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THE TRAP OF COMPLACENCY IN
PREDICTING THE MAXIMUM

BY J. DU TOIT AND G. PESKIR1

University of the Witwatersrand and The University of Manchester

Given a standard Brownian motion Bµ = (B
µ
t )0≤t≤T with drift µ ∈ R

and letting S
µ
t = max0≤s≤t B

µ
s for 0 ≤ t ≤ T , we consider the optimal pre-

diction problem:

V = inf
0≤τ≤T

E(B
µ
τ − S

µ
T )2

where the infimum is taken over all stopping times τ of Bµ. Reducing the
optimal prediction problem to a parabolic free-boundary problem we show
that the following stopping time is optimal:

τ∗ = inf{t∗ ≤ t ≤ T | b1(t) ≤ S
µ
t − B

µ
t ≤ b2(t)}

where t∗ ∈ [0, T ) and the functions t �→ b1(t) and t �→ b2(t) are continuous
on [t∗, T ] with b1(T ) = 0 and b2(T ) = 1/2µ. If µ > 0, then b1 is decreasing
and b2 is increasing on [t∗, T ] with b1(t∗) = b2(t∗) when t∗ �= 0. Using local
time-space calculus we derive a coupled system of nonlinear Volterra integral
equations of the second kind and show that the pair of optimal boundaries b1
and b2 can be characterized as the unique solution to this system. This also
leads to an explicit formula for V in terms of b1 and b2. If µ ≤ 0, then t∗ = 0
and b2 ≡ +∞ so that τ∗ is expressed in terms of b1 only. In this case b1
is decreasing on [z∗, T ] and increasing on [0, z∗) for some z∗ ∈ [0, T ) with
z∗ = 0 if µ = 0, and the system of two Volterra equations reduces to one
Volterra equation. If µ = 0, then there is a closed form expression for b1.
This problem was solved in [Theory Probab. Appl. 45 (2001) 125–136] using
the method of time change (i.e., change of variables). The method of time
change cannot be extended to the case when µ �= 0 and the present paper
settles the remaining cases using a different approach.

1. Introduction. Stopping a stochastic process as close as possible to its ulti-
mate maximum is an undertaking of great practical and theoretical interest. Math-
ematical problems of this type may be referred to as optimal prediction problems.
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Variants of these problems have appeared in the past under different names (the
optimal selection problem, the best choice problem, the secretary problem, the
house selling problem) from where the older papers [1, 4, 7, 10] are interesting to
consult. Most of this work has been done in the case of discrete time.

The case of continuous time has been studied in the recent papers [6] and [14]
when the process is a standard Brownian motion. This hypothesis leads to an ex-
plicit solution of the problem using the method of time change. Motivated by wider
applications, our aim in the present paper is to continue this study when the process
is a standard Brownian motion with drift. It turns out that this extension is not only
far from being routine, but also requires a different line of argument to be de-
veloped, which in turn is applicable to a broader class of diffusions and Markov
processes.

The main objectives of the present paper may be described as follows. Given
a standard Brownian motion Bµ = (B

µ
t )0≤t≤T with drift µ ∈ R and letting S

µ
t =

max0≤s≤t B
µ
s for 0 ≤ t ≤ T , we consider the optimal prediction problem:

V = inf
0≤τ≤T

E(Bµ
τ − S

µ
T )2(1.1)

where the infimum is taken over all stopping times τ of Bµ.
Reducing the optimal prediction problem (1.1) to a parabolic free-boundary

problem we show that the following stopping time is optimal:

τ∗ = inf{t∗ ≤ t ≤ T | b1(t) ≤ S
µ
t − B

µ
t ≤ b2(t)}(1.2)

where t∗ ∈ [0, T ) and the functions t �→ b1(t) and t �→ b2(t) are continuous on
[t∗, T ] with b1(T ) = 0 and b2(T ) = 1/2µ. If µ > 0, then b1 is decreasing and b2
is increasing on [t∗, T ] with b1(t∗) = b2(t∗) when t∗ �= 0. Using local time-space
calculus (cf. [15–17]) we derive a coupled system of nonlinear Volterra integral
equations of the second kind and show that the pair of optimal boundaries b1 and b2
can be characterized as the unique solution to this system. This also leads to an
explicit formula for V in terms of b1 and b2.

If µ ≤ 0, then t∗ = 0 and b2 ≡ +∞ so that τ∗ is expressed in terms of b1 only. In
this case b1 is decreasing on [z∗, T ] and increasing on [0, z∗) for some z∗ ∈ [0, T )

with z∗ = 0 if µ = 0, and the system of two Volterra equations reduces to one
Volterra equation. If µ = 0, then there is a closed form expression for b1. This
problem was solved in [6] using the method of time change (see also [14]). The
method of time change cannot be extended to the case when µ �= 0 and the present
paper settles the remaining cases using a different approach.

The continuation region of the problem turns out to be “humped” when µ < 0.
This is rather unexpected and indicates that the problem is strongly time depen-
dent. The most surprising discovery revealed by the solution, however, is the ex-
istence of a nontrivial stopping region (a “black hole” as we call it) when µ > 0.
This fact is not only counter-intuitive but also has important practical implications.
For example, in a growing economy where the appreciation rate of a stock price is
strictly positive, any financial strategy based on optimal prediction of the ultimate
maximum should be thoroughly re-examined in the light of this new phenomenon.
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2. The optimal prediction problem. 1. Let B = (Bt )t≥0 be a standard
Brownian motion defined on a probability space (�,F ,P) where B0 = 0 under P.
Set

B
µ
t = Bt + µt(2.1)

for t ≥ 0 where µ ∈ R is given and fixed. Then Bµ = (B
µ
t )t≥0 is a standard Brown-

ian motion with drift µ. Define

S
µ
t = max

0≤s≤t
Bµ

s(2.2)

for t ≥ 0. Then Sµ = (S
µ
t )t≥0 is the maximum process associated with Bµ.

2. Given T > 0 we consider the optimal prediction problem:

V = inf
0≤τ≤T

E(Bµ
τ − S

µ
T )2(2.3)

where the infimum is taken over all stopping times τ of Bµ (the latter means that τ

is a stopping time with respect to the natural filtration of Bµ that in turn is the same
as the natural filtration of B given by F B

t = σ(Bs | 0 ≤ s ≤ t) for t ∈ [0, T ]). The
problem (2.3) consists of finding an optimal stopping time (at which the infimum
is attained) and computing V as explicitly as possible.

3. The identity (2.4) below reduces the optimal prediction problem (2.3) above
[where the gain process (B

µ
t − S

µ
T )0≤t≤T is not adapted to the natural filtration

of Bµ] to the optimal stopping problem (2.10) below (where the gain process is
adapted). Similar arguments were exploited in [6] and [14] in the case when µ = 0
in (2.3).

LEMMA 2.1. The following identity holds:

E
(
(S

µ
T − B

µ
t )2 | F B

t

)
(2.4)

= (S
µ
t − B

µ
t )2 + 2

∫ ∞
S

µ
t −B

µ
t

z
(
1 − Fµ(T − t, z)

)
dz

for all 0 ≤ t ≤ T where

Fµ(T − t, z) = P(S
µ
T −t ≤ z)

(2.5)

= �

(
z − µ(T − t)√

T − t

)
− e2µz�

(−z − µ(T − t)√
T − t

)

for z ≥ 0.

PROOF. By stationary independent increments of Bµ we have

E
(
(S

µ
T − B

µ
t )2|F B

t

)
= E

((
S

µ
t +

(
max

t≤s≤T
Bµ

s − S
µ
t

)+
− B

µ
t

)2 ∣∣∣ F B
t

)
(2.6)
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= E
((

S
µ
t − B

µ
t +

(
max

t≤s≤T
Bµ

s − B
µ
t − (S

µ
t − B

µ
t )

)+)2 ∣∣∣ F B
t

)

= (
E

(
x + (S

µ
T −t − x)+

)2)∣∣
x=S

µ
t −B

µ
t

for 0 ≤ t ≤ T given and fixed. Integration by parts gives

E
(
x + (S

µ
T −t − x)+

)2 = E
(
x2I (S

µ
T −t ≤ x)

) + E
(
(S

µ
T −t )

2I (S
µ
T −t > x)

)
= x2P(S

µ
T −t ≤ x) +

∫ ∞
x

z2Fµ(T − t, dz)

= x2Fµ(T − t, x) + (
z2(

Fµ(T − t, z) − 1
))∣∣∞

x(2.7)

+ 2
∫ ∞
x

z
(
1 − Fµ(T − t, z)

)
dz

= x2 + 2
∫ ∞
x

z
(
1 − Fµ(T − t, z)

)
dz

for all x ≥ 0. Combining (2.6) and (2.7) we get (2.4). The identity (2.5) is a well-
known result of [3], page 397 and [13], page 526 completing the proof. �

4. Standard arguments based on the fact that each stopping time is the limit of a
decreasing sequence of discrete stopping times imply that (2.4) extends as follows:

E
(
(S

µ
T − Bµ

τ )2 | F B
τ

) = (Sµ
τ − Bµ

τ )2 + 2
∫ ∞
S

µ
τ −B

µ
τ

z
(
1 − Fµ(T − τ, z)

)
dz(2.8)

for all stopping times τ of Bµ with values in [0, T ]. Setting

Xt = S
µ
t − B

µ
t(2.9)

for t ≥ 0 and taking expectations in (2.8) we find that the optimal prediction prob-
lem (2.3) is equivalent to the optimal stopping problem:

V = inf
0≤τ≤T

E
(
X2

τ + 2
∫ ∞
Xτ

z
(
1 − Fµ(T − τ, z)

)
dz

)
(2.10)

where the infimum is taken over all stopping times τ of X (upon recalling that
the natural filtrations of Bµ and X coincide). The process X = (Xt)t≥0 is strong
Markov so that (2.10) falls into the class of optimal stopping problems for Markov
processes (cf. [19]). The structure of (2.10) is complicated since the gain process
depends on time in a highly nonlinear way.

5. A successful treatment of (2.10) requires that the problem be extended so that
the process X can start at arbitrary points in the state space [0,∞). For this, recall
that (cf. [5]) the following identity in law holds:

X
law=|Y |(2.11)
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where | Y |= (| Yt |)t≥0 and the process Y = (Yt )t≥0 is a unique strong solution to
the stochastic differential equation:

dYt = −µ sign(Yt ) dt + dBt(2.12)

with Y0 = 0. Moreover, it is known (cf. [5]) that under Y0 = x in (2.12) the process
| Y | has the same law as a Brownian motion with drift −µ started at | x | and
reflected at 0. The infinitesimal operator of | Y | acts on functions f ∈ C2

b([0,∞))

satisfying f ′(0+) = 0 as −µf ′(x) + (1/2)f ′′(x). Since an optimal stopping time
in (2.10) is the first entry time of the process to a closed set (this follows by general
optimal stopping results and will be made more precise below) it is possible to
replace the process X in (2.10) by the process | Y |. On the other hand, since it is
difficult to solve the equation (2.12) explicitly so that the dependence of X on x is
clearly expressed, we will take a different route based on the following fact.

LEMMA 2.2. The process Xx = (Xx
t )t≥0 defined by

Xx
t = x ∨ S

µ
t − B

µ
t(2.13)

is Markov under P making Px = Law(Xx | P) for x ≥ 0 a family of probabil-
ity measures on the canonical space (C+,B(C+)) under which the coordinate
process X = (Xt)t≥0 is Markov with Px(X0 = x) = 1.

PROOF. Let x ≥ 0, t ≥ 0 and h > 0 be given and fixed. We then have

Xx
t+h = x ∨ S

µ
t+h − B

µ
t+h

= (x ∨ S
µ
t ) ∨

(
max

t≤s≤t+h
Bµ

s

)
− (B

µ
t+h − B

µ
t ) − B

µ
t(2.14)

= (x ∨ S
µ
t − B

µ
t ) ∨

(
max

t≤s≤t+h
Bµ

s − B
µ
t

)
− (B

µ
t+h − B

µ
t ).

Hence by stationary independent increments of Bµ we get

E(f (Xx
t+h) | F B

t ) = E
(
f (z ∨ S

µ
h − B

µ
h )

)|z=Xx
t

(2.15)

for every bounded Borel function f . This shows that Xx is a Markov process
under P. Moreover, the second claim follows from (2.15) by a basic transformation
theorem for integrals upon using that the natural filtrations of B and Xx coincide.
This completes the proof. �

6. By means of Lemma 2.2 we can now extend the optimal stopping prob-
lem (2.10) where X0 = 0 under P to the optimal stopping problem:

V (t, x) = inf
0≤τ≤T −t

Et,x

(
X2

t+τ + 2
∫ ∞
Xt+τ

z
(
1 − Fµ(T − t − τ, z)

)
dz

)
(2.16)
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where Xt = x under Pt,x with (t, x) ∈ [0, T ] × [0,∞) given and fixed. The infi-
mum in (2.16) is taken over all stopping times τ of X.

In view of the fact that Bµ has stationary independent increments, it is no re-
striction to assume that the process X under Pt,x is explicitly given as

Xx
t+s = x ∨ Sµ

s − Bµ
s(2.17)

under P for s ∈ [0, T − t]. Setting

R(t, z) = 1 − Fµ(T − t, z)(2.18)

and introducing the gain function

G(t, x) = x2 + 2
∫ ∞
x

zR(t, z) dz,(2.19)

we see that (2.16) can be written as follows:

V (t, x) = inf
0≤τ≤T −t

Et,x

(
G(t + τ,Xt+τ )

)
(2.20)

for (t, x) ∈ [0, T ] × [0,∞).
7. The preceding analysis shows that the optimal prediction problem (2.3) re-

duces to solving the optimal stopping problem (2.20). Introducing the continua-
tion set C = {(t, x) ∈ [0, T ] × [0,∞) | V (t, x) < G(t, x)} and the stopping set
D = {(t, x) ∈ [0, T ]× [0,∞) | V (t, x) = G(t, x)}, we may infer from general the-
ory of optimal stopping for Markov processes (cf. [18]) that the optimal stopping
time in (2.20) is given by

τD = inf{0 ≤ s ≤ T − t | (t + s,Xt+s) ∈ D}.(2.21)

It then follows using (2.9) that the optimal stopping time in (2.3) is given by

τ∗ = inf{0 ≤ t ≤ T | (t, Sµ
t − B

µ
t ) ∈ D}.(2.22)

The problems (2.20) and (2.3) are therefore reduced to determining D and V (out-
side D). We will see below that this task is complicated primarily because the gain
function G depends on time in a highly nonlinear way. The main aim of the paper
is to present solutions to the problems formulated.

3. The free-boundary problem. Consider the optimal stopping problem
(2.20). Recall that the problem reduces to determining the stopping set D and
the value function V outside D. It turns out that the shape of D depends on the
sign of µ.

1. The case µ > 0. It will be shown in the proof below that D = {(t, x) ∈
[t∗, T ) × [0,∞) | b1(t) ≤ x ≤ b2(t)} ∪ {(T , x) | x ∈ [0,∞)} where t∗ ∈ [0, T ), the
function t �→ b1(t) is continuous and decreasing on [t∗, T ] with b1(T ) = 0, and
the function t �→ b2(t) is continuous and increasing on [t∗, T ] with b2(T ) = 1/2µ.
If t∗ �= 0, then b1(t∗) = b2(t∗), and if t∗ = 0, then b1(t∗) ≤ b2(t∗). We also have
b1(t) < b2(t) for all t∗ < t ≤ T . See Figures 1 and 2.
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FIG. 1. (The “black-hole” effect.) A computer drawing of the optimal stopping boundaries b1 and
b2 when µ > 0 is away from 0.

It follows that the optimal stopping time (2.21) can be written as follows:

τD = inf{t∗ ≤ t ≤ T | b1(t) ≤ Xt ≤ b2(t)}.(3.1)

Inserting this expression into (2.20) and recalling that C equals Dc in [0, T ] ×
[0,∞), we can use Markovian arguments to formulate the following free-boundary

FIG. 2. A computer drawing of the optimal stopping boundaries b1 and b2 when µ ≥ 0 is close
to 0.
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problem:

Vt − µVx + 1
2Vxx = 0 in C,(3.2)

V
(
t, b1(t)

) = G
(
t, b1(t)

)
for t∗ ≤ t ≤ T ,(3.3)

V
(
t, b2(t)

) = G
(
t, b2(t)

)
for t∗ ≤ t ≤ T ,(3.4)

Vx

(
t, b1(t)−) = Gx

(
t, b1(t)

)
for t∗ ≤ t < T (smooth fit),(3.5)

Vx

(
t, b2(t)+) = Gx

(
t, b2(t)

)
for t∗ ≤ t < T (smooth fit),(3.6)

Vx(t,0+) = 0 for 0 ≤ t < T (normal reflection),(3.7)

V < G in C,(3.8)

V = G in D.(3.9)

Note that the conditions (3.5)–(3.7) will be derived in the proof below while the
remaining conditions are obvious.

2. The case µ ≤ 0. It will be seen in the proof below that D = {(t, x) ∈ [0, T ) ×
[0,∞) | x ≥ b1(t)} ∪ {(T , x) | x ∈ [0,∞)} where the continuous function t �→
b1(t) is decreasing on [z∗, T ] with b1(T ) = 0 and increasing on [0, z∗) for some
z∗ ∈ [0, T ) (with z∗ = 0 if µ = 0). See Figures 3 and 4.

It follows that the optimal stopping time (2.21) can be written as follows:

τD = inf{0 ≤ t ≤ T | Xt ≥ b1(t)}.(3.10)

Inserting this expression into (2.20) and recalling again that C equals Dc in
[0, T ]× [0,∞), we can use Markovian arguments to formulate the following free-

FIG. 3. A computer drawing of the optimal stopping boundary b1 when µ ≤ 0 is close to 0.
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FIG. 4. (The “hump” effect.) A computer drawing of the optimal stopping boundary b1 when µ < 0
is away from 0.

boundary problem:

Vt − µVx + 1
2Vxx = 0 in C,(3.11)

V
(
t, b1(t)

) = G
(
t, b1(t)

)
for 0 ≤ t ≤ T ,(3.12)

Vx

(
t, b1(t)−) = Gx

(
t, b1(t)

)
for 0 ≤ t < T (smooth fit),(3.13)

Vx(t,0+) = 0 for 0 ≤ t < T (normal reflection),(3.14)

V < G in C,(3.15)

V = G in D.(3.16)

Note that the conditions (3.13) and (3.14) can be derived similarly to the condi-
tions (3.5) and (3.7) above while the remaining conditions are obvious.

3. It will be clear from the proof below that the case µ ≤ 0 may be viewed as
the case µ > 0 with b2 ≡ ∞ (and t∗ = 0). This is in accordance with the facts
that b2 ↑ ∞ as µ ↓ 0 and the point s∗ < T at which b1(s∗) = b2(s∗) tends to
−∞ as µ ↓ 0. (Note that t∗ equals s∗ ∨ 0 and that extending the time interval
[0, T ] to negative values in effect corresponds to enlarging the terminal value T

in the problem (2.20) above.) Since the case µ > 0 is richer and more interesting
we will only treat this case in complete detail. The case µ ≤ 0 can be dealt with
analogously and most of the details will be omitted.

4. It will follow from the result of Theorem 4.1 below that the free-boundary
problem (3.2)–(3.9) characterizes the value function V and the optimal stopping
boundaries b1 and b2 in a unique manner. Motivated by wider application, how-
ever, our main aim will be to express V in terms of b1 and b2 and show that b1 and
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b2 themselves satisfy a coupled system of nonlinear integral equations (which may
then be solved numerically). Such an approach dates back to Kolodner [12] in a
general context, while a particularly simple way of demonstrating these identities
in the case of the American put problem (with one boundary) has been suggested
in [2], [8] and [11]. The present problem, however, is in many ways different and
substantially more complicated than the American put problem so that the proof
will require novel arguments. We will nonetheless succeed in proving (as in [16]
and [17] with one boundary) that the coupled system of nonlinear equations de-
rived for b1 and b2 cannot have other solutions. The key argument in the proof
relies upon a local time-space formula (see [15]). The analogous facts hold for the
free-boundary problem (3.11)–(3.16) and the optimal stopping boundary b1 (see
Theorem 4.1 below).

4. The result and proof. 1. To solve the problems (2.3) and (2.20) let us
introduce the function

H = Gt − µGx + 1
2Gxx(4.1)

on [0, T ] × [0,∞). A lengthy but straightforward calculation shows that

H(t, x) = (
2µ2(T − t) − 2µx + 3

)
�

(
x − µ(T − t)√

T − t

)

− 2µ
√

T − tϕ

(
x − µ(T − t)√

T − t

)
(4.2)

− e2µx�

(−x − µ(T − t)√
T − t

)
− 2

(
1 + µ2(T − t)

)
for (t, x) ∈ [0, T ] × [0,∞).

Let P = {(t, x) ∈ [0, T ] × [0,∞) | H(t, x) ≥ 0} and N = {(t, x) ∈ [0, T ] ×
[0,∞) | H(t, x) < 0}. A direct analysis based on (4.2) shows that in the case µ > 0
we have P = {(t, x) ∈ [u∗, T ]× [0,∞) | γ1(t) ≤ x ≤ γ2(t)} where u∗ ∈ [0, T ), the
function t �→ γ1(t) is continuous and decreasing on [u∗, T ] with γ1(T ) = 0, and
the function t �→ γ2(t) is continuous and increasing on [u∗, T ] with γ2(T ) = 1/2µ.
If u∗ �= 0, then γ1(u∗) = γ2(u∗), and if u∗ = 0, then γ1(u∗) ≤ γ2(u∗). We also have
γ1(t) < γ2(t) for all u∗ < t ≤ T . See Figures 1 and 2. Similarly, a direct analysis
based on (4.2) shows that in the case µ ≤ 0 we have P = {(t, x) ∈ [0, T ]×[0,∞) |
x ≥ γ1(t)} where the continuous function t �→ γ1(t) is decreasing on [w∗, T ] with
γ1(T ) = 0 and increasing on [0,w∗) for some w∗ ∈ [0, T ) (with w∗ = 0 if µ = 0).
See Figures 3 and 4.

2. Below we will make use of the following functions:

J (t, x) = Ex

(
G(T ,XT −t )

)
(4.3)

=
∫ ∞

0
ds

∫ s

−∞
dbG(T , x ∨ s − b)f (T − t, b, s),
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K(t, x, t + u,y, z) = Ex

(
H(t + u,Xu)I (y < Xu < z)

)
=

∫ ∞
0

ds

∫ s

−∞
dbH(t + u,x ∨ s − b)(4.4)

× I (y < x ∨ s − b < z)f (u, b, s),

L(t, x, t + u,y) = Ex

(
H(t + u,Xu)I (Xu > y)

)
=

∫ ∞
0

ds

∫ s

−∞
dbH(t + u,x ∨ s − b)(4.5)

× I (x ∨ s − b > y)f (u, b, s),

for (t, x) ∈ [0, T ] × [0,∞), u ≥ 0 and 0 < y < z, where (b, s) �→ f (t, b, s) is the
probability density function of (B

µ
t , S

µ
t ) under P given by

f (t, b, s) =
√

2

π

1

t3/2 (2s − b)e−(2s−b)2/2t+µ(b−µt/2)(4.6)

for t > 0, s ≥ 0 and b ≤ s (see, e.g., [9], page 368).
3. The main results of the paper may now be stated as follows.

THEOREM 4.1. Consider the problems (2.3) and (2.20). We can then distin-
guish the following two cases:

1. The case µ > 0. The optimal stopping boundaries in (2.20) can be charac-
terized as the unique solution to the coupled system of nonlinear Volterra integral
equations

J
(
t, b1(t)

)
(4.7)

= G
(
t, b1(t)

) +
∫ T −t

0
K

(
t, b1(t), t + u,b1(t + u), b2(t + u)

)
du,

J
(
t, b2(t)

)
(4.8)

= G
(
t, b2(t)

) +
∫ T −t

0
K

(
t, b2(t), t + u,b1(t + u), b2(t + u)

)
du,

in the class of functions t �→ b1(t) and t �→ b2(t) on [t∗, T ] for t∗ ∈ [0, T ) such that
the function t �→ b1(t) is continuous and decreasing on [t∗, T ], the function t �→
b2(t) is continuous and increasing on [t∗, T ], and γ1(t) ≤ b1(t) < b2(t) ≤ γ2(t)

for all t ∈ (t∗, T ]. The solutions b1 and b2 satisfy b1(T ) = 0 and b2(T ) = 1/2µ,
and the stopping time τD from (3.1) is optimal in (2.20). The stopping time (2.22)
given by

τ∗ = inf{0 ≤ t ≤ T | b1(t) ≤ S
µ
t − B

µ
t ≤ b2(t)}(4.9)

is optimal in (2.3). The value function V from (2.20) admits the following repre-
sentation:

V (t, x) = J (t, x) −
∫ T −t

0
K

(
t, x, t + u,b1(t + u), b2(t + u)

)
du(4.10)
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for (t, x) ∈ [0, T ] × [0,∞). The value V from (2.3) equals V (0,0) in (4.10).
2. The case µ ≤ 0. The optimal stopping boundary in (2.20) can be character-

ized as the unique solution to the nonlinear Volterra integral equation

J
(
t, b1(t)

) = G
(
t, b1(t)

) +
∫ T −t

0
L

(
t, b1(t), t + u,b1(t + u)

)
du(4.11)

in the class of continuous functions t �→ b1(t) on [0, T ] that are decreasing on
[z∗, T ] and increasing on [0, z∗) for some z∗ ∈ [0, T ) and satisfy b1(t) ≥ γ1(t) for
all t ∈ [0, T ]. The solution b1 satisfies b1(T ) = 0 and the stopping time τD from
(3.10) is optimal in (2.20). The stopping time (2.22) given by

τ∗ = inf{0 ≤ t ≤ T | Sµ
t − B

µ
t ≥ b1(t)}(4.12)

is optimal in (2.3). The value function V from (2.20) admits the following repre-
sentation:

V (t, x) = J (t, x) −
∫ T −t

0
L

(
t, x, t + u,b1(t + u)

)
du(4.13)

for (t, x) ∈ [0, T ] × [0,∞). The value V from (2.3) equals V (0,0) in (4.13).

PROOF. The proof will be carried out in several steps. We will only treat the
case µ > 0 in complete detail. The case µ ≤ 0 can be dealt with analogously and
details in this direction will be omitted. Thus we will assume throughout that µ > 0
is given and fixed. We begin by invoking a result from general theory of optimal
stopping for Markov processes.

1. We show that the stopping time τD in (2.21) is optimal in the problem (2.20).
For this, recall that it is no restriction to assume that the process X under Pt,x

is given explicitly by (2.17) under P. Since clearly (t, x) �→ E(G(t + τ,Xx
τ )) is

continuous (and thus upper semicontinuous) for each stopping time τ , it follows
that (t, x) �→ V (t, x) is usc (recall that the infimum of usc functions defines a usc
function). Since (t, x) �→ G(t, x) is continuous (and thus lower semicontinuous)
by general theory (cf. Corollary 2.7 in [18], Chapter 1, Section 2) it follows that
τD is optimal in (2.20) as claimed. Note also that C is open and D is closed in
[0, T ] × [0,∞).

2. The initial insight into the shape of D is provided by stochastic calculus as
follows. By Itô’s formula we have

G(t + s,Xt+s) = G(t, x) +
∫ s

0
Gt(t + u,Xt+u) du

+
∫ s

0
Gx(t + u,Xt+u) dXt+u(4.14)

+ 1
2

∫ s

0
Gxx(t + u,Xt+u) d〈X,X〉t+u
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for 0 ≤ s ≤ T − t and x ≥ 0 given and fixed. By the Itô–Tanaka formula [recall-
ing (2.12) above] we have

Xt = |Yt | = x +
∫ t

0
sign(Ys)I (Ys �= 0) dYs + �0

t (Y )

(4.15)

= x − µ

∫ t

0
I (Ys �= 0) ds +

∫ t

0
sign(Ys)I (Ys �= 0) dBs + �0

t (Y )

where sign(0) = 0 and �0
t (Y ) is the local time of Y at 0 given by

�0
t (Y ) = P − lim

ε↓0

1

2ε

∫ t

0
I (−ε < Ys < ε)ds(4.16)

upon using that d〈Y,Y 〉s = ds. It follows from (4.15) that

dXt = −µI (Yt �= 0) dt + sign(Yt )I (Yt �= 0) dBt + d�0
t (Y ).(4.17)

Inserting (4.17) into (4.14), using that d〈X,X〉t = I (Yt �= 0) dt and P(Yt = 0) = 0,
we get

G(t + s,Xt+s) = G(t, x) +
∫ s

0

(
Gt − µGx + 1

2Gxx

)
(t + u,Xt+u) du

+
∫ s

0
Gx(t + u,Xt+u) sign(Yt+u) dBt+u

(4.18)
+

∫ s

0
Gx(t + u,Xt+u) d�0

t+u(Y )

= G(t, x) +
∫ s

0
H(t + u,Xt+u) du + Ms

where H is given by (4.1) above and Ms = ∫ s
0 Gx(t + u,Xt+u) sign(Yt+u) dBt+u

is a continuous (local) martingale for s ≥ 0. In the last identity in (4.18) we use
that (quite remarkably) Gx(t,0) = 0 while d�0

t+u(Y ) is concentrated at 0 so that
the final integral in (4.18) vanishes.

From the final expression in (4.18) we see that the initial insight into the shape
of D is gained by determining the sets P and N as introduced following (4.2)
above. By considering the exit times from small balls in [0, T ) × [0,∞) and mak-
ing use of (4.18) with the optional sampling theorem, we see that it is never optimal
to stop in N . We thus conclude that D ⊆ P .

A deeper insight into the shape of D is provided by the following arguments.
Due to the fact that P is bounded by γ1 and γ2 as described following (4.2) above,
it is readily verified using (4.18) above and simple comparison arguments that
for each x ∈ (0,1/2µ) there exists t = t (x) ∈ (0, T ) close enough to T such that
every point (x, u) belongs to D for u ∈ [t, T ] (cf. [18], Chapter 8, Section 3). Note
that this fact is fully in agreement with intuition since after starting at (u, x) close
to (T , x) there will not be enough time to reach either of the favorable regions
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below γ1 or above γ2 to compensate for the loss incurred by strictly positive H

via (4.18). These arguments in particular show that D \ {(T , x) | x ∈ R+} is non-
empty.

The final insight into the shape of D is obtained by the following fortunate fact:

t �→ H(t, x) is increasing on [0, T ](4.19)

whenever x ≥ 0. Indeed, this can be verified by a direct differentiation in (4.2)
which yields

Ht(t, x) = 2
(

x + µ(T − t)

(T − t)3/2

)
ϕ

(
x − µ(T − t)√

T − t

)
(4.20)

+ 2µ2
(

1 − �

(
x − µ(T − t)√

T − t

))

from where one sees that Ht ≥ 0 on [0, T ) × [0,∞) upon recalling that µ > 0 by
assumption.

We next show that (t1, x) ∈ D implies that (t2, x) ∈ D whenever 0 ≤ t1 ≤ t2 ≤
T and x ≥ 0. For this, assume that (t2, x) ∈ C for some t2 ∈ (t1, T ). Let τ∗ =
τD(t2, x) denote the optimal stopping time for V (t2, x). Then by (4.18) and (4.19)
using the optional sampling theorem we have

V (t1, x) − G(t1, x) ≤ E
(
G

(
t1 + τ∗,Xx

τ∗
)) − G(t1, x)

= E
(∫ τ∗

0
H(t1 + u,Xx

u) du

)

≤ E
(∫ τ∗

0
H(t2 + u,Xx

u) du

)
(4.21)

= E
(
G

(
t2 + τ∗,Xx

τ∗
) − G(t2, x)

)
= V (t2, x) − G(t2, x) < 0.

Hence (t1, x) belongs to C, which is a contradiction. This proves the initial claim.
Finally we show that for (t, x1) ∈ D and (t, x2) ∈ D with x1 ≤ x2 in (0,∞) we

have (t, z) ∈ D for every z ∈ [x1, x2]. For this, fix z ∈ (x1, x2) and let τ∗ = τD(t, z)

denote the optimal stopping time for V (t, z). Since (u, x1) and (u, x2) belong to D

for all u ∈ [t, T ] we see that τ∗ must be smaller than or equal to the exit time
from the rectangle R with corners at (t, x1), (t, x2), (T , x1) and (T , x2). However,
since H > 0 on R we see from (4.18) upon using the optional sampling theorem
that V (t, z) > G(t, z). This shows that (t, z) cannot belong to C, thus proving the
initial claim.

Summarizing the facts derived above we can conclude that D equals the set of
all (t, x) in [t∗, T ]× [0,∞) with t∗ ∈ [0, T ) such that b1(t) ≤ x ≤ b2(t), where the
function t �→ b1(t) is decreasing on [t∗, T ] with b1(T ) = 0, the function t �→ b2(t)

is increasing on [t∗, T ] with b2(T ) = 1/2µ, and γ1(t) ≤ b1(t) ≤ b2(t) ≤ γ2(t) for



354 J. DU TOIT AND G. PESKIR

all t ∈ [t∗, T ]. See Figures 1 and 2. It follows in particular that the stopping time τD

from (3.1) is optimal in (2.20) and the stopping time from (4.9) is optimal in (2.3).
3. We show that V is continuous on [0, T ]× [0,∞). For this, we will first show

that x �→ V (t, x) is continuous on [0,∞) uniformly over t ∈ [0, T ]. Indeed, if
x < y in [0,∞) are given and fixed, we then have

V (t, x) − V (t, y)

= inf
0≤τ≤T −t

E
(
G(t + τ,Xx

τ )
) − inf

0≤τ≤T −t
E

(
G(t + τ,Xy

τ )
)

(4.22)

≥ inf
0≤τ≤T −t

E
(
G(t + τ,Xx

τ ) − G(t + τ,Xy
τ )

)
for all t ∈ [0, T ]. It is easily verified that x �→ G(t, x) is increasing so that x �→
V (t, x) is increasing on [0,∞) for every t ∈ [0, T ]. Hence it follows from (4.22)
that

0 ≤ V (t, y) − V (t, x) ≤ sup
0≤τ≤T −t

E
(
G(t + τ,Xy

τ ) − G(t + τ,Xx
τ )

)
(4.23)

for all t ∈ [0, T ]. Using (2.19) we find

G(t + τ,Xy
τ ) − G(t + τ,Xx

τ )

= (Xy
τ )2 − (Xx

τ )2 − 2
∫ X

y
τ

Xx
τ

zR(t + τ, z) dt

≤ (Xy
τ − Xx

τ )(Xy
τ + Xx

τ + 2c)(4.24)

= (y ∨ Sµ
τ − x ∨ Sµ

τ )(y ∨ Sµ
τ − Bµ

τ + x ∨ Sµ
τ − Bµ

τ + 2c)

≤ (y − x)Z

where c = supz≥0 zR(t, z) ≤ E(S
µ
T −t ) ≤ E(S

µ
T ) < ∞ by Markov’s inequality and

Z = 2(y + 1) + 4 max0≤t≤T |Bµ
t | + 2c belongs to L1(P). From (4.23) and (4.24)

we find

0 ≤ V (t, y) − V (t, x) ≤ (y − x)E(Z)(4.25)

for all t ∈ [0, T ] implying that x �→ V (t, x) is continuous on [0,∞) uniformly
over t ∈ [0, T ].

To complete the proof of the initial claim it is sufficient to show that t �→ V (t, x)

is continuous on [0, T ] for each x ∈ [0,∞) given and fixed. For this, fix x in [0,∞)

and t1 < t2 in [0, T ]. Let τ1 = τD(t1, x) and τ2 = τD(t2, x) be optimal for V (t1, x)

and V (t2, x), respectively. Setting τ ε
1 = τ1 ∧ (T − t2) with ε = t2 − t1 we have

E
(
G

(
t2 + τ2,X

x
τ2

) − G
(
t1 + τ2,X

x
τ2

))
≤ V (t2, x) − V (t1, x)(4.26)

≤ E
(
G

(
t2 + τ ε

1 ,Xx
τε

1

) − G
(
t1 + τ1,X

x
τ1

))
.
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Note that we have

Gt(t, x) = −2
∫ ∞
x

zf
µ
T −t (z) dz(4.27)

where f
µ
T −t (z) = (dF

µ
T −t /dz)(z) so that

|Gt(t, x)| ≤ 2
∫ ∞

0
zf

µ
T −t (z) dz = 2E(S

µ
T −t ) ≤ 2E(S

µ
T )(4.28)

for all t ∈ [0, T ]. Hence setting β = 2E(S
µ
T ) by the mean value theorem we get

|G(u2, x) − G(u1, x)| ≤ β(u2 − u1)(4.29)

for all u1 < u2 in [0, T ]. Using (4.29) in (4.26) upon subtracting and adding G(t1 +
τ1,X

x
τε

1
) we obtain

−β(t2 − t1) ≤ V (t2, x) − V (t1, x)
(4.30)

≤ 2β(t2 − t1) + E
(
G

(
t1 + τ1,X

x
τε

1

) − G
(
t1 + τ1,X

x
τ1

))
.

Note that we have

Gx(t, x) = 2xF
µ
T −t (x) ≤ 2x(4.31)

so that the mean value theorem implies∣∣G(
t1 + τ1,X

x
τε

1

) − G
(
t1 + τ1,X

x
τ1

)∣∣ = |Gx(t1 + τ1, ξ)|∣∣Xx
τε

1
− Xx

τ1

∣∣
(4.32)

≤ 2
(
Xx

τε
1
∨ Xx

τ1

)∣∣Xx
τε

1
− Xx

τ1

∣∣
where ξ lies between Xx

τε
1

and Xx
τ1

. Since Xx
τ is dominated by x +2 max0≤t≤T |Bµ

t |
which belongs to L1(P) for every stopping time τ , letting t2 − t1 → 0 and using
that τ ε

1 − τ1 → 0 we see from (4.30) and (4.32) that V (t2, x) − V (t1, x) → 0 by
dominated convergence. This shows that t �→ V (t, x) is continuous on [0, T ] for
each x ∈ [0,∞), and thus V is continuous on [0, T ]× [0,∞) as claimed. Standard
arguments based on the strong Markov property and classic results from PDEs
show that V is C1,2 on C and satisfies (3.2). These facts will be freely used below.

4. We show that x �→ V (t, x) is differentiable at bi(t) for i = 1,2 and that
Vx(t, bi(t)) = Gx(t, bi(t)) for t ∈ [t∗, T ). For this, fix t ∈ [t∗, T ) and set x = b2(t)

[the case x = b1(t) can be treated analogously]. We then have

V (t, x + ε) − V (t, x)

ε
≤ G(t, x + ε) − G(t, x)

ε
(4.33)

for all ε > 0. Letting ε ↓ 0 in (4.33) we find

lim sup
ε↓0

V (t, x + ε) − V (t, x)

ε
≤ Gx(t, x).(4.34)
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Let τε = τD(t, x + ε) be optimal for V (t, x + ε). Then by the mean value theo-
rem we have

V (t, x + ε) − V (t, x)

ε
≥ 1

ε

(
E

(
G

(
t + τε,X

x+ε
τε

)) − E
(
G

(
t + τε,X

x
τε

)))
(4.35)

= 1

ε
E

(
Gx

(
t + τε, ξε

)(
Xx+ε

τε
− Xx

τε

))
where ξε lies between Xx

τε
and Xx+ε

τε
. Using that t �→ b2(t) is increasing and that

t �→ λt is a lower function for B at 0+ for every λ ∈ R, it is possible to verify that
τε → 0 as ε ↓ 0. Hence it follows that ξε → x as ε ↓ 0 so that Gx(t + τε, ξε) →
Gx(t, x) as ε ↓ 0. Moreover, using (4.31) we find

Gx(t + τε, ξε) ≤ 2ξε ≤ 2Xx+ε
τε

= 2
(
(x + ε) ∨ Sµ

τε
− Bµ

τε

)
(4.36)

≤ 2
(
x + ε + 2 max

0≤t≤T
|Bµ

t |
)

where the final expression belongs to L1(P) (recall also that Gx ≥ 0). Finally, we
have

1

ε

(
Xx+ε

τε
− Xx

τε

) = 1

ε

(
(x + ε) ∨ Sµ

τε
− x ∨ Sµ

τε

) → 1(4.37)

when ε ↓ 0 as well as

0 ≤ 1

ε

(
Xx+ε

τε
− Xx

τε

) ≤ 1(4.38)

for all ε > 0. Letting ε ↓ 0 in (4.35) and using (4.36)–(4.38), we may conclude that

lim inf
ε↓0

V (t, x + ε) − V (t, x)

ε
≥ Gx(t, x)(4.39)

by dominated convergence. Combining (4.34) and (4.39) we see that x �→ V (t, x)

is differentiable at b2(t) with Vx(t, b2(t)) = Gx(t, b2(t)) as claimed. Analo-
gously one finds that x �→ V (t, x) is differentiable at b1(t) with Vx(t, b1(t)) =
Gx(t, b1(t)) and further details of this derivation will be omitted.

A small modification of the proof above shows that x �→ V (t, x) is C1 at b2(t).
Indeed, let τδ = τD(t, x + δ) be optimal for V (t, x + δ) where δ > 0 is given and
fixed. Instead of (4.33) above we have by the mean value theorem that

V (t, x + δ + ε) − V (t, x + δ)

ε

≤ 1

ε

(
E

(
G

(
t + τδ,X

x+δ+ε
τδ

) − E
(
G

(
t + τδ,X

x+δ
τδ

))))
(4.40)

= 1

ε
E

(
Gx(t + τδ, ηε)

(
Xx+δ+ε

τδ
− Xx+δ

τδ

))
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where ηε lies between Xx+δ
τδ

and Xx+δ+ε
τδ

for ε > 0. Clearly ηε → Xx+δ
τδ

as ε ↓ 0.
Letting ε ↓ 0 in (4.40) and using the same arguments as in (4.36)–(4.38) we can
conclude that

Vx(t, x + δ) ≤ E
(
Gx

(
t + τδ,X

x+δ
τδ

))
.(4.41)

Moreover, in exactly the same way as in (4.35)–(4.39) we find that the reverse
inequality in (4.41) also holds, so that we have

Vx(t, x + δ) = E
(
Gx

(
t + τδ,X

x+δ
τδ

))
.(4.42)

Letting δ ↓ 0 in (4.42), recalling that τδ → 0 and using the same arguments as in
(4.36), we find by dominated convergence that

lim
δ↓0

Vx(t, x + δ) = Gx(t, x) = Vx(t, x).(4.43)

Thus x �→ V (t, x) is C1 at b2(t) as claimed. Similarly one finds that x �→ V (t, x)

is C1 at b1(t) with Vx(t, b1(t)+) = Gx(t, b1(t)) and further details of this deriva-
tion will be omitted. This establishes the smooth fit conditions (3.5), (3.6) and
(3.13) above.

5. We show that t �→ b1(t) and t �→ b2(t) are continuous on [t∗, T ]. Again we
only consider the case of b2 in detail, since the case of b1 can be treated similarly.
Note that the same proof also shows that b2(T −) = 1/2µ and that b1(T −) = 0.

Let us first show that b2 is right-continuous. For this, fix t ∈ [t∗, T ) and consider
a sequence tn ↓ t as n → ∞. Since b2 is increasing, the right-hand limit b2(t+)

exists. Because (tn, b2(tn)) belongs to D for all n ≥ 1, and D is closed, it follows
that (t, b2(t+)) belongs to D. Hence by (3.1) we may conclude that b2(t+) ≤
b2(t). Since the fact that b2 is increasing gives the reverse inequality, it follows
that b2 is right-continuous as claimed.

Let us next show that b2 is left-continuous. For this, suppose that there exists
t ∈ (t∗, T ) such that b2(t−) < b2(t). Fix a point x ∈ (b2(t−), b2(t)) and note by
(3.6) that we have

V (s, x) − G(s, x)
(4.44)

=
∫ x

b2(s)

∫ y

b2(s)

(
Vxx(s, z) − Gxx(s, z)

)
dzdy

for any s ∈ (t∗, t). By (3.2) and (4.1) we find that

1
2(Vxx − Gxx) = Gt − Vt + µ(Vx − Gx) − H.(4.45)

From (4.21) we derive the key inequality

Vt(t, x) ≥ Gt(t, x)(4.46)

for all (t, x) ∈ [0, T ) × [0,∞). Inserting (4.45) into (4.44) and using (4.46) and
(3.4) we find
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V (s, x) − G(s, x)

≤
∫ x

b2(s)

∫ y

b2(s)
2
(
µ(Vx − Gx)(s, z) − H(s, z)

)
dzdy

=
∫ x

b2(s)
2µ

(
V (s, y) − G(s, y)

)
dy(4.47)

−
∫ x

b2(s)

∫ y

b2(s)
2H(s, z) dz dy

≤ −
∫ x

b2(s)

∫ y

b2(s)
2H(s, z) dz dy

for any s ∈ (t∗, t). From the properties of the function γ2 it follows that there
exists s∗ < t close enough to t such that (s, z) belongs to P for all s ∈ [s∗, t) and
z ∈ [b2(s), x]. Moreover, since H is continuous and thus attains its infimum on a
compact set, it follows that 2H(s, z) ≥ m > 0 for all s ∈ [s∗, t) and z ∈ [b2(s), x].
Using this fact in (4.47) we get

V (s, x) − G(s, x) ≤ −m
(x − b2(s))

2

2
< 0(4.48)

for all s ∈ [s∗, t). Letting s ↑ t in (4.48) we conclude that V (t, x) < G(t, x) vi-
olating the fact that (t, x) ∈ D. This shows that b2 is left-continuous and thus
continuous. The continuity of b1 is proved analogously.

6. We show that the normal reflection condition (3.7) holds. For this, note first
since x �→ V (t, x) is increasing on [0,∞) that Vx(t,0+) ≥ 0 for all t ∈ [0, T )

(note that the limit exists since V is C1,2 on C). Suppose that there exists t ∈ [0, T )

such that Vx(t,0+) > 0. Recalling that V is C1,2 on C so that t �→ Vx(t,0+) is
continuous on [0, T ), we see that there exists δ > 0 such that Vx(s,0+) ≥ ε > 0
for all s ∈ [t, t +δ] with t +δ < T . Setting τδ = τD ∧δ it follows by the Itô–Tanaka
formula [as in (4.18) above] upon using (3.2) and the optional sampling theorem
[recall (4.41) and (4.31) for the latter] that we have

Et,0
(
V

(
t + τδ,Xt+τδ

))
= V (t,0) + Et,0

(∫ τδ

0
Vx(t + u,Xt+u) d�0

t+u(Y )

)
(4.49)

≥ V (t,0) + εEt,0
(
�0
t+τδ

(Y )
)
.

Since (V (t + s ∧ τD,Xt+s∧τD
))0≤s≤T −t is a martingale under Pt,0 by general the-

ory of optimal stopping for Markov processes (see, e.g., [18]) we see from (4.49)
that Et,0(�

0
t+τδ

(Y )) must be equal to 0. Since, however, properties of the local time
clearly exclude this, we must have V (t,0+) equal to 0 as claimed in (3.7) above.

7. We show that V is given by the formula (4.10) and that b1 and b2 solve the
system (4.7)–(4.8). For this, note that by (3.2) and (4.46) we have 1

2Vxx = −Vt +
µVx ≤ −Gt +µVx in C. It is easily verified using (4.31) and (4.41) that Vx(t, x) ≤
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M/2µ for all t ∈ [0, T ) and all x ∈ [0, (1/2µ)+1] with some M > 0 large enough.
Using this inequality in the previous inequality we get Vxx ≤ −Gt +M in A = C ∩
([0, T )×[0, (1/2µ)+1]). Setting h(t, x) = ∫ x

0
∫ y

0 (−Gt(t, z)+M)dzdy we easily
see that h is C1,2 on [0, T ) × [0,∞) and that hxx = −Gt + M . Thus the previous
inequality reads Vxx ≤ hxx in A, and setting F = V − h we see that x �→ F(t, x)

is concave on [0, b1(t)] and [b2(t), (1/2µ) + 1] for t ∈ [t∗, T ). We also see that F

is C1,2 on C and Do = {(t, x) ∈ [t∗, T )×[0,∞) | b1(t) < x < b2(t)} since both V

and G are so. Moreover, it is also clear that Ft − µFx + 1
2Fxx is locally bounded

on C ∪ Do in the sense that the function is bounded on K ∩ (C ∪ Do) for each
compact set K in [0, T ) × [0,∞). Finally, we also see using (3.5) and (3.6) that
t �→ Fx(t, bi(t)∓) = Vx(t, bi(t)∓)−hx(t, bi(t)∓) = Gx(t, bi(t))−hx(t, bi(t)) is
continuous on [t∗, T ) since bi is continuous for i = 1,2.

Since the previous conditions are satisfied we know that the local time-space
formula (cf. Theorem 3.1 and Remark 2.3 in [15]) can be applied to F(t +s,Xt+s).
Since h is C1,2 on [0, T ) × [0,∞) we know that the Itô–Tanaka formula can be
applied to h(t + s,Xt+s) as in (4.18) above [upon noting that hx(t,0+) = 0].
Adding the two formulae, using in the former that Fx(t,0+) = −hx(t,0+) = 0
since Vx(t,0+) = 0 by (3.7) above, we get

V (t + s,Xt+s) = V (t, x)

+
∫ s

0

(
Vt − µVx + 1

2Vxx

)
(t + u,Xt+u)

× I
(
Xt+u /∈ {b1(t + u), b2(t + u)})du

+
∫ s

0
Vx(t + u,Xt+u) sign(Yt+u)(4.50)

× I
(
Xt+u /∈ {b1(t + u), b2(t + u)})dBt+u

+
2∑

i=1

∫ s

0

(
Vx(t + u,Xt+u+) − Vx(t + u,Xt+u−)

)

× I
(
Xt+u = bi(t + u)

)
d�

bi
t+u(X)

for t ∈ [0, T ) and x ∈ [0,∞). Making use of (3.2) and (3.9) in the first integral
and (3.5) and (3.6) in the final integral (which consequently vanishes), we obtain

V (t + s,Xt+s) = V (t, x)

+
∫ s

0
H(t + u,Xt+u)(4.51)

× I
(
b1(t + u) < Xt+u < b2(t + u)

)
du + Ms

for t ∈ [0, T ) and x ∈ [0,∞) where Ms = ∫ s
0 Vx(t + u,Xt+u) dBt+u is a continu-

ous (local) martingale for s ≥ 0.
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Setting s = T − t , using that V (T , x) = G(T ,x) for all x ≥ 0 and taking the
Pt,x-expectation in (4.51), we find by the optional sampling theorem that

V (t, x) = Et,x

(
G(T ,XT )

)
−

∫ T −t

0
Et,x

(
H(t + u,Xt+u)(4.52)

× I
(
b1(t + u) < Xt+u < b2(t + u)

))
du

for t ∈ [0, T ) and x ∈ [0,∞). Making use of (4.3) and (4.4) we see that (4.52) is the
formula (4.10). Moreover, inserting x = bi(t) in (4.52) and using that V (t, bi(t)) =
G(t, bi(t)) for i = 1,2 we see that b1 and b2 satisfy the system (4.7)–(4.8) as
claimed.

8. We show that b1 and b2 are the unique solution to the system (4.7)–(4.8) in
the class of continuous functions t �→ b1(t) and t �→ b2(t) on [t∗, T ] for t∗ ∈ [0, T )

such that γ1(t) ≤ b1(t) < b2(t) ≤ γ2(t) for all t ∈ (t∗, T ]. Note that there is no need
to assume that b1 is decreasing and b2 is increasing as established above. The proof
of uniqueness will be presented in the final three steps of the main proof below.

9. Let c1 : [t∗, T ] → R and c2 : [t∗, T ] → R be a solution to the system
(4.7)–(4.8) for t∗ ∈ [0, T ) such that c1 and c2 are continuous and satisfy γ1(t) ≤
c1(t) < c2(t) ≤ γ2(t) for all t ∈ (t∗, T ]. We need to show that these c1 and c2 must
then be equal to the optimal stopping boundaries b1 and b2, respectively.

Motivated by the derivation (4.50)–(4.52) which leads to the formula (4.10), let
us consider the function Uc : [0, T ) × [0,∞) → R defined as follows:

Uc(t, x) = Et,x

(
G(T ,XT )

)
−

∫ T −t

0
Et,x

(
H(t + u,Xt+u)(4.53)

× I
(
c1(t + u) < Xt+u < c2(t + u)

))
du

for (t, x) ∈ [0, T ) × [0,∞). In terms of (4.3) and (4.4) note that Uc is explicitly
given by

Uc(t, x) = J (t, x) −
∫ T −t

0
K

(
t, x, t + u, c1(t + u), c2(t + u)

)
du(4.54)

for (t, x) ∈ [0, T ) × [0,∞). Observe that the fact that c1 and c2 solve the system
(4.7)–(4.8) means exactly that Uc(t, ci(t)) = G(t, ci(t)) for all t ∈ [t∗, T ] and i =
1,2. We will moreover show that Uc(t, x) = G(t, x) for all x ∈ [c1(t), c2(t)] with
t ∈ [t∗, T ]. This is the key point in the proof (cf. [16] and [17]) that can be derived
using martingale arguments as follows.

If X = (Xt)t≥0 is a Markov process (with values in a general state space)
and we set F(t, x) = Ex(G(XT −t )) for a (bounded) measurable function G with
P(X0 = x) = 1, then the Markov property of X implies that F(t,Xt) is a martin-
gale under Px for 0 ≤ t ≤ T . Similarly, if we set F(t, x) = Ex(

∫ T −t
0 H(Xs) ds)
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for a (bounded) measurable function H with P(X0 = x) = 1, then the Markov
property of X implies that F(t,Xt) + ∫ t

0 H(Xs) ds is a martingale under Px for
0 ≤ t ≤ T .

Combining the two martingale facts applied to the time-space Markov process
(t + s,Xt+s) instead of Xs , we find that

Uc(t + s,Xt+s)
(4.55)

−
∫ s

0
H(t + u,Xt+u)I

(
c1(t + u) < Xt+u < c2(t + u)

)
du

is a martingale under Pt,x for 0 ≤ s ≤ T − t . We may thus write

Uc(t + s,Xt+s)

−
∫ s

0
H(t + u,Xt+u)I

(
c1(t + u) < Xt+u < c2(t + u)

)
du(4.56)

= Uc(t, x) + Ns

where (Ns)0≤s≤T −t is a martingale under Pt,x . On the other hand, we know
from (4.18) that

G(t + s,Xt+s) = G(t, x) +
∫ s

0
H(t + u,Xt+u) du + Ms(4.57)

where Ms = ∫ s
0 Gx(t + u,Xt+u) sign(Yt+u) dBt+u is a continuous (local) martin-

gale under Pt,x for 0 ≤ s ≤ T − t .
For x ∈ [c1(t), c2(t)] with t ∈ [t∗, T ] given and fixed, consider the stopping time

σc = inf{0 ≤ s ≤ T − t | Xt+s ≤ c1(t + s) or Xt+s ≥ c2(t + s)}(4.58)

under Pt,x . Using that Uc(t, ci(t)) = G(t, ci(t)) for all t ∈ [t∗, T ] [since c1 and c2
solve the system (4.7)–(4.8) as pointed out above] and that Uc(T , x) = G(T ,x) for
all x ≥ 0, we see that Uc(t + σc,Xt+σc) = G(t + σc,Xt+σc). Hence from (4.56)
and (4.57) using the optional sampling theorem we find

Uc(t, x) = Et,x

(
Uc(t + σc,Xt+σc

))
− Et,x

(∫ σc

0
H(t + u,Xt+u)

× I
(
c1(t + u) < Xt+u < c2(t + u)

)
du

)
(4.59)

= Et,x

(
G

(
t + σc,Xt+σc

))
− Et,x

(∫ σc

0
H(t + u,Xt+u) du

)
= G(t, x)

since Xt+u ∈ (c1(t + u), c2(t + u)) for all u ∈ [0, σc). This proves that Uc(t, x) =
G(t, x) for all x ∈ [c1(t), c2(t)] with t ∈ [t∗, T ] as claimed.
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10. We show that Uc(t, x) ≥ V (t, x) for all (t, x) ∈ [0, T ] × [0,∞). For this,
consider the stopping time

τc = inf{0 ≤ s ≤ T − t | c1(t + s) ≤ Xt+s ≤ c2(t + s)}(4.60)

under Pt,x with (t, x) ∈ [0, T ] × [0,∞) given and fixed. The same arguments as
those following (4.58) above show that Uc(t + τc,Xt+τc) = G(t + τc,Xt+τc). In-
serting τc instead of s in (4.56) and using the optional sampling theorem, we get

Uc(t, x) = Et,x

(
Uc(t + τc,Xt+τc

))
(4.61)

= Et,x

(
G

(
t + τc,Xt+τc

)) ≥ V (t, x)

proving the claim.
11. We show that c1 ≤ b1 and c2 ≥ b2 on [t∗, T ]. For this, suppose that there

exists t ∈ [t∗, T ) such that c2(t) < b2(t) and examine first the case when c2(t) >

b1(t). Choose a point x ∈ (b1(t) ∨ c1(t), c2(t)] and consider the stopping time

σb = inf{0 ≤ s ≤ T − t | Xt+s ≤ b1(t + s) or Xt+s ≥ b2(t + s)}(4.62)

under Pt,x . Inserting σb in the place of s in (4.51) and (4.56) and using the optional
sampling theorem, we get

Et,x

(
V

(
t + σb,Xt+σb

))
(4.63)

= V (t, x) + Et,x

(∫ σb

0
H(t + u,Xt+u) du

)
,

Et,x

(
Uc(t + σb,Xt+σb

))
= Uc(t, x) + Et,x

(∫ σb

0
H(t + u,Xt+u)(4.64)

× I
(
c1(t + u) < Xt+u < c2(t + u)

)
du

)
.

Since Uc ≥ V and V (t, x) = Uc(t, x) = G(t, x) for x ∈ [b1(t) ∨ c1(t), b2(t) ∧
c2(t)] with t ∈ [t∗, T ], it follows from (4.63) and (4.64) that

Et,x

(∫ σb

0
H(t + u,Xt+u)I

(
Xt+u ≤ c1(t + u) or Xt+u ≥ c2(t + u)

)
du

)
(4.65)

≤ 0.

Due to the fact that H(t + u,Xt+u) > 0 for u ∈ [0, σb) we see by the continuity
of bi and ci for i = 1,2 that (4.65) is not possible. Thus under c2(t) < b2(t) we
cannot have c2(t) > b1(t). If, however, c2(t) ≤ b1(t), then due to the facts that b1
is decreasing with b1(T ) = 0 and c2(T ) > 0 there must exist u ∈ (t, T ) such that
c2(u) ∈ (b1(u), b2(u)). Applying then the preceding arguments at time u instead of
time t , we again arrive at a contradiction. Hence we can conclude that c2(t) ≥ b2(t)
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for all t ∈ [t∗, T ]. In exactly the same way (or by symmetry) one can derive that
c1(t) ≤ b1(t) for t ∈ [t∗, T ] completing the proof of the initial claim.

12. We show that c1 must be equal to b1 and c2 must be equal to b2. For this, let
us assume that there exists t ∈ [t∗, T ) such that c1(t) < b1(t) or c2(t) > b2(t). Pick
an arbitrary point x from (c1(t), b1(t)) or (b2(t), c2(t)) and consider the stopping
time τD from (3.1) under Pt,x . Inserting τD instead of s in (4.51) and (4.56), and
using the optional sampling theorem, we get

Et,x

(
G

(
t + τD,Xt+τD

)) = V (t, x),(4.66)

Et,x

(
G

(
t + τD,Xt+τD

))
= Uc(t, x) + Et,x

(∫ τD

0
H(t + u,Xt+u)(4.67)

× I
(
c1(t + u) < Xt+u < c2(t + u)

)
du

)
,

where we also use that V (t + τD,Xt+τD
) = Uc(t + τD, Xt+τD

) = G(t + τD,

Xt+τD
) upon recalling that c1 ≤ b1 and c2 ≥ b2, and Uc = G either between c1

and c2 or at T . Since Uc ≥ V we see from (4.66) and (4.67) that

Et,x

(∫ τD

0
H(t + u,Xt+u)I

(
c1(t + u) < Xt+u < c2(t + u)

)
du

)
≤ 0.(4.68)

Due to the fact that H(t + u,Xt+u) > 0 for Xt+u ∈ (c1(t + u), c2(t + u)) we see
from (4.68) by the continuity of bi and ci for i = 1,2 that such a point (t, x) cannot
exist. Thus ci must be equal to bi for i = 1,2 and the proof is complete. �

REMARK 4.2. The following simple method can be used to solve the system
(4.7)–(4.8) numerically. Better methods are needed to achieve higher precision
around the singularity point t = T and to increase the speed of calculation. These
issues are worthy of further consideration.

Set tk = kh for k = 0,1, . . . , n where h = T/n and denote [recalling (4.3)
and (4.4) above for more explicit expressions]:

I
(
t, bi(t)

) = J
(
t, bi(t)

) − G
(
t, bi(t)

)
(4.69)

= Ebi(t)

(
G(T ,XT −t

)
) − G

(
t, bi(t)

)
,

K
(
t, bi(t), t + u,b1(t + u), b2(t + u)

)
(4.70)

= Ebi(t)

(
H(t + u,Xt+u)I

(
b1(t + u) < Xt+u < b2(t + u)

))
,

for i = 1,2. Note that K always depends on both b1 and b2.
The following discrete approximation of the integral equations (4.7) and (4.8)

is then valid:

I
(
tk, bi(tk)

) =
n−1∑
j=k

K
(
tk, bi(tk), tj+1, b1(tj+1), b2(tj+1)

)
h(4.71)
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for k = 0,1, . . . , n − 1 where i = 1,2. Setting k = n − 1 with b1(tn) = 0 and
b2(tn) = 1/2µ, we can solve the system (4.71) for i = 1,2 numerically and get
numbers b1(tn−1) and b2(tn−1). Setting k = n − 2 and using values b1(tn−1),
b1(tn), b2(tn−1), b2(tn), we can solve (4.71) numerically and get numbers b1(tn−2)

and b2(tn−2). Continuing the recursion we obtain bi(tn), bi(tn−1) ,. . ., bi(t1), bi(t0)

as an approximation of the optimal boundary bi at the points T , T − h,. . .,h, 0 for
i = 1,2 (see Figures 1 and 2). Equation (4.11) can be treated analogously (see
Figures 3 and 4).
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