ τk+1

)
∨ Hk.

Thus, by Fatou’s lemma and the Burkholder–Davis inequality [see Gut (1988),
Theorem A.2.2, or Hall and Heyde (1980), Theorem 2.10],

E{|Sj (τk+1) − Sj (τk)|v|Hk} ≤ lim inf
N→∞ lim inf

n→∞ E

{∣∣∣∣∣
Nn∑
s=0

Z(s,n)

∣∣∣∣∣
v∣∣∣Hk

}

≤ D8(v) lim inf
N→∞ lim inf

n→∞ E

{∣∣∣∣∣
Nn∑
s=0

Z2(s, n)

∣∣∣∣∣
v/2∣∣∣Hk

}
.



1870 H. KESTEN AND V. SIDORAVICIUS

But,

|Z(s,n)| ≤ number of jumps of Sj during
(
(τk + s/n),

(
τk + (s + 1)/n

)]
,

so

Nn∑
s=0

Z2(s, n) ≤
[

Nn∑
s=0

|Z(s,n)|
]2

(4.43)
≤ [

number of jumps of Sj during
(
τk, (τk + N + 1)

)]2
.

Moreover,

lim
n→∞

Nn∑
s=0

Z2(s, n) = number of jumps of Sj

(4.44)
during

(
τk, (τk + N) ∧ τk+1

]
.

Conditionally on Hk , the number of jumps in the right-hand side of (4.43) is a
Poisson variable with mean D(N + 1). Since a Poisson variable has all moments,
it is not hard to show the equality

lim inf
n→∞ E

{∣∣∣∣∣
Nn∑
s=0

Z2(s, n)

∣∣∣∣∣
v/2∣∣∣Hk

}

= E

{
lim

n→∞

∣∣∣∣∣
Nn∑
s=0

Z2(s, n)

∣∣∣∣∣
v/2∣∣∣Hk

}

= E
{[

number of jumps of Sj during
(4.45) (

τk, (τk + N) ∧ τk+1
]]v/2|Hk

}
≤ E

{[
number of jumps of Sj during(
τk, τk + N ∧ (�τk+1 − τk�)]]v/2|Hk

}
.

But, conditionally on Hk , the jumps of Sj during (τk,∞) form a Poisson process
with jump rate D. By writing the number of jumps in (τk, τk + N ∧ (�τk+1 −
τk�)] as the sum over r from 1 to N ∧ (�τk+1 − τk�) of the number of jumps in
(r − 1, r] and using Theorem I.5.2 of Gut (1988), we then see that the right-hand
side of (4.45) is at most

D9E
{[

N ∧ �τk+1 − τk�]v/2|Hk

} ≤ D92v−1[
1 + E{[τk+1 − τk]v/2|Hk}].(4.46)

The inequality (4.41) follows from (4.42)–(4.46) because δk = τk+1 − τk .
We now fix q and α. Before we start on the proof proper of (4.38), we should

show that the conditional expectation in the left-hand side of (4.38) makes sense,
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that is, E{Q̃q,k+1} < ∞. To this end, we observe that by (4.2), on the event {τk <

∞},
Xj(τk+1−) − I [j = r(k + 1)] = Xj(τk) + Sj (τk+1) − Sj (τk)

and hence

Q̃q,k+1 =
J∑

j=1

[Xj(τk)]q

(4.47)

+
J∑

j=1

q∑
u=1

(
q

u

)
[Xj(τk)]q−u[Sj (τk+1) − Sj (τk)]u.

Furthermore, for k ≥ 1,

Xj(τk) = Xj(τk−) − I [j = r(k)] + Aj,k(4.48)

[see (4.3)], so for k ≥ 1 [see (4.35)],

J∑
j=1

[Xj(τk)]q =
J∑

j=1

[
Xj(τk−) − I [j = r(k)] + Aj,k

]q

≤ 2q−1
J∑

j=1

[
Xj(τk−) − I [j = r(k)]]q + 2q−1

J∑
j=1

|Aj,k|q(4.49)

= 2q−1Q̃q,k + 2q−1
J∑

j=1

|Aj,k|q .

Now, note that by (4.41),

E{|Sj (τ1) − Sj (τ0)|q} ≤ D8[1 + E{δq/2
1 }]

and by virtue of (the proof of) Lemma 2, there exists some J1(q) such that
E{δq/2

1 } < ∞ for J ≥ J1. In fact, (4.23) and (4.24) show that J > 2q suffices for
this. Then (4.47) shows that E{Q̃q,1} < ∞ for J ≥ J1 [recall that the Xj(0) are
nonrandom]. From there on, we apply induction on k to show that E{Q̃q,k} < ∞
and E{δq/2

k } < ∞ for all k, by means of (4.47), (4.49), (4.41), (4.19) and

E{[Xj(τk)]q−u[Sj (τk+1) − Sj (τk)]u}
(4.50)

≤ [
E[Xj(τk)]q](q−u)/q [E{|Sj (τk+1) − Sj (τk)|q}]u/q .

This shows that the conditional expectation in (4.38) is well defined.
We turn to the proof of (4.38) itself. The basic relation is

E{Xj(τk+1−) − I [j = r(k + 1)] − Xj(τk)|Hk}
(4.51)

= E{Sj (τk+1) − Sj (τk)|Hk} = 0,
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which follows from Wald’s equation [see Chow and Teicher (1978), Theo-
rem 5.3.1; this reference deals with discrete-time random walks only, but we
can again approximate τk+1 by �mτk+1�/m and let m go to infinity]. Combined
with (4.47), (4.51) implies that

E{Q̃q,k+1|Hk} =
J∑

j=1

E

{
[Xj(τk)]q +

q∑
u=2

(
q

u

)
[Xj(τk)]q−u

(4.52)

× [Sj (τk+1) − Sj (τk)]u|Hk

}
.

We shall fix ε > 0 in (4.60) below. In the last sum, we then have for u ≥ 2 and
J ≥ J (q, ε),

J∑
j=1

E{[Xj(τk)]q−u|Sj (τk+1) − Sj (τk)|u|Hk}
(4.53)

≤ D8

J∑
j=1

[Xj(τk)]q−u[1 + E{δu/2
k |Hk}]

[by (4.41) and the Hk-measurability of Xj(τk); note that we used Xj(t) ≥ 0 so
that Xj(t) = |Xj(t)|]. Next, by (4.32) and (4.36), for q ≥ u,

[Xj(τk)]q−u ≤ 2q−u[Xj(τk−)]q−u + 2q−u[Yj,k]q−u.

By taking conditional expectation with respect to Gk in (4.53) and using (4.19), we
now obtain

J∑
j=1

E{[Xj(τk)]q−u|Sj (τk+1) − Sj (τk)|u|Gk}

≤ D10

[
1 + ε

(
L̃k

J

)u−1][
J∑

j=1

[Xj(τk−)]q−u + D11J

]
.

But, Xj(τk−) = Xj(τk−) − I [j = r(k)] for all j �= r(k), and Xr(k)(τk−) = 1.
Therefore,

J − 1 ≤
J∑

j=1

[Xj(τk−)]q−u ≤ Q̃(q−u),k + 1 ≤ 2Q̃(q−u),k.

We then also have

E{Q̃q,k+1|Gk}
= E{Q̃q,k+1 − Qq(τk)|Gk} + E{Qq(τk) − Q̃q,k|Gk} + Q̃q,k(4.54)
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≤ D12

q∑
u=2

[
1 + ε

(
L̃k

J

)u−1]
Q̃(q−u),k

+ E{Qq(τk) − Q̃q,k|Gk} + Q̃q,k

= D12

q∑
u=2

[
1 + ε

(
L̃k

J

)u−1]
Q̃(q−u),k

+
J∑

j=1

E
{[

Xj(τk−) − I [j = r(k)] + Aj,k

]q
− [

Xj(τk−) − I [j = r(k)]]q |Gk

} + Q̃q,k.

We turn to a bound when k ≥ 1 for the second sum in the right-hand side here.
Its summand equals

E
{[

Xj(τk−) − I [j = r(k)] + Aj,k

]q − [
Xj(τk−) − I [j = r(k)]]q |Gk

}
(4.55)

= qE{Aj,k[X∗(j, k)]q−1|Gk}
for some X∗(j, k) between Xj(τk−) − I [j = r(k)] and Xj(τk). We now consider
two cases.

Case (i): Xj(τk−) ≥ 2. In this case, Aj,k = −1, j �= r(k), and

1
2

[
Xj(τk−) − I [j = r(k)]] = 1

2Xj(τk−) ≤ Xj(τk−) − I [j = r(k)] − 1

= Xj(τk) < X∗(j, k) < Xj(τk−) − I [j = r(k)],
so

Aj,k[X∗(j, k)]q−1 ≤ −21−q[
Xj(τk−) − I [j = r(k)]]q−1

.

Hence, the right-hand side of (4.55) is at most

−q21−q[
Xj(τk−) − I [j = r(k)]]q−1

in case (i).
Case (ii): Xj(τk−) = 1. Then 0 ≤ Aj,k ≤ Yj,k and

0 ≤ Xj(τk−) − I [j = r(k)] ≤ X∗(j, k) ≤ Xj(τk) = Yj,k.

Thus, in this case,

Aj,k[X∗(j, k)]q−1 ≤ [Yj,k]q .

If we set

Ũk = {1 ≤ j ≤ J :Xj(τk−) ≥ 2},
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then
J∑

j=1

E
{[

Xj(τk−) − I [j = r(k)] + Aj,k

]q − [
Xj(τk−) − I [j = r(k)]]q |Gk

}
≤ q

∑
j∈Ũk

(−21−q)
[
Xj(τk−) − I [j = r(k)]]q−1 + q

∑
j /∈Ũk

E{[Yj,k]q}

≤ (−q21−q)Q̃(q−1),k + q21−q
∑

j /∈Ũk

[
Xj(τk−) − I [j = r(k)]]q−1 + qJμq

≤ (−q21−q)Q̃(q−1),k + q21−q(J − |Ũk|) + qJμq(
because Xj(τk−) − I [j = r(k)] ≤ 1 for j /∈ Ũk

)
≤ (−q21−q)Q̃(q−1),k + D13J.

Substitution of the estimates in cases (i) and (ii) into (4.54) shows that

E{Q̃q,k+1|Gk} ≤ D12

q∑
u=2

[
1 + ε

(
L̃k

J

)u−1]
Q̃(q−u),k

(4.56)
− q21−qQ̃(q−1),k + D13J + Q̃q,k.

On {L̃k > α}, if q ≥ 2, we have

αq−1 < [L̃k]q−1 ≤ J q−2Q̃(q−1),k,(4.57)

by virtue of (4.35). Thus, we can choose α > J so large that D13J ≤ q2−qQ̃(q−1),k

and

E{Q̃q,k+1|Gk} ≤ D12

q∑
u=2

[
1 + ε

(
L̃k

J

)u−1]
Q̃(q−u),k

(4.58)
− q2−qQ̃(q−1),k + Q̃q,k

on {L̃k > α}.
The last estimate which we need is that(

L̃k

J

)u−1

Q̃(q−u),k ≤ Q̃(q−1),k for 2 ≤ u ≤ q.(4.59)

Before we prove this, we show that it implies the lemma. Indeed, (4.58) and (4.59)
show that on {L̃k > α},

E{Q̃q,k+1|Gk} ≤
[
D12

q∑
u=2

(
J

L̃k

)u−1

+ D12qε − q2−q

]
Q̃(q−1),k + Q̃q,k

≤
[
D12

q∑
u=2

(
J

α

)u−1

+ D12qε − q2−q

]
Q̃(q−1),k + Q̃q,k.
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If ε is chosen so that

0 < ε <
1

D122q+3(4.60)

and α > J is chosen so that

D12
J

α − J
≤ q2−q−2 and q2−q αq−1

J q−2 ≥ (D13J ) ∨ 2,

then we have, on {L̃k > α},
E{Q̃q,k+1|Gk} ≤ −q2−q−1Q̃(q−1),k + Q̃q,k ≤ Q̃q,k − 1.(4.61)

Thus, (4.38) will follow from (4.59). In turn, (4.38) implies that ν1(α) is almost
surely finite and the chain {Uk} is recurrent, by the well-known criterion of Foster
[see Theorem 2.2.1 in Fayolle, Malyshev and Menshikov (1995)].

As for (4.39), note that regardless of the value of L̃k , we still have by (4.56),
(4.59) that

E{Q̃q,k+1|Gk} − Q̃q,k ≤ C2Q̃(q−1),k + D13J(4.62)

for some constant C2 = C2(J, q, ε). If L̃k ≤ α, then Xj(τk−) ≤ α + 1 for each j

and hence Q̃(q−1),k ≤ J (α + 1)q−1. In particular, on the event {ν1 = 
} ∈ G
, we
have L̃
 ≤ α and

E{Q̃q,
+1|G
} − Q̃q,
 ≤ C3(4.63)

for some constant C3 = C3(J, q, ε,α). Now, let k ≥ 
 + 1, multiply (4.38) by
I [ν2(α) > k, ν1(α) = 
] and take conditional expectations first with respect to Gk

and then with respect to G
. This gives

E{Q̃q,k+1I [ν2(α) > k, ν1(α) = 
]|G
}
≤ E{Q̃q,kI [ν2(α) > k, ν1(α) = 
]|G
}
≤ E{Q̃q,kI [ν2(α) > k − 1, ν1(α) = 
]|G
}.

By iteration of this inequality, we obtain

E{Q̃q,k+1I [ν2(α) > k, ν1(α) = 
]|G
}
≤ E{Q̃q,
+1I [ν1 = 
]|G
} (since we always have ν2 > ν1)

≤ [Q̃q,
 + C3]I [ν1 = 
]
≤ [J (α + 1)q + C3]I [ν1 = 
] [by (4.63) and the lines before it].

By (4.63), the inequality between the extreme members here remains valid for
k = 
. Taking expectation in this inequality and summing over 
 = 1,2, . . . , k then
gives

E{Q̃q,k+1I [ν2 > k ≥ ν1]} ≤ [J (α + 1)q + C3]P {ν1 ≤ k}.(4.64)
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Further, by (4.61) or (4.38), because L̃k > α on {ν1 > k},
E{Q̃q,k+1I [ν2 > k,ν1 > k]} = E{Q̃q,k+1I [ν1 > k]}

< E{Q̃q,kI [ν1 > k]} [by (4.61) or (4.38)]

≤ E{Q̃q,kI [ν1 > k − 1]}
≤ · · · ≤ E{Q̃q,1I [ν1 > 0]} = E{Q̃q,1} < ∞.

The last in equality was proven just before (4.50). Adding this to (4.64) finally
gives (4.39) for k ≥ 1. For k = 0 (4.39) again reduces to E{Q̃q,1} < ∞, since
ν2 > ν1 ≥ 1 by definition.

It remains to prove (4.59). To this end, we recall that [L̃k/J ]u−1 ≤ Q̃(u−1),k/J

for u ≥ 2 [see (4.57)]. Thus, it suffices to prove

1

J
Q̃(u−1),k

1

J
Q̃(q−u),k ≤ 1

J
Q̃(q−1),k for 1 ≤ u ≤ q.(4.65)

But this is a simple case of the Harris–FKG inequality (with respect to the measure
which assigns mass 1/J to each point Xj(τk−) − I [j = r(k)], 1 ≤ j ≤ J ). �

PROOF OF THEOREM 4. We take q = 2 and fix ε as in (4.60). We also fix J

such that J ≥ J (2, ε) [see Lemma 2 for J (q, ε)], J ≥ J (2) and α ≥ α(2, J ) [see
Lemma 3 for J (2), α(2, J )]. We abbreviate I [ν1 > k] to Ik and similarly write
I

(2)
k for I [ν2 > k]. As we already pointed out, it suffices to prove that for any

initial state, (4.12) and (4.13) hold. We claim that, in turn, these inequalities will
follow from

∞∑
k=1

[P {ν2 > k}]1/2 < ∞.(4.66)

To see this, first note that P {ν2 > k} ≤ [P {ν2 > k}]1/2. Thus, (4.66) will im-
ply (4.12).

Next, recall that we already showed in the beginning of the proof of Lemma 3
that τk < ∞ a.s., so the Uk of (4.11) is well defined for all k [see (4.40)]. We also
showed just before (4.50) that for any initial state, E{Q̃2,k} < ∞. From (4.19) with
p = 0 and q = 1, we then see that

E{δk} ≤ εE

{
L̃k

J

}
= εE

{
Q̃1,k

J

}
≤ εE

{[
Q̃2,k

J

]1/2}
< ∞.

We then also have

E{τk} = E

{
k−1∑
j=0

δj

}
< ∞.(4.67)
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Now, assume that (4.66) has been proven and use the relations

τν2 = τ1 +
∞∑

k=1

δkI
(2)
k

and

E
{
δkI

(2)
k

} ≤ ε

J
E

{
L̃kI

(2)
k

}
[by (4.19) with q = 1, p = 0 and {ν2 > k} ∈ Gk]

≤ ε

J

[
E

{[L̃k]2I
(2)
k

}
P {ν2 > k}]1/2

≤ C4
[
E

{
Q̃2,kI

(2)
k

}
P {ν2 > k}]1/2

[by the Schwarz’ inequality or by (4.35)]

≤ C4[C1P {ν2 > k}]1/2 [
by I

(2)
k ≤ I

(2)
k−1 and (4.39)

]
.

Moreover, as we just proved, E{τ1} < ∞, so (4.66) will indeed imply (4.13).
Now, to prove that (4.66) indeed holds, we consider the {Gn}-martingale

Mn :=
n−1∑
k=1

[Q̃2,k+1 − Q̃2,k − E{Q̃2,k+1 − Q̃2,k|Gk}]I (2)
k , n ≥ 1.

We note that on {ν2 > n}, each I
(2)
k ,1 ≤ k ≤ n, equals 1, so by virtue of (4.38),

E{Q̃2,k+1 − Q̃2,k|Gk} ≤ −1, 1 ≤ k ≤ n, k �= ν1.

On {ν1 = k},
E{Q̃2,k+1 − Q̃2,k|Gk} ≤ C3,

by virtue of (4.63). Consequently,

Mn ≥
n−1∑
k=1

[Q̃2,k+1 − Q̃2,k] + n − 2 − C3

= Q̃2,n − Q̃2,1 + n − 2 − C3 on {ν2 > n}.
Since Q̃2,n ≥ 0 by definition, it follows that

P {ν2 > n} ≤ P {Mn + Q̃2,1 ≥ n − 2 − C3}
≤ (n − 2 − C3)

−524{
E{|Mn|5} + E{[Q̃2,1]5}}.

But, (4.35) and our remarks just before (4.50) show that

E{[Q̃2,1]5} ≤ J 4E{Q̃10,1} < ∞
for large enough J . Thus, it suffices for (4.66) to prove

E{|Mn|5} < C5n
5/2.(4.68)
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But, by Burkholder’s inequality [see Gut (1988), Theorem A.2.2 or Hall and Heyde
(1980), Theorem 2.10],

E{|Mn|5} ≤ C6E

{∣∣∣∣∣
n−1∑
k=1

[Q̃2,k+1 − Q̃2,k − E{Q̃2,k+1 − Q̃2,k|Gk}]2I
(2)
k

∣∣∣∣∣
5/2}

≤ C7n
3/2E

{
n−1∑
k=1

∣∣Q̃2,k+1 − Q̃2,k − E{Q̃2,k+1 − Q̃2,k|Gk}
∣∣5I (2)

k

}
[by (4.35)]

≤ C734n3/2
n−1∑
k=1

E
{|Q̃2,k+1|5I (2)

k

} + C734n3/2
n−1∑
k=1

E
{|Q̃2,k|5I (2)

k

}

+ C734n3/2
n−1∑
k=1

E
{|E{Q̃2,k+1 − Q̃2,k|Gk}|5I (2)

k

}
[by (4.35)]

≤ C734(1 + 24)n3/2
n−1∑
k=1

E
{|Q̃2,k+1|5I (2)

k

}

+ C734(1 + 24)n3/2
n−1∑
k=1

E
{|Q̃2,k|5I (2)

k

}

≤ C8n
3/2

n∑
k=1

E
{|Q̃2,k|5I (2)

k−1

}
.

Finally, by (4.35) once more,

|Q̃2,k|5 ≤ J 4Q̃10,k

and E{Q̃10,kI
(2)
k−1} is bounded in k by virtue of (4.39). Thus, (4.68) and (4.66) hold.

This proves (4.13) and, as we pointed out before, it also proves (4.17) and (4.8).
Since (4.8) is our main conclusion in Theorem 4, we leave it to the interested

reader to prove that (X1(t), . . . ,XJ (t)) is irreducible and positive recurrent. �
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