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CONVERGENCE OF MARKOV PROCESSES NEAR
SADDLE FIXED POINTS

BY AMANDA G. TURNER

University of Cambridge

We consider sequences (XN
t )t≥0 of Markov processes in two dimen-

sions whose fluid limit is a stable solution of an ordinary differential equa-
tion of the form ẋt = b(xt ), where b(x) = (−µ 0

0 λ

)
x + τ (x) for some λ,µ > 0

and τ (x) = O(|x|2). Here the processes are indexed so that the variance of
the fluctuations of XN

t is inversely proportional to N . The simplest example
arises from the OK Corral gunfight model which was formulated by Williams
and McIlroy [Bull. London Math. Soc. 30 (1998) 166–170] and studied by
Kingman [Bull. London Math. Soc. 31 (1999) 601–606]. These processes ex-
hibit their most interesting behavior at times of order logN so it is necessary
to establish a fluid limit that is valid for large times. We find that this limit
is inherently random and obtain its distribution. Using this, it is possible to
derive scaling limits for the points where these processes hit straight lines
through the origin, and the minimum distance from the origin that they can
attain. The power of N that gives the appropriate scaling is surprising. For
example if T is the time that XN

t first hits one of the lines y = x or y = −x,
then

Nµ/(2(λ+µ))|XN
T | ⇒ |Z|µ/(λ+µ),

for some zero mean Gaussian random variable Z.

1. Introduction. The fluid limit theorem is a powerful result which shows
that, under certain conditions, sequences of Markov processes converge to solu-
tions of ordinary differential equations. We are interested in situations where the
differential equation can be written in the form

ẋt = Bxt + τ(xt ),(1)

for some matrix B , where τ(x) = O(|x|2) is twice continuously differentiable.
These differential equations have been studied extensively in the dynamical sys-
tems literature, with the aim of finding precise relationships between solutions of
these differential equations and solutions of the corresponding linear differential
equations

ẏt = Byt .(2)
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FIG. 1. The phase portrait of an ordinary differential equation having a saddle fixed point at the
origin.

We restrict ourselves to the two dimensional case where the origin is a saddle
fixed point of the system, that is, B has eigenvalues λ,−µ, with λ,µ > 0. The
phase portrait of (1) in the neighborhood of the origin is shown in Figure 1.

In particular, there exists some x0 �= 0 such that φt (x0) → 0 as t → ∞, where
φ is the flow associated with the ordinary differential equation (1). The set of such
x0 is the stable manifold. There also exists some x∞ such that φ−1

t (x∞) → 0 as
t → ∞. The set of such x∞ is the unstable manifold. The saddle case is interesting
in this setting as it is the only case in two dimensions where there is both a stable
and an unstable manifold.

Fix an x0 in the stable manifold and consider sequences of Markov processes
with initial condition XN

0 = x0, where the processes are indexed so that the vari-
ance of the fluctuations of XN

t is inversely proportional to N . The fluid limit the-
orem tells us that for fixed values of t , XN

t → φt(x0) as N → ∞. However, if we
allow the value of t to grow with N as N → ∞, we shall see that XN

t deviates
from the stable solution to a limit which is inherently random, before converging
to an unstable solution (see Figure 2).

More precisely, we observe three different types of behavior depending on the
time scale:
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FIG. 2. Diagram showing how the Markov process XN
t deviates from the stable solution φt (x0)

for large values of t .

(A) On compact time intervals, XN
t converges to the stable solution of (1), the

fluctuations around this limit being of order N−1/2.
(B) There exists some x̄0 �= 0, depending only on x0, and a Gaussian random

variable Z∞ such that if t lies in the interval [R, 1
2λ

logN − R], then

XN
t = x̄0e

−µt (e1 + ε1) + N−1/2Z∞eλt (e2 + ε2)

for some εi(t,N) → 0 uniformly in t in probability as R,N → ∞, where {e1, e2}
is the standard basis for R

2. In other words, XN
t can be approximated by the solu-

tion to the linear ordinary differential equation (2) starting from the random point( x̄0
N−1/2Z∞

)
.

(C) On time intervals of a fixed length around 1
2λ

logN , XN
t converges to the

unstable solution of (1).

The most interesting behavior occurs on time intervals of fixed lengths around
1

2(λ+µ)
logN , as for these values of t the two terms x̄0e

−µt and N−1/2Z∞eλt are
of the same order. By considering

x̄0e
−µte1 + N−1/2Z∞eλte2,
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we show in Section 7 that it is at these times that XN
t crosses all the straight lines

passing through 0, and also that |XN
t | attains its minimum value when t is in

this range. The distance from the origin of XN
t for these values of t is of order

N−µ/(2(λ+µ)), which gives us surprising scaling limits for the points at which XN
t

intersects various straight lines, and for inf |XN
t |.

In order to study the Markov processes at times of order logN , it is necessary
to establish a strong form of the fluid limit theorem that is valid for large times.
The key idea is to show that for N and t0 sufficiently large, the process (XN

t )t≥t0

is close to (φt−t0(X
N
t0

))t≥t0 . This is done in Section 2 in the case when (1) is linear
and XN

t is a pure jump Markov process, in Section 5 for general pure jump Markov
processes, and in Section 6 for continuous diffusion processes. In Sections 3 and
4 we look at the process (φt−t0(X

N
t0

))t≥t0 for large values of N and t0, which then
enables us to obtain scaling limits for the process XN

t . The same idea can be used to
obtain fluid limit theorems for arbitrary matrices B , for example, with eigenvalues
having the same sign, or in higher dimensions, however an analysis of the solutions
of the underlying differential equation is required, which we do not go into here.

The simplest example of this type of behavior arises from the OK Corral gun-
fight model which was formulated by Williams and McIlroy [7] and studied by
Kingman [5] and Kingman and Volkov [6]. Two lines of gunmen face each other,
there initially being N on each side. Each gunman fires lethal gunshots at times
of a Poisson process with rate 1 until either there is no one left on the other side
or he is killed. The process terminates when all the gunmen on one side are dead.
It is shown by Kingman that if SN is the number of survivors when the process
terminates, then

N−3/4SN ⇒ 23/4|Z|1/2,

where Z ∼ N(0, 1
3). It is the occurrence of the unexpected power of N that inter-

ested the above authors in the problem. By using our scaling limits we rederive
this result in Section 2.1 and show that it is a special case of a much more general
phenomenon, and that in fact by a suitable choice of B , every number in the in-
terval (1

2 ,1) may be obtained as a power of N in this way. An application of the
nonlinear case to a model of two competing species is given in Section 7.

2. The linear case. In this section we restrict ourselves to sequences of
Markov processes in the special case where equation (1) is linear. We begin by
describing the conditions under which a limit theorem exists for large times and
then establish the exact limit by means of an appropriate martingale inequality. In
Section 2.1 this result is used to derive scaling limits for the points where these
processes hit straight lines through the origin and we use this to obtain a solution
to the OK Corral problem.

The fluid limit theorem that we state below is widely known and has been the
object of many works. We use the formulation found in [2].

Let (XN
t )t≥0 be a sequence of pure jump Markov processes, starting from x0

and taking values in some subsets IN of R
2, with Lévy kernels KN(x, dy). Let
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S be an open subset of R
2 with x0 ∈ S, and set SN = IN ∩ S. For x ∈ SN and

θ ∈ (R2)∗, define the Laplace transform corresponding to Lévy kernel KN(x, dy)

by

mN(x, θ) =
∫

R2
e〈θ,y〉KN(x, dy).

We assume that there is a limit kernel K(x, dy) defined for x ∈ S with correspond-
ing Laplace transform m(x, θ) with the following properties:

(a) There exists a constant η0 > 0 such that m(x, θ) is uniformly bounded for
all x ∈ S and |θ | ≤ η0.

(b) As N → ∞,

sup
x∈SN

sup
|θ |≤η0

∣∣∣∣m
N(x,Nθ)

N
− m(x, θ)

∣∣∣∣ → 0.

Set b(x) = m′(x,0) where ′ denotes differentiation in θ . Suppose that b is Lip-
schitz on S so that b has an extension to a Lipschitz vector field b̃ on R

2. Then
there is a unique solution (xt )t≥0 to the ordinary differential equation ẋt = b̃(xt )

starting from x0. Suppose that S contains a neighborhood of the path (xt )t≥0. By
stopping XN

t at the first time it leaves S, if necessary, we may assume that XN
t

remains in �S for all t ≥ 0. Under these assumptions, for all t0 ≥ 0 and δ > 0,

lim sup
N→∞

N−1 log P

(
sup
t≤t0

|XN
t − xt | ≥ δ

)
< 0.

Suppose additionally that:

(c) b is C1 on S and

sup
x∈SN

N1/2|bN(x) − b(x)| → 0,

where bN(x) = mN ′(x,0).
(d) a, defined by a(x) = m′′(x,0), is Lipschitz on S.

It follows from the above that for any η < η0 there exists a constant A such that

sup
x∈SN

sup
|θ |≤η

N |mN ′′(x,Nθ)| ≤ A.(3)

Let γ N
t = N1/2(XN

t − xt ). Then for any t ≥ 0, γ N
t ⇒ γt as N → ∞, where

(γt )t≥0 is the unique solution to the linear stochastic differential equation

dγt = σ(xt ) dWt + ∇b(xt )γt dt(4)

starting from 0, W a Brownian motion in R
2, and σ ∈ R

2 ⊗ (R2)∗ satisfying
σ(x)σ (x)∗ = a(x). The distribution of (γt )t≥0 does not depend on the choice of σ .

We are interested in the case where b(x) = Bx for some matrix B = (−µ 0
0 λ

)
,

µ,λ > 0.
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Let φt(x) be the solution to the ordinary differential equation

φ̇t (x) = b(φt (x)), φ0(x) = x.(5)

In the linear case we can solve (5) explicitly to get φt(x) = eBtx. We concen-
trate on processes where the initial condition is chosen to be x0 = (x0,1,0) with
x0,1 �= 0, so that xt = φt (x0) → 0 as t → ∞. We shall show that for sufficiently
large values of N and t0, XN

t is in some sense close to φt−t0(X
N
t0

) for t ≥ t0.
Introduce random measures µN and νN on (0,∞) × R

2, given by

µN = ∑
�XN

t �=0

δ(t,�XN
t ),

νN(dt, dy) = KN(XN
t−, dy) dt,

where δ(t,y) denotes the unit mass at (t, y) and �XN
t = XN

t − XN
t−.

Let f (t, x) = e−Bt (x − φt−t0(X
N
t0

)), for t ≥ t0. By Itô’s formula,

f (t,XN
t ) = f (t0,X

N
t0

) + M
B,N
t − M

B,N
t0

+
∫ t

t0

(
∂f

∂t
+ KNf

)
(s,XN

s−) ds,

where
∂f

∂t
= −Be−Btx,

KNf (s, x) =
∫

R2

(
f (s, x + y) − f (s, x)

)
KN(x, dy)

=
∫

R2
e−BsyKN(x, dy)

= e−BsbN(x)

and

M
B,N
t =

∫
(0,t]×R2

(
f (s,XN

s− + y) − f (s,XN
s−)

)
(µN − νN)(ds, dy)

=
∫
(0,t]×R2

e−Bsy(µN − νN)(ds, dy).

So if t ≥ t0, then

e−Bt (XN
t − φt−t0(X

N
t0

)
)

(6)

= M
B,N
t − M

B,N
t0

+
∫ t

t0

e−Bs(bN(XN
s−) − b(XN

s−)
)
ds.

LEMMA 2.1. There exists some constant C such that

E

(
sup
t≥t0

e−λt |eBt (M
B,N
t − M

B,N
t0

)|
)

≤ CN−1/2e−λt0 .
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PROOF. By the product rule,

e(B−λI)t (M
B,N
t − M

B,N
t0

)

=
∫ t

t0

(B − λI)e(B−λI)s(MB,N
s − M

B,N
t0

) ds

+
∫ t

t0

∫
R2

e−λsy(µN − νN)(dy, ds)

and hence

E

(
sup
t≥t0

e−λt |eBt (M
B,N
t − M

B,N
t0

)|
)

≤ E

(
sup
t≥t0

∫ t

t0

(λ + µ)e−(λ+µ)s |(MB,N
s − M

B,N
t0

)1|ds

)

+ E

(
sup
t≥t0

∣∣∣∣
∫ t

t0

∫
R2

e−λsy(µN − νN)(dy, ds)

∣∣∣∣
)

≤
∫ ∞
t0

(λ + µ)e−(λ+µ)s(
E(MB,N

s − M
B,N
t0

)2
1
)1/2

ds

+ E

(
sup
t≥t0

∣∣∣∣
∫ t

t0

∫
R2

e−λsy(µN − νN)(dy, ds)

∣∣∣∣
2)1/2

.

Since

E

∫ t

0

∫
R2

|e−λsy|νN(ds, dy) < ∞
for all t ≥ 0, the process(∫ t

0

∫
R2

e−λsy(µN − νN)(dy, ds)

)
t≥0

is a martingale, and hence, by Doob’s L2 inequality

E

(
sup
t≥t0

∣∣∣∣
∫ t

t0

∫
R2

e−λsy(µN − νN)(dy, ds)

∣∣∣∣
2)

≤ 4 sup
t≥t0

E

(∣∣∣∣
∫ t

t0

∫
R2

e−λsy(µN − νN)(dy, ds)

∣∣∣∣
2)

.

Now

E
(
(M

B,N
t − M

B,N
t0

)2
1
) = E

∫ t

t0

∫
R2

e2µsy2
1νN(dy, ds)

≤ E

∫ t

t0

e2µs |mN ′′(XN
s−,0)|ds

≤ e2µtA

2µN
,
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where A is defined in (3). Similarly

E

(∣∣∣∣
∫ t

t0

∫
R2

e−λsy(µN − νN)(dy, ds)

∣∣∣∣
2)

≤ e−2λt0A

2λN
.

Hence

E

(
sup
t≥t0

e−λt |eBt (M
B,N
t − M

B,N
t0

)|
)

≤
∫ ∞
t0

(λ + µ)e−λs

(
A

2µN

)1/2

ds + e−λt0

(
2A

λN

)1/2

≤ A1/2(λ + µ + 2(λµ)1/2)

λ(2µ)1/2 N−1/2e−λt0 . �

THEOREM 2.2. For all ε > 0,

lim
t0→∞ lim sup

N→∞
P

(
sup
t≥t0

e−λt |XN
t − φt−t0(X

N
t0

)| > N−1/2ε

)
= 0.

PROOF. Let N0 be sufficiently large that supN≥N0
N1/2‖bN − b‖ < λε/2 and

set


N,t0 =
{

sup
t≥t0

|e−λt eBt (M
B,N
t − M

B,N
t0

)| ≤ N−1/2 ε

2

}
.

By (6), on the set 
N,t0 with N ≥ N0,

sup
t≥t0

e−λt |XN
t − φt−t0(X

N
t0

)| ≤ sup
t≥t0

|e−λt eBt (M
B,N
t − M

B,N
t0

)|

+ sup
t≥t0

e−λt
∫ t

t0

|eB(t−s)|‖bN − b‖ds

≤ N−1/2ε.

Hence

lim sup
N→∞

P

(
sup
t≥t0

e−λt |XN
t − φt−t0(X

N
t0

)| > N−1/2ε

)
≤ lim sup

N→∞
P(
c

N,t0
)

≤ 2Ce−λt0

ε

→ 0

as t0 → ∞, where the second inequality follows by Markov’s inequality and
Lemma 2.1. �
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Let Z∞ ∼ N(0, σ 2∞), where

σ 2∞ =
∫ ∞

0
e−2λsa(xs)2,2 ds.

THEOREM 2.3. The following converge in probability as N → ∞.

(i)

sup
t≤tN

|eµtXN
t,1 − x0,1| → 0

for any sequence tN → ∞ with e(λ+µ)tN = O(N1/2);
(ii)

sup
t≥tN

N1/2e−λt |XN
t,1| → 0

for any sequence tN with e(λ+µ)tN = ω(N1/2);
(iii)

sup
t1,t2≥tN

N1/2|e−λt1XN
t1,2 − e−λt2XN

t2,2| → 0

for any sequence tN → ∞.

Furthermore, if σ∞ �= 0, then

N1/2e−λtXN
t,2 ⇒ Z∞

as t,N → ∞.

REMARK 2.4. Given any sequence of times tN → ∞ as N → ∞, by the Sko-
rohod representation theorem, it is possible to choose a sample space in which
ZN∞ = N1/2e−λtN XN

tN ,2 → Z∞ almost surely as N → ∞. In this case the above
result can be expressed as

XN
t = x0,1e

−µt (e1 + ε1) + N−1/2Z∞eλt (e2 + ε2)(7)

where εi = εi(N, t) → 0, uniformly in t, in probability as N → ∞.

PROOF OF THEOREM 2.3. For any fixed t0, supt≤t0
|eµtXN

t,1 −x0,1| → 0 as an
immediate consequence of the fluid limit theorem. For (i) it is therefore sufficient
to show that for any ε > 0, limt0→∞ lim supN→∞ P(supt0≤tN

|eµtXN
t,1 − x0,1| >

ε) = 0. Now if t ≥ t0, φt−t0(X
N
t0

) = eB(t−t0)XN
t0

= eB(t−t0)(xt0 + N−1/2γ N
t0

). Since
x0 = x0,1e1, eB(t−t0)xt0 = e−µtx0. Hence

φt−t0(X
N
t0

) = e−µt (x0 + N−1/2eµt0γ N
t0,1e1) + N−1/2eλte−λt0γ N

t0,2e2,

and so

XN
t,1 = e−µt (x0,1 + N−1/2eµt0γ N

t0,1 + e(λ+µ)t e−λt (XN
t − φt−t0(X

N
t0

)
)
1

)
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and

XN
t,2 = N−1/2eλt (e−λt0γ N

t0,2 + N1/2e−λt (XN
t − φt−t0(X

N
t0

)
)
2

)
.(8)

Let N → ∞ and then t0 → ∞. Statements (i)–(iii) follow by Theorem 2.2 and the
fact that γ N

t0
⇒ γt0 , a Gaussian random variable.

For the last part, note that by (4),

e−λt0γ N
t0,2 ⇒ e−λt0γt0,2 =

∫ t0

0
e−λs〈e2, σ (xs) dWs〉

as N → ∞. Since∫ ∞
0

|e−λse∗
2σ(xs)|2 ds ≤

∫ ∞
0

e−2λs |a(xs)|ds

≤ A

2λ
,

where e∗
i is the transpose of ei , e−λt0γt0,2 → Z∞ almost surely as t0 → ∞, for

Z∞ =
(∫ ∞

0
e−λtσ (xt ) dWt

)
2
∼ N(0, σ 2∞).

The result follows by (8) and Theorem 2.2. �

2.1. Applications. Applications will be dealt with more fully in Section 7.
However, we illustrate here how the above result can be used to study the first
time that XN

t hits lθ or l−θ , the straight lines passing through the origin at angles
θ and −θ , where θ ∈ (0, π

2 ), as N → ∞. As XN
t is not continuous, we define the

time that XN
t first intersects one of the lines l±θ as

T N
θ = inf

{
t ≥ 0 :

∣∣∣∣
XN

t−,2

XN
t−,1

∣∣∣∣ ≤ | tan θ | and
∣∣∣∣
XN

t,2

XN
t,1

∣∣∣∣ ≥ | tan θ |
}
.

Let

tN = 1

2(λ + µ)
logN

and

cθ = 1

λ + µ
log

∣∣∣∣x0,1 tan θ

Z∞

∣∣∣∣.

THEOREM 2.5. Under the assumptions of Theorem 2.3

T N
θ − tN ⇒ cθ(9)

and

Nµ/(2(λ+µ))|XN

T N
θ

| ⇒ | sec θ || tan θ |−µ/(λ+µ)|x0|λ/(λ+µ)|Z∞|µ/(λ+µ)(10)

as N → ∞.
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PROOF. For simplicity, we work in a sample space in which ZN∞ → Z∞ al-
most surely. Define εi as in Remark 2.4. By observing that

x0,1e
−µte1 + N−1/2Z∞eλte2

first intersects one of the lines l±θ at time t = tN + cθ , given any ε > 0,

P(T N
θ ≤ tN + cθ − ε)

≤ P

(
sup

t≤tN+cθ−ε

∣∣∣∣
XN

t,2

XN
t,1

∣∣∣∣ ≥ | tan θ |
)

= P

(
sup

t≤tN+cθ−ε

∣∣∣∣x0,1e
−µtε1,2 + N−1/2Z∞eλt (1 + ε2,2)

x0,1e−µt (1 + ε1,1) + N−1/2Z∞eλtε2,1

∣∣∣∣ ≥ | tan θ |
)

→ 0

as N → ∞. Similarly,

P(T N
θ ≥ tN + cθ + ε) ≤ P

(
inf

t≥tN+cθ+ε

∣∣∣∣
XN

t,2

XN
t,1

∣∣∣∣ ≤ | tan θ |
)

→ 0.

The result follows immediately. �

REMARK 2.6. The sign of Z∞ determines whether XN
t hits lθ or l−θ at

time T N
θ . Since Z∞ is a Gaussian random variable with mean 0, each event occurs

with probability 1
2 .

EXAMPLE 2.7 (The OK Corral problem). The OK Corral process is a Z
2 val-

ued process (UN
t ,V N

t ) used to model the famous gunfight where UN
t and V N

t are
the number of gunmen on each side and UN

0 = V N
0 = N . Each gunman fires lethal

gunshots at times of a Poisson process with rate 1 until either there is no one left
on the other side or he is killed. The transition rates are

(u, v) →
{

(u − 1, v), at rate v,

(u, v − 1), at rate u

until uv = 0.
The process terminates when all the gunmen on one side are dead. We are in-

terested in the number of gunmen surviving when the process terminates, for large
values of N .

This model was formulated by Williams and McIlroy [7] and later studied by
Kingman [5] and subsequently Kingman and Volkov [6].

Let XN
t = (UN

t ,V N
t )/N . This gives a sequence of pure jump Markov processes,

starting from x0 = (1,1), with Lévy kernels

KN(x, dy) = Nx2δ(−1/N,0) + Nx1δ(0,−1/N).
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If we let

K(x, dy) = x2δ(−1,0) + x1δ(0,−1),

then

m(x, θ) = x2e
−θ1 + x1e

−θ2 = mN(x,Nθ)

N
,

b(x) =
(

0 −1
−1 0

)
x = bN(x)

and

a(x) =
(

x2 0
0 x1

)
.

So, under a rotation by π
4 , the conditions required for Theorem 2.5 are satisfied,

with λ = µ = 1. In the original coordinates, the process terminates when XN
t hits

the x or y axes. Under the rotation, this corresponds to hitting l± π
4

. Hence, if

the OK Corral process terminates at time TN and there are SN survivors, then
TN = T N

π/4 and SN = N |XN

T N
π/4

|, and so

TN − 1
4 logN ⇒ 1

4 log 2 − 1
2 log |Z∞|

and

N−3/4SN ⇒ 23/4|Z∞|1/2,

where Z∞ ∼ N(0, 1
3). The limiting distribution of N−3/4SN is the one obtained

by Kingman in [5].

REMARK 2.8. It is remarked by Kingman [5] that it is the occurrence of the
surprising power of N that makes the OK Corral process of interest. Theorem 2.5
shows that this is a special case of a more general phenomenon, and in fact, by
a suitable choice of λ

µ
, every number in the interval (1

2 ,1) may be obtained as a
power of N in this way.

3. Linearization of the limit process. We now turn to the general case where
b(x) = Bx + τ(x) for B = (−µ 0

0 λ

)
, µ,λ > 0, and τ : R

2 → R
2, twice continuously

differentiable, with τ(0) = ∇τ(0) = 0. Let φt (x) be the solution to the ordinary
differential equation

φ̇t (x) = b(φt (x)), φ0(x) = x.(11)

This section consists of a technical calculation which expresses φt (x) in a linear
form.

We are interested in the behavior of solutions starting near the stable manifold.
Lemma 3.2 proves the existence of the stable manifold and establishes the limiting
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behavior of a stable solution. First order behavior is investigated in Lemma 3.3,
and these results are then used in Theorem 3.4 to express solutions near the stable
manifold in the required linear form. Theorem 3.5 shows that over large time peri-
ods, solutions starting near the stable manifold approach the unstable manifold.

Throughout this section we use the following classical planar linearization the-
orem due to Hartman [4].

THEOREM 3.1. There exists a C1 diffeomorphism h :U → V = h(U), defined
on an open neighborhood U of the origin, with uniformly Hölder continuous par-
tial derivatives and having the form h(x) = x + o(x) such that

h(φt (x)) = eBth(x)

for all (t, x) with φt(x) ∈ U .

Pick 0 < δ < 1 sufficiently small that the ball of radius δ centered at the origin
is contained in U ∩ V . Since h−1(x) = x + o(x), and ∇h(x) = I + o(1) we can
further ensure that δ is sufficiently small that

sup
0<|x|<δ

(|h(x)/x| ∨ |h−1(x)/x|) < 2

and

sup
|x|<δ

(|∇h(x) − I | ∨ |∇h−1(x) − I |) < 1/2.

LEMMA 3.2. There exists an x0 with 0 < |x0| < δ/8 such that φt(x0) → 0 as
t → ∞. Furthermore, for any such x0, there exists some x̄0 with 0 < |x̄0| < δ/4
such that

eµtφt (x0) →
(

x̄0
0

)

as t → ∞, and

|φt (x0)| ≤ 2|x̄0|e−µt < δe−µt/2

for all t ≥ 0.

PROOF. Pick some x̄0 ∈ R with 0 < |x̄0| < δ/16 and define x0 = h−1(x̄0,0).
Then

0 < |x0| ≤ sup
0<|x|<δ

|h−1(x)/x||x̄0| < δ

8

and

φt(x0) = h−1
(
eBt

(
x̄0
0

))
= h−1

(
e−µt x̄0

0

)
→ 0
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as t → ∞.
Conversely, given x0 satisfying the above conditions, define x̄0 = h(x0)1. Note

that because of the form of h(x), x̄0 has the same sign as x0,1. Since eBth(x0) =
h(φt (x0)) → 0 as t → ∞, h(x0)2 = 0, and so

0 < |x̄0| = |h(x0)| ≤ 2|x0| < δ/4.

Also

eµtφt (x0) = eµth−1
(
eBt

(
x̄0
0

))
= eµt

((
e−µt x̄0

0

)
+ o(e−µt x̄0)

)
→

(
x̄0
0

)

as t → ∞, and

|φt(x0)| =
∣∣∣∣h−1

(
eBt

(
x̄0
0

))∣∣∣∣ =
∣∣∣∣h−1

(
e−µt x̄0

0

) ∣∣∣∣ ≤ 2|x̄0|e−µt <
δ

2
e−µt

for all t ≥ 0. �

LEMMA 3.3. (i) There exists some D0 ∈ (R2)∗ \ {0}, where 0 = (0 0), such
that

e−λt∇φt(x0) →
(

0
D0

)

as t → ∞.
(ii) If |x| < δ and |φt(x)| < δ/2, then |∇φt(x)| < 4eλt .

(iii) If |x|+ |y| < δ and sup0≤θ≤1 |φt (x + θy)| < δ/2, then there exist constants
K ∈ R and 0 < α ≤ 1 such that

|∇φt(x + y) − ∇φt(x)| ≤ Keλt(1+α)|y|α.

PROOF. (i) Let D0 = ∇h2(x0) ∈ (R2)∗ \ {0}. Then

e−λt∇φt(x0) = ∇h−1
(

e−µt x̄0
0

)
e(B−λI)t∇h(x0)

→
(

0 0
0 1

)
∇h(x0)

=
(

0
D0

)

as t → ∞.
(ii) If |φt(x)| < δ/2, then |eBth(x)| = |h(φt (x))| < δ and so

|∇φt(x)| = |∇h−1(eBth(x))eBt∇h(x)|
≤ sup

|y|<δ

|∇h−1(y)| sup
|y|<δ

|∇h(y)|eλt

< 4eλt .
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(iii) Since h and h−1 have uniformly Hölder continuous partial derivatives,
there exists some K0 ∈ R and 0 < α < 1 such that

|∇h(w) − ∇h(z)| ≤ K0|w − z|α
and

|∇h−1(w) − ∇h−1(z)| ≤ K0|w − z|α.

Therefore

|∇φt(x + y) − ∇φt(x)|
= ∣∣∇h−1(

eBth(x + y)
)
eBt∇h(x + y) − ∇h−1(eBth(x))eBt∇h(x)

∣∣
≤ ∣∣∇h−1(

eBth(x + y)
)
eBt (∇h(x + y) − ∇h(x)

)∣∣
+ ∣∣(∇h−1(

eBth(x + y)
) − ∇h−1(eBth(x))

)
eBt∇h(x)

∣∣
≤ 2eλtK0|y|α + 2eλtK0

∣∣eλt (h(x + y) − h(x)
)∣∣α

≤ 8K0e
λt (1+α)|y|α. �

Suppose z ∈ R
2, with 0 < |z| < 1, and xz = x0 + z.

THEOREM 3.4. Fix C and consider the limit z → 0 with | z
D0z

| < C, where
D0 is defined in Lemma 3.3. There exist wi , i = 1,2 (not necessarily unique) with
wi(t, z) → 0 uniformly in t ∈ [R,− 1

λ
log |z| − R] as z → 0 and R → ∞ such that

φt(xz) = x̄0e
−µt (e1 + w1) + D0ze

λt (e2 + w2).

PROOF. Suppose | z
D0z

| ≤ C and R > 1
λ

log 8
δ−4|x̄0| . If |x − x0| ≤ |z| and

0 ≤ t ≤
(

inf|x−x0|≤|z| inf
{
s > 0 : |φs(x)| > δ

2

})
∧

(
−1

λ
log |z| − R

)
,

then

|φt(x)| ≤ |φt (x0)| + |φt(x) − φt(x0)|
≤ 2|x̄0|e−µt + ∣∣∇φt

(
x0 + θ ′(x − x0)

)∣∣|x − x0|
≤ 2|x̄0|e−µt + 4|z|eλt

≤ 2|x̄0| + 4e−λR

<
δ

2
,

where θ ′ ∈ (0,1). Hence |φt (x)| < δ/2 for all |x−x0| ≤ |z| and t ≤ − 1
λ

log |z|−R.
Now

φt (xz) = φt(x0) + ∇φt(x0)z + (∇φt(x0 + θz) − ∇φt(x0)
)
z
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for some θ ∈ (0,1) and so, defining

w1(t, z) = x̄−1
0

(
eµtφt (x0) − x̄0e1

)

and

w2(t, z) = (D0z)
−1(

e−λt∇φt(x0)z − D0ze2 + e−λt (∇φt(x0 + θz) − ∇φt(x0)
)
z
)
,

φt (xz) = x̄0e
−µt (e1 + w1) + D0ze

λt (e2 + w2).

Then |w1| → 0 uniformly in t ≥ R as R → ∞ by Theorem 3.2, and

|w2| ≤ |z|
|D0z|

(∣∣∣∣e−λt∇φt(x0) −
(

0
D0

) ∣∣∣∣ + Keλαt |z|α
)

≤ C

(∣∣∣∣e−λt∇φt(x0) −
(

0
D0

) ∣∣∣∣ + Ke−λαR

)

→ 0

uniformly in t ∈ [R,− 1
λ

log |z| − R] as R → ∞ and z → 0, by Lemma 3.3. �

Since φ−1
t (x) satisfies (11) with b replaced by −b, we may apply Lemma 3.2

and Lemma 3.3 to deduce the existence of x∞ with 0 < |x∞| < δ/8 such
that eλtφ−1

t (x∞) → ( 0
x̄∞

)
for some x̄∞ ∈ R as t → ∞, and D∞ such that

e−µt∇φ−1
t (x∞) → (D∞

0

)
as t → ∞. Suppose that as z → 0, the sign of D0z is

eventually constant and nonzero. As x̄∞ has the same sign as x∞,2 (see the proof
of Lemma 3.2), we may choose x∞ such that D0z

x̄∞ > 0.
There exists some t∞ ≥ 0 such that φt(x0) does not intersect the line x∞ + rD∗∞

for any t ≥ t∞. Let

sz = inf{t ≥ t∞ :φt(xz) = x∞ + rD∗∞ for some r ∈ R}.

THEOREM 3.5. Fix C > 0 and consider the limit z → 0 with | z
D0z

| ≤ C. Then

sz − 1

λ
log

x̄∞
D0z

→ 0

and
(

x̄∞
D0z

)µ/λ(
φsz(xz) − x∞

) → x̄0
D∗∞

|D∞|2
as z → 0.

PROOF. We shall prove this theorem in the case where for z sufficiently small
D0z, x̄0 > 0. The other cases are similar.
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Since φt (x0)2
φt (x0)1

= eµtφt (x0)2
eµtφt (x0)1

→ 0
x̄0

= 0 as t → ∞, there exists some T ≥ 0 such

that |φt (x0)2
φt (x0)1

| < 1 for all t ≥ T . Let

tz = inf{t ≥ T : |φt(xz)1| = |φt (xz)2|}.
By expressing φt(xz) in the form derived in Theorem 3.4, we may use a similar
argument to that in Theorem 2.5 to show

tz − 1

λ + µ
log

x̄0

D0z
→ 0

as z → 0. Let f :B(0,1) → R be defined by f (z) = φtz(xz)1. Again as in Theo-
rem 2.5,

(D0z)
−µ/(λ+µ)f (z) → x̄

λ/(λ+µ)
0

as z → 0.
Define g : R+ → R by

g(y) = φ−1
t ′y

(
x∞ + y

D∗∞
|D∞|2

)
1
,

where t ′y is defined in the same way as tz except for φ−1 instead of φ. [The scaling

factor of |D∞|2 is chosen so that D∞(y
D∗∞

|D∞|2 ) = y.] Note that φsz(xz) = x∞ +
g−1(f (z))

D∗∞
|D∞|2 .

By a similar argument to above, y−λ/(λ+µ)g(y) → x̄
µ/(λ+µ)∞ as y → 0. But then∣∣∣∣

(
x̄∞
D0z

)µ/λ

g−1(f (z)) − x̄0

∣∣∣∣
≤ (D0z)

−µ/λ
∣∣x̄µ/λ∞ g−1(f (z)) − f (z)(λ+µ)/λ

∣∣
+ ∣∣((D0z)

−µ/(λ+µ)f (z)
)(λ+µ)/λ − x̄0

∣∣

=
(

(D0z)
−µ/(λ+µ)f (z)

y−λ/(λ+µ)g(y)

)(λ+µ)/λ∣∣x̄µ/λ∞ − (
y−λ/(λ+µ)g(y)

)(λ+µ)/λ∣∣

+ ∣∣((D0z)
−µ/(λ+µ)f (z)

)(λ+µ)/λ − x̄0
∣∣

→ 0

as z → 0, where y = g−1(f (z)) → 0 as z → 0. So
(

x̄∞
D0z

)µ/λ(
φsz(xz) − x∞

) =
(

x̄∞
D0z

)µ/λ

g−1(f (z))
D∗∞

|D∞|2 → x̄0
D∗∞

|D∞|2 .

Also, since t ′y = sz − tz, and t ′y − 1
λ+µ

log x̄∞
y

→ 0 as y → 0,

(sz − tz) − 1

λ + µ
log

x̄∞
(D0z/x̄∞)µ/λx̄0

→ 0,
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that is,

sz − 1

λ
log

x̄∞
D0z

→ 0. �

4. Convergence of the fluctuations. Now suppose XN
t is a pure jump

Markov process satisfying all the conditions in Section 2, except with b(x) =
Bx + τ(x), B and τ defined as in Section 3. In this section we express φt−t0(X

N
t0

)

in a linear form for large values of N and t0.
Recall from Section 2 that γ N

t = N1/2(XN
t − xt ) and γ N

t ⇒ γt for each t as
N → ∞, where (γt )t≥0 is the unique solution to the linear stochastic differential
equation (4).

Fix some t0 ≥ 0. Then φt−t0(X
N
t0

) = φt(φ
−1
t0

(XN
t0

)) and using the same notation
as in Section 2, there exists some θ ∈ (0,1) such that

φ−1
t0

(XN
t0

) = φ−1
t0

(xt0) + N−1/2∇φ−1
t0

(xt0)γ
N
t0

+ N−1/2(∇φ−1
t0

(xt0 + θN−1/2γ N
t0

) − ∇φ−1
t0

(xt0)
)
γ N
t0

= x0 + N−1/2ZN
t0

,

where ZN
t0

⇒ Zt0 = ∇φ−1
t0

(xt0)γt0 as N → ∞. Now

D0Zt0 = lim
t→∞ e∗

2e
−λt∇φt(x0)

∫ t0

0
∇φ−1

s (xs)σ (xs) dWs

= lim
t→∞ e∗

2e
−λt

∫ t0

0
∇φt−s(xs)σ (xs) dWs

and

lim inf
t→∞ e−2λt

∫ ∞
0

|e∗
2∇φt−s(xs)σ (xs)|2 ds

≤ lim inf
t→∞ e−2λt

∫ ∞
0

|∇φt−s(xs)2|2|a(xs)|ds

≤ lim inf
t→∞ e−2λt

∫ ∞
0

16|Ds |2e2λ(t−s)Ads

≤ 32A

λ
,

where A is defined in (3) and the modulus of Ds = limt→∞ e−λt∇φt(xs)2 is
bounded above by 2, by the same argument used to show existence of D0 in The-
orem 3.3. Hence, if we define

σ 2∞ =
∫ ∞

0
lim

t→∞ e−2λt∇φt−s(xs)2a(xs)∇φt−s(xs)
∗
2 ds

=
∫ ∞

0
e−2λsDsa(xs)D

∗
s ds,
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then D0Zt0 → Z∞ almost surely as t0 → ∞, where Z∞ ∼ N(0, σ 2∞).
Choose x+∞ and x−∞, with 0 < |x±∞| < δ/2 and x−

∞,2 < 0 < x+
∞,2, such that

φ−1
t (x±∞) → 0 as t → ∞. Define a random variable X∞ on the same sample space

as Z∞ by

X∞ =



x+∞, if Z∞ > 0,
0, if Z∞ = 0,
x−∞, if Z∞ < 0,

and define �X∞ similarly, except replacing x±∞ by x̄±∞.
By the Skorohod representation theorem, we may assume we are working in a

sample space in which ZN
t0

→ Zt0 almost surely for all t0 ∈ N. Without this as-
sumption, analogous results about weak convergence hold, however this assump-
tion simplifies the formulation. Let

SN,t0 = inf{s > t∞ :φs−t0(X
N
t0

) = X∞ + rD∗∞ for some r ∈ R}(12)

and

SN = 1

2λ
logN + 1

λ
log

�X∞
Z∞

,(13)

where we interpret 0
0 = 1.

THEOREM 4.1. Suppose σ∞ �= 0.

(i) As N → ∞ and then t0 → ∞,

eµt |φt−t0(X
N
t0

) − φt(x0)| → 0

uniformly in t on compacts in probability.
(ii) If R ≤ t ≤ 1

2λ
logN − R, then there exist ε′

i (N, t0, t) → 0, uniformly in t

in probability as R,N → ∞ and then t0 → ∞ such that

φt−t0(X
N
t0

) = x̄0e
−µt (e1 + ε′

1) + N−1/2Z∞eλt (e2 + ε′
2).

(iii) As N → ∞ and then t0 → ∞, SN,t0 −SN → 0 in probability. Furthermore,
if t = SN,t0 − s for some s, then

eλs |φt−t0(X
N
t0

) − φ−1
s (X∞)| → 0

uniformly in s on compacts, in probability as N → ∞ and then t0 → ∞.

PROOF. (i) By Theorem 3.3, for some θ ∈ (0,1)

eµt |φt−t0(X
N
t0

) − φt(x0)| = eµt |∇φt(x0 + θN−1/2ZN
t0

)|N−1/2|ZN
t0

|
≤ 4e(λ+µ)tN−1/2|ZN

t0
|

→ 0

uniformly in t on compacts in probability.
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(ii) Apply Theorem 3.4 with z = N−1/2ZN
t0

and use the fact that D0Z
N
t0

→ Z∞
almost surely as N → ∞ and then t0 → ∞. A potential problem arises when Z∞
is close to 0, however as it is a Gaussian random variable, the probability of this
occurring can be made arbitrarily small.

(iii) The first result follows from Theorem 3.5 by a similar argument to (ii). For
the second result apply a similar argument to the proof of (i) to φ−1

t . �

5. A fluid limit for jump Markov processes. We now show that for large
values of N and t , XN

t is in some sense close to φt−t0(X
N
t0

) as t0 → ∞, and com-
bine this with results from Section 3 to obtain results analogous to those in the
linear case in Section 2.

Let f (t, x) = e−Bt (x − φt−t0(X
N
t0

)). By Itô’s formula,

f (t,XN
t ) = f (0,XN

0 ) + M
B,N
t +

∫ t

0

(
∂f

∂t
+ Kf

)
(s,XN

s−) ds,

where
∂f

∂t
= −Be−Btx − e−Btτ (φt−t0(X

N
t0

)),

Kf (s,XN
s−) =

∫
R2

(
f (s,XN

s− + y) − f (s,XN
s−)

)
KN(XN

s−, dy)

=
∫

R2
e−BsyKN(XN

s−, dy)

= e−BsbN(XN
s−)

and

M
B,N
t =

∫
(0,t]×R2

(
f (s,XN

s− + y) − f (s,XN
s−)

)
(µN − νN)(ds, dy)

=
∫
(0,t]×R2

e−Bsy(µN − νN)(ds, dy).

So if t ≥ t0, then

e−Bt (XN
t − φt−t0(X

N
t0

)
)

= M
B,N
t − M

B,N
t0

(14)

+
∫ t

t0

e−Bs(bN(XN
s−) − b(XN

s−)
)
ds

+
∫ t

t0

e−Bs(τ(XN
s−) − τ(φs−t0(X

N
t0

))
)
ds.

Since τ ∈ C2, ∇τ is Lipschitz continuous on the unit disc with Lipschitz con-
stant denoted by K0. In addition to the restrictions on δ from Section 3, suppose
δ <

λµ
9K0(λ+µ)

.



CONVERGENCE NEAR SADDLE POINTS 1161

THEOREM 5.1. For all ε > 0,

lim
t0→0

lim sup
N→∞

P

(
sup

t0≤t≤SN,t0

e−λt |XN
t − φt−t0(X

N
t0

)| > εN−1/2
)

= 0.

PROOF. Let

RN,t0 = inf{t ≥ t0 : e−λt |XN
t − φt−t0(X

N
t0

)| ≥ N−1/2ε} ∧ SN,t0 .

We shall show that RN,t0 = SN,t0 by bounding the terms on the right-hand side
of (14).

Fix c ≥ 0. Since increasing ε decreases the above probability, we may assume

0 < ε < η0 ∧ λe−λc

9K0
. Suppose C ≥ 4 and pick R ≥ 1

λ
log(

18CK0e
λc

λ
). Define


1
N,t0

=
{

sup
t≥t0

e−λt |eBt (M
B,N
t − M

B,N
t0

)| < N−1/2 ε

3

}
,


2
N,t0,R

=
{

sup
0≤t≤R

eµt |φt−t0(X
N
t0

) − φt(x0)| < δ

2

}

∩
{

sup
R<t<SN,t0−R

|ε′
1(N, t0, t)| ∨ |ε′

2(N, t0, t)| < 1
}

∩
{

sup
SN,t0−R≤t≤SN,t0

eλ(SN,t0−t)|φt−t0(X
N
t0

) − φ−1
SN,t0−t (X∞)| < δ

2

}
,

where ε′
1 and ε′

2 are defined in Theorem 4.1, and


3
N,t0,c

=
{
St0,N ≤ 1

2λ
logN + c

}
.

Let N0 be sufficiently large that supN≥N0
N1/2‖bN − b‖ < λε/3.

On the set 
1
N,t0

∩ 
2
N,t0,R

∩ 
3
N,t0,c

∩ {C−1 < |Z∞| < C} with N ≥ N0, if
t0 ≤ t < R, then

|φt−t0(X
N
t0

)| ≤ δe−µt ,

if R ≤ t ≤ SN,t0 − R, then

|φt−t0(X
N
t0

)| ≤ |x̄0|e−µt (1 + |ε′
1|) + N−1/2|Z∞|eλt (1 + |ε′

2|)

≤ δ

2
e−µt + N−1/22Ceλt ,

and if SN,t0 − R ≤ t ≤ SN,t0 , then

|φt−t0(X
N
t0

)| < δe−λ(SN,t0−t).
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From (14),

e−λt |XN
t − φt−t0(X

N
t0

)|

≤ e−λt |eBt (M
B,N
t − M

B,N
t0

)| + e−λt
∫ t

t0

|eB(t−s)||bN(XN
s−) − b(XN

s−)|ds

+ e−λt
∫ t

t0

|eB(t−s)||τ(XN
s−) − τ(φs−t0(X

N
t0

))|ds

≤ e−λt |eBt (M
B,N
t − M

B,N
t0

)| + 1

λ
‖bN − b‖

+
∫ t

t0

e−λs
∣∣∇τ

(
φs−t0(X

N
t0

) + θ
(
XN

s− − φs−t0(X
N
t0

)
))∣∣|XN

s− − φs−t0(X
N
t0

)|ds

≤ e−λt |eBt (M
B,N
t − M

B,N
t0

)| + 1

λ
‖bN − b‖

+ K0

∫ t

t0

(|φs−t0(X
N
t0

)| + |XN
s− − φs−t0(X

N
t0

)|)e−λs |XN
s− − φs−t0(X

N
t0

)|ds,

for some θ ∈ (0,1).
Hence, on 
1

N,t0
∩ 
2

N,t0,R
∩ 
3

N,t0,c
∩ {C−1 < |Z∞| < C} with N ≥ N0,

sup
t0≤t≤RN,t0

e−λt |XN
t − φt−t0(X

N
t0

)|

≤ N−1/2 ε

3
+ N−1/2 ε

3

+ K0

∫ RN,t0

t0

(|φs−t0(X
N
t0

)| + |XN
s− − φs−t0(X

N
t0

)|)N−1/2ε ds

≤ N−1/2ε

(
2

3
+ K0

(∫ Rt0,N

t0

(
δ
(
e−µt + e−λ(SN,t0−t)) + N−1/2εeλt )dt

+
∫ SN,t0−R

t0

N−1/22Ceλt dt

))

≤ N−1/2ε

(
2

3
+ K0

(
δ(λ + µ)

λµ
+ εeλc

λ
+ 2Ceλc

λ
e−λR

))

< N−1/2ε.

Since XN
t is right continuous, this means RN,t0 = SN,t0 and so

P

(
sup

t0≤t≤SN,t0

e−λt |XN
t − φt−t0(X

N
t0

)| > N−1/2ε

)

≤ P((
1
N,t0

)c) + P((
2
N,t0,R

)c) + P((
3
N,t0,c

)c) − P
(|Z∞| /∈ (C−1,C)

)
.
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Letting N, t0,R,C, c → ∞ in that order, and using Lemma 2.1 and Theorem 4.1
gives

lim
t0→∞ lim sup

N→∞
P

(
sup

t≤SN,t0

e−λt |XN
t − φt−t0(X

N
t0

)| > N−1/2ε

)
= 0.

�

REMARK 5.2. The same idea can be used to obtain convergence results for
arbitrary matrices B , for example, with eigenvalues having the same sign or in
higher dimensions. The rate of convergence and the time up to which convergence
is valid will depend on the eigenvalues of B and bounds on |φt (x)|.

Combining the above result with Theorem 4.1 we get the following.

THEOREM 5.3. (i) For all N ∈ N,

N1/2|XN
t − φt(x0)|

is bounded uniformly in t on compacts, in probability. (This follows directly from
the fluid limit theorem and diffusion approximation stated in Section 2.)

(ii) Suppose R ≤ t ≤ 1
2λ

logN − R. Then provided σ∞ �= 0, for i = 1,2 there
exist εi(N, t) → 0 uniformly in t in probability as R,N → ∞ such that

XN
t = x̄0e

−µt (e1 + ε1) + N−1/2Z∞eλt (e2 + ε2),

[cf. (7)].
(iii) As N → ∞

XN
SN−s → φ−1

s (X∞),

uniformly on compacts in s ≥ 0, in probability.

REMARK 5.4. These results can be reformulated as results about weak con-
vergence which are true, independent of the choice of sample space, in a manner
analogous to Theorem 2.3. In particular, for any sequence tN → ∞ as N → ∞,
ZN∞ = N1/2e−λtN XN

tN ,2 ⇒ Z∞ and working on a space in which this sequence
converges almost surely is sufficient for Theorem 5.3.

6. Continuous diffusion Markov processes. Interest in this problem arose
through looking at the OK Corral problem. It was therefore natural to prove results
for pure jump Markov processes. However the proof of the analogous result in the
case of continuous diffusion processes is similar and we give it below. The pure
jump and continuous cases can be combined to obtain results for more general
Markov processes.
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Let (XN
t )t≥0 be a sequence of diffusion processes, starting from x0 and taking

values in some open subset S ⊂ R
2, that satisfy the stochastic differential equations

dXN
t = σN(XN

t ) dWt + bN(XN
t ) dt

with σN,bN Lipschitz.
Suppose that there exist limit functions b(x) = Bx + τ(x), with B and τ as in

Section 3 and σ , bounded, satisfying

(a)

sup
x∈S

N1/2|bN(x) − b(x)| → 0.

(b)

sup
x∈S

|N1/2σN(x) − σ(x)| → 0.

It follows that there exists a constant A such that for all N

‖σN‖ ≤ (A/N)1/2.(15)

Let γ N
t = N1/2(XN

t − xt ), where xt is defined as before. It is straightforward,
using Gronwall’s lemma, to show that γ N

t → γt as N → ∞, where (γt )t≥0 is the
unique solution to the linear stochastic differential equation

dγt = σ(xt ) dWt + ∇b(xt )γt dt(16)

starting from 0, W a Brownian motion.
Consider for t ≥ t0 f (t, x) = e−Bt (x − φt−t0(X

N
t0

)). By Itô’s formula,

f (t,XN
t ) = f (t0,X

N
t0

) + M
B,N
t − M

B,N
t0

+
∫ t

t0

(
∂f

∂s
(s,XN

s ) + e−BsbN(XN
s )

)
ds,

where
∂f

∂t
= −Be−Btx − e−Btτ (φt−t0(Xt0))

and

M
B,N
t =

∫ t

0
e−BsσN(XN

s ) dWs.

So if t ≥ t0,

e−Bt (XN
t − φt−t0(X

N
t0

)
)

= M
B,N
t − M

B,N
t0

(17)

+
∫ t

t0

e−Bs(bN(XN
s−) − b(XN

s−)
)
ds

+
∫ t

t0

e−Bs(τ(XN
s−) − τ(φs−t0(X

N
t0

))
)
ds.



CONVERGENCE NEAR SADDLE POINTS 1165

By comparing this with (14), it is sufficient to prove an analogous result to
Lemma 2.1, for the conclusion of Theorem 5.3 to hold for diffusion processes.

LEMMA 6.1. There exists some constant C such that

E

(
sup
t≥t0

e−λt |eBt (M
B,N
t − M

B,N
t0

)|
)

≤ CN−1/2e−λt0 .

PROOF. By the product rule,

e(B−λI)t (M
B,N
t − M

B,N
t0

) =
∫ t

t0

(B − λI)e(B−λI)s(MB,N
s − M

B,N
t0

) ds

+
∫ t

t0

e−λsσN(XN
s ) dWs

and hence

E

(
sup
t≥t0

e−λt |eBt (M
B,N
t − M

B,N
t0

)|
)

≤ E

(
sup
t≥t0

∫ t

t0

(λ + µ)e−(λ+µ)s |(MB,N
s − M

B,N
t0

)1|ds

)

+ E

(
sup
t≥t0

∣∣∣∣
∫ t

t0

e−λsσN(XN
s ) dWs

∣∣∣∣
)

≤
∫ ∞
t0

(λ + µ)e−(λ+µ)s(
E(MB,N

s − M
B,N
t0

)2
1
)1/2

ds

+ E

(
sup
t≥t0

∣∣∣∣
∫ t

t0

e−λsσN(XN
s ) dWs

∣∣∣∣
2)1/2

.

Since

E

∫ t

0
‖e−λsσN(XN

s )‖2 ds < ∞
for all t ≥ 0, the process (∫ t

0

∫
R2

e−λsσN(XN
s ) dWs

)
t≥0

is a martingale, and hence, by Doob’s L2 inequality

E

(
sup
t≥t0

∣∣∣∣
∫ t

t0

e−λsσN(XN
s ) dWs

∣∣∣∣
2)

≤ 4 sup
t≥t0

E

(∣∣∣∣
∫ t

t0

e−λsσN(XN
s ) dWs

∣∣∣∣
2)

.
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Now

E
(
(M

B,N
t − M

B,N
t0

)2
1
) = E

∫ t

t0

e2µsaN(XN
s )1,1 ds

≤ E

∫ t

t0

e2µs A

N
ds

≤ e2µtA

2µN
,

where A is defined in (15). Similarly

E

(∣∣∣∣
∫ t

t0

e−λsσN(XN
s ) dWs

∣∣∣∣
2)

≤ e−2λt0A

2λN
.

Hence

E

(
sup
t≥t0

e−λt |eBt (M
B,N
t − M

B,N
t0

)|
)

≤
∫ ∞
t0

(λ + µ)e−λs

(
A

2µN

)1/2

ds + e−λt0

(
2A

λN

)1/2

≤ A1/2(λ + µ + 2(λµ)1/2)

λ(2µ)1/2 N−1/2e−λt0 . �

Define σ∞,Z∞,X∞, �X∞ as in Section 4 and let

SN = 1

2λ
logN + 1

λ
log

�X∞
Z∞

.

The following analogous theorem to Theorem 5.3 for diffusion processes holds.

THEOREM 6.2. (i) For all N ∈ N,

N1/2|XN
t − φt(x0)|

is bounded uniformly in t on compacts, in probability.
(ii) Suppose R ≤ t ≤ 1

2λ
logN − R. Then provided σ∞ �= 0, for i = 1,2 there

exist εi(N, t) → 0 uniformly in t in probability as R,N → ∞ such that

XN
t = x̄0e

−µt (e1 + ε1) + N−1/2Z∞eλt (e2 + ε2),

[cf. (7)].
(iii) As N → ∞

XN
SN−s → φ−1

s (X∞),

uniformly on compacts in s ≥ 0, in probability.
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7. Applications. Throughout this section we work in a sample space in which
ZN∞ → Z∞ almost surely so that, in particular, the statement of Theorem 5.3 holds.

7.1. Hitting lines through the origin. As in the linear case, Theorems 5.3
and 6.2 may be used to study the first time that XN

t hits lθ or l−θ , the straight
lines passing through the origin at angles θ and −θ , where θ ∈ (0, π

2 ), as N → ∞.
We define the time that XN

t first intersects one of the lines l±θ as in Section 2 by

T N
θ = inf

{
t ≥ 0 :

∣∣∣∣
XN

t−,2

XN
t−,1

∣∣∣∣ ≤ | tan θ | and
∣∣∣∣
XN

t,2

XN
t,1

∣∣∣∣ ≥ | tan θ |
}
.

First note that by Lemma 3.2,

φt(x0)2

φt(x0)1
= eµtφt (x0)2

eµtφt (x0)1
→ 0

x̄0
= 0

as t → ∞. In particular, since tan θ �= 0, there exists some sθ ≥ 0 such that
|φt (x0)2
φt (x0)1

| < | tan θ | for all t ≥ sθ . To rule out the trivial case where T N
θ converges

to the first time that φt(x0) hits l±θ , we shall assume that x0 is chosen sufficiently
close to the origin that sθ = 0.

We prove the following result in the case where XN
t is a pure jump process. The

proof for continuous diffusion processes is identical, except uses Theorem 6.2 in
place of Theorem 5.3.

THEOREM 7.1. Under the conditions required for Theorem 5.3

T N
θ − tN ⇒ cθ

and

Nµ/(2(λ+µ))|XN

T N
θ

| ⇒ | sec θ || tan θ |−µ/(λ+µ)|x̄0|λ/(λ+µ)|Z∞|µ/(λ+µ)

as N → ∞, where

tN = 1

2(λ + µ)
logN and cθ = 1

λ + µ
log

∣∣∣∣ x̄0 tan θ

Z∞

∣∣∣∣.

PROOF. By the fluid limit theorem and diffusion approximation, for any con-
stant R > 0,

P(T N
θ ≤ R) ≤ P

(
sup
t≤R

∣∣∣∣
XN

t,2

XN
t,1

∣∣∣∣ ≥ | tan θ |
)

= P

(
sup
t≤R

∣∣∣∣
φt (x0)2 + N−1/2γ N

t,2

φt (x0)1 + N−1/2γ N
t,1

∣∣∣∣ ≥ | tan θ |
)

→ 0
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as N → ∞.
By an identical argument to Theorem 2.5

P(R ≤ T N
θ ≤ tN + cθ − ε) → 0

and

P(tN + cθ + ε ≤ T N
θ ≤ SN − R) → 0

as R,N → ∞. The result follows immediately. �

REMARK 7.2. As in the linear case, the sign of Z∞ determines whether XN
t

hits lθ or l−θ at time T N
θ . Since Z∞ is a Gaussian random variable with mean 0,

each event occurs with probability 1
2 . Furthermore, provided x∞ is chosen suffi-

ciently close to the origin that φ−1
t (x∞) does not intersect l±θ , if XN

t hits one of
the two lines then the probability of it hitting either line again before SN converges
to 0 as N → ∞.

7.2. Minimum distance from the origin. Another application is to investigate
the minimum distance from the origin that XN

t can attain for large values of N .

THEOREM 7.3. Under the conditions required for Theorem 5.3,

Nµ/(2(λ+µ)) inf
t≤SN

|XN
t | ⇒

(
µ

λ

)λ/(2(λ+µ))( λ

µ
+ 1

)1/2
|x̄0|λ/(λ+µ)|Z∞|µ/(λ+µ)

as N → ∞.

PROOF. By the fluid limit theorem and diffusion approximation, for any con-
stant R > 0,

inf
t≤R

Nµ/(2(λ+µ))|XN
t | ≥ inf

t≤R
Nµ/(2(λ+µ))(|φt(x0)| − N−1/2|γ N

t |) → ∞

as N → ∞.
By Theorem 5.3,

inf
R≤t≤tN−R

Nµ/(2(λ+µ))|XN
t |

≥ inf
R≤t≤tN−R

(
eµ(tN−t)|x̄0|(1 − |ε1|) − eλ(t−tN )|Z∞|(1 + |ε2|))

→ ∞
in probability as R,N → ∞.

For each c ≥ 0 there exists some ε → 0 in probability such that

inf
SN−c≤t≤SN

Nµ/(2(λ+µ))|XN
t | ≥ inf

0≤s≤c
Nµ/(2(λ+µ))(|φ−1

s (X∞)| − ε
) → ∞.
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Also

inf
tN+R≤t≤1/(2λ) logN−R

Nµ/(2(λ+µ))|XN
t |

≥ inf
tN+R≤t≤1/(2λ) logN−R

eλ(t−tN )|Z∞|(1 − |ε2|) − eµ(tN−t)|x̄0|(1 + |ε1|)
→ ∞

in probability as R,N → ∞.
Finally if t = tN + c, then

Nµ/(2(λ+µ))|XN
t | = Nµ/(2(λ+µ))((e−µt x̄0(1 + ε1,1) + N−1/2Z∞eλtε2,1

)2

+ (
e−µt x̄0ε1,2 + N−1/2Z∞eλt (1 + ε2,2)

)2)1/2

→ (
(e−µcx̄0)

2 + (eλcZ∞)2)1/2

in probability uniformly in c on compact intervals. The right-hand side is mini-
mized when

c = 1

2(λ + µ)
log

µx̄2
0

Z2∞λ
.

Therefore

Nµ/(2(λ+µ)) inf
t≤SN

|XN
t | ⇒

(
µ

λ

)λ/(2(λ+µ))( λ

µ
+ 1

)1/2

|x̄0|λ/(λ+µ)|Z∞|µ/(λ+µ)

as N → ∞. �

EXAMPLE 7.4. Let (UN
t ,V N

t ) be a Z
2 valued process modelling the sizes of

two populations of the same species with UN
0 = V N

0 = N . The environment that
they occupy is assumed to be closed with the initial population density independent
of N . Each individual reproduces at rate 1. Additionally, the individuals are in
competition with each other, a death occurring due to competition over resources at
rate α and due to aggression between the populations at rate β . Hence the transition
rates are

(u, v) →




(u + 1, v), at rate u,
(u − 1, v), at rate αu(u + v − 1)/N + βuv/N ,
(u, v + 1), at rate v,
(u, v − 1), at rate αv(u + v − 1)/N + βuv/N .

Let XN
t = (UN

t ,V N
t )/N . This gives a sequence of pure jump Markov processes,

starting from x0 = (1,1), with Lévy kernels

KN(x, dy) = Nx1δ(1/N,0) + N
(
αx1(x1 + x2 − 1/N) + βx1x2

)
δ(−1/N,0)

+ Nx2δ(0,1/N) + N
(
αx2(x1 + x2 − 1/N) + βx1x2

)
δ(0,−1/N).
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If we let

K(x, dy) = x1δ(1,0) + (αx2
1 + βx1x2)δ(−1,0) + x2δ(0,1) + (αx2

2 + βx1x2)δ(0,−1)

then for S = (0,2)2 and η0 = 1,

m(x, θ) = x1e
θ1 + (αx2

1 + βx1x2)e
−θ1 + x2e

θ2 + (αx2
2 + βx1x2)e

−θ2

satisfies

sup
x∈SN

sup
|θ |≤η0

∣∣∣∣m
N(x,Nθ)

N
− m(x, θ)

∣∣∣∣ → 0

as N → ∞. Therefore

b(x) = m′(x,0) =
(

x1
(
1 − αx1 − (α + β)x2

)
x2

(
1 − αx2 − (α + β)x1

)
)

.

The deterministic differential equation

φ̇t (x) = b(φt (x)), φ0(x) = x

is a special case of the Lotka–Volterra model for two-species competition. See [1]
for a detailed interpretation of the parameters α and β . Further generalizations are
discussed in [3].

It is straightforward to check that b(x) is C1 on S and satisfies

sup
x∈SN

N1/2|bN(x) − b(x)| → 0

as N → 0, and that

a(x) =
(

x1
(
1 + αx1 + (α + β)x2

)
0

0 x2
(
1 + αx2 + (α + β)x1

)
)

is Lipschitz on S.
Now b(x) has a saddle fixed point at ( 1

2α+β
, 1

2α+β
) and by symmetry any point

x on the line x1 = x2 satisfies φt(x) → ( 1
2α+β

, 1
2α+β

) as t → ∞. So under an
appropriate translation and rotation, the conditions required for Theorem 5.3 are
satisfied, with λ = 1 and µ = β

2α+β
. [Note that σ 2∞ > 0 since a(x) is positive

definite on S]. Hence for times t satisfying t � tN , where tN = 2α+β
4(α+β)

logN ,
the two populations coexist with the sizes of both being equal. However at time
tN + O(1) the deterministic approximation breaks down and one side begins to
dominate. The previous results give a quantitative description of the behavior
of the processes in this region, however we do not go into this here. At time
t = SN + s = 1

2 logN + O(1), XN
t → φ−1

s (X∞) in probability as N → ∞, where
SN is defined in Theorem 5.1 and X∞ is defined in Section 4. Now b(x) has sta-
ble fixed points at (α−1,0) and (0, α−1) and hence φ−1

s (X∞) converges to one of
these two fixed points as s → ∞. For any ε ∈ (0,1) we say that a population is
ε-extinct if the proportion of the original population that remains is less than ε.
Thus for arbitrarily small ε, one of the populations will become ε-extinct at time
1
2 logN + O(1).
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