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Lp MODULI OF CONTINUITY OF GAUSSIAN PROCESSES AND
LOCAL TIMES OF SYMMETRIC LÉVY PROCESSES1

BY MICHAEL B. MARCUS AND JAY ROSEN

City University of New York

Let X = {X(t), t ∈ R+} be a real-valued symmetric Lévy process with
continuous local times {Lx

t , (t, x) ∈ R+ × R} and characteristic function
EeiλX(t) = e−tψ(λ). Let

σ 2
0 (x − y) = 4

π

∫ ∞
0

sin2(λ(x − y)/2)

ψ(λ)
dλ.

If σ 2
0 (h) is concave, and satisfies some additional very weak regularity con-

ditions, then for any p ≥ 1, and all t ∈ R+,

lim
h↓0

∫ b

a

∣∣∣∣L
x+h
t − Lx

t

σ0(h)

∣∣∣∣p dx = 2p/2E|η|p
∫ b

a
|Lx

t |p/2 dx

for all a, b in the extended real line almost surely, and also in Lm, m ≥ 1.
(Here η is a normal random variable with mean zero and variance one.)

This result is obtained via the Eisenbaum Isomorphism Theorem and de-
pends on the related result for Gaussian processes with stationary increments,
{G(x), x ∈ R1}, for which E(G(x) − G(y))2 = σ 2

0 (x − y);

lim
h→0

∫ b

a

∣∣∣∣G(x + h) − G(x)

σ0(h)

∣∣∣∣p dx = E|η|p(b − a)

for all a, b ∈ R1, almost surely.

1. Introduction. We obtain Lp moduli of continuity for a very wide class of
continuous Gaussian processes and local times of symmetric Lévy processes. To
introduce them, we first state our results for the local times of the Brownian motion
and see how they compare with related results.

THEOREM 1.1. Let {Lx
t , (x, t) ∈ R1 ×R+} denote the local time of Brownian

motion. Then, for any p ≥ 1 and t ∈ R+,

lim
h↓0

∫ b

a

∣∣∣∣L
x+h
t − Lx

t

h1/2

∣∣∣∣p dx = 23p/2
√

π
�

(
p + 1

2

)∫ b

a
|Lx

t |p/2 dx(1.1)

for all a, b in the extended real line y.
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When p = 2, (1.1) is the following: For all t ∈ R+,

lim
h↓0

∫ ∞
−∞(Lx+h

t − Lx
t )

2 dx

h
= 4t a.s.(1.2)

This may be considered as a continuous version of the quadratic variation result:
For all t ∈ R+,

lim
n→∞

∞∑
j=−∞

(
L

j/n
t − L

(j−1)/n
t

)2 = 4
∫ ∞
−∞

Lx
t dx = 4t a.s.(1.3)

(We obtain (1.3) from [2], Theorem 10.4.1 and Lemma 10.5.2, using the 2-stable
process which is the Brownian motion multiplied by

√
2.)

When p = 1, (1.1) is the following: For all t ∈ R+,

lim
h↓0

∫ b
a |Lx+h

t − Lx
t |dx√

h
= 23/2

√
π

∫ b

a

√
Lx

t dx a.s.(1.4)

This compliments a result of Yor [4] that

lim
h↓0

Lh
t − L0

t√
h

law= 2
√

L0
t η,(1.5)

where η is a normal random variable with mean zero and variance one.
Theorem 1.1 can be extended to symmetric Lévy processes with continuous

local times, subject to some regularity conditions. Let X = {X(t), t ∈ R+} be a
real-valued symmetric Lévy process with characteristic function

EeiλX(t) = e−tψ(λ),(1.6)

where

ψ(λ) = 2
∫ ∞

0
(1 − cosλu)ν(du)(1.7)

for ν a symmetric Lévy measure, that is, ν is symmetric and∫ ∞
0

(1 ∧ x2)ν(dx) < ∞.(1.8)

We assume that ∫ ∞
1

1

ψ(λ)
dλ < ∞,(1.9)

which is a necessary and sufficient condition for X to have local times. We refer
to ψ(λ) as the characteristic exponent of X. Let

σ 2
0 (x − y) = 4

π

∫ ∞
0

sin2(λ(x − y)/2)

ψ(λ)
dλ.(1.10)
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We say that σ0 satisfies condition Cq if

lim
n→∞

σ0(1/n(logn)q+1)

σ0(1/(logn)q)
= 0.(1.11)

We say that ψ(λ) satisfies condition 	γ if

λγ = o(ψ(λ)) as λ → ∞.(1.12)

THEOREM 1.2. Let X = {X(t), t ∈ R+} be a real-valued symmetric Lévy
process with characteristic exponent ψ(λ) that satisfies condition 	γ , for some
γ > 0. Assume that σ 2

0 (h) is concave and monotonically increasing for h ∈ [0, δ]
for some δ > 0 and satisfies condition Cq . Let L := {Lx

t , (t, x) ∈ R+ × R} be the
local time of X and assume that L is continuous. Let η be a normal random vari-
able with mean zero and variance one. Then for any 1 ≤ p < q and all t ∈ R+,

lim
h↓0

∫ b

a

∣∣∣∣L
x+h
t − Lx

t

σ0(h)

∣∣∣∣p dx = 2p/2E|η|p
∫ b

a
|Lx

t |p/2 dx

(1.13)

= 2p

√
π

�

(
p + 1

2

)∫ b

a
|Lx

t |p/2 dx

for all a, b in the extended real line almost surely.

We point out on page 615 for which σ 2
0 is concave. The other two conditions in

this theorem are very weak.
In Section 5 we show that the limit in (1.13) also exists in Lm uniformly in t on

any bounded interval of R+, for all m ≥ 1.
When ψ(λ) = |λ|β , 1 < β ≤ 2, we refer to X as the canonical β-stable process.

(The canonical 2-stable process is the Brownian motion multiplied by
√

2.) In
this case the conditions in Theorem 1.2 hold and (1.13) is the following: For any
1 ≤ p < q and t ∈ R+,

lim
h↓0

∫ b

a

|Lx+h
t − Lx

t |p
hp(β−1)/2 dx = c(β,p)

∫ b

a
|Lx

t |p/2 dx(1.14)

for all a, b in the extended real line almost surely, where

c(β,p) =
(

1

�(β) sin((π/2)(β − 1))

)p/2 2p

√
π

�

(
p + 1

2

)
.(1.15)

(See Remark 4.1 for more details.)
We derive our results on the Lp moduli of continuity of local times of symmetric

Lévy processes using the Eisenbaum Isomorphism Theorem ([2], Theorem 8.1.1).
In order to use it, we need to know about the Lp moduli of continuity of squares of
the associated Gaussian processes. These follow easily from results about the Lp

moduli of continuity of the Gaussian processes themselves. These are interesting
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in their own right. We take this up in the next section. Here we just mention an
application of the results to the fractional Brownian motion. Let G = {G(x), x ∈
R1} be a real-valued Gaussian process with mean zero and stationary increments,
G(0) = 0, and let

E
(
G(x + h) − G(x)

)2 = hr,(1.16)

0 < r < 2. Then

lim
h↓0

∫ b

a

∣∣∣∣G(x + h) − G(x)

hr/2

∣∣∣∣p dx = E|η|p(b − a)(1.17)

for all −∞ < a < b < ∞ almost surely. Results like (1.17) also follow from the
work of Wschebor [3]. We explain in Remark 2.1 why we cannot use his approach
to obtain Theorem 1.2.

2. Lp moduli of continuity of Gaussian processes. Let G = {G(x), x ∈ R1}
be a real-valued Gaussian process with mean zero and stationary increments and
let

σ 2(h) = E
(
G(x + h) − G(x)

)2
.(2.1)

Fix 1 ≤ p < ∞, −∞ < a < b < ∞ and define

I (h) = IG(h;a, b,p) =
∫ b

a

∣∣∣∣G(x + h) − G(x)

σ(h)

∣∣∣∣p dx.(2.2)

Then, clearly,

EIG(h;a, b,p) = E|η|p(b − a),(2.3)

where η is a normal random variable with mean zero and variance one. This
shows, in particular, that IG(h;a, b,p) exists and is finite for all measurable
Gaussian processes G. When σ 2 is concave in some neighborhood of the origin,
IG(h;a, b,p) exhibits the following remarkable regularity property, whether G

has continuous paths or is unbounded almost surely. (These are the only two pos-
sibilities for G; see, e.g., [2], Theorem 5.3.10.)

THEOREM 2.1. Let G be as above and assume that σ 2(h) is concave and
monotonically increasing for h ∈ [0, δ], for some δ > 0. Let {hn} be positive num-
bers with hn = o( 1

(logn)p
). Then for any 1 ≤ p < ∞,

lim
n→∞

∫ b

a

∣∣∣∣G(x + hn) − G(x)

σ(hn)

∣∣∣∣p dx = E|η|p(b − a)(2.4)

for all a, b ∈ R1, almost surely.
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Before proving this theorem, we give a preliminary lemma that is an application
of the Borell, Sudakov–Tsirelson Theorem. For each h, consider the symmetric
positive definite kernel

ρh(x, y) = 1

σ 2(h)
E

(
G(x + h) − G(x)

)(
G(y + h) − G(y)

)
,(2.5)

x, y ∈ R1.

Note that by stationarity and the Cauchy–Schwarz inequality

|ρh(x, y)| ≤ 1, x, y ∈ R1.(2.6)

For p ≥ 1, define

|||G|||h,p = (IG(h;a, b,p))1/p.(2.7)

We denote the median of a real-valued random variable, say, Z, by med(Z).

LEMMA 2.1. Under the hypotheses of Theorem 2.1,

P
(∣∣|||G|||h,p − med(|||G|||h,p)

∣∣ > t
) ≤ 2e−t2/(2σ̂ 2),(2.8)

where

σ̂ 2 = sup
{f :‖f ‖q≤1}

∫ b

a

∫ b

a
f (x)f (y)ρh(x, y) dx dy(2.9)

and 1/p + 1/q = 1. Furthermore,

σ̂ 2 ≤
(∫ b

a

∫ b

a
|ρh(x, y)|dx dy

)1/p

(2.10)

and

∣∣E(|||G|||h,p) − med (|||G|||h,p)
∣∣ ≤ σ̂√

2π
.(2.11)

PROOF. Let Bq be a countable dense subset of the unit ball of Lq([a, b]). For
f ∈ Bq , set

H(h,f ) =
∫ b

a
f (x)

(G(x + h) − G(x))

σ (h)
dx.(2.12)

It is a standard fact in Banach space theory that

sup
f ∈Bq

H(h,f ) = |||G|||h,p.(2.13)
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Let

σ̂ 2 := sup
f ∈Bq

E(H 2(h, f ))

(2.14)

= sup
{f :‖f ‖q≤1}

∫ b

a

∫ b

a
f (x)f (y)ρh(x, y) dx dy.

The statements in (2.8) and (2.9) follow from a standard application of the Borell,
Sudakov–Tsirelson Theorem (see [2], Theorem 5.4.3).

For 1 ≤ p < ∞,

σ̂ 2 ≤
(∫ b

a

∫ b

a
|ρh(x, y)|p dx dy

)1/p

(2.15)

≤
(∫ b

a

∫ b

a
|ρh(x, y)|dx dy

)1/p

,

where in the last line we use (2.6). This follows from Hölder’s inequality when
1 < p < ∞. When p = 1, q = ∞ and ‖f ‖∞ := supx |f (x)|. Obtaining (2.15) in
this case is trivial.

The statement in (2.11) is another standard application of the Borell, Sudakov–
Tsirelson Theorem (see [2], Corollary 5.4.5). �

PROOF OF THEOREM 2.1. In order to use the concavity of σ 2(h) on [0, δ],
we initially take b − a < δ/2. It follows from (2.8) and (2.10) that

P
(∣∣|||G|||hn,p − med(|||G|||hn,p)

∣∣ > t
) ≤ 2e−t2/(2σ̂ 2

n ),(2.16)

where

σ̂ 2
n ≤

(∫ b

a

∫ b

a
|ρhn(x, y)|dx dy

)1/p

.(2.17)

We show below that ∫ b

a

∫ b

a
|ρhn(x, y)|dx dy = o

(
1

(logn)p

)
(2.18)

as n → ∞. Assuming this, we see from (2.16), (2.17), (2.18) and the Borel–
Cantelli Lemma that

lim
n→∞(|||G|||hn,ρ − med|||G|||hn,ρ) = 0 a.s.(2.19)

Let med(|||G|||hn,p) = Mn and note that by (2.3)

Mn ≤ 2E(|||G|||hn,p) ≤ 2(E|||G|||phn,p)1/p

(2.20)
= 2(E|η|p)1/p(b − a)1/p
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for all n. (Here we also use the obvious fact that the median of a random variable is
less than twice the mean.) Choose a convergent subsequence {Mni

}∞i=1 of {Mn}∞n=1
and set

lim
i→∞Mni

= M.(2.21)

It then follows from (2.19) and (2.21) that

lim
i→∞|||G|||hni

,p = M a.s.(2.22)

It follows from (2.6) and (2.17) that σ̂ 2
n is uniformly bounded. Therefore, by

(2.8), for all r > 0,

E
∣∣|||G|||h,p − med(|||G|||h,p)

∣∣r ≤ C′(r),(2.23)

for some function C′(r) that depends only on r . We show in (2.20) that
med(|||G|||h,p) is bounded uniformly in h. Therefore, for all r > 0, there exist
finite constants C(r) such that

E|||G|||rhn,p ≤ C(r) ∀n ≥ 1.(2.24)

Thus, in particular, {|||G|||phn,p; n = 1, . . .} is uniformly integrable for all 1 ≤ p <

∞. This, together with (2.22), shows that

lim
i→∞E|||G|||phni

,p = M
p
.(2.25)

Since E|||G|||phn,p = (b − a)E|η|p , we have that

M
p = (b − a)E|η|p.(2.26)

Thus, the bounded set {Mn}∞n=1 has a unique limit point M . It now follows from
(2.19) that

lim
n→∞|||G|||phn,p = (b − a)E|η|p.(2.27)

This gives us (2.4) when b − a < δ/2. To extend the result so that it holds for
any a < b, simply divide the interval [a, b] into a finite number of subintervals
with lengths δ/2 and write the integral in (2.34) as a sum of integrals over these
subintervals.

We now have (2.4) for fixed a and b. Clearly, it extends to all a and b in a count-
able dense subset of R1. It extends further, to all a and b, by using the property
that both the left-hand side and right-hand side of (2.27) are increasing as a ↓ and
b ↑.

We conclude the proof by obtaining (2.18). Note that ρh(x, y) is actually a func-
tion of |x −y|. We write ρh(x, y) = ρh(x −y). Using the fact that ρh is symmetric
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and setting c = b − a, we see that∫ b

a

∫ b

a
|ρh(x − y)|dx dy =

∫ c

0

∫ c

0
|ρh(x − y)|dx dy(2.28)

= 2
∫ c

0
|ρh(s)|(c − s) ds

≤ 2(b − a)

∫ c

0
|ρh(s)|ds.(2.29)

Furthermore, using the fact that σ 2(h) is concave and monotonically increasing,

σ 2(h)

∫ c

h
|ρh(s)|ds

=
∫ c

h

(
σ 2(s) − σ 2(s − h) − (

σ 2(s + h) − σ 2(s)
))

ds

(2.30)

=
∫ c

h

(
σ 2(s) − σ 2(s − h)

)
ds −

∫ c+h

2h

(
σ 2(s) − σ 2(s − h)

)
ds

≤
∫ 2h

h

(
σ 2(s) − σ 2(s − h)

)
ds ≤ hσ 2(h)

and

σ 2(h)

∫ h

0
|ρh(s)|ds

≤
∫ h

0

((
σ 2(s + h) − σ 2(s)

) + |σ 2(h − s) − σ 2(s)|)ds(2.31)

≤ 2hσ 2(h).

Combining (2.28)–(2.31), we get∫ b

a

∫ b

a
|ρh(x − y)|dx dy ≤ 6(b − a)h,(2.32)

which gives us (2.18). �

When G in Theorem 2.1 is continuous and σ satisfies a very mild regularity
condition we can take the limit in (2.4), with hn replaced by h.

THEOREM 2.2. Let G be as in Theorem 2.1 and assume, furthermore, that G

is continuous. Let 1 ≤ p < ∞ and set hn = 1/(logn)q , where q > p. If

lim
n→∞

σ(hn − hn+1)

σ (hn+1)
= 0,(2.33)
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then

lim
h→0

∫ b

a

∣∣∣∣G(x + h) − G(x)

σ(h)

∣∣∣∣p dx = E|η|p(b − a)(2.34)

for all a, b ∈ R1, almost surely.

PROOF. Without loss of generality, we assume that b > 0. Let

‖�hG‖p,[a,b] :=
(∫ b

a
|G(x + h) − G(x)|p dx

)1/p

(2.35)

and set

JG(h;a, b,p) = ‖�hG‖p,[a,b]
σ(h)

.(2.36)

In this notation we can write (2.4) as

lim
n→∞JG(hn;a, b,p) = (E|η|p)1/p(b − a)1/p a.s.(2.37)

Fix δ > 0 and consider a path for which both (2.37) holds and also the analogous
statement with b replaced by 2b. We show that for such a path there exists an
integer n1, depending on the path and δ, such that∣∣JG(h;a, b,p) − (E|η|p)1/p(b − a)1/p

∣∣ ≤ δ ∀h ≤ hn1 .(2.38)

Since we can do this for all δ > 0 and all paths in a set of measure one, we get
(2.34).

Set C0 = 2(E|η|p)1/p(b − a)1/p ∨ 1 and ε = δ/6C0. By taking δ small enough,
we can assume that ε < 1/10. Choose N1 > 10 sufficiently large so that

σ(hn − hn+1)

σ (hn+1)
≤ ε,(2.39)

∣∣JG(hn;a, b,p) − (E|η|p)1/p(b − a)1/p
∣∣ ≤ ε,(2.40)

JG(hn;a,2b,p) ≤ C0(2.41)

for all n ≥ N1. The inequality in (2.41) implies that

sup
a≤c≤d≤2b

JG(hn; c, d,p) ≤ C0 ∀n ≥ N1.(2.42)

Note that for any ζ < hN1 we can find an integer m ≥ N1 such that

ζ/2 ≤ hm ≤ ζ.(2.43)

To see this, simply take m = [exp(ζ−1/q)] + 1.
To obtain (2.38), it suffices to show that it holds for all h ∈ (hn1+1, hn1] for any

n1 ≥ N1. We proceed to do this. Fix n1. We inductively define an increasing subse-
quence {nj }, with limj→∞ nj = ∞ beginning with n1. Assume that n1, . . . , nj−1,
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j ≥ 2, have been defined and set uj−1 := ∑j−1
i=1 hni+1. We take nj to be the small-

est integer with

hnj+1 ≤ h − uj−1.(2.44)

It follows from (2.43) that

(h − uj−1)/2 ≤ hnj+1 ≤ h − uj−1 < hnj
,(2.45)

which implies that

lim
j→∞uj = h.(2.46)

It follows from the last inequality in (2.45) that h−uj ≤ hnj
−hnj+1. Therefore,

replacing j by j − 1, we have

h − uj−1 ≤ hnj−1 − hnj−1+1,(2.47)

which implies, by (2.45), that

hnj+1 ≤ hnj−1 − hnj−1+1.(2.48)

We now show that, for all j ≥ 2,

σ(uj − uj−1)

σ (uj−1)
≤ εj−1 and

σ(h − uj−1)

σ (uj−1)
≤ εj−1.(2.49)

To see this, we note that by (2.48) and the fact that σ is increasing

σ(uj − uj−1)

σ (uj−1)

= σ(hnj+1)

σ (uj−1)

= σ(hnj+1)

σ (hnj−1+1)

σ (hnj−1+1)

σ (hnj−2+1)
· · · σ(hn2+1)

σ (uj−1)
(2.50)

≤ σ(hnj+1)

σ (hnj−1+1)

σ (hnj−1+1)

σ (hnj−2+1)
· · · σ(hn2+1)

σ (hn1+1)

≤ σ(hnj−1 − hnj−1+1)

σ (hnj−1+1)

σ (hnj−2 − hnj−2+1)

σ (hnj−2+1)
· · · σ(hn1 − hn1+1)

σ (hn1+1)
.

The first inequality in (2.49) now follows from (2.39); the second follows similarly
using (2.47).
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Since (2.40) holds for all n ≥ N1, we have∣∣JG(u1;a, b,p) − (E|η|p)1/p(b − a)1/p
∣∣ ≤ ε.(2.51)

[For notational convenience, let JG(u0;a, b,p) := (E|η|p)1/p(b−a)1/p .] For any
j ≥ 1, we have ∣∣JG(h;a, b,p) − (E|η|p)1/p(b − a)1/p

∣∣
≤ |JG(h;a, b,p) − JG(uj ;a, b,p)|(2.52)

+
j∑

i=1

|JG(ui;a, b,p) − JG(ui−1;a, b,p)|.

To estimate this, note that, since σ is monotonically increasing, for any 0 < r < s,

|JG(s;a, b,p) − JG(r;a, b,p)|
=

∣∣∣∣‖�sG‖p,[a,b]
σ(s)

− ‖�rG‖p,[a,b]
σ(r)

∣∣∣∣
≤

∣∣∣∣ 1

σ(s)
− 1

σ(r)

∣∣∣∣‖�rG‖p,[a,b]
(2.53)

+ 1

σ(s)

∣∣‖�sG‖p,[a,b] − ‖�rG‖p,[a,b]
∣∣

≤ |σ(s) − σ(r)|
σ(r)

‖�rG‖p,[a,b]
σ(r)

+ 1

σ(r)
‖�sG − �rG‖p,[a,b].

It is easy to see that the concavity of σ 2 implies the concavity of σ . Therefore, we
have

|σ(s) − σ(r)|
σ(r)

‖�rG‖p,[a,b]
σ(r)

≤ σ(s − r)

σ (r)
JG(r;a, b,p).(2.54)

Furthermore,

‖�sG − �rG‖p,[a,b] = ‖�s−rG‖p,[a+r,b+r].(2.55)

Consequently, for 0 < r < s,

|JG(s;a, b,p) − JG(r;a, b,p)|
≤ σ(s − r)

σ (r)
JG(r;a, b,p) + 1

σ(r)
‖�s−rG‖p,[a+r,b+r](2.56)

≤ σ(s − r)

σ (r)

(
JG(r;a, b,p) + JG(s − r;a + r, b + r,p)

)
.
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In particular, for any i ≥ 2, by (2.49), we have that

|JG(ui;a, b,p) − JG(ui−1;a, b,p)|
≤ εi−1(

JG(ui−1;a, b,p) + JG(hni+1;a + ui−1, b + ui−1,p)
)

(2.57)

≤ εi−1(
JG(ui−1;a, b,p) + C0

)
,

where, for the last step, we use (2.42).
We claim that for any i ≥ 1

JG(ui;a, b,p) ≤ 2C0.(2.58)

By (2.42), this is true for i = 1, without the factor of 2. However, for i > 1, ui need
not be a member of the sequence {hn}. To obtain (2.58), assume that it is true for
all k < i. Then by (2.57),

JG(ui;a, b,p) ≤ C0 +
i∑

k=2

εk−13C0 ≤ 2C0.(2.59)

It follows from (2.57) and (2.58) that

|JG(ui;a, b,p) − JG(ui−1;a, b,p)| ≤ 3εi−1C0.(2.60)

Using this together with (2.51) and (2.52), we see that, for any j ≥ 1,∣∣JG(h;a, b,p) − (E|η|p)1/p(b − a)1/p
∣∣

(2.61)
≤ |JG(h;a, b,p) − JG(uj ;a, b,p)| + 4εC0.

By (2.46) and the continuity of σ , we can assume that, for j sufficiently large,
σ(uj ) ≥ σ(h)/2. Then using the first two lines of (2.56), (2.49) and (2.58), we see
that, for all j ≥ 2,

|JG(h;a, b,p) − JG(uj ;a, b,p)|

≤ σ(h − uj )

σ (uj )
JG(uj ;a, b,p)

(2.62)

+ 1

σ(uj )
‖�h−uj G‖p,[a+uj ,b+uj ]

≤ 2εj−1C0 + 1

σ(h)
‖�h−uj G‖p,[a,2b].

We can choose j so that h − uj is arbitrarily small. Therefore, since G is contin-
uous, for a fixed path ω, we can make ‖�h−uj G‖p,[a,2b] arbitrarily small. Since
δ = 6εC0, we obtain (2.38). �

Condition (2.33) is very weak. It is satisfied by any reasonable function one can
think of, but we cannot show that it is always satisfied. In the next lemma we show
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that it holds when σ 2(h) ≥ Ch1/q , for some q > p. In particular, when p = 1,
it holds for σ 2(h) ≥ Ch1−ε for any ε > 0. [Since σ 2 is concave, we must have
σ 2(h) ≥ Ch, for some constant C.]

LEMMA 2.2. When σ 2(h) ≥ Ch1/q , for some q > p, (2.33) holds.

PROOF. Since hn = 1/(logn)q , when σ 2(h) ≥ Ch1/q ,

σ 2(hn) ≥ C/(logn).(2.63)

Suppose (2.33) does not hold. Then there exists a δ > 0 and a decreasing subse-
quence {hnk

} of {hn} for which

σ(hnk
− hnk+1) ≥ δσ (hnk+1)(2.64)

and hnk
− hnk+1 ≤ (hnk−1 − hnk−1+1)

2. Using this last inequality, we see that∫ hnk−1−hnk−1+1

hnk
−hnk+1

du

u(log(1/u))1/2 ≥ 1

4

(
log

(
1/(hnk

− hnk+1)
))1/2

.(2.65)

Using this, the monotonicity of σ , (2.63) and (2.64), we see that∫ hnk−1−hnk−1+1

hnk
−hnk+1

σ(u)du

u(log(1/u))1/2

≥ δ

4
σ(hnk+1)

(
log

(
1/(hnk

− hnk+1)
))1/2(2.66)

≥ δC1/2

4

(
log(1/(hnk

− hnk+1))

log(nk + 1)

)1/2

> C1/2,

where for the last inequality we use the fact that, for all nk sufficiently large,

hnk
− hnk+1 ≤ 2q

nk(lognk)q+1 .(2.67)

Consequently, summing the left-hand side of (2.66) over all k sufficiently large,
we see that, for all α > 0, ∫ α

0

σ(u)du

u(log(1/u))1/2 = ∞.(2.68)

This contradicts the fact that G is continuous. See Example 6.4.5 in [2]. �

It is clear that the limit in (2.34) does not hold when σ 2(h) = h2. This case
includes Gaussian processes with differentiable paths. In this case

lim
h→0

IG(h;a, b,p) =
∫ b

a
|G′(x)|p dx,(2.69)
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which is not constant in general. For example, G could be an integrated Brownian
motion, in which case G′ would be the Brownian motion. Nevertheless, it is not
necessary that σ 2(h) ≥ Ch for the limit to exist. We touch on this briefly in the
next result for the fractional Brownian motion.

THEOREM 2.3. Let G be a fractional Brownian motion, that is, σ 2(h) = hr ,
0 < r < 2 then (2.34) holds for all a, b ∈ R1, almost surely.

PROOF. Clearly, this is immediately a consequence of Theorem 2.2 for 0 <

r ≤ 1, but when 1 < r < 2, σ 2(h) is convex. We consider this case. Let σ 2(h) = hr ,
1 < r < 2. Analogous to (2.30), we now have

σ 2(h)

∫ c

h
|ρh(s)|ds

=
∫ c

h

((
σ 2(s + h) − σ 2(s)

) − (
σ 2(s) − σ 2(s − h)

))
ds

=
∫ c

h

(
σ 2(s + h) − σ 2(s)

)
ds −

∫ c−h

0

(
σ 2(s + h) − σ 2(s)

)
ds(2.70)

≤
∫ c

c−h

(
σ 2(s + h) − σ 2(s)

)
ds

≤ 2rcr−1h2 = 2rcr−1h2−rσ 2(h)

for all h sufficiently small. Also,

σ 2(h)

∫ h

0
|ρh(s)|ds

=
∫ h

0

((
σ 2(s + h) − σ 2(s)

) + (
σ 2(h − s) − σ 2(s)

))
ds(2.71)

≤ 2hσ 2(2h) ≤ 8hσ 2(h).

Consequently, when σ 2(h) = hr , 1 < r < 2,∫ b

a

∫ b

a
|ρh(x − y)|dx dy ≤ Ch2−r .(2.72)

Because of the difference between (2.72) and (2.30), we must take hn =
o( 1

(logn)p/(2−r) ) in Lemma 2.1. This does not cause us a problem. The proof of

Theorem 2.2 also works when σ 2(h) = hr because σ is concave and in the proof
of Theorem 2.2 the power of the | loghn| is arbitrary. �

REMARK 2.1. Theorem 2.1, which is critical in our approach, depends on the
deep Borell, Sudakov–Tsirelson Theorem. We have found a much simpler proof,
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based on work of Wschebor [3] that gives (2.4) for hn = n−q for any q > 2, in-
dependent of p. Thus, (2.33) holds when σ is a power. However, a sufficient con-
dition for a Gaussian process to be continuous, when σ is increasing, is that the
integral in (2.68) is finite. This is the case, for example, if σ(h) = (log 1/h)−r

for h ∈ (0, h0] for some h0 > 0, and r > 1/2. In this case (2.33) holds when
hn = (logn)−q , but not when hn = n−q .

3. Lp moduli of continuity of squares of Gaussian processes. The results
of Section 2 immediately extend to the squares of the Gaussian processes. This is
what we use to obtain results for local times.

LEMMA 3.1. Let {G(x), x ∈ R} be a mean zero continuous Gaussian process
with stationary increments. Let σ 2(h) be as defined in (2.1) and assume that

lim
h→0

∫ b

a

∣∣∣∣G(x + h) − G(x)

σ(h)

∣∣∣∣p dx = E|η|p(b − a)(3.1)

for all a, b ∈ R1 almost surely, where η is a normal random variable with mean 0
and variance 1. Then

lim
h→0

∫ b

a

∣∣∣∣G2(x + h) − G2(x)

σ (h)

∣∣∣∣p dx = E|η|p2p
∫ b

a
|G(x)|p dx(3.2)

for all a, b ∈ R1, almost surely.

PROOF. Let a = r0 < r1 < · · · < rm = b. We have∫ b

a

∣∣∣∣G2(x + h) − G2(x)

σ (h)

∣∣∣∣p dx

=
m∑

j=1

∫ rj

rj−1

∣∣∣∣G2(x + h) − G2(x)

σ (h)

∣∣∣∣p dx(3.3)

≤ 2p
m∑

j=1

∫ rj

rj−1

∣∣∣∣G(x + h) − G(x)

σ(h)

∣∣∣∣p dx sup
rj−1≤x≤rj+h

|G(x)|p.

Using (3.1), we can take the limit, as h goes to zero, of the last line in (3.3) to
obtain

lim sup
h→0

∫ b

a

∣∣∣∣G2(x + h) − G2(x)

σ (h)

∣∣∣∣p dx

(3.4)

≤ E|η|p2p
m∑

j=1

sup
rj−1≤x≤rj

|G(x)|p(rj − rj−1) a.s.
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Since G has continuous sample paths, almost surely, we can take the limit of the
right-hand side of (3.4), as m goes to infinity and sup1≤j≤m−1 rj+1 − rj goes to
zero, and use the definition of Riemann integration to get the upper bound in (3.2).

Similarly to the way we obtain (3.4), we get

lim inf
h→0

∫ b

a

∣∣∣∣G2(x + h) − G2(x)

σ (h)

∣∣∣∣p dx

(3.5)

≥ E|η|p2p
m∑

j=1

inf
rj−1≤x≤rj

|G(x)|p(rj − rj−1) a.s.

Taking the limit as m goes to infinity and sup1≤j≤m−1 rj+1 − rj goes to zero, as in
the previous paragraph, we get the lower bound in (3.2).

We have now obtained (3.2) for a fixed a and b. We extend it to all a, b ∈ R1 as
in the proof of Theorem 2.1. �

4. Almost sure Lp moduli of continuity of local times of Lévy processes.
We give some additional properties of symmetric Lévy processes X = {X(t), t ∈
R+} introduced in (1.6)–(1.10). For 0 < α < ∞ let uα(x, y) denote the α-potential
density of X. Then

uα(x, y) = 1

π

∫ ∞
0

cosλ(x − y)

α + ψ(λ)
dλ.(4.1)

Also, since uα(x, y) is a function of x − y we often write it as uα(x − y).
Because of (1.9), X has continuous transition probability densities, pt(x, y) =

pt(x−y); see, for example, [2], (4.74). Consequently, it is easy to see that uα(x, y)

is a positive definite function [2], Lemma 3.3.3. For 0 < α < ∞, let

σ 2
α (x − y) := uα(x, x) + uα(y, y) − 2uα(x, y)

= 2
(
uα(0) − uα(x − y)

)
(4.2)

= 4

π

∫ ∞
0

sin2 λ(x − y)

2

1

α + ψ(λ)
dλ.

We can also consider uα(x, y), 0 < α < ∞, as the covariance of a mean zero
stationary Gaussian process, which we denote by Gα = {Gα(x), x ∈ R}. We have

E
(
Gα(x) − Gα(y)

)2 = σ 2
α (x − y).(4.3)

Note that the covariance of Gα is the 0-potential density of a Lévy process killed
at the end of an independent exponential time with mean 1/α. Thus, Gα is an
associated Gaussian process in the nomenclature of [2].

We are interested in those Lévy processes with 1-potential density given by (4.1)
for which the stationary Gaussian processes G1, defined by (4.3), are continuous
and satisfy (3.1). We refer to these processes as Lévy processes of class A. Since
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the Gaussian processes G1 are continuous, we know that the Lévy processes of
class A have jointly continuous local times ([2], Theorem 9.4.1, (1)).

We now use the Eisenbaum Isomorphism Theorem, as employed in [2], Theo-
rem 10.4.1, to obtain the following Lp moduli of continuity for the local times of
these Lévy processes.

LEMMA 4.1. Let X = {X(t), t ∈ R+} be a real-valued symmetric Lévy
process of class A with 1-potential density u1(x, y) and let {Lx

t , (t, x) ∈ R+ × R}
be the local time of X. Then, for almost all t ∈ R+,

lim
h↓0

∫ b

a

∣∣∣∣L
x+h
t − Lx

t

σ1(h)

∣∣∣∣p dx = 2p/2E|η|p
∫ b

a
|Lx

t |p/2 dx(4.4)

for all a, b ∈ R1, almost surely.

PROOF. By Lemma 3.1,

lim
h→0

∫ b

a

∣∣∣∣G2
1(x + h)/2 − G2

1(x)/2

σ1(h)

∣∣∣∣p dx

(4.5)

= 2p/2E|η|p
∫ b

a
|G2

1(x)/2|p/2 dx

for all a, b ∈ R1 almost surely, where η is a normal random variable with mean 0
and variance 1. A simple modification of the proof of Lemma 3.1 shows that, for
all s,

lim
h→0

∫ b

a

∣∣∣∣(G1(x + h) + s)2/2 − (G1(x) + s)2/2

σ1(h)

∣∣∣∣p dx

(4.6)

= 2p/2E|η|p
∫ b

a

∣∣(G1(x) + s
)2

/2
∣∣p/2

dx

for all a, b ∈ R1 almost surely.
Let ω ∈ �G1 denote the probability space of G1 and fix ω ∈ �G1 . Using the

notation of (2.7),∣∣∣∣∣∣Lt + (
G1(ω) + s

)2
/2

∣∣∣∣∣∣p
h,p

=
∫ b

a

∣∣∣∣(L
x+h
t − Lx

t + (G1(x + h,ω) + s)2/2 − (G1(x,ω) + s)2/2)

σ1(h)

∣∣∣∣p dx.(4.7)

It follows from the Eisenbaum Isomorphism Theorem that, for any s �= 0, an al-
most sure event for (G1(ω)+ s)2/2 is also an almost sure event for L·

t + (G1(ω)+
s)2/2, for almost all t ∈ R+; see [2], Lemma 9.1.2. (Here X and G1 are inde-
pendent.) Therefore, (4.6) implies that, for almost all ω ∈ �G1 and for almost all
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t ∈ R+,

lim
h↓0

∣∣∣∣∣∣Lt + (
G1(ω) + s

)2
/2

∣∣∣∣∣∣
h,p

(4.8)

= 21/2(E|η|p)1/p

(∫ b

a

∣∣Lx
t + (

G1(x,ω) + s
)2

/2
∣∣p/2

dx

)1/p

for all a, b ∈ R1 almost surely (with respect to �X). Consequently, for almost all
ω ∈ �G1 and for almost all t ∈ R+,

lim sup
h↓0

|||Lt |||h,p

≤ 21/2(E|η|p)1/p

(4.9)

×
((∫ b

a
|Lx

t |p/2 dx

)1/p

+
(∫ b

a

∣∣(G1(x,ω) + s
)2

/2
∣∣p/2

dx

)1/p)

+ lim sup
h↓0

∫ b

a

∣∣∣∣(G1(x + h,ω) + s)2/2 − (G1(x,ω) + s)2/2

σ1(h)

∣∣∣∣p dx

for all a, b ∈ R! almost surely. Using (4.6) on the last term in (4.9), we see that, for
almost all ω ∈ �G1 and for almost all t ∈ R+,

lim sup
h↓0

|||Lt |||h,p ≤ 21/2(E|η|p)1/p

×
((∫ b

a
|Lx

t |p/2 dx

)1/p

(4.10)

+ 2
(∫ b

a

∣∣(G1(x,ω) + s
)2

/2
∣∣p/2

dx

)1/p)

for all a, b ∈ R1 almost surely. And since this holds for all s �= 0, we get that, for
almost all ω ∈ �G1 and for almost all t ∈ R+,

lim sup
h↓0

|||Lt |||h,p

≤ 21/2(E|η|p)1/p(4.11)

×
((∫ b

a
|Lx

t |p/2 dx

)1/p

+ 2
(∫ b

a
|G2

1(x,ω)/2|p/2 dx

)1/p)

for all a, b ∈ R1 almost surely.
Since G1 has continuous sample paths, it follows from [2], Lemma 5.3.5, that,

for all ε > 0,

P

(
sup

x∈[a,b]
|G1(x)| ≤ ε

)
> 0.(4.12)
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Therefore, we can choose ω in (4.11) so that the integral involving the Gaussian
process can be made arbitrarily small. Thus, for almost all t ∈ R1,

lim sup
h↓0

|||Lt |||h,p ≤ 21/2(E|η|p)1/p

(∫ b

a
|Lx

t |p/2 dx

)1/p

(4.13)

for all a, b ∈ R1, almost surely. By the same methods, we can obtain the reverse of
(4.13) for the limit inferior. �

Analogous to the definition of σ 2
α in (4.2), we set

σ 2
0 (x) := lim

α→0
2
(
uα(0) − uα(x)

)
(4.14)

= 4

π

∫ ∞
0

sin2 λx

2

1

ψ(λ)
dλ.

By (1.9) and the fact that λ2 = O(ψ(λ)) as λ → 0 (see [2], (4.72) and (4.77)),
the integral in (4.14) is finite, so that σ0 is well defined whether or not X has a
0-potential density.

For later reference, we note that by the definition of the α-potential density of X

and (4.14)

σ 2
0 (x) = 2 lim

α→0

∫ ∞
0

e−αt (pt(0) − pt(x)
)
dt

(4.15)
= 2

∫ ∞
0

(
pt(0) − pt(x)

)
dt.

Lemma 4.1 is very close Theorem 1.2. However, Lemma 4.1 requires that G1
satisfies (3.1). Theorem 2.2, which gives conditions for Gaussian processes to sat-
isfy (3.1), requires that σ 2

1 is concave at the origin. It is easier to verify concavity
for σ 2

0 . That is why we use σ 2
0 in Theorem 1.2. We proceed to use Lemma 4.1 and

some observations about σ 2
1 and σ 2

0 to prove Theorem 1.2.
We need some general facts about Gaussian processes with stationary incre-

ments. Let μ be a measure on (0,∞) that satisfies (1.8). Let

φ(x) := 4

π

∫ ∞
0

sin2 λx

2
dμ(λ).(4.16)

The function φ(x) determines a mean zero Gaussian process with stationary incre-
ments H = {H(x), x ∈ R1} with H(0) = 0, by the relationship

E
((

H(x) − H(y)
)2) = φ(x − y).(4.17)

(This is because it follows from (4.17) that

EH(x)H(y) = 1
2

(
φ(x) + φ(y) − φ(x − y)

)
.(4.18)
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It is easy to see that EH(x)H(y) is positive definite and, hence, determines a mean
zero Gaussian process; see, e.g., [2], 5.252.)

We consider three such Gaussian processes, G0, and Gα and G̃α for α > 0,
determined by

σ 2
0 (h) = 4

π

∫ ∞
0

sin2 λh

2

1

ψ(λ)
dλ,(4.19)

σ 2
α(h) = 4

π

∫ ∞
0

sin2 λh

2

1

(α + ψ(λ))
dλ,(4.20)

σ̃ 2
α (h) = 4

π

∫ ∞
0

sin2 λh

2

α

ψ(λ)(α + ψ(λ))
dλ,(4.21)

as described in the previous paragraph. Note that Gα(x) = Gα(x) − Gα(0), x ∈
R1, for Gα as defined in (4.3). Therefore, the increments of Gα and Gα are the
same and, σ 2

α = σ 2
α , defined in (4.3).

Obviously,

σ 2
0 (h) = σ 2

α(h) + σ̃ 2
α (h).(4.22)

Let Gα and G̃α be independent. It follows from (4.22) that Gα + G̃α is a version
of G0. In this sense we can write

G0(x) = Gα(x) + G̃α(x), x ∈ R1.(4.23)

We show in [2], Lemma 7.4.8, that

lim
h→0

σ0(h)

σα(h)
= 1.(4.24)

This shows that G0 has continuous paths if and only if Gα , or equivalently, Gα ,
has continuous paths. Furthermore, by (4.22) and (4.24), if Gα has continuous
paths, so does G̃α . (These facts about continuity follows from [2], Lemma 5.5.2
and Theorem 5.3.10. See also [1], Chapter 15, Section 3.)

LEMMA 4.2. Let σ0, σ̃α and ψ(λ) be as given in (4.19) and (4.21) and assume
that ψ(λ) satisfies (1.12). Assume also that h2−γ ′ = O(σ 2

0 (h)) for some γ ′ > 0 as
h ↓ 0. Then for all α > 0, there exists an ε > 0 such that

σ̃ 2
α (h) = O(hεσ 2

0 (h)) as h ↓ 0.(4.25)

PROOF. Let δ = γ ′/4 < 1. By (1.12), there exists an M ∈ R1 such that ψ(λ) ≥
λγ for all λ ≥ M ∨ 1. Then

σ̃ 2
α (h) ≤ h2

π

(∫ M

0

λ2

ψ(λ)
dλ +

∫ (1/h)δ

M
λ2 dλ

)

+ α

infx≥(1/h)δ (α + ψ(x))

∫ ∞
(1/h)δ

sin2 λh

2

1

ψ(λ)
dλ(4.26)

≤ 0(h2−3γ ′/4) + 0(hδγ σ 2
0 (h))
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which implies (4.25). (Here we use the fact that λ2/ψ(λ) is bounded on [0,M];
see, e.g., [2], Lemma 4.2.2.) �

PROOF OF THEOREM 1.2. In this section we prove this theorem with “all
t ∈ R+” replaced by “almost all t ∈ R+.” We complete the proof of this theorem
in Section 5.

Since L has continuous local times, it follows from [2], Theorem 9.4.1, (1),
that G1, the stationary Gaussian process with covariance u1, is continuous almost
surely. Therefore, by the remarks made prior to the statement of Lemma 4.2, G1,
G1, G̃1 and G0 are all continuous almost surely.

Using (4.23), we see that∣∣∣∣
(∫ b

a

∣∣∣∣G0(x + h) − G0(x)

σ0(h)

∣∣∣∣p dx

)1/p

−
(∫ b

a

∣∣∣∣G1(x + h) − G1(x)

σ0(h)

∣∣∣∣p dx

)1/p∣∣∣∣(4.27)

≤
(∫ b

a

∣∣∣∣G̃1(x + h) − G̃1(x)

σ0(h)

∣∣∣∣p dx

)1/p

.

We show below that the last integral in (4.27) goes to zero as h ↓ 0. Furthermore,
by Theorem 2.2, the limit of the first integral in (4.27) goes to E|η|p(b−a) almost
surely as h ↓ 0. Consequently, the limit of the second integral in (4.27) also goes
to E|η|p(b − a) almost surely as h ↓ 0. Using (4.24), we have

lim
h→0

∫ b

a

∣∣∣∣G1(x + h) − G1(x)

σ1(h)

∣∣∣∣p dx = E|η|p(b − a) a.s.(4.28)

This shows that X is a Lévy process of class A (see page 609), so (4.4) holds.
Using (4.24) again gives (1.13).

Note that by (4.25) there exists an ε > 0 such that

σ̃ 2
1 (h) ≤ hεσ 2

0 (h) for h ∈ [0, h0](4.29)

for some h0 > 0. Therefore, by [2], Theorem 7.2.1,

C
(
hεσ 2

0 (h) log 1/h
)1/2(4.30)

is a uniform modulus of continuity for G̃α . It follows from this that the last integral
in (4.27) goes to zero as h ↓ 0. �

REMARK 4.1. The simplest and perhaps most important application of The-
orem 1.2 is to symmetric stable processes with index 1 < β ≤ 2. In this case
ψ(λ) = |λ|β . (Stable processes with index β ≤ 1 do not have local times.) By a
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change of variables, we see that

σ 2
0 (h) = hβ−1 4

π

∫ ∞
0

(
sin2 s

2

)
1

|s|β ds

(4.31)

= hβ−1 1

�(β) sin((π/2)(β − 1))
.

The calculation that gives the last line is given in [2], (4.94) and (4.99)–(4.102),
however, note that the numerator in [2], (4.102), should be one.

When β = 2 the Lévy process is {√2Bt, t ∈ R+}, where {Bt, t ∈ R+} is a stan-
dard Brownian motion. The factor

√
2 occurs because the Lévy exponent in this

case is λ2 rather than λ2/2.

PROOF OF THEOREM 1.1. This is an immediate application of Theorem 1.2
in which we calculate (1.10) with ψ(λ) = λ2/2. Thus, the function σ 2

0 (h) for the
Brownian motion is twice the last line in (4.31), which in this case is simply 2h.

�

We have a much larger class of concrete examples to which we can apply The-
orem 1.2. In [2], Section 9.6, we consider a case of Lévy processes which we call
stable mixtures. Using stable mixtures, we show in [2], Corollary 9.6.5, that for
any 0 < β < 1 and function g which is regularly varying at infinity with positive
index or is slowly varying at infinity and increasing, there exists a Lévy process
for which the corresponding function σ 2

0 (h) is concave and satisfies

σ 2
0 (h) ∼ |h|βg(log 1/|h|) as h → 0.(4.32)

Moreover, if in addition, ∫ 1

0

dx

g(x)
< ∞,(4.33)

the above statement is also valid when β = 1. Since σ 2
0 is regularly varying, (2.33)

holds. Also, in [2], Section 9.6, the characteristic exponents of stable mixtures is
given explicitly and it is easy to see that they satisfy (1.12).

5. Convergence in Lm. In Section 4 Theorem 1.2 is only proved for almost
every t (see page 614). To obtain Theorem 1.2 for all t , we need additional infor-
mation which is contained in the next theorem. This theorem is also interesting on
its own.

THEOREM 5.1. Under the hypotheses of Theorem 1.2,

lim
h↓0

∫ b

a

∣∣∣∣L
x+h
t − Lx

t

σ0(h)

∣∣∣∣p dx = 2p/2E|η|p
∫ b

a
|Lx

t |p/2 dx(5.1)

in Lm uniformly in t on any bounded interval of R+, for all m ≥ 1.
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The proof follows from several lemmas on moments of the Lm norm of various
functions of the local times. We begin with a formula for the moments of local
times. For a proof, see [2], Lemma 10.5.5.

LEMMA 5.1. Let X = {X(t), t ∈ R+} be a symmetric Lévy process and let
{Lx

t , (t, x) ∈ R+ ×R} be the local times of X. Then for all x, y, z ∈ R, t ∈ R+ and
integers m ≥ 1,

Ez((Lx
t )

m) = m!
∫

· · ·
∫

0<t1<···<tm<t
pt1(x − z)

m∏
i=2

p�ti (0)

m∏
i=1

dti,(5.2)

where pt is the probability density function of X(t) and �ti = ti − ti−1.
Furthermore,

Ez((Lx
t − L

y
t )

2m)
= (2m)!

∫
· · ·

∫
0<t1<···<t2m<t

(
pt1(x − z) + pt1(y − z)

)
(5.3)

×
2m∏
i=2

(
p�ti (0) − (−1)2m−ip�ti (x − y)

) m∏
i=1

dti .

Let Z be a random variable on the probability space of X. We denote the Lm

norm of Z with respect to P 0 by ‖Z‖m. Let

V (t) =
∫ t

0
ps(0) ds.(5.4)

The next lemma follows easily from Lemma 5.1 and the fact that ps(x) ≤ ps(0)

for all x ∈ R, and uses the representation of σ0 in the last line of (4.15). For (5.6),
we also use the fact that Lx

t − Lx
s = Lx

t−s ◦ θs together with the Markov property.

LEMMA 5.2. Let X = {X(t), t ∈ R+} be a real-valued symmetric Lévy
process and let {Lx

t , (t, x) ∈ R+ ×R} be the local times of X. Then for all x, y ∈ R,
s, t ∈ R+ and integers m ≥ 1,

‖Lx
t − L

y
t ‖2m ≤ C(m)V 1/2(t)σ0(x − y),(5.5)

‖Lx
t − Lx

s ‖m ≤ C′(m)V (t − s),(5.6)

‖Lx
t ‖m ≤ C′(m)V (t),(5.7)

where C(m) and C′(m) are constants depending only on β and m.

It is clear that the inequality in (5.6) is unchanged if we take the norm with
respect to P z, for any z ∈ R. The same observation applies to (5.5) since it only
depends on |x − y|.

In the next lemma we use notation introduced in (2.7), except that σ is replaced
by σ0.
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LEMMA 5.3. Let X = {X(t), t ∈ R+} be a real valued symmetric Lévy process
and let {Lx

t , (t, x) ∈ R+ ×R} be the local times of X. Then for all h > 0, s, t ∈ R+,
with s ≤ t , p ≥ 1 and integers m ≥ 1,∥∥|||Lt |||ph,p − |||Ls |||ph,p

∥∥
m ≤ C(p,m)V (p−1)/2(t)V 1/2(t − s)(b − a).(5.8)

In particular, ∥∥|||Lt |||ph,p

∥∥1/p
m ≤ C′(p,m)V 1/2(t)(b − a)1/p,(5.9)

where C(p,m) and C′(p,m) are constants depending only on p and m.
Similarly, for any r ≥ 1,∥∥∥∥

∫ b

a
|Lx

t |r dx −
∫ b

a
|Lx

s |r dx

∥∥∥∥
m

≤ D(r,m)V r−1(t)V (t − s)(b − a).(5.10)

In particular, ∥∥∥∥
∫ b

a
|Lx

t |r dx

∥∥∥∥
m

≤ D′(r,m)V r(t)(b − a).(5.11)

For any 0 < r ≤ 1,∥∥∥∥
∫ b

a
|Lx

t |r dx −
∫ b

a
|Lx

s |r dx

∥∥∥∥
m

≤ D(r,m)V r(t − s)(b − a).(5.12)

In particular, ∥∥∥∥
∫ b

a
|Lx

t |r dx

∥∥∥∥
m

≤ D′(r,m)V r(t)(b − a),(5.13)

where D(r,m) and D′(r,m) are constants depending only on r and m.

PROOF. Set

�hLx
t = Lx+h

t − Lx
t .(5.14)

Suppose that u ≥ v ≥ 0. Writing up − vp as the integral of its derivative, we see
that

up − vp ≤ p(u − v)up−1.(5.15)

Therefore, it follows from (5.15) and the Schwarz inequality that∥∥|||Lt |||ph,p − |||Ls |||ph,p

∥∥
m

≤
∫ b

a

1

σ
p
0 (h)

∥∥|�hLx
t |p − |�hLx

s |p
∥∥
m dx

(5.16)

≤
∫ b

a

p

σ
p
0 (h)

(∥∥|�hLx
t |p−1∥∥

2m + ∥∥|�hLx
s |p−1∥∥

2m

)
×‖�hLx

t − �hLx
s ‖2m dx.



618 M. B. MARCUS AND J. ROSEN

Let r be the smallest even integer greater than or equal to 2m(p − 1). Then by
Hölder’s inequality and (5.5), we see that∥∥|�hLx

t |p−1∥∥
2m ≤ ‖�hLx

t ‖p−1
r

(5.17)
≤ D(m)V (p−1)/2(t)σ

p−1
0 (h),

where D(m) = (C(r))p−1 and C(r) is the constant in (5.5). (Clearly, this inequal-
ity also holds with t replaced by any s ≤ t .)

It follows from (5.5) and the remark immediately following the statement of
Lemma 5.2, that for all z ∈ R,

(Ez(�hLx
t−s)

2m)1/2m = ‖�hLx−z
t−s ‖2m

(5.18)
≤ C(m)V 1/2(t − s)σ0(h).

Consequently,

‖�hLx
t − �hLx

s ‖2m = ‖�hLx
t−s ◦ θs‖2m

= (E0{EXs (�hLx
t−s)

2m})1/2m.(5.19)

≤ C(m)V 1/2(t − s)σ0(h).

It follows from (5.16), (5.17) and (5.19), and the fact that s ≤ t , that∥∥|||Lt |||ph,p − |||Ls |||ph,p

∥∥
m

(5.20)
≤ 2pD(m,p)C(m)V (p−1)/2(t)V 1/2(t − s)(b − a).

This gives (5.8). The statement in (5.9) follows from (5.8) by setting s = 0.
To prove (5.10), we take s < t , and note that∥∥∥∥

∫ b

a
|Lx

t |r dx −
∫ b

a
|Lx

s |r dx

∥∥∥∥
m

(5.21)

≤
∫ b

a

∥∥|Lx
t |r − |Lx

s |r
∥∥
m dx ≤ (b − a) sup

x

∥∥|Lx
t |r − |Lx

s |r
∥∥
m.

It follows from (5.15) with p replaced by r ≥ 1, followed by the Cauchy–Schwarz
inequality, that ∥∥|Lx

t |r − |Lx
s |r

∥∥
m ≤ r‖Lx

t − Lx
s ‖2m

∥∥|Lx
t |r−1∥∥

2m.(5.22)

As in (5.17), we have ∥∥|Lx
t |r−1∥∥

2m ≤ ‖Lx
t ‖r−1

q ,(5.23)

where q is the smallest even integer greater than or equal to 2m(r − 1). The in-
equality in (5.10) now follows from (5.6) and (5.7). The inequality in (5.11) fol-
lows from (5.10) by setting s = 0.
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When 0 ≤ r ≤ 1 we have

0 ≤ |Lx
t |r − |Lx

s |r ≤ |Lx
t − Lx

s |r ,(5.24)

so that ∥∥|Lx
t |r − |Lx

s |r
∥∥
m ≤ ∥∥|Lx

t − Lx
s |r

∥∥
m ≤ ‖Lx

t − Lx
s ‖r

q,(5.25)

where q is the smallest integer greater than or equal to rm. The inequality in (5.12)
now follows from (5.6). The inequality in (5.13) follows from (5.12) by setting
s = 0. �

PROOF OF THEOREM 5.1. Although it is usually easier to prove convergence
in Lm than it is to prove convergence almost surely, the only way that we know to
prove this theorem is by using Theorem 1.2. Fix a < b. For h > 0, let

Hh(t) =
∫ b

a

|Lx+h
t − Lx

t |p
σ

p
0 (h)

dx − 2p/2E|η|p
∫ b

a
|Lx

t |p/2 dx.(5.26)

It follows from Theorem 1.2 and Fubini’s theorem that there exists dense subset
D ⊆ R+, such that, for each t ∈ D, Hh(t) converges to 0 almost surely.

By (5.9) and (5.11), we have that, for any m,

‖Hh(t)‖m ≤ C(m,b − a, t) < ∞,(5.27)

where the function C(m,b − a, t) is independent of h. In particular, for each t , the
collection {Hh(t);h > 0} is uniformly integrable. Consequently, for any m ≥ 1,

lim
h↓0

‖Hh(t)‖m = 0 ∀t ∈ D.(5.28)

Fix T > 0. By (5.8), (5.10) and (5.12) for any m ≥ 1 and any ε > 0, we can find
a δ > 0 such that

sup
0≤s,t≤T

|s−t |≤δ

‖Hh(s) − Hh(t)‖m ≤ ε ∀h > 0.(5.29)

Choose a finite set {t1, . . . , tk} in D ∩ [0, T ] such that
⋃k

j=1[tj − δ, tj + δ] covers
[0, T ]. By (5.28), we can choose an hε such that

sup
j=1,...,k

‖Hh(tj )‖m ≤ ε ∀h ≤ hε.(5.30)

Combined with (5.29), this shows that

sup
0≤s≤T

‖Hh(s)‖m ≤ 2ε ∀h ≤ hε.(5.31) �

Using Theorem 5.1 we can now complete the proof of Theorem 1.2.
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PROOF OF THEOREM 1.2 CONTINUED. Fix −∞ < a < b < ∞. What we
have already proved (see page 614) implies that we can find a dense subset T ′ ∈ R+
such that

lim
h↓0

∫ b

a

∣∣∣∣Lx+h
s − Lx

s

σ0(h)

∣∣∣∣p dx = 2p/2E|η|p
∫ b

a
|Lx

s |p/2 dx(5.32)

for all s ∈ T ′ almost surely. Fix t > 0, and let sn, n = 1, . . . , be a sequence in T ′
with sn ↑ t . Using the additivity of local times, we have

�hLx
t − �hLx

sn
= �hLx

t−sn
◦ θsn,(5.33)

so that, in the notation of (2.35),

An := lim sup
h↓0

1

σ0(h)

∣∣‖�hLx
t ‖p,[a,b] − ‖�hLx

sn
‖p,[a,b]

∣∣
≤ lim sup

h↓0

1

σ0(h)
‖�hLx

t − �hLx
sn

‖p,[a,b](5.34)

= lim sup
h↓0

1

σ0(h)
‖�hLx

t−sn
◦ θsn‖p,[a,b].

Let X̄r = Xr+sn − Xsn, r ≥ 0. Note that {X̄r; r ≥ 0} is a copy of {Xr; r ≥ 0}
that is independent of Xsn . Let {L̄x

r ; (x, r) ∈ R1 × R+} denote the local time for
the process {X̄r; r ≥ 0}. It is easy to check that

Lx
t−sn

◦ θsn = L̄
x−Xsn
t−sn

.(5.35)

Therefore,

‖�hLx
t−sn

◦ θsn‖p,[a,b] = ‖�hL̄
x−Xsn
t−sn

‖p,[a,b]
(5.36)

= ‖�hL̄x
t−sn

‖p,[a−Xsn,b−Xsn ].

Since Xsn is independent of {X̄r; r ≥ 0}, it follows from Theorem 5.1 that, condi-
tional on Xsn ,

lim
h↓0

1

σ0(h)
‖�hL̄x

t−sn
‖p,[a−Xsn,b−Xsn ]

(5.37)
= 21/2(E|η|p)1/p‖L̄x

t−sn
‖1/2
p/2,[a−Xsn ,b−Xsn ] in L1

X̄
,

where L1
X̄

denotes L1 with respect to X̄.
We now use (5.37) followed by Hölder’s inequality, and then either (5.11) for



Lp MODULI OF CONTINUITY 621

1 ≤ p/2 < ∞, or (5.13) for 0 < p/2 < 1, to see that

E(An|Xsn) ≤ 21/2(E|η|p)1/pE
(‖L̄x

t−sn
‖1/2
p/2,[a−Xsn,b−Xsn ]|Xsn

)
≤ 21/2(E|η|p)1/p

∣∣E(‖L̄x
t−sn

‖p/2
p/2,[a−Xsn,b−Xsn ]|Xsn

)∣∣1/p(5.38)

≤ 21/2(
E|η|pD′(β,p/2,1)(b − a)

)1/p
V 1/2(t − sn).

Therefore,

E(An) ≤ CV 1/2(t − sn),(5.39)

where C < ∞, is independent of n. Since T ′ is dense in R+, we can choose a
sequence {sn} ∈ T ′, so that

∑∞
n=1 V 1/2(t − sn) < ∞. Therefore, by (5.39) and the

Borel–Cantelli Lemma,

lim
n→∞An = 0 a.s.(5.40)

The proof of this theorem is completed by observing that, for each n,

lim sup
h↓0

1

σ0(h)
‖�hLx

t ‖p,[a,b] ≤ lim sup
h↓0

1

σ0(h)
‖�hLx

sn
‖p,[a,b] + An

= 21/2(E|η|p)1/p‖Lx
sn

‖1/2
p/2,[a,b] + An,

lim inf
h↓0

1

σ0(h)
‖�hLx

t ‖p,[a,b] ≥ lim inf
h↓0

1

σ0(h)
‖�hLx

sn
‖p,[a,b] − An

= 21/2(E|η|p)1/p‖Lx
sn

‖1/2
p/2,[a,b] − An,

and, by the continuity of {Lx
s ;0 ≤ s ≤ t},

lim
n→∞‖Lx

sn
‖p/2,[a,b] = ‖Lx

t ‖p/2,[a,b].(5.41)

This completes the proof of Theorem 1.2 for −∞ < a < b < ∞. To handle, for
example, a = −∞, b = ∞, note that by what we have shown, almost surely,

lim
h↓0

∫ k

−k

|Lx+h
t − Lx

t |p
σ

p
0 (h)

dx = 2p/2E|η|p
∫ k

−k
|Lx

t |p/2 dx, k = 1,2, . . . .(5.42)

The case a = −∞, b = ∞ follows, since, for each t , Lx
t has compact support in x

almost surely. �
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