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GEODESICS IN FIRST PASSAGE PERCOLATION

BY CHRISTOPHER HOFFMAN

University of Washington

We consider a wide class of ergodic first passage percolation processes
on Z

2 and prove that there exist at least four one-sided geodesics a.s. We
also show that coexistence is possible with positive probability in a four-
color Richardson’s growth model. This improves earlier results of Häggström
and Pemantle [J. Appl. Probab. 35 (1995) 683–692], Garet and Marchand
[Ann. Appl. Probab. 15 (2005) 298–330] and Hoffman [Ann. Appl. Probab.
15 (2005) 739–747] who proved that first passage percolation has at least two
geodesics and that coexistence is possible in a two-color Richardson’s growth
model.

1. Introduction.

1.1. First passage percolation. First passage percolation is a process intro-
duced by Hammersley and Welsh as a time-dependent model for the passage of a
fluid through a porous medium which has provided a large number of problems of
probabilistic interest with excellent physical motivation [11]. Study of this model
led to the development of the ergodic theory of subadditive processes by King-
man [15]. It also has links to mathematical biology through Richardson’s growth
model [10]. A good overview of first passage percolation is contained in [14].

Let μ be a stationary measure on [0,∞)Edges(Zd ) and let ω be a realization of
μ. For any x and y we define τ(x, y), the passage time from x to y, by

τ(x, y) = inf
∑

ω(vi, vi+1)

where the sum is taken over all of the edges in the path and the inf is taken over
all paths connecting x to y. The time-minimizing path from x to y is called a
geodesic.

An infinite path v1, v2, . . . is called a geodesic if for all 0 < i < j

τ(vi, vj ) =
j−1∑
k=i

ω(vk, vk+1).

In this paper we prove that for a very general class of first passage percolation
processes, there exist at least four disjoint infinite geodesics a.s.
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For notational reasons it will often be convenient to think of τ as a function
defined on R

2 × R
2 by setting

τ(x + u,y + v) = τ(x, y)

for any x, y ∈ Z
2 and any u, v ∈ [−1

2 , 1
2)2. For any x ∈ R

2 and S ⊂ R2 we write

τ(x, S) = inf
y∈S

τ (x, y).

The most basic result from first passage percolation is the shape theorem. Define

R(t) = {v : τ(0, v) ≤ t}.
The shape theorem says that there is a nonempty set R such that (modulo the
boundary) R(t)

t
converges to R a.s.

THEOREM 1.1 [3]. Let μ be stationary and ergodic, where the distribution on
any edge has finite d + ε moment for ε > 0. There exists a closed set R which is
nonempty, convex and symmetric about reflection through the coordinate axis such
that for every ε > 0

P

(
∃T : (1 − ε)R ⊂ R(t)

t
⊂ (1 + ε)R for all t > T

)
= 1.

This theorem is an example of a subadditive ergodic theorem. In general, little is
known about the shape of R other than it is convex and symmetric. Cox and Durrett
have shown that there are nontrivial product measures such that the boundary of R

contains a flat piece yet it is neither a square nor a diamond [6]. However, for any
nonempty, convex and symmetric set R there exists a stationary measure μ such
that the shape for μ is R [9].

Another widely studied aspect of first passage percolation is geodesics. We let
G(x,y) be the geodesic connecting x and y. Define

�(x) = ⋃
y∈Zd

{e ∈ G(x,y)}.

We refer to this as the tree of infection of x. We define K(�(x)) to be the number
of topological ends in �(x).

Newman has conjectured that for a large class of μ, |K(�(0))| = ∞ a.s. [16].
Häggström and Pemantle proved that if d = 2, μ is i.i.d. and ω(e) has exponential
distribution, then with positive probability |K(�(0))| > 1. In independent work
Garet and Marchand [7] and Hoffman [12] extended this result in two directions.
Their results apply to a wide class of ergodic measures μ on any d ≥ 2.

Newman has proved that if μ is i.i.d. and R has certain properties, then
|K(�(0))| = ∞ a.s. [16]. Although these conditions are plausible there are no
known measures μ with S that satisfy these conditions. In this paper we prove an
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analogous theorem but with a much weaker condition on R. Unfortunately even
this weaker condition, that ∂R is not a polygon, has not been verified for any ver-
sion of i.i.d. first passage percolation.

Now we will introduce some more notation which will let us list the conditions
that we place on μ for the rest of this paper. We say that μ has unique passage
times for all x and y �= z:

P
(
τ(x, y) �= τ(x, z)

) = 1.

Now we are ready to define the class of measures that we will work with. We
say that μ is good if:

1. μ is ergodic,
2. μ has all the symmetries of Z

d ,
3. μ has unique passage times,
4. the distribution of μ on any edge has finite 2 + ε moment for some ε > 0,
5. R is bounded.

Throughout the rest of the paper we will assume that μ is good. Unfortunately there
is no general necessary and sufficient condition to determine when the shape R is
bounded and therefore there is no general condition for μ to be good. See [9] for
examples. However, if μ is i.i.d. and the distribution on any edge is continuous with
finite 2 + ε moment, then μ is good. See Theorem 4.3 in [8] for more information
about conditions that imply μ is good in the case that μ is stationary but not i.i.d.

1.2. Spatial growth models. Richardson’s growth model, a simple competition
model between diseases, was introduced by Häggström and Pemantle [10]. The
rules for this model are as follows. Each vertex z ∈ Z

2 at each time t ≥ 0 is either
infected by one of k diseases (zt ∈ {1, . . . , k}) or is uninfected (zt = 0). Initially
for each disease there is one vertex which is infected by that disease. All other
vertices are initially uninfected. Once a vertex is infected by one of the diseases it
stays infected by that disease for all time and is not infected by any disease. All of
the diseases spread from sites they have already infected to neighboring uninfected
sites at some rate.

We now explain the relationship between first passage percolation and Richard-
son’s growth models. For any ω ∈ [0,∞)Edges(Zd ) with unique passage times and
any x1, . . . , xk ∈ Z

d , we can project ω to ω̃x1,...,xk
∈ ({0,1, . . . , k}Z

d
)[0,∞) by

ω̃x1,...,xk
(z, t) =

{
i, if τ(xi, z) ≤ t and τ(xi, z) < τ(xj , z) for all i �= j ,
0, else.

If μ has unique passage times, then μ projects onto a measure on ({0,1, . . . ,

k}Z
d
)[0,∞). It is clear that the models start with a single vertex in states 1 through k.

Vertices in states i > 0 remain in their states forever, while vertices in state 0 which
are adjacent to a vertex in state i can switch to state i. We think of the vertices in
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states i > 0 as infected with one of k infections while the vertices in state 0 are
considered uninfected.

For this model it is most common to choose μ to be i.i.d. with an exponential
distribution on each edge. This makes the spatial growth process Markovian.

As each z ∈ Z
d eventually changes to some state i > 0 and then stays in that

state for the rest of time, we can define the limiting configuration

ω̃x1,...,xk
(z) = lim

t→∞ ω̃x1,...,xk
(z, t).

We say that mutual unbounded growth or coexistence occurs if the limiting con-
figuration has infinitely many z in state i for all i ≤ k. More precisely we define
C(x1, . . . , xk) to be the event that

|{z : ω̃x1,...,xk
(z) = 1}| = · · · = |{ω̃x1,...,xk

(z) = k}| = ∞.

We refer to this event as coexistence or mutual unbounded growth.

1.3. Results. Our results depend on the geometry of R. Let Sides(μ) be the
number of sides of ∂R if ∂R is a polygon and infinity if ∂R is not a poly-
gon. Note that by symmetry we have Sides(μ) ≥ 4 for any good measure μ. Let
G(x1, . . . , xk) be the event that there exist disjoint geodesics gi starting at xi . In
this paper we prove the following theorem about general first passage percolation.

THEOREM 1.2. Let μ be good. For any ε > 0 and k ≤ Sides(μ) there exists
x1, . . . , xk such that

P(G(x1, . . . , xk)) > 1 − ε.

We also get two closely related theorems. Let A be a finite subset of Edges(Z2).
Let {(ca, da)}a∈A be a collection of intervals with 0 < ca < da for all a ∈ A. Let
A′ be the event that ω(a) ∈ (ca, da) for all a ∈ A. Let B ′ be any event such that
P(B ′) > 0 and B ′ does not depend on ω|A (if ω ∈ B ′ and ω|Ac = ω′|Ac , then
ω′ ∈ B ′). We say that μ has finite energy if

P(A′ ∩ B ′) > 0

for all such events A′ and B ′.

THEOREM 1.3. If μ is good and has finite energy, then for any k ≤ Sides(μ)

P
(|K(�(0))| ≥ k

)
> 0.

THEOREM 1.4. Let μ be good. For any k ≤ Sides(μ)/2

P
(|K(�(0))| ≥ k

) = 1.
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Theorem 1.3 extends a theorem of Häggström and Pemantle [10]. They proved
that under the same hypothesis,

P
(|K(�(0))| > 1

)
> 0.

Garet and Marchand [7] and Hoffman [12] extended the results of Häggström and
Pemantle to a general class of first passage percolation processes in any dimension.

As an easy consequence of Theorem 1.4 we get

COROLLARY 1.5. There exists a good measure μ such that

P
(|K(�(0))| = ∞) = 1.

PROOF. This follows easily from Theorem 1.4 and [9] where it is proven that
there is a good measure μ such that R is the unit disk. �

Our main result on a multiple-color Richardson’s growth model is that with
positive probability coexistence occurs.

THEOREM 1.6. If μ is good and k ≤ Sides(μ), then for any ε > 0 there exist
x1, . . . , xk such that

P(C(x1, . . . , xk)) > 1 − ε.

Häggström and Pemantle [10] proved that if μ is i.i.d. with exponential distrib-
ution, then

P
(
C((0,0), (0,1))

)
> 0.

Garet and Marchand [7] and Hoffman [12] proved that in any dimension mutual
unbounded growth is possible when k = 2. Our result extends the previous results
in two ways. First it shows that coexistence is possible with four colors. It also
shows that the points x1, . . . , xk can be chosen such that the probability of coex-
istence approaches 1. None of the three proofs that coexistence is possible in the
two-color Richardson’s growth model were able to show that the probability of
coexistence went to 1 as the initial sites x1 and x2 moved farther apart.

COROLLARY 1.7. There exists a nontrivial i.i.d. measure μ and x1, . . . , x8
such that

P(C(x1, . . . , x8)) > 0.

PROOF. By [4] there exists a μ which is i.i.d. such that ∂R is neither a square
nor a diamond. As R is symmetric Sides(μ) ≥ 8. Thus the result follows from
Theorem 1.6. �
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2. Notation. Much of the notation that we introduce is related to the shape R.
For v ∈ R

2 \ (0,0) let

T ∗(v) = 1

sup{k :kv ∈ R} .

It is not hard to check that T ∗ is a norm on R
2 whose unit ball is R. Thus it is

equivalent with Euclidean distance. It might be helpful to note that Theorem 1.1
implies that

lim
1

n
τ(0, nv) = T ∗(v) a.s.(1)

Also we have that T ∗(αv) = αT ∗(v) and T ∗(v) = 1 for all v ∈ ∂R and all α ∈ R.

We use ‖v‖ =
√

v2
1 + v2

2 to represent the length of v.
Let the set V consist of all v ∈ ∂R such that there is a unique line Lv which is

tangent to R through v. For such a v let w(v) be a unit vector parallel to Lv . Let
Ln,v be the line through nv in the direction of w(v). We start with two lemmas
about the set V .

LEMMA 2.1. For any k ≤ Sides(μ) there exist points v1, . . . , vk ∈ V such that
the lines Lvi

are distinct for all i.

PROOF. If Sides(μ) < ∞, then ∂R is a polygon and the lemma is obvious.
For v in the first quadrant define w+(v) to be the largest angle (measured counter-
clockwise) between the positive x-axis and a line through v that does not intersect
the interior of R. (At least one such line exists by the convexity of R.) Define
w−(v) to be the smallest angle (measured counterclockwise) between the positive
x-axis and a line through v that does not intersect the interior of R.

As v rotates from being parallel to the positive x-axis to being parallel to the
positive y-axis both w+ and w− are nondecreasing. Thus they are continuous al-
most everywhere. It is easy to check that ∂R has a unique tangent at v if and only
if w+(v) = w−(v). As R is convex there is a unique tangent line at almost every
point in ∂R and the two functions are equal for almost every v.

If ∂R is not a polygon, then w+(v) takes on infinitely many values. For every
i ∈ N choose vi such that w+(vi+1) > w+(vi) for all i. For each i choose v′

i such
that v′

i is in the arc of ∂R from v2i to v2i+1 and w+(v′
i ) = w−(v′

i ). This is possible
because the two functions are equal almost everywhere so there exists a point of
equality on every arc of positive length. Thus at each v′

i there is a unique tangent
line to ∂R. For any i > j we have that

w+(v′
i ) ≥ w+(v2i ) > w+(v2j+1) ≥ w+(v′

j )

and the tangent lines at v′
i and v′

j are distinct. �
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LEMMA 2.2. There is a unique line tangent to ∂R at the point v if and only if

lim
b→0

T ∗(v + w(v)b) − 1

|b| = 0.(2)

PROOF. Fix v ∈ ∂R. For v′ ∈ ∂R and v′ not parallel to w(v) we can find a and
b such that v′ = av + abw(v). Then we have

T ∗(
v + bw(v)

) = T ∗
(

1

a
v′

)
= 1

a
T ∗(v′) = 1

a
.

As v′ approaches v we have a → 1 and b → 0.
It is easy to check that ∂R having a unique tangent line at v is equivalent to

lim
v′→v,v′∈∂R

‖v + bw(v) − v′‖
‖bw(v)‖ = 0,

as
‖v + bw(v) − v′‖

‖bw(v)‖ = (1/a − 1)‖v′‖
|b| · ‖w(v)‖

having a unique tangent line is equivalent to

lim
v′→v,v′∈∂R

(1/a − 1)‖v′‖
|b| · ‖w(v)‖ = 0.

Since ‖v′‖ → ‖v‖ �= 0 as v′ → v having a unique tangent line is equivalent to

lim
v′→v,v′∈∂R

1/a − 1

|b| = 0,

we have that b → 0 is equivalent to v′ → v for v′ ∈ ∂R. Thus ∂R having a unique
tangent at v is equivalent to

lim
v′→v,v′∈∂R

1/a − 1

|b| = lim
b→0

T ∗(v + bw(v)) − 1

|b| = 0. �

Let S ⊂ R
2. We define the function

BS(x, y) = inf
z∈S

τ (x, z) − inf
z∈S

τ (y, z).

LEMMA 2.3. For any set S ⊂ Z
2 and any x, y, z ∈ Z

2:

1. BS(x, y) ≤ τ(x, y), and
2. BS(x, y) + BS(y, z) = BS(x, z).

PROOF. These properties follow easily from the subadditivity of τ and the
definition of BS . �

These functions are useful in analyzing the growth model because of the fol-
lowing fact.



GEODESICS IN FIRST PASSAGE PERCOLATION 1951

LEMMA 2.4. If there exist c > 0, and x1, . . . , xk ∈ V such that

P
(
BLn,vi

(xj , xi) > 0 ∀i �= j
) ≥ 1 − c

for infinitely many n, then

P(C(x1, . . . , xk)) ≥ 1 − c.

PROOF. If for a fixed i and all j �= i

BLn,vi
(xj , xi) > 0,

then there exists z ∈ Ln,vi
such that τ(z, xi) < τ(z, xj ) for all j �= i. Thus there is

a z ∈ Ln,vi
such that

ω̃x1,...,xk
(z) = i.

For a fixed i each z is in only one Ln,vi
, so if there exist infinitely many n such

that for all i and j �= i

BLn,vi
(xj , xi) > 0,

then for every i there are infinitely many z such that

ω̃x1,...,xk
(z) = i.

By assumption we have that there exist infinitely many n such that

P
(
BLn,vi

(xj , xi) > 0 for all i and j �= i
) ≥ 1 − c.

Thus we have that with probability at least 1 − c there exist infinitely many n such
that for all i and j �= i

BLn,vi
(xj , xi) > 0.

In conjunction with the previous paragraph this proves the lemma. �

LEMMA 2.5.

P(G(x1, . . . , xk)) ≥ P(C(x1, . . . , xk)).

PROOF. For any

y ∈ {z : ω̃x1,...,xk
(z) = i}

the geodesic from xi to y lies entirely in

{z : ω̃x1,...,xk
(z) = i}.

By compactness, if

|{z : ω̃x1,...,xk
(z) = i}| = ∞,

then there exists an infinite geodesic gi which is contained in the vertices

{z : ω̃x1,...,xk
(z) = i}. �
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LEMMA 2.6. For all v ∈ R
2 \ 0 and ε > 0 there exist δ = δ(ε, v) > 0 and

M0 = M0(ε, v) such that for all M > M0, all events E with P(E) < δ and any
r ∈ R

2 we have that

E
(
τ(r, r + Mv)1E

)
< Mε.

PROOF. Consider the space 	̄ = [0,∞)Edges(Zd ) × [0,1) × [0,1) with mea-
sure μ̄ the direct product of μ with Lebesgue measure. We write P̄ and Eμ̄ for
probability and expectation with respect to μ̄. Any vector v ∈ R

2 \ 0 acts on 	̄ in
the following manner.

For any v ∈ R
2 \ 0 and (ω, a, b) ∈ 	̄ we have

σ̄v(ω, a, b) = (σv′(ω), c, d)

where v + (a, b) = v′ + (c, d), v′ ∈ Z
2 and c, d ∈ [0,1) × [0,1). For convenience

we often write for (a, b) ∈ R
2

(ω, a, b) = (σv′(ω), c, d),

where (a, b) = v′ + (c, d), v′ ∈ Z
2 and c, d ∈ [0,1)×[0,1). For any a, b, c, d ∈ R

and ω we write

τ((ω, (a, b)), (ω, (c, d))) = τω((a, b), (c, d)).

We also define the function

f (ω,a, b) = τ
(
(ω, (a, b)),

(
ω, (a, b) + v

))
.

Note that f is in L1.
For any set E with P(E) < δ we write Ē = E × [0,1) × [0,1) and we have

P̄(E) < δ. For any M ∈ R choose k such that k ≤ M ≤ k + 1:

1

M
E

(
τ(r, r + Mv)

)
1E

≤ 1

k

(
E sup

a,b∈[0,1)

τ
(
(a, b), kv + (a, b)

)
1E

+ E sup
M∈[k,k+1)

(
τ(r + kv, r + Mv)

))

≤ 1

k

(
Eμ̄ sup

a,b∈[0,1)

τ
(
(ω, (a, b)),

(
ω,kv + (a, b)

))
1Ē

+ E sup
M∈[k,k+1)

(
τ(r + kv, r + Mv)

))

≤ 1

k

(
Eμ̄τ

(
(ω, (a, b)),

(
ω,kv + (a, b)

))
1Ē
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+ E sup
a,b,c,d∈[0,1)

τ
(
(a, b), (c, d)

)
+ E sup

a,b,c,d∈[0,1)

τ
(
kv + (a, b), kv + (c, d)

)

+ E sup
M∈[k,k+1)

(
τ(r + kv, r + Mv)

))

≤ 1

k

(
Eμ̄τ

(
(ω, (a, b)),

(
ω,kv + (a, b)

))
1Ē

+ E sup
a,b,c,d∈[0,1)

τ
(
(a, b), (c, d)

) + E sup
a,b∈[0,1)

τ
(
kv, kv + (a, b)

)

+ E sup
M∈[k,k+1)

(
τ(r + kv, r + Mv)

))
.

The second, third and fourth terms in the last inequality are bounded independent
of k. Thus their contribution to the right-hand side goes to zero as k goes to infinity.
Then we have that

1

k
τ
(
(ω, (a, b)),

(
ω,kv + (a, b)

))

≤ 1

k

k−1∑
0

τ
(
ω, jv + (a, b),ω, (j + 1)v + (a, b)

)
(3)

≤ 1

k

k−1∑
0

f (σ̄ j
v (ω, a, b)).

By the ergodic theorem the sum on the right-hand side of (3) is converging to an L1

function almost everywhere and in L1. Thus we can choose δ such that P̄(Ē) < δ

implies

1

k
Eμ̄τ

(
(ω, (a, b)),

(
ω,kv + (a, b)

))
1Ē ≤ Eμ̄

(
1

k

k−1∑
0

f (σ̄ j
v (ω, a, b))1Ē

)
< ε.

This proves the lemma. �

We use this lemma in two contexts.

COROLLARY 2.7. For all v ∈ R
2 \ 0, r ∈ R

2, ε > 0 and M ∈ R let E =
E(M,v, r, ε) be the event that

τ(r, r + Mv) > (1 + ε/2)M.

There exists M0 = M0(v, r, ε) such that for all M > M0

E
(
τ(r, r + Mv)1E

) ≤ Mε.



1954 C. HOFFMAN

PROOF. Fix v, r , m and ε. By Theorem 1.1 we have that P(E) → 0 as M →
∞. Thus we can apply Lemma 2.6 to prove the corollary. �

COROLLARY 2.8. For any v ∈ V , r ∈ R
2, m ∈ R and ε > 0 there exists M0 =

M0(v, r,m, ε) such that for all M > M0

E
(
τ(r − mv, r + Mv)

) ≤ M(1 + ε).

PROOF. Fix v, r , m and ε. Let E = E(M) be the event that τ(r − mv, r +
Mv) > M(1 + ε/2). By Theorem 1.1 we have that P(E) → 0 as M → ∞. Thus
we can apply Lemma 2.6 to prove

E
(
τ(r − mv, r + Mv)1E

) ≤ M(ε/2).

By the definition of E

E
(
τ(r − mv, r + Mv)1Ec

) ≤ M(1 + ε/2).

Putting those two together proves the corollary. �

3. Outline. We start by outlining a possible method to prove that there are
infinitely many geodesics starting at the origin. Then we show the portion of this
plan that we cannot prove. Finally we show how to adapt this method to get the
results in this paper.

It is easy to construct geodesics beginning at 0. We can take any sequence
W1,W2, . . . of disjoint subsets of Z

2 and consider G(0,Wn), the geodesic from 0
to Wn. [The finite geodesic G(0,Wn) is well defined a.s. because the measure μ

is good so R is bounded. Then Theorem 1.1 implies the existence of the finite
geodesic.] Using compactness it is easy to show that there exists a subsequence nk

such that G(0,Wnk
) converges to an infinite geodesic.

If we take two sequences of sets Wn and W ′
n we can construct a geodesic for

each sequence. It is difficult to determine whether or not the two sequences pro-
duce the same or different geodesics. The tool that we use to distinguish the geo-
desics is Busemann functions. Every geodesic generates a Busemann function as
follows.

For any x, y ∈ Z
2 and infinite geodesic G = (v0, v1, v2, . . .) we can define

B̂ω
G(x, y) = B̂G(x, y) = lim

n→∞ τ(x, vn) − τ(y, vn).

To see the limit exists first note that

B̂G(x, y) = lim
n→∞ τ(x, vn) − τ(y, vn)

= lim
n→∞ τ(x, vn) − τ(v0, vn) + τ(v0, vn) − τ(y, vn)

= lim
n→∞

(
τ(x, vn) − τ(v0, vn)

) + lim
n→∞

(
τ(v0, vn) − τ(y, vn)

)
.
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As G is a geodesic the two sequences in the right-hand side of the last line are
bounded and monotonic so they converge. Thus B̂G(x, y) is well defined.

Two distinct geodesics may generate the same Busemann function but distinct
Busemann functions mean that there exist distinct geodesics.

To construct a geodesic we pick (a, b) ∈ Z
2 and we set Wn to be

Wn = {w ∈ Z
2 :w · (a, b) ≥ n}.

If we could show for every z ∈ Z
2 that Gn(z), the geodesic from z to Wn, con-

verges, then it would be possible to show that

lim
M→∞

1

M
B

(
0, (bM,−aM)

) = 0(4)

and

lim
M→∞

1

M
B

(
0, (aM,−bM)

) = inf
v·(a,b)=a2+b2

T ∗(v).(5)

Thus for any (a′, b′) which is not a scalar multiple of (a, b) we would be able to
show that

lim
M→∞

1

M
B

(
0, (b′M,−a′M)

) �= 0.(6)

Thus for any (a, b) and (a′, b′) which are not scalar multiples we get distinct geo-
desics. In this way it would be possible to construct an infinite sequence of distinct
geodesics. We are unable to show that the geodesics G(z,Wn) converge. But for
some (a, b) ∈ Z

2 we can establish versions of (4) and (5). These are Lemmas 4.5
and 4.4. These lemmas form the heart of our proof.

4. Proofs. Although it is convenient to write τ(x, y) for x, y ∈ R
2, the distri-

bution of τ(x, y) is equal to the distribution of τ(x + z, y + z) only if z ∈ Z
2.

For z /∈ Z
2 the distribution of τ(x, y) may not be equal to the distribution of

τ(x + z, y + z) which will make the notation more complicated. But the distri-
butions are close enough so that this lack of shift invariance for noninteger transla-
tions will not cause any significant problems. To deal with this lack of translation
invariance we let

I (a, b) = Iv(a, b) = sup
x∈La,v

(E(τ (x,Lb,v))).

In the next three lemmas we show

sup
x∈La,v

|I (a, b) − E(τ (x,Lb,v))|

is bounded uniformly in a, b and v.
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LEMMA 4.1. For any v ∈ V and u ∈ R
2 \ 0 such that u = αv + γw(v),

α‖v‖
‖u‖ <

√
2.

PROOF. First we show that for any v ∈ V that lies in the first octant (between
the lines y = 0 and y = x with x > 0), w(v) then points in one of the octants
between the lines x = 0 and x = −y.

Let ṽ be the image of v under reflection about the line x = y and let v∗ be the
image of v under reflection about the line x = 0. The line from v to ṽ is parallel to
the line x = −y while the line from v to v∗ is parallel to the line x = 0.

By the convexity of R we have that for any two points in R and any line tangent
to ∂R the two points lie on the same side of the line (or in one closed halfplane).
Thus 0, v∗ and ṽ all lie on the same side of L1,v . This implies L1,v does not
intersect the interior of the line segment between v∗ and ṽ and w(v) points in the
octants between the lines x = 0 and x = −y.

Then

|v · w(v)| ≤
√

2

2
‖v‖ · ‖w(v)‖

and the angle between v and w(v) is at least 45◦. By the symmetry of R this
inequality holds for all v ∈ V . For a fixed α and v the value of γ which minimizes
‖u‖ occurs when the points 0, αv and u form a right triangle. As the angle between
v and w(v) is at least 45◦ we have that

α‖v‖
‖u‖ <

√
2. �

LEMMA 4.2. Let v ∈ V , x1, x3 ∈ R
2 and n1, n2, n3, n4 ∈ R with x1 ∈ Ln1,v ,

x3 ∈ Ln3,v , n1 < n2, n3 < n4 and

(n2 − n1) − (n4 − n3) ≥ 2/‖v‖.
Then

E(τ (x1,Ln2,v)) ≥ E(τ (x3,Ln4,v)).

This implies that for any m > 2/‖v‖ and any r ∈ Ln1,v ,

E
(
τ(r − mv,Ln2,v)

) ≥ I (n1, n2).(7)

PROOF. First we define x̃1 and x̃3 to be the points in Z
2 closest to x1 and x3,

respectively (i.e., x1 ∈ x̃1 + [−1/2,1/2)2 and x3 ∈ x̃3 + [−1/2,1/2)2).
Next define α1, α3, γ1, γ3 ∈ R such that

x̃1 − x1 = α1v + γ1w(v) and x̃3 − x3 = α3v + γ3w(v).
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By the definition of the x̃i we have that ‖xi − x̃i‖ ≤ √
2/2. Thus by Lemma 4.1

we have that |α1|, |α3| ≤ 1/‖v‖.
Then define α̃ and γ̃ such that

α̃v + γ̃ w(v) = x̃3 − x̃1

= x3 − x1 + (α3 − α1)v + (γ3 − γ1)w(v)

= (n3 − n1 + α3 − α1)v + Cw(v)

for some C ∈ R. Also

|α̃ − (n3 − n1)| = |α3 − α1| ≤ 2/‖v‖
or

(n3 − n1) − 2/‖v‖ ≤ α̃.

Then

Ln2,v + (x̃3 − x̃1) = Ln2+α̃,v.

Also

E(τ (x1,Ln2,v)) = E(τ (x̃1,Ln2,v)) = E(τ (x̃3,Ln2+α̃,v)) = E(τ (x3,Ln2+α̃,v)).

The first and third inequalities are due to the definition of x̃1 and x̃3, respectively,
while the second is due to the shift invariance of the distribution under shifts in Z

2.
(The image of Ln2,v under translation by x̃3 − x̃1 is Ln2+α̃,v .) Thus

E(τ (x1,Ln2,v)) = E(τ (x3,Ln2+α̃,v)) ≥ E(τ (x3,Ln4,v))(8)

if and only if n4 ≤ n2 + α̃. As

2/‖v‖ ≤ (n2 − n1) − (n4 − n3),

0 ≤ (n2 − n4) + (n3 − n1) − 2/‖v‖,
0 ≤ (n2 − n4) + α̃,

n4 ≤ n2 + α̃,

thus by (8)

E(τ (x1,Ln2,v)) ≥ E(τ (x3,Ln4,v))(9)

and the first part of the lemma is true.
For the second statement, for any n3 ∈ R take any r and w in Ln1,v . Apply (9)

with x1 = w, x3 = r − mv, n3 = n1 − α and n2 = n4 to get

E
(
τ(r − mv,Ln2,v)

) = E
(
τ(r − mv,Ln4,v)

) ≥ E(τ (w,Ln2,v)).

As this holds for all w ∈ Ln1,v we have

E
(
τ(r − mv,Ln2,v)

) ≥ sup
w∈Ln1,v

E(τ (w,Ln2,v)) = I (n1, n2).
�
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LEMMA 4.3. There exists β ∈ R such that for all v ∈ V and n1, n2 ∈ R with
n2 − n1 > 2/‖v‖ and for all w,y ∈ Ln1,v ,

|E(τ (w,Ln2,v)) − E(τ (y,Ln2,v))| < β.

We also have that for any n1, n2, α ∈ R,

|I (n1, n2) − I (n1 + α,n2 + α)| < β.(10)

PROOF. Pick β such that for all x, z with ‖x −z‖ = 2 we have E(τ (x, z)) < β .
Define x and z by x = y − 2v/‖v‖ and z = y + 2v/‖v‖. By Lemma 4.2 we have

E(τ (z,Ln2,v)) ≤ E(τ (y,Ln2,v)),E(τ (w,Ln2,v)) ≤ E(τ (x,Ln2,v)).

Thus

0 ≤ |E(τ (y,Ln2,v)) − E(τ (w,Ln2,v))|
≤ E(τ (x,Ln2,v)) − E(τ (z,Ln2,v)) ≤ E(τ (x, z)) < β.

For the second part choose z ∈ Ln1+α,v and r ∈ Ln1,v . Also choose m > 2/‖v‖
such that E(τ (r − mv, r)) < β . There exist r̃ ∈ Z

2 and r − mv ∈ r̃ + [1/2,1/2)2.
Let ñ1 be such that r̃ ∈ Lñ1,v . There exist z̃ ∈ Z

2 and z ∈ z̃ + [1/2,1/2)2. Let n̂1
be such that r̃ ∈ Ln̂1,v . Then we have n2 − ñ1 > n2 + α − n̂1. This implies

E
(
τ(r − mv,Ln2,v)

) = E(τ (r̃,Ln2,v)) > E(τ (z̃,Ln2+α,v)) = E(τ (z,Ln2+α,v)).

As this holds for all z ∈ Ln1+α,v we have

E(τ (r,Ln2,v)) ≥ I (n1 + α,n2 + α).(11)

As E(τ (r − mv, r)) < β we also have

I (n1, n2) + β ≥ E(τ (r,Ln2,v)) + β > E
(
τ(r − mv,Ln2,v)

)
.(12)

Thus combining (11) and (12),

I (n1, n2) + β > E
(
τ(r − mv,Ln2,v)

) ≥ I (n1 + α,n2 + α).

An analogous argument gives

I (n1 + α,n2 + α) + β > I (n1, n2)

which completes the proof. �

Now we show that for a typical choice of n,M ∈ R, v ∈ V and r ∈ R
2 we

have that BLn,v (r, r + Mv) is close to τ(r, r + Mv) (which is close to M because
v ∈ ∂R). This (along with Lemma 4.5) is one of two key steps in showing that for
distinct v, v′ ∈ V we will get distinct Busemann functions.

We define the lower density of A ⊂ N to be

density(A) = lim inf
N→∞

1

N
|A ∩ [1,2, . . . ,N]|.
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Similarly we define

density(A) = lim sup
N→∞

1

N
|A ∩ [1,2, . . . ,N]|.

We will assume the reader is familiar with all of the normal properties of density
of sets, for example,

density(A) + density(Ac) = 1

and

density(A ∪ B) ≤ density(A) + density(B).

We often shorten lower density to density as it will not cause confusion.

LEMMA 4.4. For any v ∈ V , any ε > 0, there exists M0 = M0(ε, v) such that
for all M > M0 and all r ∈ R

2 the density of n such that

P
(
M(1 − ε) < BLn,v (r, r + Mv) < M(1 + ε)

)
> 1 − ε(13)

is at least 1 − ε.

PROOF. By Lemma 2.3 for any r, n,M and v,

BLn,v (r, r + Mv) ≤ τ(r, r + Mv)(14)

and by Theorem 1.1 for any r, v and sufficiently large M ,

P
(
τ(r, r + Mv) < M(1 + ε)

)
> 1 − ε.(15)

Thus for sufficiently large M the upper bound on BLn,v (r, r + Mv) is satisfied for
all n with probability at least 1 − ε.

Now we bound the probability that BLn,v (r, r +Mv) is too small. Let d be such
that r ∈ Ld,v and let m ∈ R be such that m‖v‖ > 2. For any sufficiently large M

and any n ≥ d + M ,

I (d, n) − I (d + M,n)

≤ E
(

inf
y∈Ln,v

τ (r − mv,y)

)
− sup

x∈Ld+M,v

(
E

(
inf

y∈Ln,v

τ (x, y)

))
(16)

≤ E
(

inf
y∈Ln,v

τ (r − mv,y)

)
− E

(
inf

y∈Ln,v

τ (r + Mv,y)

)

≤ E
(

inf
y∈Ln,v

τ (r − mv,y) − inf
y∈Ln,v

τ (r + Mv,y)

)

≤ E
(
BLn,v (r − mv, r + Mv)

)
(17)

≤ E
(
τ(r − mv, r + Mv)

)
(18)

≤ M(1 + ε).(19)
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Equation (16) follows from (7) in Lemma 4.2 and the definition of I (d + M,n),
(17) follows from the definition of BLn,v , (18) follows from Lemma 2.3 and (19)
follows from Corollary 2.8.

Let k be such that

d + kM ≤ n < d + (k + 1)M.

For k and M by Theorem 1.1 and (10),

(k + 1)M(1 − ε) ≤ I (d, n)

≤ I (d, n) +
(

k∑
l=1

−I (d + lM,n) + I (d + lM,n)

)

≤
(

k−1∑
l=0

I (d + lM,n) − I
(
d + (l + 1)M,n

))

(20)
+ I (d + kM,n)

≤
(

k−1∑
l=0

I (d, n − lM) − I (d + M,n − lM) + 2β

)

+ I (d, n − kM),

(k + 1)M(1 − 2ε) ≤
(

k−1∑
l=0

I (d, n − lM) − I (d + M,n − lM)

)

+ I (d, n − kM)
(21)

≤
(

k−1∑
l=0

I (d, n − lM) − I (d + M,n − lM)

)

+ I (d, d + M).

By (19) the sum in the right-hand side of (21) is the sum of k + 1 terms bounded
above by M(1 + ε). Thus the number of l < k such that

I (d, n − lM) − I (d + M,n − lM) > M
(
1 − √

ε
)

is at least k(1 − 4
√

ε). The above result holds for all ε > 0 and all M = M(ε)

sufficiently large. Thus we get that for any ε > 0 and any M ∈ N sufficiently large
and any j ∈ [0,1,2, . . . ,M − 1] the density of n such that

I (d, j + Mn) − I (d + M,j + Mn) > M(1 − ε)(22)

is at least 1 − ε. Combining this result for all j ∈ [0,1,2, . . . ,M − 1] we get that
for any ε > 0 and any M ∈ N sufficiently large the density of n such that

I (d, n) − I (d + M,n) > M(1 − ε)(23)
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is at least 1 − ε.
Now we show that for any M,n, r and v such that (23) is satisfied we have that

with high probability BLn,v (r, r + Mv) is large. Let E be the event that

BLn,v (r, r + Mv) > M(1 + ε/2).

By Lemma 2.3 and Theorem 1.1 we can make P(E) arbitrarily small by making
M sufficiently large. Then we get

E
(
BLn,v (r, r + Mv)

)
= E

(
inf

z∈Ln,v

τ (r, z)

)
− E

(
inf

z∈Ln,v

τ (r + Mv,z)

)

> I (d,n) − β − I (d + M,n)(24)

> M(1 − ε) − β(25)

> M(1 − 2ε),(26)

E
(
BLn,v (r, r + Mv)1E

) + E
(
BLn,v (r, r + Mv)1EC

)
(27)

> M(1 − 2ε),

E
(
BLn,v (r, r + Mv)1EC

)
> M(1 − 2ε) − E

(
BLn,v (r, r + Mv)1E

)
> M(1 − 2ε) − E

(
τ(r, r + Mv)1E

)
(28)

> M(1 − 3ε).(29)

Equation (24) follows from Lemma 4.3. Equation (25) follows from (22). Equa-
tion (26) holds for large M . Equation (28) follows from Lemma 2.3 and Theo-
rem 1.1. Equation (29) is due to Corollary 2.7.

As the expected value of the function

BLn,v (r, r + Mv)1EC

is close to its maximum, M(1 + ε), we get that with high probability the function
is close to its maximum. Thus we get that for any ε > 0 (possibly larger than the
previous ε but still arbitrarily small) and all sufficiently large M , the set of n such
that

P
(
M(1 − ε) < BLn,v (r, r + Mv)

)
> 1 − ε(30)

has density at least 1 − ε. Putting together (14), (15) and (30) proves the lemma.
�

LEMMA 4.5. For any v ∈ V , ε > 0, there exists M0 = M0(ε, v) such that for
any M ∈ R with |M| > M0 and any r ∈ R

2 the density of n such that

P
(∣∣BLn,v

(
r, r + Mw(v)

)∣∣ < ε|M|) > 1 − ε

is at least 1 − ε.
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PROOF. First we prove the upper bound in the case that M is positive. Fix
ε > 0. Since R has a unique tangent line at v by (2) we can find b > 0 such that

T ∗(
v + bw(v)

)
(1 + εb) < (1 + 2εb).(31)

By Lemma 4.4 for any ε, b > 0 and all sufficiently large M the density of n such
that

P
(
BLn,v (r − Mv, r) ≥ M(1 − εb)

)
> 1 − ε(32)

is at least 1 − ε. By Theorem 1.1 for any ε, b > 0 and all sufficiently large M

P
(
τ
(
r − Mv, r + Mbw(v)

) ≤ MT ∗(
v + bw(v)

)
(1 + εb)

)
> 1 − ε.(33)

Choose M large enough such that both (32) and (33) are satisfied.
Thus with probability at least 1 − 2ε the density of n such that the following

inequalities are satisfied is at least 1 − ε:

τ
(
r − Mv, r + Mbw(v)

) ≥ BLn,v

(
r − Mv,

r + Mbw(v)
)

≥ BLn,v (r − Mv, r)

+ BLn,v

(
r, r + bMw(v)

)
,

τ
(
r − Mv, r + Mbw(v)

) − BLn,v (r − Mv, r) ≥ BLn,v

(
r, r + bMw(v)

)
,

MT ∗(
v + bw(v)

)
(1 + εb) − M(1 − εb) ≥ BLn,v

(
r, r + bMw(v)

)
,(34)

M(1 + 2εb) − M(1 − εb) ≥ BLn,v

(
r, r + bMw(v)

)
,(35)

3bMε ≥ BLn,v

(
r, r + bMw(v)

)
.

The first two lines follow deterministically from Lemma 2.3. Equation (34) is true
with probability at least 1 − 2ε. This follows from (33) and (32). Equation (35)
follows from (31). Thus we have that for any sufficiently large M the density of n

such that

P
(
BLn,v

(
r, r + bMw(v)

) ≤ 3bMε
)
> 1 − 2ε

is at least 1 − ε. By replacing w(v) with −w(v) and interchanging r and r +
bMw(v) we get that for any sufficiently large M the density of n such that

P
(
BLn,v

(
r, r + bMw(v)

) ≥ −3bMε
)
> 1 − 2ε

is at least 1 − ε. The case that M is negative follows in the same manner by replac-
ing w(v) with −w(v). As ε was arbitrary the lemma follows. �

LEMMA 4.6. Let v ∈ V . For all y ∈ R
2 let s = s(v, y) and t = t (v, y) be such

that

v + sw(v) = y + tv.(36)
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Then for all ε > 0 and all sufficiently large M the density of n with

P
(
BLn,v (My,Mv) > M(t − ε)

)
> 1 − ε(37)

is at least 1 − ε.

PROOF. Fix ε > 0. If

BLn,v

(
My,M(y + tv)

)
> M(t − ε)(38)

and

BLn,v

(
M

(
v + sw(v)

)
,Mv

)
> −εM,(39)

then

BLn,v (My,Mv) = BLn,v

(
My,M

(
v + sw(v)

)) + BLn,v

(
M

(
v + sw(v)

)
,Mv

)
= BLn,v

(
My,M(y + tv)

) + BLn,v

(
M

(
v + sw(v)

)
,Mv

)
> M(t − ε) − εM

> M(t − 2ε).

The first line follows from Lemma 2.3, the second from (36), and the third from
(38) and (39).

By Lemma 4.4 for any sufficiently large M the density of n such that (38) is sat-
isfied with probability at least 1 − ε is at least 1 − ε. If s �= 0, then by Lemma 4.5
for any sufficiently large M the density of n such that (39) is satisfied with proba-
bility at least 1 − ε is at least 1 − ε. If s = 0, then M(v + sw(v)) = Mv and (39)
is satisfied for all M and n. As ε is arbitrary the lemma is true. �

PROOF OF THEOREM 1.6. By the definition of Sides(μ) for any k ≤ Sides(μ)

we can find v1, . . . , vk such that vi ∈ V for all i and the lines Lvi
are all dis-

tinct. The fact that all vi ∈ ∂R and that the tangent lines are distinct implies that
t (vi, vj ) > 0 for any i �= j . By multiple applications of Lemma 4.6 there exists
c > 0 such that for all ε > 0 there exists M such that the density of n with

P
(
BLn,vi

(Mvj ,Mvi) > cM ∀i �= j
)
> 1 − ε(40)

is at least 1 − ε. We then choose xi to be the point in Z
2 nearest to Mvi . Thus by

Lemma 2.4 and (40) we have coexistence with probability at least 1 − ε. �

PROOF OF THEOREM 1.2. This follows from Lemma 2.5 and Theorem 1.6.
�

For the following proofs we will use the following notation. For (w, z) ∈ R
2

we use the notation |(w, z)| = √
w2 + z2 and Ball(c, r) = {a ∈ R

2 : |c − a| < r}.
Let x, v, y ∈ V have distinct tangent lines. Let A = A(x, v, y) ⊂ ∂R be the (open)
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arc of ∂R from x to y that contains v. Remember that G(0,Ln,v) is the unique
geodesic from 0 to Ln,v . For any x, v, y ∈ V we consider the event

G(0,Ln,v) ∩ ∂(MR) ⊂ MA.(41)

LEMMA 4.7. Let x, v, y ∈ V have distinct tangent lines and let ε > 0. There
exists M0 = M0(ε, x, v, y) such that for any M > M0 we have that the density of n

such that

P((41) is satisfied) > 1 − ε

is at least 1 − ε.

PROOF. First we claim that for fixed M,n, ε and z ∈ ∂(R) \ A, if

τ(0,Mz) ≥ τ(0,Mv) − εM(42)

and Mz ∈ G(0,Ln,v), then

τ(0,Ln,v) = τ(0,Mz) + τ(Mz,Ln,v)

= τ(0,Mz) + τ(Mz,Ln,v) − τ(Mv,Ln,v) + τ(Mv,Ln,v)

≥ τ(0,Mv) − εM + BLn,v (Mz,Mv) + τ(Mv,Ln,v)

≥ τ(0,Mv) + τ(Mv,Ln,v) + BLn,v (Mz,Mv) − εM

≥ τ(0,Ln,v) + BLn,v (Mz,Mv) − εM.

The first line is true because Mz ∈ G(0,Ln,v). The third line is true because of (42)
and the definition of BLn,v . The last line is true because of the subadditivity of τ .
Thus

BLn,v (Mz,Mv) ≤ εM.

Fix {yi}ki=1, yi ∈ ∂(R) \ A for all i, such that for every z ∈ ∂(R) \ A there exists
yi with |yi − z| < ε/10(T ∗(1,0) + T ∗(0,1)). Next we note that if

BLn,v (Myi,Mv) ≥ 10εM

and

τ(Myi,Mz) ≤ 2εM,

then

BLn,v (Mz,Mv) = BLn,v (Mz,Myi) + BLn,v (Myi,Mv)

≥ 10εM − τ(Myi,Mz) > 2εM.

Thus to bound the probability that there exists z ∈ ∂(R) \ A such that Mz ∈
G(0,Ln,v) we need only to bound the probabilities of:
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1. τ(0,Mz) ≥ τ(0,Mv) − εM for all z ∈ ∂R,
2. BLn,v (Myi,Mv) ≥ 10εM for all yi , and
3. τ(Myi,Mz) ≤ 2εM for all yi and Mz ∈ Ball(Myi, εM/(T ∗(1,0)+T ∗(0,1))).

For sufficiently large M the first and third events happen with probability 1 − ε

by Theorem 1.1. As yi ∈ ∂R \ A we can write y = (1 − t)v + sw(v) with t > 0.
Thus by Lemma 4.6 we have that the density of n such that the second event
happens with probability at least 1 − ε is at least 1 − ε. �

PROOF OF THEOREM 1.4. Let v1, . . . , vk ∈ V have distinct tangent lines. By
Lemma 4.7 we see that for i = 1, . . . , k/2 there exist M and infinitely many n

such that the finite geodesics G(0,Ln,v2i
) are pairwise disjoint in M ∂R. They

all intersect at 0 so for infinitely many n the geodesics are pairwise disjoint in
the complement of MR. Thus by compactness we can take weak limits to get at
least k infinite geodesics that are pairwise disjoint in the complement of MR. Thus
|K(�(0))| ≥ k. �

To prove Theorem 1.3 we consider the event

G(Mv,Lv,n) ∩ MR ⊂ Ball(Mv, εM).(43)

LEMMA 4.8. Let ε > 0. There exists M0 = M0(ε) such that for any M > M0
we have that the density of n such that

P((43) is satisfied) > 1 − ε

is at least 1 − ε.

PROOF. If there exists z ∈ MR \ Ball(Mv, εM) and z ∈ G(Mv,Lnv), then
there exists z ∈ G(Mv,Lnv) such that

z ∈ Z = ∂
(
MR \ Ball(Mv, εM)

)
.

Choose {yi}ki=1 such that for any z ∈ Z there exists yi such that

|z − yi | < ε/100
(
T ∗(1,0) + T ∗(0,1)

)
.

Suppose the following events happen:

1. BLn,v (Mv,Myi) < εM(T ∗(1,0) + T ∗(0,1))/10 for all i,
2. τ(Mv,Mz) > εM(T ∗(1,0) + T ∗(0,1))/3 for all z such that |z − v| ≥ ε, and
3. τ(Myi,Mz) < εM(T ∗(1,0) + T ∗(0,1))/10 for all i and z such that |z − yi | <

ε/100(T ∗(1,0) + T ∗(0,1)).

Then we claim that (43) is satisfied. To see this we note that by conditions 1 and 3

BLn,v (Mv,Mz) = BLn,v (Mv,Myi) + BLn,v (Myi,Mz)

< εM
(
T ∗(1,0) + T ∗(0,1)

)
/10 + τ(Myi,Mz)(44)

< εM
(
T ∗(1,0) + T ∗(0,1)

)
/5
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for all z ∈ Z. If Mz ∈ G(Mv,Ln,v), then

BLn,v (Mv,Mz) = τ(Mv,Mz).

Thus by condition 2 if z ∈ Z and Mz ∈ G(Mv,Ln,v), then

BLn,v (Mv,Mz) = τ(Mv,Mz) > εM
(
T ∗(1,0) + T ∗(0,1)

)
/3

which contradicts (44) and establishes the claim.
Thus to prove the lemma we need to show that the density of n such that the

probability of all of the events in conditions 1, 2 and 3 occurring is greater than
1 − ε. By the argument in Lemma 4.6 for sufficiently large M with probability
at least 1 − ε/3 the density of n such that condition 1 occurs is at least 1 − ε.
By Theorem 1.1 the probabilities of the last two events can be made greater than
1 − ε/3. �

For the final proof we will be dealing with multiple realizations of first passage
percolation. To deal with this we will use the notation τω(x, y), Bω

S (x, y) and
Gω(x, y) to represent the quantities τ(x, y), BS(x, y) and G(x,y) in ω.

PROOF OF THEOREM 1.3. Given k, by Theorem 1.2 we can choose M and
x1, . . . , xk ∈ ∂MR such that with positive probability there exist disjoint geodesics
Gi starting at each xi . By Lemma 4.6 we have that there exists a measurable choice
of geodesics Gi and vertices xi such that for any i �= j

B̂Gi
(xj , xi) > 100.(45)

There exist finite paths G̃i ⊂ MR and an event E of positive probability that sat-
isfy the following condition. For each ω ∈ E and i, the paths Gi and G̃i agree
in MR. Let yi ∈ Z

2 be the first vertex in Gi after Gi exits MR for the last
time. We can find ai > 0 and restrict to a smaller event of positive probability
where

ai < τ(xi, yi) < ai + 1.(46)

We can pick some large K and further restrict our event as follows. Let z, z′ ∈
Z

2 \ MR be such that there exist x, x′ ∈ Z
2 ∩ MR and |z − z′| = |x − x′| = 1.

We require that for any such z and z′ that there exists a path from z to z′ that lies
entirely outside of MR and has passage time less than or equal to K . For K large
enough the resulting event Ê will have positive probability. We now create a new
event E′ by taking any ω ∈ Ê and altering the passage times in MR. We will do
this in a way such that E′ has positive probability and the inequality |K(�(0))| ≥ k

is satisfied for all ω ∈ E′.
First we choose paths Ĝi ⊂ MR that connect 0 to yi such that Ĝi ∩ G̃j = ∅ for

all i �= j . This is possible by Lemma 4.8. A configuration ω′ ∈ E′ if:
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1. There exists an ω ∈ Ê such that ω(e) = ω′(e) for all edges e with both end-
points in (MR)C and

ai < τω′
(0, yi) < ai + 2.(47)

2. For every z ∈ Z
2 \ MR there exists i such that

G(0, z)|MR = Ĝi .

3. For every z ∈ Z
2 \ MR and every i

G(yi, z) ⊂ (MR)C.

Note that the first and last conditions imply that for every z ∈ Z
2 \MR and every i

τω′
(yi, z) ≥ τω(yi, z).(48)

Also note that the first condition implies if v ∈ Gi \ MR, then

τω′
(yi, v) = τω(yi, v).(49)

Fix ω′ ∈ E′ and v ∈ Gi \ MR. We claim that Gω′
(0, v) = Ĝi ∪ Gω(yi, v). By

condition 2 we know that Gω′
(0, v) must pass through some yl . Then we calcu-

late

τω′
(0, yi) + τω′

(yi, v) < ai + 2 + τω(yi, v)

< τω(xi, yi) + 2 + τω(yi, v)(50)

< τω(xi, v) + 2.

The first inequality follows from (47) and (49). The second inequality follows
from (46). The third is true because xi, yi and v are all on Gi . Next we calcu-
late

τω′
(0, yj ) + τω′

(yj , v) > aj + τω(yj , v)

> τω(xj , yj ) − 1 + τω(yj , v)

> τω(xj , v) − 1(51)

> τω(xi, v) − 1 + B̂Gi
(xj , xi)

> τω(xi, v) + 99.

The first inequality follows from (47) and (48). The second inequality follows
from (46), the third from the subadditivity of τ , the fourth from the definition of
B̂Gi

and the final from (45).
Combining (50) and (51) we get that for every v ∈ Gi the geodesic Gω′

(0, v)

passes through yi . As this holds true for every i we have that

P
(|K(�(0))| ≥ k

) ≥ P(E′).
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The conditions on E′ can be satisfied by picking the passage times through the
edges in

⋃
Ĝi to be in some appropriate interval to satisfy (47) and by choosing

the edges not in
⋃

Ĝi to have passage times larger than 10(K + 2 + maxai). As
μ has finite energy we see that

P
(|K(�(0))| ≥ k

) ≥ P(E′) > 0. �
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