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IMPROVING POPULATION-SPECIFIC ALLELE FREQUENCY
ESTIMATES BY ADAPTING SUPPLEMENTAL DATA: AN
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Estimation of the allele frequency at genetic markers is a key ingredi-
ent in biological and biomedical research, such as studies of human genetic
variation or of the genetic etiology of heritable traits. As genetic data be-
comes increasingly available, investigators face a dilemma: when should data
from other studies and population subgroups be pooled with the primary
data? Pooling additional samples will generally reduce the variance of the
frequency estimates; however, used inappropriately, pooled estimates can be
severely biased due to population stratification. Because of this potential bias,
most investigators avoid pooling, even for samples with the same ethnic back-
ground and residing on the same continent. Here, we propose an empirical
Bayes approach for estimating allele frequencies of single nucleotide poly-
morphisms. This procedure adaptively incorporates genotypes from related
samples, so that more similar samples have a greater influence on the esti-
mates. In every example we have considered, our estimator achieves a mean
squared error (MSE) that is smaller than either pooling or not, and sometimes
substantially improves over both extremes. The bias introduced is small, as is
shown by a simulation study that is carefully matched to a real data example.
Our method is particularly useful when small groups of individuals are geno-
typed at a large number of markers, a situation we are likely to encounter in
a genome-wide association study.

1. Introduction. Allele frequency at a genetic marker is one of the most im-
portant elements in studies of genetic diversity, as well as in population-based dis-
ease association studies. It plays a pivotal role in linkage studies, which model the
allelic identical by descent probability, and in association studies, which directly
compare the allele frequency between the affected cases and unaffected controls.
Moreover, once a disease variant has been identified, accurate assessments of the
allele frequency of the variant enable us to evaluate the proportion of the disease
burden in a specific population that is attributable to the variant. Fueled by the
recent developments in high-throughput genotyping technologies, various efforts
are underway to characterize allele frequencies at a genome-wide scale in diverse
populations. However, because of the still significant costs associated with these
high-throughput platforms, current large-scale genomic projects often assay a large
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number of markers in a small number of individuals. For example, the International
HapMap Project has genotyped more than four million single nucleotide polymor-
phisms (SNP) in 90 Africans from Nigeria (60 of which are unrelated individuals),
90 U.S. residents with northern and western European ancestry (60 of which are
unrelated individuals), 45 Han Chinese from Beijing and 45 Japanese from Tokyo
[International HapMap Consortium (2005)]. In another effort, Perlegen Sciences
genotyped 71 Americans of European, African or Han Chinese ancestry [Hinds
et al. (2005)]. The maximum likelihood estimate (MLE) of allele frequency, in
this case just the observed proportion of one allele, has a binomial sampling error,
which can be substantial for small samples. Small sample sizes remain a concern,
even as more individuals are being genotyped, because there is a simultaneously
growing concern about population stratification [Lander and Schork (1994)].

When genotypes are available from individuals representing the same popula-
tions, the allele frequency estimates can be improved by combining genotype data.
On the other hand, injudicious combining of samples representing distinct popula-
tions can lead to biased estimates, as population stratification and genetic drift lead
to divergence in allele frequencies among populations [Fisher (1922) and Wright
(1931)]. Unfortunately, deciding whether two samples represent a homogenous
population, and hence are combinable, is a delicate and subjective decision. Do the
Han Chinese from Beijing (HapMap sample) and those from Los Angeles (Per-
legen sample) represent the same population? Can we use the HapMap African
genotypes to improve frequency estimates of Perlegen African Americans? One
possible approach to address such ambiguity is a two-stage approach: one first
tests whether the two samples are combinable, using a random set of markers and
a procedure such as Devlin and Roeder (1999) or Pritchard and Rosenberg (1999),
and, in a second stage, combine or not combine depending on the outcome of
the first-stage test. This two-stage procedure, however, suffers from two potential
problems. First, when only a small number of individuals have been genotyped,
the first-stage test may not have sufficient power to detect the difference; on the
other hand, with a sufficiently large sample size, any trivial noncongruency leads
to rejection of the test, and therefore voids the possibility to combine samples. Sec-
ond, the first-stage test can introduce a bias since only similar allele frequencies
are allowed to be combined.

Bayesian and empirical Bayes approaches offer flexible venues for combin-
ing multiple sources of information. Lange pioneered an empirical Bayes ap-
proach for estimating allele frequencies of a single marker using data at the same
marker from multiple populations [Lange (1995)]. Lockwood, Roeder and Devlin
(2001) extended this approach to incorporate multi-loci genotype information via
a Bayesian hierarchical model. Both methods employ a Dirichlet(α) distribution
to describe the dispersion of frequencies between the different populations. The
two approaches differ in how α is estimated: Lange’s method estimates α by max-
imum likelihood at each locus separately; while Lockwood, Roeder and Devlin
(2001) borrow strength across loci. These two methods are described in greater
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detail in Section 2.6.5. Additionally, there is a rich literature in modeling popula-
tion structure and divergence using genetic polymorphism data, although the pri-
mary interests are inferences about population history and estimating parameters
such as genetic distance and population size [Kitada, Hayashi and Kishino (2000),
Nicholson et al. (2002) and Wilson, Weale and Balding (2003)].

In this paper we propose a new empirical Bayes approach, which offers an
adaptive procedure to combine multiple samples. This method avoids the prob-
lems associated with the two-stage procedure by introducing an affinity measure,
ν, which is based on the global similarity between samples. There is no need to
make a “hard” decision to combine or not combine, as ν parametrizes a continu-
ous spectrum of compromise between the two extremes. As a result, our approach
allows us to borrow strength from additional samples, even if they are indubitably
distinct from the target population. An important advantage of our approach is that
it requires no knowledge nor assumptions of the genealogy that relates various
samples. As we explain in Section 2.6, our approach differs from related existing
approaches in implementation as well as interpretation. We illustrate the statisti-
cal validity of our method by a series of analyses using real genotype data from
HapMap and Perlegen projects; these analyses also provide some interesting bio-
logical insights regarding the populations studied by the two projects.

2. Method.

2.1. Data, model and the basic idea. Our goal is to estimate allele frequencies
at a large number of bi-alleleic markers in a target population, Y. The available
data consists of nY alleles from Y (based on genotypes of 1

2nY individuals), as
well as a booster sample of nX alleles from a (possibly related) population, X.

At each marker, we assign one allele as the “A” allele, and denote the observed
numbers of A allele at marker i in the two samples as Xi and Yi, respectively.
Let qi be the frequency of A allele at marker i in population Y, and let pi be the
corresponding frequency in X. Within each population, we assume the Hardy–
Weinberg equilibrium at each marker; furthermore, we assume that all markers are
independent (i.e., in linkage equilibrium). Additionally, we assume evolutionary
neutrality at the majority of markers. Some of these assumptions are not strictly
necessary, as we explain in Section 2.6.3. Consequently, we model

Xi ∼ Binom(nX,pi),

Yi ∼ Binom(nY, qi) (all independent).

Using genotype data from Y alone, the maximum likelihood estimate (MLE) of
the frequency of A allele, qi, coincides with the observed frequency,

q̂i = yi

nY
.
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Likewise, denote the MLE of the corresponding allele frequency in X as p̂i .
The empirical Bayes approach we propose is motivated by the observation that,

if populations X and Y are evolutionarily related, then the allele frequencies at the
corresponding markers, pi and qi , are often positively associated [Jiang and Cock-
erham (1987)]. For example, Figure 1(a) displays a two-dimensional histogram

FIG. 1. Two-dimensional Histogram of MLE of allele frequencies in (a) 45 HapMap Chinese indi-
viduals (x-axis) v.s. 15 HapMap Japanese individuals (y-axis), and (b) 45 simulated booster samples
(x-axis) v.s. 15 simulated target samples (y-axis) used in Section 3.3.
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FIG. 2. Illustration of the basic idea (a) scatter plot of the empirical allele frequencies in 45
HapMap Chinese individuals (x-axis) v.s. 45 HapMap Japanese individuals (y-axis); (b) histogram
and fitted Beta-Binomial density of the allele counts in Japanese in narrow windows.

of the MLE allele frequencies for ∼ 60,000 SNPs on Chromosome 22 using the
HapMap Chinese (x-axis) and Japanese (y-axis) samples. We use 15, instead of
45, Japanese individuals for this plot in order to facilitate comparison with the
simulation study in Section 3.3. The higher intensity band along the diagonal in-
dicates the high degree of association between the frequencies in JPT and CHB
populations. The main statistical contribution of this paper is to develop a way to
borrow strength from such association. To fix ideas, consider a marker whose JPT
frequency we wish to estimate and whose CHB sample frequency happens to be
0.33. So far, what we know about this marker is that it lies somewhere in the third
vertical strip in Figure 2(a). It is natural to consider the population of such mark-
ers, that is, the subset of markers whose CHB sample frequency is essentially 0.33.

The third histogram shown on the right displays the corresponding allele counts in
JPT. This histogram has a mean about 30 (out of 90 Japanese alleles), and the dis-
tribution is well approximated by the superimposed beta-binomial density, whose
parameters were fitted by maximum likelihood. For this particular histogram, the
fitted parameters are (11.30,22.41). Therefore, this data is well approximated by
a model in which we consider the true frequency to have a Beta distribution and
the observed counts to be Binomially distributed. Accordingly, we propose to take
this Beta as an empirical prior for all of the markers in the histogram; for each
marker in turn, we condition this prior on the observed JPT counts to derive a Beta
posterior, and use the posterior mean as an updated frequency estimate.
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2.2. Windowed estimates. We will formalize this basic idea by describing a
windowed version of our empirical Bayes approach. The arbitrary window width
δ will be removed later in a parametric version. For a single marker, a commonly
used Bayesian approach assumes a Beta prior, which is a conjugate prior for the
binomial distribution [Bernardo and Smith (1994)]. However, a problem arises
here that plagues many Bayesian approaches: how to choose the parameters, a

and b, for the prior distribution? Fortunately, with an empirical Bayes approach,
we can take advantage of the large number of markers available to estimate these
parameters objectively.

Consider a certain marker i for which we wish to estimate qi . The observed
frequency at marker i in X is p̂i . Now consider the (presumably large) set J of
all markers j such that p̂j falls within a narrow window of p̂i , say, (p̂i − δ, p̂i +
δ). We can understand J as the “population” of markers, about which we have
the same information coming from population X as we have for the marker of
interest, marker i. By looking at these markers as an aggregate, we can empirically
determine the degree to which this X information does or does not inform us about
marker frequency in the Y population. For j ∈ J, we approximate the distribution
qj ’s by a Beta distribution, Beta(a, b). Under this model, the Yj ’s are independent
and identically distributed as BetaBinom(nY, a, b). Let âi and b̂i maximize the
likelihood of this data: ∏

j∈J

dBetaBinom(nY, a, b)(yj ),

where dBetaBinom(n, a, b)(x) denotes the Beta Binomial density at x:

B(a + x, b + n − x)

B(a, b)

(
n

x

)
,(2.1)

where B is the Beta function.
We therefore form the empirical Bayes prior, qi ∼ Beta(âi , b̂i). Conditioning

on Yi = yi , we obtain the posterior: qi |yi ∼ Beta(yi + âi , n − yi + b̂i ). Taking the
mean and variance of this posterior, we obtain the estimator

q̂i
EBW = E(qi | Yi) = yi + âi

n + âi + b̂i

with expected squared error (ignoring the randomness in âi and b̂i ) of

V̂ar(q̂i
EBW | Yi) = q̂i

EBW(1 − q̂i
EBW)

n + âi + b̂i + 1
.

Define an affinity measure, νi = âi + b̂i . In our examples, it generally happens
that the mean of the empirical Bayes prior for marker i, µi = âi

νi
is nearly the

same as p̂i , and has little sampling variability because of the large number of
markers falling into J. The variance of the prior can be written as σ 2

i = µi(1 −
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µi)(νi + 1)−1, which decreases as νi increases. In other words, when νi is large,
the booster sample exerts greater influence on the posterior estimate of q̂i

EBW.

As we illustrate in the Examples, ν tends to be larger when the booster sample
is biologically more closely related to the target population; hence, the procedure
adaptively incorporates the booster samples.

2.3. Parameterized estimates. In the windowed version we selected a and b

to maximize the likelihood of the data in each window. A more elegant approach
seeks a parametric form that relates a and b to the conditioning information. By
treating the data globally, this approach avoids the arbitrary choice of window-
width. Moreover, it can readily handle the case in which we wish to simultaneously
incorporate multiple booster samples (see Section 2.5). For now, continuing with
the case of a single booster sample, a simple yet reasonably effective choice is
EB1:

a(p) = β0 + β1p,
(2.2)

b(p) = β0 + β1(1 − p).

The empirical Bayes prior of q with parameters, a and b, derived from this model
has a simple interpretation: “a priori” q follows a Beta distribution which repre-
sents a total of 2β0 + β1 pseudo-counts; a baseline of β0 counts are assigned to
each allele; the additional β1 counts are allocated proportionally to the observed
frequencies in X.

We estimate the coefficients in (2.2), β’s, by maximizing the likelihood:∏
j

dBetaBinom(nY, a(p̂j ), b(p̂j ))(yj ),

where the dependency of a and b on the β’s is suppressed.
The model in (2.2) specifies a linear model for a and b, and induces a symmetry

condition: a(p) = b(1 − p). We can add higher-order terms or terms that break
the symmetry, but in our analyses of real data, these terms do not contribute to
significant improvements in the likelihood.

However, the likelihood does improve if the endpoints p̂ = 0 and p̂ = 1, which
occur fairly often in our data, are treated as special cases. EB2 is a way to introduce
additional terms that treat these cases symmetrically:

a(p) = β0 + β1p + β21p=0 + β31p=1,
(2.3)

b(p) = β0 + β1(1 − p) + β21p=1 + β31p=0,

where 1 is the indicator function.
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2.4. Spline estimates. One might question whether the parametric forms used
in the previous section impose unnecessary constraints. To allow a more flexible
model of â and b̂, we use a B-spline expansion:

a(p) =
N∑

j=1

Nj(p)θj ,

(2.4)

b(p) =
N∑

j=1

Nj(1 − p)γj ,

where the Nj(x) are an N-dimensional set of basis functions for cubic B-splines
on [0, 1]. We can impose the symmetry condition, a(p) = b(1 − p), by taking
θj = γj for all j .

2.5. Multiple boosting samples. Several genomics projects have surveyed di-
verse populations. Our empirical Bayes approach generalizes naturally to such sit-
uations, incorporating empirical frequencies from several boosting samples (mul-
tiple p’s) in estimation of the q’s. For example, the parametric model EB1 for
multiple boosting samples is

a
(
p(1), . . . , p(K)) = β0 +

K∑
k=1

βkp
(k),

(2.5)

b
(
p(1), . . . , p(K)) = β0 +

K∑
k=1

βk

(
1 − p(k)),

where p(k) denotes the allele frequency in boosting sample k. Similarly, a spline-
based model is

a
(
p(1), . . . , p(K)) =

K∑
k=1

N∑
j=1

Nj

(
p(k))γ k

j ,

(2.6)

b
(
p(1), . . . , p(K)) =

K∑
k=1

N∑
j=1

Nj

(
1 − p(k))γ k

j ,

2.6. Remarks.

2.6.1. An affinity measure. For the windowed estimate, we define ν to be the
median of â + b̂ over all windows; for EB1, we define ν as 2β̂0 + β̂1. For the spline
version, EB3, we define ν by

∫
p â(p) + b̂(p) dp. In all situations, ν has a simple

interpretation as the effective sample size of the boosting sample. As illustrated in
the next section, ν reflects the genetic association between the two populations.
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2.6.2. It can be reasoned that, if populations X and Y are essentially iden-
tical, our approach is asymptotically equivalent to pooling the genotype data di-
rectly. To verify this is how our approach behaves, we reconsider the windowed
estimate.

Let pj ∼ Beta(a0, b0) for all j . For marker i, with p̂i = xi/nX, consider all
markers j, s.t. p̂j ∈ p̂i ± δ. As δ → 0, this is the set of markers with Xj = xi.

Conditioning on Xj = xi , the posterior distribution of pj is Beta(a0 + xi, b0 +
nX − xi). Since X and Y are identical populations, pj = qj for all markers. It
follows that Yj |Xj = xi ∼ BetaBinom(nY, a0 + xi, b0 + nX − xi). Because the
MLEs, â and b̂, are consistent as the number of alleles becomes infinite, we have
â → a0 + xi and b̂ → b0 + nX − xi , so that

q̂EB
i = Yi + â

nY + â + b̂

.= Yi + a0 + xi

nY + a0 + b0 + nX
.

In other words, the empirical Bayes estimator is equivalent to directly pooling
data, with an additional shrinkage toward the prior pseudo proportion, a0/(a0 +
b0).

2.6.3. In describing our approach, we have made three commonly adopted as-
sumptions: that each marker satisfies the Hardy–Weinberg equilibrium, that pairs
of markers are in linkage disequilibrium, and that the genome is under neutral evo-
lution. The Hardy–Weinberg equilibrium (HWE) in a population requires only one
generation of random mating; empirically, there is very weak evidence for sys-
tematic deviation from HWE, even in stratified (historically nonrandom mating)
populations such as the Mexicans or the Puerto Ricans [Choudhry et al. (2006)].
In fact, HWE is often used as a diagnosis for genotyping error [Yonan, Palmer
and Gilliam (2006)]. The assumption of linkage disequilibrium is required here so
that the Beta-Binomial likelihood function can be multiplied across markers. In-
cluding tightly linked markers (i.e., correlated genotypes) in the estimation of the
Beta parameters makes the effective sample size somewhat smaller than the nomi-
nal one, but should not introduce systematic bias, as long as markers are relatively
evenly distributed across the genome. Finally, evolutionary neutrality warrants that
the difference in allele frequencies between populations are due to genetic drift
and not directional selection. Strong directional selection may create a situation in
which allele frequencies are similar in two populations at most loci, except at a
few loci where selection results in large allele frequency discrepancy. While there
is evidence that various parts of the human genome have been subjected to recent
positive selection [Sabeti et al. (2006) and Voight et al. (2006)], the selection co-
efficients are likely low [Kimura (1968)]. Further, evolutionary neutrality holds in
a large proportion of the genome, in particular, noncoding SNPs and synonymous
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SNPs. Besides, in the unlikely scenario that strong selection leads to divergence
between two populations at a genome-wide scale, our approach will not produce
severely biased frequency estimates, because the affinity measure will be low and,
therefore, the booster data are not allowed to influence the estimates substantially.

2.6.4. One may question the appropriateness of the Beta prior we assume,
which is conveniently the conjugate prior for a Binomial distribution [Skellam
(1948)]. Under selective neutrality and for populations that have reached an
mutation-drift equilibrium, Wright (1951) showed that the allele frequencies at
bi-allelic loci follow a beta distribution. Visual inspection indicates that the empir-
ical allele frequencies of the HapMap European samples follow a Beta distribution
reasonably well, although there are slight excess rare alleles, that is, frequencies
near 0 or 1. While it may be possible for a different prior to somewhat improve the
fit, it is difficult to find a perfect prior. This is because the SNPs genotyped in a
project seldom represent a random sample of all polymorphic sites, and the ascer-
tainment bias distorts the underlying frequency spectrum. When the ascertainment
procedure is known, it is possible to correct the bias [Nicholson et al. (2002) and
Nielsen, Hubisz and Clark (2004)]. Unfortunately, the ascertainment schemes are
often so complex that it is difficult to correct for the bias [Clark et al. (2005)].

2.6.5. We are now in a good position to explain the difference between our
methods and the empirical Bayes approach of Lange (1995), which aims to im-
prove the frequency estimate at a single marker using genotypes from multiple
populations. This method models the allele frequencies at the marker in various
population as independent draws from a single prior distribution, which is chosen
to maximize the likelihood of the observed allele counts in all populations. The
posterior mean represents a shrinkage toward the pooled population average. In
contrast, our method is closer to a regression model; the frequencies in the tar-
get population are modeled conditionally on the boosting population frequencies.
Thus, it borrows strength from the information in the frequencies in the boost-
ing population to better estimate their corresponding frequencies in the target. Yet
only those populations whose frequencies are thought to be informative about the
frequencies in the target are used. It considers the set of all markers with a given
frequency in the boosting population to be the collection of markers that captures
the pertinent conditioning information.

The hierarchical Bayesian approach taken by Lockwood, Roeder and Devlin
(2001) can be expected to behave like our estimator in many respects, although
coming to this estimate from a different direction. Specifically, the hierarchi-
cal structure models the population-specific allele frequency by a locus-specific
Dirichlet distribution, so that the sum of the Dirichlet parameters controls the
divergence between populations, and is theoretically motivated by Wright’s Fst

[Wright (1951)]. The Dirichlet parameters are allowed to vary across loci, but the
hierarchical structure of the model borrows strength from all loci to determine,
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roughly speaking, the overall degree of divergence. At each locus, the allele fre-
quency in each population is modeled as a “symmetric” departure from that of an
implicit ancestor. The specific form is reasonable so long as the populations are
related through a star-shaped phylogeny. However, it would appear inappropriate
to treat the populations in this symmetric manner if some of the populations are
more closely related than others. In contrast, our approach does not impose an
underlying population history model. Instead, it endeavors to be flexible and data-
adaptive for the purpose of estimating allele frequencies in the target population
and estimating the effective genetic association between the target and each of the
booster samples.

2.6.6. In the examples below, we “orient” our data so that the “major” al-
lele whose frequency we are estimating corresponds to the alphabetically lesser
nucleotide (A<C<G<T) as it would occur on the positive strand of the chromo-
some. As this orientation treats all markers equitably, it is not too surprising that
the frequencies, thus defined, are quite symmetrically distributed about 1

2 . If the
data is oriented based on other information, for example, on the basis of the allele
present in the reference sequence of the human genome, the symmetry is broken.
It is also more “neutral.” For example, if an oracle were to orient the data so that
the allele that is more likely in, say, Europeans was always the major allele, this
actually provides extra information (e.g., you would know not to estimate a fre-
quency below 0.5 for Europeans on any allele), but this does not treat different
population groups equitably (e.g., African population frequencies wouldn’t obey
this rule). The fair way to introduce this extra information, we argue, is to actually
provide the genotype data that your orientation is based on as a (potential) booster
sample.

3. Results. In this section we examine the performance of the empirical Bayes
estimates using genotype data collected from the International HapMap Project
[International HapMap Consortium (2005)] and by the Perlegen Sciences [Hinds
et al. (2005)]. For the HapMap data, we used the genotype data (Public Release
#21) from unrelated individuals representing four ethnic populations; these include
the following: 60 Yoruba in Ibadan, Nigeria (YRI), 60 U.S. residents with ances-
try from northern and western Europe (CEU), 45 Han Chinese in Beijing, China
(CHB), and 45 Japanese in Tokyo, Japan (JPT). Data from the Perlegen Project in-
cludes 24 European Americans, 23 African Americans and 24 Han Chinese from
the Los Angeles area. Because our goal is to develop this statistical approach, we
only used SNPs on chromosome 22, leaving ∼ 55,000 SNPs in the HapMap data
and ∼ 20,000 SNPs in the Perlegen data, of which ∼ 14,800 overlap.

3.1. Booster sample and target sample represent identical populations. Our
first experiment examines the performance of the empirical Bayes estimates, when
the populations represented by the target sample and the booster sample coincide.
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TABLE 1
Parametric estimators for HapMap populations, when the target and booster populations coincide.

EB1 refers to the model in (2.2); EB2 refers to the model in (2.3)

EB1 EB2

pop nY nX β0 β1 β0 β1 β2 β3

YRI 60 60 0.13 58.19 0.63 58.62 −0.55 −26.26
CEU 60 60 0.11 58.90 0.59 58.87 −0.51 −19.64
CHB 44 46 0.10 46.36 0.53 46.27 −0.46 −13.62
JPT 44 46 0.08 44.60 0.65 44.69 −0.60 −17.97

To do so, we randomly split each population sample in HapMap into two sets of
approximately equal size, and treat one set as the target sample and the other as a
booster. Intuitively, if we knew that the two samples came from the same popula-
tion, the most efficient frequentist estimator is to simply compute the MLE using
the pooled genotype data. The equivalent empirical Bayes estimator would use
âi = xi and b̂i = nX − xi . In other words, the prior would use the observed allele
counts in the booster sample as the pseudo-counts. Table 1 summarizes the results
for each population, demonstrating that the empirical Bayes approaches, both EB1
and EB2, approximately recover the pooling estimator on this data. For example,
in terms of EB1, the “pooling-equivalent” empirical Bayes prior uses β0 = 0 and
β1 = nX so that â(p̂i) = 0 + nXp̂i and b̂(p̂i) = 0 + nX(1 − p̂i). As shown in
Table 1, the estimated coefficients (β̂1) are very close to nX so that EB1 and EB2
do indeed behave much like pooling on this example, as one would hope. Instead
of using 0 baseline pseudo-counts, though, the likelihood criterion selects small β0
values near 0.10. This is sensible since a Beta(0.1,0.1) distribution approximates
the unconditional distribution of allele frequencies in these populations.

3.2. HapMap Chinese boosts HapMap Japanese. In the second experiment
we use the HapMap Chinese sample (CHB) to boost frequency estimates for the
Japanese (JPT). As a “validation” sample, we set aside 30 JPT individuals, and
apply empirical Bayes estimators on 15 JPT and 45 CHB. Figure 3 plots the esti-
mated parameters â and b̂ using windowed, parametric and spline variations of the
empirical Bayes estimators. Visual inspection suggests that these different models
produce similar empirical Bayes priors. For the linear estimator, EB1, the esti-
mated affinity measure is ν = 36.96 (β0 = 0.038, β1 = 36.88) substantially lower
than the nominal 90 alleles. Since the previous example suggests that the empirical
Bayes estimators will approximate direct pooling when the boosting sample repre-
sents the same population as the target, the discrepancy between empirical Bayes
estimators and direct pooling indicates a nontrivial genetic heterogeneity between
the Chinese and Japanese. Pooling these samples would not be justified, but the
high affinity means that our method can still borrow a large amount of strength.
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FIG. 3. Estimated parameters for the empirical Bayes priors as a function of the observed fre-
quency in the booster sample. Target sample consists of 15 HapMap Japanese individuals; booster
sample consists of 45 HapMap Chinese individuals. Blue lines are parameters a in the Beta prior; red
lines are b; gray lines are a + b, which is a local measure of affinity between the target and booster
populations. Heavy solid lines are parameters for spline model, EB3; thin lines are parameters for
windowed implementation; dotted lines are parameters for linear model EB1.

Since our goal is to improve the Japanese allele frequency estimates, we com-
pute the mean squared error (MSE) for the various estimators, treating the MLE
of allele frequencies in the “validation” sample as an imperfect gold standard. As
we explain in the Appendix, calculating the MSE by treating the validation sample
as a perfect gold standard produces an upward bias, which can be corrected. In
what follows we report the corrected MSE. Using the MLE of allele frequencies
on the 15 JPT alone, the MSE is 2.83 × 10−3. In contrast, EB3 produces an MSE
of 1.273 × 10−3, achieving a 55% error reduction without any a priori assump-
tion of population homogeneity. The EB1 model fits essentially just as well (MSE
of 1.279 × 10−3), itself only slightly better than the windowed estimate (MSE of
1.282 × 10−3). Accordingly, we favor the simple and relatively interpretable EB1
model for general application.

In this case, if one simply treats the Chinese and Japanese individuals as sam-
pled from a homogeneous population and computes the MLE on the pooled sam-
ple of 60 individuals, the corrected MSE is reduced to 1.51 × 10−3, not so much
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higher than EB3. However, it does not always work out this well for the pooled
estimate: if the populations are less closely associated, the bias introduced from
pooling can overwhelm the variance reduction (e.g., if Europeans are pooled in
with African Americans to “improve” their frequency estimates; see Section 3.3.1).
Moreover, in practice, few investigators would feel comfortable pooling heteroge-
neous populations such as Chinese and Japanese. Our method has the advantage
that it automatically obtains the right degree of pooling, and thus allows us to bor-
row information from a booster sample even when we know the samples represent
heterogeneous populations.

3.3. Simulated data. In order to accurately assess the MSE, bias and variance
in a situation where we have a true gold standard, we perform a simulation experi-
ment. The data consists of 55,000 markers, whose frequencies in X, p, are drawn
independently from Beta(0.198,0.198); conditional on p, the corresponding fre-
quencies in Y, q, are drawn from Beta(a(pi), b(pi)), where a and b follows the
model of (2.2). The coefficients, β’s, used in (2.2) are chosen so that the joint distri-
bution of p̂ and q̂ approximates that of the HapMap Chinese and Japanese. Given
pi and qi, we next generate genotype data by sampling Yi ∼ Binom(30, qi), and
Xi ∼ Binom(90,pi). The scatter plot of the simulated data is shown in Figure 1(b),
and resembles the Chinese v.s. Japanese plot [Figure 1(a)] in both marginal and
joint distributions.

Figure 4 displays the estimated a and b using various methods. We see that
they are qualitatively similar. To compute MSE, bias and variance, we use the
underlying frequencies in population Y as the gold standard. The MSE using the
30 observed alleles from the target sample is 2.3 × 10−3; by directly pooling all
120 observed alleles, the MSE is 1.2 × 10−3, while the MSE using EB3 is 1.0 ×
10−3. Figure 5 shows that the MSE using the boosting sample (red curve) can
be substantially lower than the MLE using samples from Y alone (black curve),
especially for frequencies near 0.5. The bias-variance decomposition, also shown,
indicates that the bias introduced by the empirical Bayes procedure is quite small.

3.3.1. Admixed populations. Estimating allele frequencies in an admixed pop-
ulation offers an interesting application of our methods. An admixed population
arises when reproductively isolated ancestral populations mate, producing off-
springs whose genome represents a mixture of alleles from multiple ancestral pop-
ulations. Two of the largest minority populations in the U.S. are both recently
admixed: African Americans are largely an African group with recent European
admixture, and the Hispanics represent various degrees of mixing among Native
Americans, Europeans and Africans. Increasing numbers of genetics studies are
focusing on one of these admixed populations. Intuitively, the frequencies in the
admixed population (e.g., African Americans) resemble a weighted average of
the corresponding frequencies in the ancestral populations (e.g., Europeans and
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FIG. 4. Estimated parameters for the empirical Bayes priors as a function of the observed fre-
quency in the booster sample. The target and booster samples consist of 30 and 90 simulated alleles,
respectively. Blue lines are parameters a in the Beta prior; red lines are b; gray lines are a + b,

which is a local measure of affinity between the target and booster populations. Heavy solid lines are
parameters for spline model, EB3; thin lines are parameters for windowed implementation; dotted
lines are parameters for linear model EB1.

Africans). Therefore, existing genotype data on the ancestral populations should
provide information on the allele frequencies in an admixed populations.

Here we illustrate this idea using the HapMap YRI and CEU samples to im-
prove African American allele frequencies estimated from the Perlegen data. We
use 12 of the Perlegen African American individuals to estimate q̂, while reserv-
ing the other 12 individuals as an imperfect gold standard. The standard and com-
mon practice, which uses the 12 African Americans alone, produces an MSE of
13.2 × 10−3. There are several ways to incorporate HapMap samples: using CEU
alone, EB1 estimates (β0, β1) to be (0.66,4.45); using YRI alone, EB1 estimates
(β0, β1) to be (1.48,34.29). These results indicate that the YRI population has
higher affinity to the African Americans. It is important to note that naively pool-
ing the CEU and the African American samples will increase the MSE. When we
have booster samples from both YRI and CEU, our method of choice is model
(2.5), which allows us to incorporate YRI and CEU simultaneously, the parameter
estimates are (β0 = 1.22, βYRI = 64.37, βCEU = 18.90). Interestingly, the fraction,
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FIG. 5. MSE (thick solid), bias2 (dashed) and variance (dash-dot) of the empirical Bayes estimates
on the simulated data presented in Section 3.3. The thin line represents the expected MSE of the MLE
using the target sample alone.

βCEU
βYRI+βCEU

= .23, resembles previously estimated European ancestry in the African
Americans in the literature [Parra et al. (1998)]. The parameter estimates and the
MSE evaluated using the remaining 12 African Americans are shown in Table 2.

This example highlights the advantage of the empirical Bayes method over MLE
based on pooling: first, if we had only a European booster sample, we would be
better off not using it at all than naively pooling it. The empirical Bayes method

TABLE 2
Coefficient estimates and MSE comparison for estimating frequencies in African Americans. Target
sample (column Y) consists of 12 Perlegen African American individuals; booster samples (column

X) consist of 60 CEU and 60 YRI individuals from HapMap. MSEs are computed using 12
independent African American individuals as a gold standard, with the bias correction described in

the Appendix. The column labeled MSEMLE is based on naively pooling genotype data from
samples X and Y, regardless of population origin. The column labeled MSEEB is based

on equation (2.5)

X Y β0 βCEU βYRI MSEMLE MSEEB

Af. Am — — — 6.24 × 10−3

CEU Af. Am 0.65 4.34 — 22.48 × 10−3 5.13 × 10−3

YRI Af. Am 1.47 — 34.51 3.35 × 10−3 2.47 × 10−3

YRI and CEU Af. Am 1.22 18.90 64.37 4.15 × 10−3 1.15 × 10−3
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estimates a very low affinity of 5.65; between the two extremes, this is closest to
ignoring the booster sample. Yet it does not ignore the CEU sample completely,
thereby still achieving an 18% reduction in MSE. Second, no matter what the
booster sample is (CEU alone, YRI alone, or CEU and YRI), EB achieves a smaller
MSE than either naively pooling or ignoring the same booster sample(s). Finally,
we note that the influence of both CEU and YRI are greater in the presence of two
booster samples than when there is only one booster sample, and the minimum
MSE is achieved using two booster samples simultaneously. Loosely speaking, we
strike the right balance in weighing the booster samples, and at the same time ex-
tract more information from each relevant booster sample. Most importantly, we
achieve such balance and optimality without assuming any known genetic rela-
tionship among the target and the booster samples.

4. Discussion. Estimating allele frequencies is a basic yet important step in
many genetic studies. For example, population-specific allele frequency is the es-
sential source of information used in a series of analyses, which inferred genetic
structure, as well as correlation between spatial pattern of genetic variation and
geography, in the Human Genome Diversity Project—Centre d’Etude du Polymor-
phisme Humain (HGDP-CEPH) Human Genome Diversity Panel [Ramachandran
et al. (2005) and Rosenberg et al. (2002, 2005)]. The HGDP-CEPH consists of
1000 individuals representing 52 world-wide populations, many of which are rep-
resented by 10–25 individuals. In such small samples, population-specific allele
frequency estimates are subject to substantial sampling errors; as a result, the
inferred genetic clustering pattern was unstable especially for populations with
small samples [Rosenberg et al. (2005)]. In linkage analysis of extended pedigrees,
where not all relevant members of a pedigree have been genotyped, population al-
lele frequency is required to infer identity by descent (IBD) information [Risch
(1900), Weeks and Lange (1998) and Lockwood, Roeder and Devlin (2001)].

Likewise, accurate allele frequency estimates play an important role in a whole-
genome case-control association study (WGA), which compares the allele fre-
quency between a group of affected cases and a group of unrelated healthy con-
trols. Numerous WGA are underway, with a sample size on the order of thousands
of subjects, each genotyped at 100,000–500,000 SNPs. Because of the need to cor-
rect for multiple comparisons, large samples are required for detecting risk alleles
that are rare or have moderate effect [Hirschhorn and Daly (2005) and Wang et
al. (2005)]. While in most ongoing case-control studies, the overall sample size is
chosen to achieve good statistical power, stratified analyses are often performed on
much smaller subsets of participants representing minority groups. Thus, estimat-
ing allele frequency from a small sample size remains a concern in practice.

In this paper we proposed an empirical Bayes approach, which enabled us to
improve population-specific allele frequency estimates by adaptively incorporat-
ing genotype data from related populations. The flexibility and computational effi-
ciency of our approach allows it to be incorporated in existing genetic data analy-
ses. In the context of case-control association studies, although the approach we
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propose not directly address the hypothesis testing problem, it can be further de-
veloped to do so. Powered by the new generation of high-throughput platforms,
we expect a bloom in genotype data from diverse populations. When genotypes
from additional unaffected individuals are available from an external source, we
can apply our method and reduce the uncertainty in the frequencies of the control
samples.

Our approach differs from existing approaches in several important aspects.
First, since our goal is to improve the allele frequency estimates in a specific target
population, we do not treat all populations symmetrically. Of course, if we want to
improve the estimates in all populations, we can simply apply our method to tar-
get each population in turn. Second, by concentrating on allele frequency estima-
tion, our method does not require assuming an underlying genealogy or a common
ancestral population. This is attractive because genealogy (or coalescent)-based
approaches either are restricted to analysis of data from a genetic region with neg-
ligible recombination (such as Y-chromosome or mtDNA), or require heavy com-
putation on elaborate ancestral recombination graphs [Nordborg (2001)]. Thus,
coalescent-based approaches are not easily applicable to data of genomic scale.
Likewise, modeling a common ancestral population either requires a full genealog-
ical approach as described above, or making simplifying assumptions such as a
star-shaped genealogy. In contrast, by avoiding explicit modeling of full popula-
tion history, our approach is not only computationally efficient, but also is more
robust to unknown and complex demographic history.

Throughout this paper we have considered estimation with respect to a squared-
error loss. In practice, one might be more concerned, say, about proportional errors
in frequency; taken to the extreme, this requires that special attention be paid to
rare alleles. In the examples we consider, we find that a single beta-binomial model
fits the sampling distribution of the target frequencies reasonably well. So long as
this remains the case, one can continue to compute the posterior in the manner we
describe but may wish to consider, for example, the posterior median as an alter-
native to the posterior mean. By this choice, one minimizes the posterior L1 loss
on both the frequency as well as the log-odds scales. On the other hand, if it turns
out that the sampling distribution of rare allele’s frequencies are not adequately
approximated by a beta-binomial, it would be sensible to consider a generalization
of this work in which, instead of fitting family of parameterized beta distributions,
one attempted to fit a mixture of beta’s, so that the extra component can make a
more refined model for the appearance of rare alleles.

Our examples using real genetic data suggest that incorporating additional
boosting samples can often substantially improve the frequency estimates by intro-
ducing only a small degree of bias in exchange for the variance reduction. How-
ever, the improvement in the estimation describes the behavior of the estimate
averaged over all SNPs. There may be a small number of SNPs whose allele fre-
quencies differ substantially between populations. Therefore, as a word of caution,
we point out that the approach we propose here may not be appropriate for some
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applications. For example, if one’s goal is to detect SNPs whose frequencies dif-
fer significantly between two populations, then using each population to boost the
other tends to shrink the overall allele frequency difference. In future research, we
plan to develop extensions to detect such SNPs.

Empirical Bayes approaches, pioneered by Robbins (1964), offer a natural
and unified framework for incorporating auxiliary information. We hope that the
promising results we report here will inspire further development for analyzing the
impending large genotyping studies.

APPENDIX

In our real-data examples the MSE is computed using a gold standard that is
imperfect; we now show that this results in an upward bias compared to the true
MSE. We can estimate the bias and then subtract it to yield unbiased MSE esti-
mates. Let q̂ be the estimator whose MSE we are estimating, let q̂val denote the
allele frequency in an independent validation sample (imperfect gold standard),
and let M̃SE = 1

N

∑
i (q̂i − q̂val

i )2 denote the associated MSE estimate using the
imperfect gold standard. Under the assumed statistical model, the q̂val

i ’s are inde-
pendent of the data used for estimation, and are unbiased estimates of the true fre-
quencies qi . To compute the bias of M̃SE, add and subtract qi , expand the square,
and take expectations:

EM̃SE = E
1

N

∑
i

(q̂i − qi + qi − q̂val
i )2,

= E
1

N

∑
i

[(q̂i − qi)
2 + (q̂val

i − qi)
2 + 2(q̂i − qi)(qi − q̂val

i )],(A.1)

= EMSE + 1

N

∑
i

Var(q̂val
i ),

where the cross term in (A.1) has expectation zero, being a product of indepen-
dent factors, of which the second has expectation 0 because q̂val

i is unbiased. The
variance of q̂val

i is qi(1 − qi)/nval, due to binomial variation. Attempting a plug-
in estimate for this variance, we observe that Eq̂val

i (1 − q̂val
i ) = qi − E(q̂val

i )2 =
qi − q2

i − [E(q̂val
i )2 − q2

i ] = qi(1 − qi) − Var(q̂val
i ) = qi(1 − qi)(1 − 1

nval
). There-

fore, an unbiased estimate of Var(q̂val
i ) is q̂val

i (1 − q̂val
i )/(nval − 1). Consequently,

an unbiased estimate of the MSE is

M̃SE − 1

N

∑
i

q̂val
i (1 − q̂val

i )

nval − 1
.
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