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THE LARGEST COMPONENT IN A SUBCRITICAL RANDOM
GRAPH WITH A POWER LAW DEGREE DISTRIBUTION

BY SVANTE JANSON

Uppsala University

It is shown that in a subcritical random graph with given vertex degrees
satisfying a power law degree distribution with exponent γ > 3, the largest
component is of order n1/(γ−1). More precisely, the order of the largest com-
ponent is approximatively given by a simple constant times the largest vertex
degree. These results are extended to several other random graph models with
power law degree distributions. This proves a conjecture by Durrett.

1. Introduction. Random graphs where the asymptotic distribution of the
vertex degrees has a power law tail have been the focus of much interest during
the last decade or so, including both theoretical studies and various applications;
see, for example, the books by Durrett [7] and (from a physical point of view)
Dorogovtsev and Mendes [6].

To be precise, we will in this paper consider uniformly distributed random
graphs with a given degree sequence, defined as follows. (See Section 4 for exten-
sions to some other random graph models.) Let n ∈ N and let (di)

n
1 be a sequence

of nonnegative integers. We let G(n, (di)
n
1) be a random graph with degree se-

quence (di)
n
1, uniformly chosen among all possibilities (tacitly assuming that there

is any such graph at all; in particular,
∑

i di has to be even).
We consider asymptotics as n → ∞, and thus we assume throughout the paper

that we are given a sequence (di)
n
1 for each n ∈ N (or at least for some sequence

n → ∞); di may depend on n but for notational simplicity we will not show the
dependency on n explicitly. (Similarly, we often omit the index n on other para-
meters and variables below.)

We let the random variable D = Dn be the degree of a randomly chosen vertex
in G(n, (di)

n
1). Thus P(D = k) = nk/n, where nk := |{i :di = k}| is the number of

vertices of degree k in G(n, (di)
n
1).

We say that G(n, (di)
n
1) has a power law degree distribution with exponent γ

if P(Dn = k) → pk as n → ∞ for every k ≥ 0 and some probability distribution
(pk)

∞
0 , and this asymptotic degree distribution satisfies pk ∼ ck−γ as k → ∞ for

some c > 0. [This is thus a doubly asymptotic notion, letting first n → ∞ and then
k → ∞. Actually, the theorems below will not assume this; we will use the weaker
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inequality (1.3) instead, but, on the other hand, we have to impose uniformity
in n. Nevertheless, the reader ought to think mainly of the case of a power law
degree distribution.] Note that necessarily γ > 1, since otherwise (pk) would not
be summable.

The existence of a giant component (i.e., a component of order n) in G(n, (di)
n
1)

has been studied by Molloy and Reed [15, 16]; see also Janson and Luczak [11].
To state their result we let C1 be the largest component of G(n, (di)

n
1) and |C1| its

order. We further introduce the two parameters

μ = μn := EDn = 1

n

∞∑
k=0

knk = 1

n

n∑
i=1

di,(1.1)

ν = νn := 1

μn

∞∑
k=0

k(k − 1)nk = 1

nμ

n∑
i=1

di(di − 1);(1.2)

μ is thus the average degree and ν is the mean number of offspring in the usual
branching process approximation of the local structure starting at any fixed vertex;
see, for example, [7]. Loosely speaking, the condition by Molloy and Reed [15] for
existence of a giant component is ν > 1. More precisely, if we assume as above that
nk/n → pk , k ≥ 0, then, under suitable conditions ensuring uniform summability,
μn → μ∞ := ∑∞

k=0 kpk and νn → ν∞ := μ−1∞
∑∞

k=0 k(k − 1)pk , and (under weak
additional technical assumptions; see [11, 15]), if ν∞ > 1, then there is a constant
ρ > 0 such that |C1| = ρn + op(n), while if ν∞ ≤ 1, then |C1| = op(n). (We use
op and Op in the standard way; see, e.g., Janson, Łuczak and Ruciński [12]. For
example, |C1| = op(n) means that P(|C1| > εn) → 0 as n → ∞ for every ε > 0;

equivalently, |C1|/n
p−→ 0.)

Returning to power law degree distributions, we see that if 1 < γ ≤ 2, then
μ∞ = ∞, and if 2 < γ ≤ 3, then μ∞ < ∞ and ν∞ = ∞; in both cases we expect
a giant component. (We will not study these cases further.) In the sequel, we will
assume γ > 3, and thus ν∞ < ∞. (Note that in this range, the condition ν∞ > 1 is
determined mainly by the values of pk for small k, such as k = 1, and is essentially
independent of the behavior of pk for large k and in particular of the value of the
exponent γ . Relations between γ and the existence of a giant component that have
been reported in the literature are artifacts due to the assumption of specific forms
of pk also for small k.)

We will in this paper consider the subcritical case ν∞ < 1, when |C1| is of
smaller order than n, and try to estimate its order more precisely. Durrett [7] ob-
served that while it is well known that for a subcritical Erdős–Rényi random graph
|C1| = Op(logn) (see, e.g., [1], Chapter V.2), this fails for graphs with power
law degree distributions. In fact, typically the largest vertex degree is of order
n1/(γ−1), and obviously the largest component is at least as big. Durrett ([7], Con-
jecture 3.3.1), conjectured (for a slightly different random graph model; see Sec-
tion 4.1) that this is the correct order of the largest component. In the present paper,
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we prove this conjecture. A related result has recently been shown by Pittel [20],
who showed that under the stronger condition P(Dn = k) = O(k−γ ), which im-
plies that the maximum degree is O(n1/γ ), the conclusion |C1| = Op(n1/γ logn)

holds.
All unspecified limits below are as n → ∞. We say that an event holds whp

(with high probability), if it holds with probability tending to 1 as n → ∞. We let
C1,C2, . . . denote unspecified constants, sometimes depending on other parame-
ters but never on n.

THEOREM 1.1. Consider the random graph G(n, (di)
n
1), with (di)

n
1 = (d

(n)
i )n1

as above, and let C1 be its largest component. Suppose, using the notation above,
that μn → μ∞ > 0 and νn → ν∞ < 1. Suppose further that

P(Dn ≥ k) = O(k1−γ ),(1.3)

uniformly in n and k ≥ 1, for some γ > 3. Then there exists a constant A such that
|C1| ≤ An1/(γ−1) whp.

REMARK 1.2. It is not necessary to assume that a limit distribution (pk) ex-
ists, and the assumptions μn → μ∞ > 0 and νn → ν∞ < 1 may be replaced by
lim infμn > 0 and lim supνn < 1. The constant A depends only on lim infμn,
lim supνn and the constant C1 implicit in (1.3).

Let � = �n := maxi di , the maximum degree of G(n, (di)
n
1). Note that the as-

sumption (1.3) implies

n−1 ≤ P(D ≥ �) ≤ C1�
1−γ

and thus

� ≤ C2n
1/(γ−1).(1.4)

We can sharpen Theorem 1.1 as follows.

THEOREM 1.3. Under the assumptions of Theorem 1.1,

|C1| = �

1 − ν
+ op

(
n1/(γ−1)).(1.5)

As said above, typically we expect � = �n to be of the order n1/(γ−1), and
then Theorem 1.3 shows that |C1| is of this order also. The factor 1/(1 − ν) in
(1.5) is exactly what the standard branching process approximation of the local
structure suggests: If we start at a vertex v∗ with degree �, it has � neighbors;
each of them has on the average about ν further neighbors, so there are about ν�

vertices of distance 2 from v∗. Continuing, we expect to find about νj−1� vertices
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of distance j from v∗, and thus in total about �/(1 − ν) vertices in the component
containing v∗; see further Section 3.

We extend Theorems 1.1 and 1.3 to some other random graph models in Sec-
tion 4.

We have not attempted to find any sharper estimate of the error term in (1.5),
and leave this as an open problem for the reader. This is especially interesting when
� = o(n1/(γ−1)). For example, as said above, Pittel [20] studies a special case
of the situation above with � = O(n1/γ ), and shows that under his assumptions
|C1| = Op(n1/γ logn).

REMARK 1.4. The proof in Section 3 is easily modified to show that if Cj is
the j th largest component and �(j) is the j th largest vertex degree, then

|Cj | = �(j)

1 − ν
+ op

(
n1/(γ−1))

for every fixed j ≥ 1. Moreover, it follows that, for every fixed J , whp the J

vertices with largest degrees belong to different components, each of them being
of order roughly (1 − ν)−1 times the degree of that vertex. If these vertex degrees
are sufficiently well separated, the largest component thus contains the vertex with
largest degree, and so on (for at least J − 1 components), but, of course, this can
fail if two of the degrees are very close to each other.

REMARK 1.5. As is customary, we have concentrated on the number of ver-
tices in the components in these results. The proofs show that the same results
hold also if we consider the number of edges in the components. Consequently,
the difference between the numbers of edges and vertices in the largest component
is op(n1/(γ−1)).

2. Proof of Theorem 1.1. It will be convenient to work with multigraphs, that
is, to allow multiple edges and loops. More precisely, we shall use the following
standard type of random multigraph: Let n ∈ N and let (di)

n
1 be a sequence of

nonnegative integers such that
∑n

i=1 di is even. We let G∗(n, (di)
n
1) be the random

multigraph with given degree sequence (di)
n
1, defined by the configuration model

(see, e.g., Bollobás [1]): take a set of di half-edges for each vertex i, and combine
the half-edges into pairs by a uniformly random matching of the set of all half-
edges (this pairing is called a configuration); each pair of half-edges is then joined
to form an edge of G∗(n, (di)

n
1).

We obtain G(n, (di)
n
1) by conditioning the multigraph G∗(n, (di)

n
1) on being a

(simple) graph. It is well known that the conditions in Theorem 1.1 imply that

lim inf
n→∞ P

(
G∗(n, (di)

n
1) is simple

)
> 0,(2.1)



LARGEST COMPONENT IN A SUBCRITICAL RANDOM GRAPH 1655

and thus it suffices to prove the result for the random multigraph G∗(n, (di)
n
1).

(In fact, by Janson [9], a necessary and sufficient condition for (2.1) is ED2
n =

O(EDn), or equivalently νn = O(1).)
We thus consider the random multigraph G∗(n, (di)

n
1), and prove Theorem 1.1

for this case. Fix a vertex v and explore the component C(v) containing v by the
standard exploration process. This process starts by declaring v used and all half-
edges at v active. Then, proceed as follows for i = 1,2, . . . , as long as there is
any active half-edge: Take an active half-edge, say xi . (In this proof it does not
matter which one we choose; we may use any deterministic or random rule. Later
it will be convenient to use the breadth-first version where the active half-edges
are processed in order of appearance.) Find its partner yi in the configuration [thus
xiyi is an edge in G∗(n, (di)

n
1)], and let vi be the other endpoint of the edge xiyi ,

that is, the endpoint of yi . If the vertex vi is not already used, declare the remaining
d(vi) − 1 half-edges at vi active. Finally, declare xi , yi and vi used. Repeat.

Let Si be the number of active half-edges after i steps. Thus S0 = d(v) and
Si = Si−1 + ξi − 1, i ≥ 1, where ξi is the number of new half-edges found at
step i. We have ξi = d(vi) − 1 if vi is not already used; otherwise ξi = 0.

The process stops at τ := min{i :Si = 0}; we then have found τ edges, so the
component C(v) has τ edges and at most τ + 1 vertices. For definiteness, we let
ξi = 0 for i > τ .

In particular, for any integer M ≥ 0, if |C(v)| > M , then τ ≥ M so the process
lives at least until M and 0 ≤ SM = d(v) + ∑M

i=1(ξi − 1) and thus

d(v) +
M∑
i=1

ξi ≥ M.(2.2)

We reveal the random configuration only as we need it. Equivalently, we may
construct the random configuration during the exploration, by choosing each part-
ner yi uniformly among all half-edges except xi and the ones already paired. The
numbers ξi then become random variables. The random variables ξi are dependent,
but we can approximate them by independent random variables. More precisely,
we bound them as follows.

Suppose that i ≤ √
n, say. (Our components will be much smaller.) If ξi = k ≥ 1,

then d(vi) = k+1, so there are at most nk+1 = nP(D = k+1) possible choices for
vi (excluding the used ones) and thus at most (k +1)nk+1 = n(k +1)P(D = k +1)

choices of the half-edge yi . When choosing yi , we have revealed the pairings
of 2(i − 1) half-edges and chosen xi , but yi is uniformly distributed over all∑n

j=1 dj − 2(i − 1) − 1 = nμ − O(n1/2) remaining half-edges. Hence, given any
history of the exploration process up to step i,

P(ξi = k) ≤ n(k + 1)P(D = k + 1)

nμ − O(n1/2)
(2.3)

= (k + 1)P(D = k + 1)

μ

(
1 + O(n−1/2)

)
.
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Fix ε > 0 with 4ε ≤ 1 − ν∞, and let ν′ = ν + ε. We consider only n that are
so large that ν = νn < 1 − 3ε, and thus ν′ < 1 − 2ε. Let X be an integer-valued
random variable with the distribution given by

P(X ≥ x) = max

(
1,

ν′

ν

∑
k≥x

(k + 1)P(D = k + 1)

μ

)
, x > 0.(2.4)

If n is large enough (not depending on i or k), the factor 1 + O(n−1/2) in (2.3) is
less than ν′/ν, and thus by (2.3) and (2.4), given any previous history,

P(ξi ≥ x) ≤ P(X ≥ x) for every x ≥ 0.

In other words, ξ is stochastically dominated by X. In particular, this holds given
ξ1, . . . , ξi−1, and it follows that the sequence ξ1, ξ2, . . . may be coupled with a

sequence of independent random variables Xi with Xi
d= X, such that

ξi ≤ Xi, 1 ≤ i ≤ √
n.(2.5)

Furthermore, trivially,

ξi ≤ �, i ≥ 1.(2.6)

The remainder of the proof will only use the properties (2.5) and (2.6) of (ξi).
We note first that, by (2.4) and the assumptions of the theorem,

EX =
∞∑

m=1

P(X ≥ m) ≤ ν′

ν

∞∑
m=1

∞∑
k=m

(k + 1)P(D = k + 1)

μ

(2.7)

= ν′

ν

∞∑
k=1

k
(k + 1)P(D = k + 1)

μ
= ν′

ν
ν = ν′

and, for all x > 0, with m := �x�,

P(X ≥ x) ≤ ν′

ν

∞∑
k=m

(k + 1)P(D = k + 1)

μ

≤ C3

∞∑
k=m+1

kP(D = k)

(2.8)

= C3

(
mP(D > m) +

∞∑
j=m+1

P(D ≥ j)

)

≤ C4m
2−γ + C4

∞∑
j=m+1

j1−γ ≤ C5m
2−γ ≤ C5x

2−γ .

Let M = An1/(γ−1) and M1 = n1/(γ−1)−δ for some positive constants A (large)
and δ [small, and in particular less than 1/(γ − 1)] to be chosen later, and let
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Yi := Xi1[Xi ≤ M1]. Thus, by (2.7), EYi ≤ EX ≤ ν′.
If |C(v)| > M , then (2.2) holds and thus, using (2.6),

M ≤ d(v) +
M∑
i=1

ξi ≤ � +
M∑
i=1

ξi1[Xi ≤ M1] +
M∑
i=1

ξi1[Xi > M1]

≤
M∑
i=1

Yi + �

(
1 +

M∑
i=1

1[Xi > M1]
)

(2.9)

≤ ν′M +
M∑
i=1

(Yi − EYi) + �

(
1 +

M∑
i=1

1[Xi > M1]
)

and thus, recalling ν′ < 1 − 2ε,

P
(|C(v)| > M

) ≤ P

(
M∑
i=1

(Yi − EYi) > εM

)

(2.10)

+ P

(
M∑
i=1

1[Xi > M1] ≥ ε
M

�
− 1

)
.

Note that both sums on the right-hand side are sums of i.i.d. random variables, so
we can, and shall, use simple standard estimates for them.

For the first sum in (2.10), fix a number r ≥ γ such that rδ > 2. Then, by Rosen-
thal’s inequality ([8], Theorem 3.9.1) (with constants depending on r),

E

∣∣∣∣∣
M∑
i=1

(Yi − EYi)

∣∣∣∣∣
r

≤ C6M
r/2(E|Y1 − EY1|2)r/2 + C7ME|Y1 − EY1|r

(2.11)
≤ C6M

r/2(EY 2
1 )r/2 + C8MEY r

1 .

We estimate the moments of Y1 and obtain using (2.8)

EY 2
1 =

∫ ∞
0

2xP(Y1 > x)dx

=
∫ M1

0
2xP(X > x)dx(2.12)

≤ 1 + C5

∫ M1

1
2x3−γ dx ≤ C9M1

(rather coarsely and because γ > 3), and trivially

EY r
1 ≤ Mr

1 .(2.13)
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Consequently, by (2.11)–(2.13) and Markov’s inequality, and recalling M1/M =
A−1n−δ ,

P

(
M∑
i=1

(Yi − EYi) > εM

)
≤ ε−rM−r

E

∣∣∣∣∣
M∑
i=1

(Yi − EYi)

∣∣∣∣∣
r

≤ C10(EY 2
1 /M)r/2 + C11M

1−r
EY r

1
(2.14)

≤ C12(M1/M)r/2 + C13M(M1/M)r

≤ C14n
−rδ/2 + C15n

1−rδ = o(n−1).

For the second sum in (2.10), write Ii := 1[Xi > M1] and note that for any
positive integer L, since the Ii are i.i.d.,

P

(
M∑
i=1

Ii ≥ L

)
≤

(
M

L

)
P(I1 = · · · = IL = 1)

=
(

M

L

)
P(I1 = 1)L(2.15)

≤ ML
P(X > M1)

L.

Moreover, by (2.8) again and the choice of M ,

MP(X > M1) ≤ C5An1/(γ−1)+(2−γ )(1/(γ−1)−δ) = CAn(γ−2)δ−(γ−3)/(γ−1).

Choose δ > 0 such that δ1 := (γ − 3)/(γ − 1) − (γ − 2)δ > 0. Thus MP(X >

M1) = O(n−δ1) and, by (2.15),

P

(
M∑
i=1

Ii ≥ L

)
= O(n−Lδ1).(2.16)

Now choose L > 1/δ1, and then A ≥ C2(L + 1)/ε. Thus, recalling (1.4),

M

�
≥ A

C2
≥ (L + 1)/ε.(2.17)

It follows from (2.16) that

P

(
M∑
i=1

Ii ≥ ε
M

�
− 1

)
≤ P

(
M∑
i=1

Ii ≥ L

)
= O(n−Lδ1) = o(n−1).

Consequently, (2.10) shows that, with this choice of A, P(|C(v)| > M) =
o(n−1). Since this holds for every vertex v, it follows that whp |C(v)| ≤ M for
every vertex v, and thus |C1| ≤ M = An

1/(γ−1)
.
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3. Proof of Theorem 1.3. We continue to consider the random multigraph
G∗(n, (di)

n
1) and prove Theorem 1.3 for this case, which as above implies the

result for G(n, (di)
n
1) also.

We begin with the upper bound, |C1| ≤ (1 − ν)−1� + op(n1/(γ−1)). Fix ε > 0.
Say that a vertex is fat if its degree is at least M2 := εn1/(γ−1), and say that a
component is bad if it contains at least two fat vertices. By (1.3), the number of fat
vertices in G∗(n, (di)

n
1) is

nP(D ≥ M2) ≤ C1nM
1−γ
2 = C1ε

1−γ = C16.(3.1)

LEMMA 3.1. There is whp no bad component.

PROOF. Let, as in Section 2, M = An1/(γ−1), with A so large that whp
|C1| ≤ M . Consider a given vertex v and the exploration process in Section 2.
By (3.1), the number of fat vertices is at most C16 and thus the number of half-
edges leading to a fat vertex is at most C16�. Consequently, at each step i of the
exploration process, the probability of choosing a half-edge yi leading to a fat ver-
tex vi is at most C16�/(nμ − (2i − 1)) and thus the probability of finding a fat
vertex at some step i ≤ M is at most, using (1.4),

M
C16�

nμ − 2M
= O

(
n1/(γ−1)+1/(γ−1)−1) = o(1).

Thus, for any given v, whp the component C(v) contains no fat vertex found before
step M , except possibly v itself. On the other hand, we have chosen M such that
whp |C(v)| ≤ M ; hence, for every given v, whp C(v) contains no fat vertex besides
possibly v.

We apply this starting with a fat vertex v. Since the number of fat vertices is
bounded by (3.1), it follows that whp none of the components C(v) with v fat
contains a second fat vertex, so none of them is bad. On the other hand, every
bad component has to contain a fat vertex v, and thus equal C(v) for some fat v.
Consequently, whp there is no bad component at all. �

Let δ, M1, δ1 and L be as in the proof of Theorem 1.1, but replace M by

M ′ := (1 − ν′)−1(
� + (L + 1)εn1/(γ−1)) ≤ C17n

1/(γ−1).

Further, let M2 := εn1/(γ−1) as above. Consider once more the exploration process
started at a given vertex v. If |C(v)| > M ′ and C(v) is good, then at most one of the
degrees d(v), d(v1), . . . , d(vM ′) is greater than M2, and that degree is at most �.
Consequently, with Ii := 1[Xi > M1] as above for i ≥ 1, and I0 := 1 and v0 := v,

d(v) +
M ′∑
i=1

Iiξi ≤
M ′∑
i=0

Iid(vi) ≤ � +
(

M ′∑
i=0

Ii − 1

)
M2 = � + M2

M ′∑
i=1

Ii .
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Consequently, in this case (2.9) may be improved to

M ′ ≤
M ′∑
i=1

ξi1[Xi ≤ M1] + � + M2

M ′∑
i=1

Ii

≤ ν′M ′ +
M ′∑
i=1

(Yi − EYi) + � + M2

M ′∑
i=1

Ii

and thus

M ′∑
i=1

(Yi − EYi) + M2

M ′∑
i=1

Ii ≥ (1 − ν′)M ′ − � = (ε + Lε)n1/(γ−1);

hence either

M ′∑
i=1

(Yi − EYi) ≥ εn1/(γ−1) ≥ εC−1
17 M ′(3.2)

or, recalling M2 := εn1/(γ−1),

M ′∑
i=1

Ii ≥ L.(3.3)

By (2.14) (replacing ε by ε/C17) and (2.16), both events (3.2) and (3.3) have
probabilities o(n−1). Consequently,

P
(|C(v)| > M ′ and C(v) is good

) = o(n−1).

Since this holds for every given vertex v, whp |C(v)| ≤ M ′ for every good compo-
nent C(v), which together with Lemma 3.1 shows that whp

|C1| ≤ M ′ = �

1 − ν − ε
+ L + 1

1 − ν − ε
εn1/(γ−1) ≤ �

1 − ν
+ C18εn

1/(γ−1)

(with C18 not depending on ε). Since ε can be chosen arbitrarily small, this shows
that |C1| ≤ (1 − ν)−1� + op(n1/(γ−1)), which is the upper bound we sought.

To obtain a corresponding lower bound, let v∗ be the vertex with maximum
degree (choose any of them if there are several), and consider the component C(v∗)
containing v∗.

Let Nj be the number of vertices of distance j from v∗. As said in the In-
troduction, the idea is that (by the usual branching process approximation) Nj ≈
νj−1d(v∗) = νj−1�, and summing over j ≥ 1 yields ≈ (1 − ν)−1�. In order to
make this precise, we for simplicity truncate and consider only generations j ≤ J

and vertices of degree ≤ K , where J and K are two fixed large integers. We thus
let Njk be the number of vertices of degree k and distance j from v∗. We find these
by the exploration process in Section 2, now specifying the breadth-first version.
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Let Hj , j ≥ 0, be the set of active half-edges when we have processed all half-
edges at vertices of distance less than j from v∗; thus Hj is the set of half-edges
that may lead to a vertex of distance j + 1. We have |H0| = d(v∗) = �.

Let, for k ≥ 1,

p∗
k := kP(D = k)

μ
= knk

μn
,

the fraction of half-edges that are adjacent to a vertex of degree k (this is the size-
biased distribution of D), and note that, by (1.1) and (1.2),

∞∑
k=1

p∗
k = 1,

∞∑
k=1

(k − 1)p∗
k = ν.

Assume ν > 0 and let ε > 0 be so small that ε < ν. (The case ν = 0 is simpler
and is left to the reader.) Let νK := ∑K

1 (k − 1)p∗
k and assume that K is so large

that νK > ε and
∑K

1 p∗
k > 1 − ε. Further assume that � ≥ (logn)2 (otherwise the

result is trivial), and assume below that n is large whenever needed.
We may assume that the exploration process stops before it reaches An1/(γ−1)

steps for some large A, either by Theorem 1.1 or because the lower bound oth-
erwise is trivial. Then, at every step i there are nk − O(n1/(γ−1)) = nP(D =
k) − o(n) unused vertices of degree k and thus the probability to connect to one of
them equals

knP(D = k) − o(n)

μn − o(n)
= p∗

k + o(1) ≥ p∗ − ε/K2,

given any history of the exploration. Hence, for every fixed j and k and given
|Hj−1| = hj−1, Njk dominates a sum of independent indicators with the binomial
distribution Bi(hj−1,p

∗
k − ε/K2), and thus by the law of large numbers, whp

Njk ≥ hj−1(p
∗
k − 2ε/K2),(3.4)

provided hj−1 ≥ logn, say. Moreover, the probability that a given vertex of de-
gree k is chosen twice in the j th generation is O(khj−1/n)2 = O(n1/(γ−1)/n)2 =
o(n−1), so whp there are no repetitions and all these Njk vertices yield k − 1 new
active half-edges each.

We consider only a finite number of (j, k), namely j ≤ J and k ≤ K , and thus
whp the statements above hold for all these (j, k) simultaneously. Consequently,
whp, for all j ≤ J ,

|Hj | ≥
K∑

k=1

(k − 1)Njk ≥ |Hj−1|
K∑

k=1

(k − 1)(p∗
k − 2ε/K2) ≥ |Hj−1|(νK − ε),

and thus by induction (which also verifies hj−1 ≥ logn)

|Hj | ≥ |H0|(νK − ε)j = (νK − ε)j�, 0 ≤ j ≤ J.
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By (3.4) again, it follows that whp, for 1 ≤ j ≤ J and 1 ≤ k ≤ K ,

Njk ≥ (νK − ε)j−1�(p∗
k − 2ε/K2),

and thus, summing over these j and k,

|C(v∗)| ≥
J∑

j=1

(νK − ε)j−1
K∑

k=1

(p∗
k − 2ε/K2)� ≥ 1 − (νK − ε)J

1 − νK + ε
(1 − 3ε)�.

For any small η > 0, we may choose ε small and J and K large so that this yields,
recalling (1.4),

|C1| ≥ |C(v∗)| ≥
(

1

1 − ν
− η

)
� ≥ �

1 − ν
− ηC2n

1/(γ−1)

whp, which yields the required lower bound and completes the proof.

4. Extensions to other random graphs. Theorems 1.1 and 1.3 can easily be
extended to other random graph models. We will in this section study some models
where we can obtain results as corollaries of the results above for G(n, (di)

n
1).

(Another approach would be to try to adapt the proofs above to other models, but
we will not pursue this possibility here.) Indeed, suppose that Gn is a random
graph with n vertices (labeled 1, . . . , n), such that Gn conditioned on the degree
sequence (di(Gn))

n
i=1 is uniformly distributed over all graphs with this degree

sequence. Equivalently, P(Gn = H1) = P(Gn = H2) for any two graphs H1 and
H2 with vertices 1, . . . , n and the same degree sequence. (In statistical terminology,
the degree sequence is a sufficient statistic.) We then can apply the theorems in
Section 1 to Gn conditioned on the degree sequence.

Define, in analogy with the notation above,

μ(Gn) = 1

n

n∑
i=1

di(Gn),(4.1)

ν(Gn) = 1

nμ(Gn)

n∑
i=1

di(Gn)
(
di(Gn) − 1

)
,(4.2)

�(Gn) := max
i

di(Gn),(4.3)

and note that these are random variables depending on the degree sequence of Gn

only. Further, let C1(Gn) be the largest component of Gn (with any choice among
them if there is a tie).

THEOREM 4.1. Let γ > 3. Suppose that, for n ≥ 1, Gn is a random graph
with n vertices such that Gn conditioned on the degree sequence is uniformly dis-
tributed over all graphs with this degree sequence. Suppose further that for every
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ε > 0 there exists δ > 0 such that

P

(
sup
k≥1

kγ−1|{i :di(Gn) ≥ k}|/n > δ−1
)

< ε,(4.4)

P
(
μ(Gn) < δ

)
< ε,(4.5)

P
(
ν(Gn) > 1 − δ

)
< ε.(4.6)

(In other words, supk≥1 kγ−1|{i :di(Gn) ≥ k}|/n, 1/μ(Gn) and 1/(1 − ν(Gn))+
are stochastically bounded.) Then

|C1(Gn)| = �(Gn)

1 − ν(Gn)
+ op

(
n

1/(γ−1))
,(4.7)

and, in particular, |C1(Gn)| = Op(n
1/(γ−1)

).

PROOF. First, by conditioning on the degree sequence, we may assume that
the events

sup
k≥1

kγ−1|{i :di(Gn) ≥ k}|/n ≤ δ−1,(4.8)

μ(Gn) ≥ δ,(4.9)

ν(Gn) ≤ 1 − δ(4.10)

hold (surely) for some δ > 0. Indeed, if we have proved this case, we may condition
on these events and see that the conclusion then holds; by (4.4)–(4.6), this leaves
only an event of probability < 3ε, which can be made arbitrarily small, and the
conclusion follows for Gn without conditioning also.

Second, the Cauchy–Schwarz inequality implies, using (4.10),

(μ(Gn))
2 ≤ 1

n

n∑
i=1

di(Gn)
2 = μ(Gn)ν(Gn) + μ(Gn) ≤ 2μ(Gn),

and thus μ(Gn) ≤ 2. Hence, both μ(Gn) and ν(Gn) are sequences of random
variables that are uniformly bounded, and thus tight; thus there exist subsequences
such that μ(Gn) and ν(Gn) converge in distribution. We now use the standard sub-
subsequence trick: if every subsequence of (Gn) has a subsubsequence for which
(4.7) holds, then (4.7) holds for the full sequence. Consequently, by considering

subsequences, we may assume that μ(Gn)
d−→ μ∞ and ν(Gn)

d−→ ν∞ for some
random variables μ∞ and ν∞, with δ ≤ μ∞ ≤ 2 and 0 ≤ ν∞ ≤ 1 − δ.

Third, by the Skorohod coupling theorem ([13], Theorem 4.30), we may assume
that all random graphs Gn are defined on a common probability space and that the
limits μ(Gn) → μ∞ and ν(Gn) → ν∞ hold a.s. and not just in distribution. We
now condition Gn on its degree sequence (di(Gn))

n
i=1. By the reductions above,
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the assumptions of Theorem 1.1 are satisfied a.s. Hence Theorem 1.3 shows that
for every η > 0

P

(∣∣∣∣|C1(Gn)| − �(Gn)

1 − ν(Gn)

∣∣∣∣ > ηn
1/(γ−1)

∣∣∣ (di(Gn))
n
i=1

)
→ 0 a.s.,(4.11)

and the result follows by taking the expectation in (4.11) (using dominated conver-
gence). �

As an illustration, we apply this theorem to two popular models of random
graphs.

4.1. The Newman, Strogatz, Watts model. Durrett [7] actually stated his con-
jecture for the following random graph model, introduced by Newman, Strogatz
and Watts [17, 18]. Let D be a nonnegative integer-valued random variable. Take
i.i.d. copies D1,D2, . . . of D. Condition on

∑n
i=1 Di being even, and let Gn be the

random multigraph G∗(n, (Di)
n
1), defined by the configuration model as in Sec-

tion 2. (This is a multigraph. We may either accept this, or delete all loops and
merge parallel edges, or condition on the graph being simple; this does not affect
our result.)

COROLLARY 4.2. Let γ > 3. Assume that P(D ≥ k) = O(k1−γ ) and ν :=
ED(D − 1)/ED < 1. Then

|C1(Gn)| = �(Gn)

1 − ν
+ op

(
n

1/(γ−1))
.

REMARK 4.3. If further, as assumed by Durrett [7], P(D = k) ∼ ak−γ as
k → ∞, with a > 0, then P(D ≥ k) ∼ a1k

1−γ with a1 = a/(γ − 1), and it is

easily seen that n−1/(γ−1)�(Gn)
d−→ a

1/(γ−1)
1 Z, with P(Z ≤ x) = exp(−x1−γ )

for x > 0, one of the classical extreme value distributions. (See, e.g., Leadbetter,
Lindgren and Rootzén [14], Chapter 1 and Example 1.7.6.) Consequently,

n−1/(γ−1)|C1(Gn)| d−→ a
1/(γ−1)
1

1 − ν
Z.

PROOF OF COROLLARY 4.2. Let μ = ED. The case μ = 0 is trivial, so we
may assume μ > 0. The assumption P(D ≥ k) = O(k1−γ ) with γ > 3 implies
that ED2 < ∞, so 0 < μ < ∞ and 0 ≤ ν < ∞. The (weak) law of large num-

bers shows that
∑n

i=1 Di/n
p−→ μ and

∑n
i=1 Di(Di − 1)/n

p−→ ED(D − 1) =
μν, and these hold also if we condition on

∑n
i=1 Di even, which has probabil-

ity converging to 1/2 [or 1, if P(Di odd) = 0]. Hence, using the notation (4.1)
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and (4.2), μ(Gn)
p−→ μ and ν(Gn)

p−→ ν, which yields (4.5) and (4.6) for any
δ < min(μ,1 − ν). This also implies

�(Gn)

1 − ν(Gn)
− �(Gn)

1 − ν
= ν(Gn) − ν

(1 − ν)(1 − ν(Gn))
�(Gn) = op

(
n

1/(γ−1))
,

so we may replace ν(Gn) by ν in (4.7).
It remains only to verify (4.4). Again, it suffices to show the corresponding re-

sult for the i.i.d. sequence (Di)
n
1 before conditioning. Let Nn(x) := |{i ≤ n :Di ≥

x}| and let E(B, x) be the “bad” event {Nn(x) > Bnx1−γ }, for real x,B > 0. Then
Nn(x) ∼ Bi(n,P(D > x)), and by assumption P(D > x) ≤ C19x

1−γ . Assume
that B ≥ 2C19, so ENn(x) = nP(D > x) ≤ 1

2Bnx1−γ and VarNn(x) ≤ ENn(x) ≤
1
2Bnx1−γ . Then, by Chebyshev’s inequality,

P(E(B, x)) ≤ Var(Nn(x))

(Bnx1−γ − ENn(x))2 ≤ Var(Nn(x))

((1/2)Bnx1−γ )2 ≤ 2

Bnx1−γ
.(4.12)

Also, since Nn(x) is integer-valued,

P(E(B, x)) ≤ P
(
Nn(x) ≥ 1

) ≤ E(Nn(x)) ≤ C19nx1−γ .(4.13)

We consider a geometric sequence and let xj := (2jn)1/(γ−1), j ∈ Z. By (4.12)
and (4.13),

P(E(B, xj )) ≤ max
(

2j+1

B
,C192−j

)
.(4.14)

Hence, each P(E(B, xj )) → 0 as B → ∞; moreover, (4.14) further shows that
P(E(B, xj )) ≤ C202−|j |. Consequently, dominated convergence shows that

∞∑
j=−∞

P(E(B, xj )) → 0 as B → ∞.

In other words, by choosing B large enough, with probability at least 1 − ε

none of E(B, xj ) holds, that is, Nn(xj ) ≤ Bnx
1−γ
j for all j ∈ Z, which implies

Nn(x) ≤ 2Bnx1−γ for all x > 0. [Use Nn(x) ≤ Nn(xj ) for the largest xj ≤ x.]
This verifies (4.4), and the result follows by Theorem 4.1. �

A minor variation of this model has been used by van der Hofstad, Hooghiem-
stra and Van Mieghem [22]; the same result holds for their version.

4.2. An inhomogeneous Erdős–Rényi graph. A model that has been used, with
minor variations, by several authors is the following: Let W1, . . . ,Wn be nonnega-
tive real numbers, random or deterministic. Given these numbers, let

pij := WiWj

n + WiWj

,(4.15)
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and let Gn be the random graph on n vertices where [conditioned on (Wi)
n
1] edges

appear independently, with P(an edge ij) = pij for 1 ≤ i < j ≤ n. It was observed
by Britton, Deijfen and Martin-Löf [3] that with the definition (4.15), this yields a
random graph that conditioned on its degree sequence is uniformly distributed, as
we require here.

A version of this model, which may look simpler, is to replace (4.15) by pij :=
WiWj/n [or rather, when necessary, min(WiWj/n,1)]. However, this ruins the
uniformity after conditioning on the degree sequence. Nevertheless, the difference
between the two versions is small, unless some Wi are very large, and usually the
difference is negligible. More precisely, it can be shown [10] that if

∑n
i=1 W 3

i =
op(n3/2), which for example is the case if, as below, Wi are i.i.d. with EW 2

i < ∞,
then the two versions are asymptotically equivalent in a strong sense (the total
variation distance tends to 0), and thus the result below holds for this version also.

Another version, introduced by Chung and Lu [4, 5], is to take pij :=
WiWj/

∑n
k=1 Wk . This becomes the same as the preceding version if we replace

Wi by Wi(
∑

k Wk/n)−1/2. Again, results are easily transferred to this version; we
omit the details. Another minor (and for us inessential) variation is used by Norros
and Reittu [19], and several versions are studied by van den Esker, van der Hofstad
and Hooghiemstra [21].

It is common to take (Wi)
n
1 i.i.d. (e.g., this is used in [3, 21, 19]), but it is also

possible to use suitable deterministic sequences [4, 5] or dependent random vari-
ables; see Bollobás, Janson and Riordan [2], Section 16.4, for a general discussion
and further references. (The model is a special case of the inhomogeneous random
graph defined in [2].) For simplicity we treat here only the i.i.d. case. The condition
for existence of a giant component then simply is EW 2

i > 1; see Bollobás, Janson
and Riordan [2], Section 16.4.

COROLLARY 4.4. Let Gn be the random graph defined as above, using (4.15)
where Wi are i.i.d. copies of a given nonnegative random variable W . Let γ > 3.
Assume that P(W ≥ x) = O(x1−γ ), x > 0, and ν := EW 2 < 1. Then

|C1(Gn)| = �(Gn)

1 − ν
+ op

(
n

1/(γ−1))
.

PROOF. We may assume EW > 0. Since nμ(Gn) = ∑
i di(Gn) is twice the

number of edges in Gn, it is easily seen that μ(Gn)
p−→ μ := (EW)2 > 0 which

verifies (4.5); for example, this follows from the more general Lemma 8.1 in [2].
Similarly, for example by observing that

∑
i di(Gn)(di(Gn) − 1) is twice the

number of paths of length 2 in Gn and using [2], Theorem 17.1,

μn(Gn)νn(Gn) = 1

n

n∑
i=1

di(Gn)
(
di(Gn) − 1

) p−→ (EW)2
EW 2.
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Hence, ν(Gn)
p−→ ν := EW 2, which verifies (4.6). This also enables us to replace

ν(Gn) by ν in (4.7).
It remains to verify (4.4). First, by the argument in the proof of Corollary 4.2,

for any ε > 0,

|{i ≤ n :Wi ≥ k}| ≤ Bnk1−γ for all k ≥ 1,(4.16)

with probability > 1 − ε, provided B = B(ε) is large enough. Hence, conditioning
on (4.16), we may assume that (4.16) holds. We condition on (Wi)

n
1 and assume

thus in the remainder of the proof that (for each n) Wi are fixed numbers such that
(4.16) holds, for some constant B . In particular, this implies

n∑
i=1

Wi =
∞∑

k=1

|{i ≤ n :Wi ≥ k}| ≤
∞∑

k=1

Bnk1−γ ≤ C21n.(4.17)

Each di(Gn) is a sum of independent 0–1 variables, and by (4.15) and (4.17)

Edi(Gn) = ∑
j �=i

WiWj

n + WiWj

≤ Wi

∑
j Wj

n
≤ C21Wi.

As a consequence, we have the Chernoff estimate (see [12], Corollary 2.4 and
Theorem 2.8)

P
(
di(Gn) ≥ t

) ≤ exp(−t), t ≥ 7C21Wi.(4.18)

Let j ≥ 1 and let

Ij := {i ≤ n :Wi ≤ (7C21)
−12j }, I ′

j := {1, . . . , n} \ Ij .

By (4.16), |I ′
j | ≤ C222(1−γ )jn. Further, let I ∗

j be the random set {i ∈ Ij :di(Gn) ≥
2j }. By (4.18),

E|I ∗
j | ≤ exp(−2j )|Ij | ≤ exp(−2j )n ≤ C232−γjn,

and thus, for every ε > 0,

P
(|I ∗

j | > ε−1C232(1−γ )jn
) ≤ ε2−j .

Hence, with probability ≥ 1 − ε, |I ∗
j | ≤ ε−1C232(1−γ )jn for all j ≥ 1, and then,

assuming ε ≤ 1,

|{i ≤ n :di(Gn) ≥ 2j }| ≤ |I ∗
j | + |I ′

j | ≤ ε−1C242(1−γ )jn, j ≥ 1,

which implies (4.1) and completes the proof. �
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