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STOCHASTIC DERIVATIVES FOR FRACTIONAL DIFFUSIONS

BY SÉBASTIEN DARSES AND IVAN NOURDIN

Université de Franche-Comté and Université Paris 6

In this paper, we introduce some fundamental notions related to the so-
called stochastic derivatives with respect to a given σ -field Q. In our frame-
work, we recall well-known results about Markov–Wiener diffusions. We
then focus mainly on the case where X is a fractional diffusion and where
Q is the past, the future or the present of X. We treat some crucial examples
and our main result is the existence of stochastic derivatives with respect to
the present of X when X solves a stochastic differential equation driven by
a fractional Brownian motion with Hurst index H > 1/2. We give explicit
formulas.

1. Introduction. There exist various ways to generalize the notion of differ-
entiation on deterministic functions. We may think of fractional derivatives or dif-
ferentiation in the sense of the theory of distributions. In both cases, we lose a
dynamical or geometric interpretation of tangent vectors (velocities, e.g.). In the
present work, we seek to construct derivatives on stochastic processes which con-
serve a dynamical meaning. Our goal is motivated by the stochastic embedding of
dynamical systems introduced in [2]. This procedure aims at comprehending the
following question: how can we write an equation which contains the dynamical
meaning of an initial ordinary differential equation and which extends this dynam-
ical meaning to stochastic processes? We refer to [3] for more details.

Unfortunately, for most of the stochastic processes used in physical models, the
limit

Zt+h − Zt

h

does not exist pathwise. What can be done to give a meaning to this limit? One
of the main tools available is the “quantity of information” which we can use to
calculate it, namely a given σ -field Q. The idea is that one can remove the diver-
gences which appear pathwise by averaging over a bundle of trajectories in the
previous computation. This fact can be achieved by studying the behavior when h

goes to zero of the conditional expectation

E
[
Zt+h − Zt

h

∣∣∣Q
]
.
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Such objects were introduced by Nelson in his dynamical theory of Brownian dif-
fusion [9]. For a fixed time t , he calculates a forward (resp., backward) derivative
with respect to a given σ -field Pt which can be seen as the past of the process up
to time t (resp., Ft , the future of the process after time t). The main class with
which this can be done turns out to be that of Wiener diffusions.

The purpose of this paper is, on one hand, to introduce notions which can be
used to study the aforementioned quantities for general processes and, on the other
hand, to treat some examples. We mainly study these notions on solutions of sto-
chastic differential equations driven by a fractional Brownian motion with Hurst
index H ≥ 1

2 . In particular, we recall results on Wiener diffusions (case H = 1
2 ) in

our framework. We prove that for a suitable σ -algebra, the stochastic derivatives
of a solution of the fractional stochastic differential equation exist and we are able
to give explicit formulas.

Our paper is organized as follows. In Section 2, we recall some now classical
facts on stochastic analysis for fractional Brownian motion. In Section 3, we in-
troduce the fundamental notions related to the so-called stochastic derivatives. In
Section 4, we study stochastic derivatives of Nelson’s type for fractional diffu-
sions. We show in Section 5 that stochastic derivatives with respect to the present
turn out to be adequate tools for treating fractional Brownian motion with H > 1

2 .
We also treat the more difficult case of a fractional diffusion.

2. Basic notions for fractional Brownian motion. We briefly recall some
basic facts concerning stochastic calculus with respect to a fractional Brown-
ian motion; refer to [12] for further details. Let B = (Bt )t∈[0,T ] be a fractional
Brownian motion with Hurst parameter H ∈ (0,1) defined on a probability space
(�,F ,P). This means that B is a centered Gaussian process with the covariance
function E(BsBt ) = RH(s, t), where

RH(s, t) = 1
2(t2H + s2H − |t − s|2H).(1)

If H = 1/2, then B is a Brownian motion. From (1), one can easily see that E|Bt −
Bs |2 = |t − s|2H , so B has α-Hölder continuous paths for any α ∈ (0,H).

2.1. Space of deterministic integrands. We denote by E the set of step
R-valued functions on [0, T ]. Let H be the Hilbert space defined as the closure of
E with respect to the scalar product

〈
1[0,t],1[0,s]

〉
H = RH(t, s).

We denote by | · |H the associated norm. The mapping 1[0,t] �→ Bt can be extended
to an isometry between H and the Gaussian space H1(B) associated with B . We
denote this isometry by ϕ �→ B(ϕ).

When H ∈ (1
2 ,1), it follows from [14] that the elements of H may not be func-

tions but distributions of negative order. It will be more convenient to work with
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a subspace of H which contains only functions. Such a space is the set |H | of all
measurable functions f on [0, T ] such that

|f |2|H | := H(2H − 1)

∫ T

0

∫ T

0
|f (u)||f (v)||u − v|2H−2 dudv < ∞.

We know that (|H |, | · ||H |) is a Banach space, but that (|H |, 〈·, ·〉H ) is not com-
plete (see, e.g., [14]).

Moreover, we have the inclusions

L2([0, T ]) ⊂ L1/H ([0, T ]) ⊂ |H | ⊂ H .(2)

2.2. Fractional operators. The covariance kernel RH(t, s) introduced in (1)
can be written as

RH(t, s) =
∫ s∧t

0
KH(s,u)KH(t, u) du,

where KH(t, s) is the square integrable kernel defined by

KH(t, s) = cH s1/2−H
∫ t

s
(u − s)H−3/2uH−1/2 du, 0 < s < t,(3)

where cH
2 = H(2H − 1)β(2 − 2H,H − 1/2)−1 and β denotes the Beta function.

By convention, we set KH(t, s) = 0 if s ≥ t .
Let K∗

H :E → L2([0, T ]) be the linear operator defined by

K∗
H

(
1[0,t]

) = KH(t, ·).
The following equality holds for any φ,ψ ∈ E :

〈φ,ψ〉H = 〈K∗
Hφ,K∗

Hψ〉L2([0,T ]) = E(B(φ)B(ψ)).

K∗
H then provides an isometry between the Hilbert space H and a closed subspace

of L2([0, T ]).
The process W = (Wt)t∈[0,T ] defined by

Wt = B
(
(K∗

H)−1(
1[0,t]

))
is a Wiener process and the process B has an integral representation of the form

Bt =
∫ t

0
KH(t, s) dWs.

Hence, for any φ ∈ H ,

B(φ) = W(K∗
Hφ).

Let a, b ∈ R, a < b. For any p ≥ 1, we denote by Lp = Lp([a, b]) the usual
Lebesgue space of functions on [a, b].
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Let f ∈ L1 and a > 0. The left-sided and right-sided fractional Riemann–
Liouville integrals of f of order α are defined for almost all x ∈ (a, b) by

Iα
a+f (x) = 1

�(α)

∫ x

a
(x − y)α−1f (y) dy

and

Iα
b−f (x) = (−1)−α

�(α)

∫ b

x
(y − x)α−1f (y) dy,

respectively, where � denotes the usual Euler function. These integrals extend the
classical integral of f when α = 1.

If f ∈ Iα
a+(Lp) [resp., f ∈ Iα

b−(Lp)] and α ∈ (0,1), then for almost all x ∈
(a, b), the left-sided and right-sided Riemann–Liouville derivative of f of order α

are defined by

Dα
a+f (x) = 1

�(1 − α)

(
f (x)

(x − a)α
+ α

∫ x

a

f (x) − f (y)

(x − y)α+1 dy

)

and

Dα
b−f (x) = 1

�(1 − α)

(
f (x)

(b − x)α
+ α

∫ b

x

f (x) − f (y)

(y − x)α+1 dy

)
,

respectively, where a ≤ x ≤ b.
We define the operator KH on L2([0, T ]) by

(KHh)(t) =
∫ t

0
KH(t, s)h(s) ds.

It is an isomorphism from L2([0, T ]) onto I
H+1/2
0+ (L2([0, T ])) and it can be ex-

pressed as follows when H > 1
2 :

KHh = I 1
0+sH−1/2I

H−1/2
0+ s1/2−Hh,

where h ∈ L2([0, T ]). The crucial point is that the functions of the space
I

H+1/2
0+ (L2([0, T ])) are absolutely continuous when H > 1

2 . For these functions φ,

the inverse operator K−1
H is given by

K−1
H φ = sH−1/2D

H−1/2
0+ s1/2−Hφ′.

When H > 1
2 , we introduce the operator OH on L2([0, T ]) defined by

(OHϕ)(s) :=
(

d

dt
KH

)
(ϕ)(s) = sH−1/2I

H−1/2
0+ s1/2−Hϕ(s).(4)

Let f : [a, b] → R be α-Hölder continuous and g : [a, b] → R be β-Hölder con-
tinuous with α + β > 1. Then for any s, t ∈ [a, b], the Young integral [18]

∫ t
s f dg
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exists and we can express it in terms of fractional derivatives (see [19]): for any
γ ∈ (1 − β,α), we have

∫ t

s
f dg = (−1)γ

∫ t

s
D

γ
s+f (x)D

1−γ
t− gt−(x) dx,(5)

where gt−(x) = g(x) − g(t). In particular, we deduce that

∀s < t ∈ [a, b]
∣∣∣∣
∫ t

s

(
f (r) − f (s)

)
dg(r)

∣∣∣∣ ≤ κ|f |α|g|β |t − s|α+β,(6)

where κ is a constant depending only on a, b,α and β , and if h : [a, b] → R and
µ ∈ (0,1], then

|h|µ = sup
a≤s<t≤b

|h(t) − h(s)|
|t − s|µ .

2.3. Malliavin calculus. Let S be the set of all smooth cylindrical random
variables, that is, which can be expressed as F = f (B(φ1), . . . ,B(φn)) where
n ≥ 1, f : Rn → R is a smooth function with compact support and φi ∈ H . The
Malliavin derivative of F with respect to B is the element of L2(�,H) defined by

DB
s F =

n∑
i=1

∂f

∂xi

(B(φ1), . . . ,B(φn))φi(s), s ∈ [0, T ].

In particular, DB
s Bt = 1[0,t](s). As usual, D1,2 denotes the closure of the set of

smooth random variables with respect to the norm

‖F‖2
1,2 = E[F 2] + E[|DB· F |2H ].

The Malliavin derivative DB verifies the chain rule: if ϕ : Rn → R is C1
b and

(Fi)i=1,...,n is a sequence of elements of D1,2, then ϕ(F1, . . . ,Fn) ∈ D1,2 and we
have for any s ∈ [0, T ],

DB
s ϕ(F1, . . . ,Fn) =

n∑
i=1

∂ϕ

∂xi

(F1, . . . ,Fn)D
B
s Fi.

The divergence operator δB is the adjoint of the derivative operator DB . If a ran-
dom variable u ∈ L2(�,H) belongs to the domain of the divergence operator, that
is, if it verifies

|E〈DBF,u〉H | ≤ cu‖F‖L2 for any F ∈ S,

then δB(u) is defined by the duality relationship

E(FδB(u)) = E〈DBF,u〉H
for every F ∈ D1,2.
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2.4. Pathwise integration with respect to B . If X = (Xt)t∈[0,T ] and Z =
(Zt )t∈[0,T ] are two continuous processes, then we define the forward integral of
Z with respect to X, in the sense of Russo–Vallois, by∫ ·

0
Zs dXs = lim

ε→0
ucp ε−1

∫ ·

0
Zs(Xs+ε − Xs)ds, t ∈ [0, T ],(7)

provided the limit exists. Here “ucp” means “uniform convergence in probabil-
ity.” If X (resp., Z) has a.s. Hölder continuous paths of order α (resp., β) with
α + β > 1, then

∫ ·
0 Zs dXs exists and coincides with the usual Young integral:

see [15], Proposition 2.12.

2.5. Stochastic differential equation driven by B . Here, we assume that
H > 1/2. We denote by Ck

b the set of all functions whose derivatives from or-
der 1 to order k are bounded. If σ ∈ C2

b and b ∈ C1
b , then the equation

Xt = x0 +
∫ t

0
σ(Xs) dBs +

∫ t

0
b(Xs) ds, t ∈ [0, T ],(8)

admits a unique solution X in the set of processes whose paths are Hölder contin-
uous of order α > 1 − H . Here, the integral with respect to B is in the sense of
Russo–Vallois; see (7). Moreover, we have a Doss–Sussmann-type [5, 16] repre-
sentation,

Xt = φ(At ,Bt ), t ∈ [0, T ],
where φ and A are given, respectively, by

∂φ

∂x2
(x1, x2) = σ(φ(x1, x2)), φ(x1,0) = x1, x1, x2 ∈ R

and

A′
t = exp

(
−

∫ Bt

0
σ ′(φ(At , s)) ds

)
b(φ(At ,Bt )), A0 = x0, t ∈ [0, T ].

Using this representation, we can show that X belongs to D1,2 and that

DB
s Xt = σ(Xs) exp

(∫ t

s
b′(Xu)du +

∫ t

s
σ ′(Xu)dBu

)
1[0,t](s), s, t ∈ [0, T ];

see [10], proof of Theorem B.

3. Notions related to stochastic derivatives. Let (Zt )t∈[0,T ] be a stochastic
process defined on (�,F ,P). In the sequel, we always assume that for any t ∈
[0, T ], Zt ∈ L2(�,F ,P). For all t ∈ (0, T ) and h �= 0 such that t +h ∈ (0, T ), we
set

�hZt = Zt+h − Zt

h
.
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3.1. Stochastic derivatives in a strong sense.

DEFINITION 1. Set t ∈ (0, T ). We say that At (resp., B t ) is a forward differ-
entiating σ -field (resp., backward differentiating σ -field) for Z at t if E[�hZt |At ]
(resp., E[�−hZt |B t ]) converges in probability when h ↓ 0+. In these cases, we
define the so-called forward and backward derivatives,

DAt

+ Zt = lim
h↓0+ E[�hZt |At ],(9)

DBt

− Zt = lim
h↓0+ E[�−hZt |B t ].(10)

The set of all forward (resp., backward) differentiating σ -fields for Z at time t is
denoted by M+(t)

Z (resp., M−(t)
Z ). The intuition we can have is that the larger M±(t)

is, the more regular Z is at time t . For instance, one obviously has that {∅,�} ∈
M+(t)

Z (resp., ∈ M−(t)
Z ) if and only if s �→ E(Zs) is right differentiable (resp., left

differentiable) at time t . At the opposite extreme, one has that F ∈ M+(t)
Z (resp.,

∈ M−(t)
Z ) if and only if s �→ Zs is a.s. right differentiable (resp., left differentiable)

at time t .

DEFINITION 2. We say that (At ,B t )t∈(0,T ) is a differentiating collection of
σ -fields for Z if for any t ∈ (0, T ), At (resp., B t ) is a forward (resp., backward)
differentiating σ -field for Z at t . If At = B t for any t ∈ (0, T ), we write, for
simplicity, (At )t∈(0,T ) instead of (At ,B t )t∈(0,T ).

On one hand, we may introduce the following definition.

DEFINITION 3. Set t ∈ (0, T ). We say that At (resp. B t ) is a nondegenerate
forward σ -field (resp., nondegenerate backward σ -field) for Z at t if it is forward
(resp., backward) differentiating at t and if

for any c ∈ R P(DAt

+ Zt = c) < 1 [resp., P(DBt

− Zt = c) < 1].(11)

For instance, if Z is a process such that s �→ E(Zs) is differentiable at t ∈ (0, T ),
then {∅,�} is a forward and backward differentiating σ -field at t but is degenerate.
Let us also note that condition (11) is obviously equivalent to Var(DAt

+ Zt) �= 0
[resp., Var(DBt

− Zt) �= 0] when DAt

+ Zt ∈ L2(�) [resp., DBt

− Zt ∈ L2(�)].
On the other hand, one could hope that such stochastic derivatives conserve the

property which holds for ordinary derivatives on functions: “it can discriminate the
constants among the other processes.” So we introduce the following.

DEFINITION 4. We say that (At ,B t )t∈(0,T ) is a discriminating collection of
σ -fields for Z if (At ,B t )t∈(0,T ) is a differentiating collection of σ -fields for Z and
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if it satisfies the following property:(∀t ∈ (0, T ), DAt

+ Zt = DBt

− Zt = 0
) ⇒ Z is a.s. a constant process on [0,T].

As in Definition 2, we write, for simplicity, (At )t∈(0,T ) instead of (At ,B t )t∈(0,T )

when At = B t for any t ∈ (0, T ).

An obvious example of a discriminating collection of σ -fields for a process with
differentiable paths is {At = F , t ∈ (0, T )}. If Z is a process such that s �→ E(Zs)

is differentiable on (0, T ), then the collection {At = {∅,�}, t ∈ [0, T ]} is differ-
entiating, but, in general, not discriminating.

Let us now consider a more advanced example. Let B = (Bt )t∈[0,T ] be a frac-
tional Brownian motion with Hurst index H ∈ (1/2,1). Let us denote by Pt the
σ -field generated by Bs for 0 ≤ s ≤ t and, if g : R → R, by T

g
t the σ -field gener-

ated by g(Bt).

PROPOSITION 5. 1. For any t ∈ (0, T ), Pt is not a forward differentiating
σ -field for B at t .

2. For any even function g : R → R and for any t ∈ (0, T ), T
g

t is a forward and
backward differentiating (but generate) σ -field for B at t .

3. For any t ∈ (0, T ), T id
t is a forward and backward differentiating and nonde-

generate σ -field for B at t .

PROOF. 1. We refer to Proposition 10 of [4] for a proof. This result is extended
to the case of Volterra processes in the current paper; see Proposition 13.

2. Since B and −B have the same law, it follows that E[�hBt |g(Bt)] = 0 for
any t ∈ (0, T ) and h �= 0 such that t + h ∈ (0, T ). The conclusion follows easily.

3. Using a linear Gaussian regression we can write

E[�hBt |Bt ] = (1 + h/t)2H − 1 − (h/t)2H

2
Bt −→

h→0
H

Bt

t
in probability.

Since Var(H t−1Bt) > 0, T id
t is nondegenerate. �

Thus, for fractional Brownian motion, stochastic derivatives with respect to the
present (i.e., with respect to T id

t ) turn out to be adequate tools (see Section 5 below,
for a more precise study).

3.2. Stochastic derivatives in a weak sense. A way to weaken Definition 1 is
to consider stochastic derivatives as follows.

DEFINITION 6. Set t ∈ (0, T ) and let A be a sub-σ -field of F . We say that Z

is weak forward differentiable with respect to A at t if limh↓0+ E[V �hZt ] exists,
for all random variables V belonging to a dense subspace of the closed subspace
L2(�,A,P) ⊂ L2(�,F ,P).

We similarly define the notion of weak backward differentiation with respect to
A at t by considering �−hZt instead of �hZt .
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If the process Z is weak forward differentiable at t and such that the sequence
(�hZt)h is bounded in L2(�), then we can associate with it a weak forward sto-
chastic derivative with respect to A at t . Indeed, in that case, let us denote by �

the dense subspace involved. The linear form ψ :V �→ limh↓0+ E[V �hZt ] defined
on � ⊂ L2(�,A,P) is continuous and so can be extended in a unique continu-
ous linear form on L2(�,A,P), still denoted by ψ . Thus, there exists a unique
Z′

t ∈ L2(�,A,P) such that ψ(V ) = E[Z′
tV ]. One can easily show that Z′

t does
not depend on �. We will say that Z′

t is the weak forward stochastic derivative of
Z with respect to A at t .

REMARK 7. The boundedness of (�hZt)h in L2(�) may appear to be quite a
restrictive condition (e.g., it is not satisfied for a fractional Brownian motion). But
it allows us to relate our notion to the usual notion of weak limit.

If At (resp., B t ) is a forward (resp., backward) differentiating σ -field for Z at t

and if, moreover, the convergence (9) [resp., (10)] also holds in L2, then Z is weak
forward (resp., backward) differentiable with respect to At (resp., B t ) at t . But the
converse is not true in general.

Let ϒ be the set of the so-called fractional diffusions X = (Xt)t∈[0,T ] defined
by

Xt = x0 +
∫ t

0
σs dBs +

∫ t

0
bs ds, t ∈ [0, T ].(12)

Here, σ and b are processes which are adapted with respect to the natural filtration
associated with B and X and satisfying the following conditions: σ ∈ Cα a.s. with
α > 1 − H and b ∈ L1([0, T ]) a.s.

LEMMA 8. The decomposition (12) is unique. That is, if

x0 +
∫ t

0
σs dBs +

∫ t

0
bs ds = x̃0 +

∫ t

0
σ̃s dBs +

∫ t

0
b̃s ds, t ∈ [0, T ],(13)

then x0 = x̃0, σ = σ̃ and b = b̃.

PROOF. The equality x0 = x̃0 is obvious and (13) is then equivalent to
∫ t

0
(σs − σ̃s) dBs =

∫ t

0
(b̃s − bs) ds, t ∈ [0, T ],

which implies, by setting tk = kT
n

, that

(|σtk − σ̃tk ||Btk+1 − Btk |)1/H

=
∣∣∣∣
∫ tk+1

tk

(bs − b̃s) ds +
∫ tk+1

tk

(σs − σtk ) dBs +
∫ tk+1

tk

(σ̃s − σ̃tk ) dBs

∣∣∣∣
1/H
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≤ C

[∣∣∣∣
∫ tk+1

tk

(bs − b̃s) ds

∣∣∣∣
1/H

+
∣∣∣∣
∫ tk+1

tk

(σs − σtk ) dBs

∣∣∣∣
1/H

+
∣∣∣∣
∫ tk+1

tk

(σ̃s − σ̃tk ) dBs

∣∣∣∣
1/H ]

.

We easily deduce, using (6), that

lim
n→∞

n−1∑
k=0

|σtk − σ̃tk |1/H |Btk+1 − Btk |1/H = 0 in probability.

But, on the other hand, it is easy to obtain (see, e.g., Theorem 4.4 in [7]) that

lim
n→∞

n−1∑
k=0

|σtk − σ̃tk |1/H |Btk+1 − Btk |1/H =
∫ T

0
|σs − σ̃s |1/H ds in probability.

We deduce that σ = σ̃ and so b = b̃. �

In Section 4, we will see that the past of X ∈ ϒ before time t is not, in general,
a forward differentiating σ -field at time t . We will see in Section 5 that the present
of X ∈ ϒ is, in general, a differentiating collection of σ -fields.

However, X is weak differentiable for a large class of σ -fields. We introduce
the set Sb of all r.v.’s ϕ(B(φ1), . . . ,B(φn)) ∈ S such that φ1, . . . , φn are bounded
functions.

Let ℘ be the set of all sub-σ -fields A ⊂ F such that L2(�,A,P) ∩ Sb is dense
in L2(�,A,P). For instance, any σ -field can be expressed as A[r,s] = ς(Bv, r ≤
v ≤ s) belongs to ℘ (see, e.g., [12], page 24).

PROPOSITION 9. Let A ∈ ℘ and t ∈ (0, T ). Let X ∈ ϒ be given by (12), sat-
isfying the following conditions:

(i) the map s �→ bs is continuous from (0, T ) into L1(�);
(ii) for all s ∈ [0, T ], σs ∈ D1,2 and sups∈[0,T ] E|DB

s σt | < +∞;
(iii) E(|σ |pα) < +∞ for some p > 1 and α > 1 − H .

Then X is weak forward and backward differentiable at t with respect to A.

PROOF. For simplicity, we only prove the forward case, the backward case
being similar. Let t ∈ (0, T ).

We write

Xt+h − Xt = σt (Bt+h − Bt) +
∫ t+h

t
bs ds +

∫ t+h

t
(σs − σt ) dBs.(14)

First, we treat the second term of the right-hand side of (14). Let V ∈
L2(�,A,P) ∩ Sb. Since V is bounded and the map s �→ bs is continuous from
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(0, T ) into L1(�), the function s �→ E[V bs] is continuous. We then deduce, by
means of Fubini’s theorem, that

lim
h↓0

1

h
E

[
V

∫ t+h

t
bs ds

]
ds = E[V bt ].(15)

Then using inequality (6) and the hypothesis E(|σ |pα) < +∞, the following limit
holds:

lim
h→0

1

h
E

[
V

∫ t+h

t
(σs − σt ) dBs

]
= 0.(16)

Finally, we show that the limit

lim
h↓0

E[σtV �hBt ]
exists. Since σtV ∈ D1,2 (see Exercise 1.2.13 in [11]), we have

E[σt (Bt+h − Bt)V ] = E
[
δB(

1[t,t+h]
)
σtV

]
= E

[
σt

〈
1[t,t+h],DBV

〉
H

] + E
[
V

〈
1[t,t+h],DBσt

〉
H

]
.

Condition (ii) and the fact that V ∈ Sb allow us, in particular, to write

E[σt (Bt+h − Bt)V ] = H(2H − 1)
(
�t,h(σt ,V ) + �t,h(V ,σt )

)
,(17)

where

�t,h(X,Y ) = E
[
X

∫ T

0
DB

s Y

∫ t+h

t
|v − s|2H−2 dv ds

]
.

When X or Y denotes σt or V , Fubini’s theorem yields

�t,h(X,Y ) =
∫ t+h

t
f (v,X,Y )dv

with

f (v,X,Y ) =
∫ T

0
E[XDB

s Y ]|v − s|2H−2 ds.

We have, due to condition (ii) and the fact that V ∈ Sb, that

|f (v,X,Y ) − f (w,X,Y )| ≤ C(X,Y )

∫ T

0

∣∣|v − s|2H−2 − |w − s|2H−2∣∣ds,

where C(X,Y ) is a constant depending only on X and Y .
The previous integral tends to 0 when w tends to v.
The continuity of the function v �→ f (v,X,Y ) follows.
Therefore, the limit

lim
h→0

h−1 E[σt (Bt+h − Bt)V ]
exists and equals

H(2H − 1)E
[
σt

∫ T

0
DB

s V |t − s|2H−2 ds + V

∫ T

0
DB

s σt |t − s|2H−2 ds

]
. �
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4. Stochastic derivatives of Nelson’s type. Let Z be a stochastic process de-
fined on (�,F ,P). We define the past of Z before time t ,

P Z
t := ς(Zs,0 ≤ s ≤ t)

and the future of Z after time t ,

F Z
t := ς(Zs, t ≤ s ≤ T ).

If P Z
t and F Z

t are, respectively, forward and backward differentiating σ -fields

for Z at t , we call D
P Z

t+ Zt and D
F Z

t− Zt , respectively, the forward and backward
stochastic derivatives of Nelson’s type in reference to Nelson’s work [9]. In the
sequel, we denote them by DP+ Zt and DF− Zt , for simplicity.

4.1. The case of Wiener diffusions. We denote by � the space of diffusion
processes X satisfying the following conditions.

1. X solves the stochastic differential equation

dXt = b(t,Xt) dt + σ(t,Xt) dWt, X0 = x0,(18)

where x0 ∈ Rd , b : [0, T ]×Rd → Rd and σ : [0, T ]×Rd → Rd ⊗Rd are Borel
measurable functions satisfying the following hypothesis: there exists a con-
stant K > 0 such that for every x, y ∈ Rd , we have

sup
t

(|σ(t, x) − σ(t, y)| + |b(t, x) − b(t, y)|) ≤ K|x − y|,

sup
t

(|σ(t, x)| + |b(t, x)|) ≤ K(1 + |x|).
2. For any t ∈ (0, T ), Xt has a density pt .
3. Setting aij = (σσ ∗)ij , for any i, j ∈ {1, . . . , n} any t0 ∈ (0, T ) and any bounded

open set O ⊂ Rd , ∫ T

t0

∫
O

|∂j (aij (t, x)pt (x))|dx dt < +∞.

4. The functions b and (t, x) �→ 1
pt (x)

∂j (aij (t, x)pt (x)) are bounded, belong to

C1,2([0, T ] × Rd) and have all first- and second-order derivatives bounded [we
use the usual convention that the term involving 1

pt (x)
is 0 if pt(x) = 0].

These conditions are introduced in [8] and ensure the existence of a drift and
a diffusion coefficient for the time-reversed process Xt := XT −t . Föllmer focuses
in [6], Proposition 2.5, on the important relation between drifts and derivatives of
Nelson’s type. It allows the computation the drift of the time reversal of a Brownian
diffusion with constant diffusion coefficient, both in the Markov and non-Markov
case (see Theorem 3.10 and 4.7 in [6]).

For a Markov diffusion with a rather general diffusion coefficient, we have the
following result.
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THEOREM 10. Let X ∈ � be given by (18). Then X is a Markov diffusion with
respect to P X and F X . Moreover, P X and F X are differentiating and, in general,
nondegenerate:

DP+ Xt = b(t,Xt),

(DF− Xt)i = bi(t,Xt) − 1

pt(Xt)

∑
j

∂j (aij (t,Xt)pt (Xt )),

where we use the convention that the term involving 1
pt (x)

is 0 if pt(x) = 0.

We refer to [3] for a proof; it is based on the proof of Proposition 4.1 in [17]
and Theorem 2.3 in [8].

4.2. The case of fractional Brownian motion and Volterra processes. Let
K be an L2-kernel, that is, a function K : [0, T ] × [0, T ] → R satisfying∫
[0,T ]2 K(t, s)2 dt ds < +∞. We denote by ∂+K

∂t
the right derivative of K with

respect to t (with the convention that it equals +∞ if it does not exist).
We assume, moreover, that K is Volterra, that is, that it vanishes on {(t, s) ∈

[0, T ]2 : s > t} and is nondegenerate. In other words, the family {K(t, ·), t ∈
[0, T ]} is free and spans a vector space dense in L2([0, T ]). With such a kernel
K , we associate the so-called Volterra process

Gt =
∫ t

0
K(t, s) dWs, 0 ≤ t ≤ T ,(19)

where W denotes a standard Brownian motion. The assumptions made on K imply,
in particular, that the natural filtrations associated with W and G are the same (see,
e.g., [1], Remark 3).

PROPOSITION 11. Let t ∈ (0, T ) and G be a Volterra process associated with
a nondegenerate Volterra kernel K satisfying the condition

K(t + h, ·) − K(t, ·)
h

−→
h↓0

∂+K

∂t
in L2([0, t]).(20)

The forward Nelson derivative DP+ Gt at t exists if and only if
∫ t

0
∂+K
∂t

(t, s)2 ds <

+∞. In this case, we have DP+ Gt = ∫ t
0

∂+K
∂t

(t, s) dWs and P G
t is nondegenerate

at t if and only if
∫ t

0
∂+K
∂t

(t, s)2 ds > 0.

PROOF. We adapt the proof of [4], Proposition 10. Using the representa-
tion (19), we deduce that

E[�hGt |P G
t ] = E[�hGt |P W

t ]
= 1

h

∫ t

0
[K(t + h, s) − K(t, s)]dWs =: Zh.
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Note that Z = (Zh)h>0 is a centered Gaussian process. First, assume that∫ t
0

∂+K
∂t

(t, s)2 ds = +∞. It is a classical result that if Zh converges in probability
as h ↓ 0, then Var(Zh) converges as h ↓ 0. But, from Fatou’s lemma, we deduce
that

lim inf
h↓0

Var(Zh) ≥
∫ t

0

∂+K

∂t
(t, s)2 ds = +∞.

Thus, Zh does not converge in probability as h ↓ 0. Conversely, assume that∫ t
0

∂+K
∂t

(t, s)2 ds < +∞. In this case, assumption (20) implies that Zh →∫ t
0

∂+K
∂t

(t, s) dWs in probability as h ↓ 0. In other words, DP+ Gt exists and

equals
∫ t

0
∂+K
∂t

(t, s) dWs . We easily deduce that P G
t is nondegenerate at t if and

only if
∫ t

0
∂+K
∂t

(t, s)2 ds > 0. �

The result of Proposition 10 in [4] is then a particular case: if B denotes a
fractional Brownian motion with Hurst index H ∈ (0,1/2) ∪ (1/2,1) and if t ∈
(0, T ), then DP+ Bt does not exist. Indeed, we have Bt = ∫ t

0 KH(t, s) dWs , where
KH is the nondegenerate Volterra kernel given by (3) and verifying

∂KH

∂t
(t, s) = cH

(
t

s

)H−1/2

(t − s)H−3/2.

REMARK 12. For a stochastic process Z, let us define

ξ(Z) = Leb{t ∈ [0, T ], DP+ Zt exists}.(21)

For instance, if B is a fractional Brownian motion with Hurst index H ∈ (0,1),
then ξ(B) = T if H = 1/2 and ξ(B) = 0 otherwise. A real c ∈ [0, T ] being fixed,
it is, in fact, not difficult, using Proposition 11, to construct a continuous process Z

such that ξ(Z) = c. For instance, we can consider the Volterra process associated
with the Volterra kernel

K(t, s) =
{

(t − s)H(t), if s ≤ t ,
0, otherwise,

with H(t) =
{

0, if t ≤ c,
(t − c) ∧ 1/4, if t > c.

The study of backward derivatives seems to be more difficult. Among the diffi-
culties, we note that it is not easy to obtain backward representation of fractional
diffusions (see [4]). However, for a fractional Brownian motion, we are able to
prove the following proposition.

PROPOSITION 13. Set H > 1/2. The limit

lim
h↓0

E
[
Bt − Bt−h

h

∣∣∣F B
t

]
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exists neither as an element of Lp(�) for any p ∈ [1,∞) nor as an almost sure
limit.

PROOF. Fix t ∈ (0, T ) and set

Gh := E
[
Bt − Bt−h

h

∣∣∣F B
t

]
and Zh := E

[
Bt − Bt−h

h

∣∣∣Bt,Bt+h

]
.

Since (Gh)h>0 is a family of Gaussian random variables, it suffices to prove that
Var(Gh) diverges when h goes to 0.

We have Zh = E[Gh|Bt,Bt+h]. So, by Jensen’s inequality, Z2
h ≤ E[G2

h|Bt,

Bt+h] and Var(Zh) ≤ Var(Gh). Let us show that limh↓0 Var(Zh) = +∞.
The covariance matrix of the Gaussian vector (Bt−h − Bt,Bt ,Bt+h) is

(
a v

v∗ M

)
,

where a = Var(Bt−h−Bt), v = (R(t −h, t)−R(t, t);R(t −h, t +h)−R(t, t +h))

and

M =
(

R(t, t) R(t, t + h)

R(t, t + h) R(t + h, t + h)

)
.

Since dh := R(t, t)R(t +h, t +h)−R(t +h, t)2 �= 0, M is invertible. Therefore,
hZh = vM−1Q∗, where Q = (Bt ,Bt+h). Since M = E[Q∗Q], we deduce that

Var(hZh) = E[vM−1Q∗(vM−1Q∗)∗] = vM−1v∗.

Hence,

Var(hZh) = 1

dh

(
R(t + h, t + h)v2

1 − 2R(t + h, t)v1v2 + R(t, t)v2
2
)
.

This expression is homogeneous in t2H , so we henceforth work with t = 1. Tedious
computation gives dh ∼ h2H as h ↓ 0. Moreover, we note that v2 = v1 + ch2H ,
where c is a constant depending only on H . Thus,

dh Var(hZh) = v1ch2H (
1 − (1 + h)2H + h2H ) + h2Hv2

1 + c2h4h.

Since 2H > 1 and the function x �→ x2H is derivable, the quantities v1
h

and
1−(1+h)2H +h2H

h
converge as h ↓ 0. But 2H < 2 and h4H

h2h2H = h2H−2 → +∞ as
h ↓ 0. Thus,

lim
h↓0

Var(Zh) = +∞,

which concludes the proof. �
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4.3. The case of fractional diffusions.

PROPOSITION 14. Let X ∈ ϒ be given by (12) and satisfy the following con-
ditions: E(

∫ T
0 |bs |ds) < +∞ and E(|σ |pα) < +∞ for some p > 1 and α > 1 − H .

If for any t ∈ (0, T ), σt �= 0 a.s., then for almost all t ∈ (0, T ), P X
t is not a forward

differentiating σ -field for X at t .

PROOF. Remember we assumed that σ and b are adapted with respect to
the natural filtration associated with B and X, see (12). In particular, we deduce
from (12) that P X

t ⊂ P B
t . Since we can also write

Bt =
∫ t

0

1

σs

dXs −
∫ t

0

bs

σs

ds,

we finally have P X
t = P B

t .
Thus, we deduce that E[�hBt |P X

t ] = E[�hBt |P B
t ] does not converge in prob-

ability as h ↓ 0, as a consequence of Proposition 10 in [4] or Proposition 13 of the
current paper.

Consider expression (14). The hypothesis E
∫ T

0 |bs |ds < +∞ allows us to use
the techniques of the proof of Proposition 2.5 in [6] to show that 1

h
E[∫ t+h

t bs ds|
P X

t ] converges in probability for almost all t . Using inequality (6) and the hypoth-
esis E(|σ |pα) < +∞, we can finally conclude that P X

t is not a forward differenti-
ating σ -field for X at almost all times t . �

4.4. The case of fractional differential equations with analytic volatility.

PROPOSITION 15. Let X ∈ � be given by (8) and let t ∈ (0, T ). We assume,
moreover, that σ is a real analytic function. Then P X

t is a forward differentiating
σ -field for X at t if and only if σ ≡ 0. In this case, P X = {P X

t , t ∈ (0, T )} is a
discriminating collection of σ -fields and P X

t is degenerate at any t ∈ (0, T ).

PROOF. If σ ≡ 0, then X is deterministic and differentiable in t . Conse-
quently, P X

t is a forward differentiating σ -field, but is degenerate. Assume, now,
that σ �≡ 0. According to the Bouleau–Hirsch optimal criterion for fractional dif-
ferential equations (see [10], Theorem B), we have that the law of Xt is ab-
solutely continuous with respect to the Lebesgue measure for any t [indeed,
we have intσ−1({0}) = ∅]. We deduce that P(σ (Xt) = 0) = 0 for any t , since
Leb(σ−1({0})) = 0 (σ has only isolated zeros). Proposition 14 allows us to con-
clude that P X

t is not a forward differentiating σ -field. �

REMARK 16. The case where σ is not assumed to be analytic seems more
difficult to handle. We conjecture, however, that in this case, P X

t is a forward
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differentiating σ -field for X if and only if t < tx , where tx is the deterministic time
defined by

tx = inf
{
t ≥ 0 :xt /∈ intσ−1({0})}

where (xt )t∈[0,T ] is the solution to xt = x0 + ∫ t
0 b(xs) ds. If this conjecture is true,

we would have ξ(X) = tx ; see (21).

5. Stochastic derivatives with respect to the present.

5.1. Definition. A consequence of Proposition 11 is that the σ -field P X
t gen-

erated by Xs , 0 ≤ s ≤ t (the past of X), cannot be used for differentiating when we
work with fractional Brownian motion. Moreover, we stress the following impor-
tant fact: the Markov property of a Wiener diffusion X ∈ �d implies that taking
expectations with respect to P X

t produces the same effect as taking expectations
only with respect to Xt . The following definition is then natural.

DEFINITION 17. Let Z = (Zt )t∈[0,T ] be a stochastic process defined on a
complete probability space (�,F ,P) and for any t ∈ (0, T ), let T Z

t be the σ -field
generated by Zt . We say that Z admits a forward (resp., backward) stochastic
derivative with respect to the present t ∈ (0, T ) if T Z

t is a forward (resp., back-

ward) differentiating σ -field for Z at t . In this case, we set DT+Zt := D
T Z

t+ Zt (resp.,

DT−Zt := D
T Z

t− Zt ).

EXAMPLE 18. Let B be a fractional Brownian motion with Hurst index H ∈
(0,1) and t ∈ (0, T ). Then

DT+Bt =



Ht−1Bt, if H > 1/2,
0, if H = 1/2,
does not exist, if H < 1/2,

and

DT−Zt =



Ht−1Bt, if H > 1/2,
t−1Bt, if H = 1/2,
does not exist, if H < 1/2,

(see also Proposition 5). In particular, we would say that the fractional Brown-
ian motion with Hurst index H > 1/2 is more regular than Brownian motion
(H = 1/2) because of the equality between the forward and backward derivatives
in the case H > 1/2, contrary to the case H = 1/2. We can identify the cause of
these different regularities: the covariance function RH is differentiable along the
diagonal (t, t) in the case H > 1/2, while it is not when H = 1/2.
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5.2. Case of fractional differential equations. We denote by � the set of frac-
tional differential equations, that is, the subset of ϒ whose elements are processes
X = (Xt)t∈[0,T ] solving (8) with σ ∈ C2

b and b ∈ C1
b .

In the sequel, we compute DT±Xt for X ∈ � and t ∈ (0, T ). Let us begin with a
simple case.

PROPOSITION 19. Let X ∈ � be given by (8) and let t ∈ (0, T ). Assume,
moreover, that σ and b are proportional. Then X admits a forward and a back-
ward stochastic derivative with respect to the present t , given by

DT+Xt = DT−Xt = Ht−1σ(Xt)Bt + b(Xt).(22)

In particular, the present T X
t is nondegenerate at t if and only if σ(x0) �= 0 and

the collection of σ -fields T X = {T X
t , t ∈ (0, T )} is discriminating for X.

PROOF. We will only provide the proof for DT+Xt , the computation for DT−Xt

being similar. Assume that b(x) = rσ (x) with r ∈ R. Then Xt = f (Bt +rt), where
f : R → R is defined by f (0) = x0 and f ′ = σ(f ). If σ(x0) = 0, then Xt ≡ x0

and DT+Xt = 0 = σ(Xt)H t−1Bt + b(Xt). If σ(x0) �= 0, then it is classical that
f is strictly monotone. We can then write Bt = f −1(Xt) − rt . In particular, the
random variables which are measurable with respect to Xt are measurable with
respect to Bt and vice versa. On the other hand, by using a linear Gaussian re-
gression, it is easy to show that DT+Bt = Ht−1Bt (see also Proposition 5). Finally,
the convergences (15) and (16) and the equality (14) allow us to conclude that we
have (22).

Now, let us prove that the present is nondegenerate for X at t if and only if
σ(x0) �= 0. When σ(x0) = 0, it is clear that the present is degenerate at t (see the
first part of this proof). On the other hand, if the present is degenerated at t , then
there exists c ∈ R such that

Ht−1σ ◦ f (Bt + rt)Bt + rσ ◦ f (Bt + rt) = c.

By rearranging, we obtain that σ ◦ f (X)(X + α) = β for some α,β ∈ R, where
X = Bt + rt . By using the fact that X has a strictly positive density on R, we
deduce that σ ◦f (x)(x +α) = β for any x ∈ R. Necessarily, β = 0 (with x = −α)
and then f ′ = σ ◦ f = 0. We deduce that f is constant and then that f ≡ x0, that
is, σ(x0) = 0.

Finally, if Ht−1σ(Xt)Bt +b(Xt) = σ(Xt)(H t−1Bt + r) = 0 a.s. for any t , then
σ(Xt) = 0 = b(Xt) a.s. for any t and Xt ≡ x0 a.s. for any t ; see (8). In other words,
the collection of σ -fields T X = {T X

t , t ∈ (0, T )} is discriminating. �

Let us now describe a more general case.
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THEOREM 20. Let X ∈ � be given by (8) and let t ∈ (0, T ). Assume, more-
over, that b ∈ C2

b and that σ ∈ C2
b is elliptic, that is, satisfies infx∈R |σ(x)| > 0.

Then X admits a forward and a backward stochastic derivative with respect to the
present t , given by

DT+Xt = DT−Xt

= b(Xt) + H
σ(Xt)

t

{∫ Xt

0

dy

σ(y)
(23)

− E
[∫ t

0

b

σ
(Xs) ds +

∫ t

0

∫ t

0
βH

r (s) δBr ds

− t

∫ t

0
βH

r (t)δBr

∣∣∣Xt

]}
,

where

βH
r (t) =

(
OH

∫ r

0

b′σ − bσ ′

σ
(Xs)1s≥·ds

)
(t).

Recall that OH is defined by (4).

PROOF. First, note that βH
r (t) belongs to the domain of the divergence oper-

ator δB , due to the additional hypothesis on b and σ . We provide only the proof
for DT+Xt , the computation for DT−Xt being similar. Fölmer [6], Section 4, tack-
les the problem of the computation of the time reversed drift of a non-Markovian
diffusion by means of a Girsanov transformation and the Malliavin calculus. Our
proof uses such a strategy, coupled with the transfer principle.

First step. Assume that σ ≡ 1. Using the transfer principle and the isome-
try KH , it holds that

Xt =
∫ t

0
KH(t, s) dYs,

where

Yt = Wt +
∫ t

0
ar dr.

Here, we set

ar =
(
K−1

H

∫ ·

0
b(Xs) ds

)
(r).

We know (see [13], Theorem 2) that the process X = (Xt)t∈[0,T ] is a fractional
Brownian motion under the new probability measure Q = G · P, where

G = exp
(
−

∫ T

0
as dWs − 1

2

∫ T

0
a2
s ds

)
.
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Using the integration by parts, of Malliavin calculus, we can write, for g : R →
R ∈ C1

b,

E[(Xt+h − Xt)g(Xt)] = EQ

[
G−1g(Xt)δ

X(
1[t,t+h]

)]
= EQ

[
G−1〈

1[t,t+h],DXg(Xt)
〉
H

]
+ EQ

[
g(Xt)

〈
1[t,t+h],DXG−1〉

H

]
= E[g′(Xt)]〈1[t,t+h],1[0,t]

〉
H

+ E
[
Gg(Xt)

〈
K∗

H 1[t,t+h],K∗
HDXG−1〉

L2

]
.

But K∗
HDXG−1 = DY G−1 (transfer principle). Since

G−1 = exp
(∫ T

0
as dYs − 1

2

∫ T

0
a2
s ds

)
,

we have

G × DY
t (G−1) = at +

∫ T

0
DY

t as dYs −
∫ T

0
asD

Y
t as ds

= at +
∫ T

0
DY

t as dWs.

Moreover,∫ T

0
DY

s ar dWr =
∫ T

0
(K∗

HDX
s a)(r) dWr =

∫ T

0
DX

s ar δBr := �(s)

and (
K∗

H 1[0,t]
)
(s) = KH(t, s)1[0,t](s).

Therefore,〈
K∗

H 1[t,t+h],GK∗
HDXG−1〉

L2

= (KHa)(t + h) − (KHa)(t) + (KH�)(t + h) − (KH�)(t)

=
∫ t+h

t
b(Xu)du + (KH�)(t + h) − (KH�)(t).

By the stochastic Fubini theorem, we have (OH�)(t) = ∫ T
0 (OHDX· ar)(t) δBr .

We set

βH
r (t) = (OHDX· ar)(t) =

(
OH

∫ r

0
b′(Xs)1s≥·ds

)
(t).

We then deduce that

E[(Xt+h − Xt)g(Xt)]
= E[g′(Xt)]〈1[t,t+h],1[0,t]

〉
H(24)

+ E
[
g(Xt)

(∫ t+h

t
b(Xs) ds +

∫ t+h

t

∫ T

0
βH

r (s) δBr ds

)]
.
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By developing E[Xt g(Xt)] as in (24), we obtain

t2H E[g′(Xt)] = E
[
g(Xt)

(
Xt −

∫ t

0
b(Xs) ds −

∫ t

0

∫ T

0
βH

r (s) δBr ds

)]
.

Then

E[�hXt |Xt ]
= h−1〈

1[t,t+h],1[0,t]
〉
H

(
Xt − E

[∫ t

0
b(Xs) ds +

∫ t

0

∫ T

0
βH

r (s) δBr ds
∣∣∣Xt

])

+ h−1 E
[∫ t+h

t
b(Xs) ds +

∫ t+h

t

∫ T

0
βH

r (s) δBr ds
∣∣∣Xt

]
.

We deduce that E[�hXt |Xt ] converges in probability, as h ↓ 0, to

b(Xt) + H

t
Xt − H

t
E

[∫ t

0
b(Xs) ds +

∫ t

0

∫ T

0
βH

r (s) δBr ds −
∫ T

0
βH

r (t) δBr

∣∣∣Xt

]
.

Since limh↓0 E[�hXt |Xt ] does not depend on T , we finally obtain (23) in the
particular case where σ ≡ 1 by letting T ↓ t .

Second step. Assume that σ does not vanish. Set Yt = h(Xt), where h(x) =∫ x
0

dy
σ(y)

. Using the change of variables formula, we obtain that Y satisfies

Yt = y0 + Bt +
∫ t

0

b

σ
◦ h−1(Ys) ds, t ∈ [0, T ].

Since, on the one hand, the σ -fields generated by Xt and Yt are the same and, on
the other hand, X has α-Hölder continuous paths with α > 1/2, we have

DT+Xt = σ(Xt)D
T+Yt .

Expression (23) is then a consequence of the first step of the proof. �

REMARK 21. When σ does not vanish and b ≡ rσ with r ∈ R, we can apply
either Proposition 19 or Theorem 20 to compute DT±Xt . Of course, the conclusions

are the same. Indeed, since we have, in this case, b′σ − bσ ′ ≡ 0 and
∫ Xt

0
dy

σ(y)
=

Bt + rt [since Xt = f (Bt + rt) with f satisfying f ′ = σ ◦ f ], formula (23) can
be simplified to (22).

Compared to the case where σ and b are proportional, here, it is more difficult
to decide if the present (i.e., the collection of σ -fields generated by Xt ) is discrim-
inating or not.

In the framework of the stochastic embedding of dynamical systems introduced
in [2], the set of processes, called Nelson differentiable processes, which satisfy the
equality between stochastic forward and stochastic backward derivatives plays a
fundamental role (see [3], Chapters 3 and 7). We stress on the fact that solutions of
stochastic differential equations driven by a fractional Brownian motion with H >

1/2 provide examples of Nelson differentiable processes which are not absolutely
continuous.
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