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ON PATHWISE UNIQUENESS FOR STOCHASTIC HEAT
EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS

BY LEONID MYTNIK, 1 EDWIN PERKINS2 AND ANJA STURM3

Technion Israel Institute of Technology, University of British Columbia
and University of Delaware

We consider the existence and pathwise uniqueness of the stochastic heat
equation with a multiplicative colored noise term on Rd for d ≥ 1. We focus
on the case of non-Lipschitz noise coefficients and singular spatial noise cor-
relations. In the course of the proof a new result on Hölder continuity of the
solutions near zero is established.

1. Introduction. This work is motivated by the following question: Does
pathwise uniqueness hold in the parabolic stochastic p.d.e.

∂

∂t
u(t, x) = 1

2
�u(t, x) dt + √

u(t, x)Ẇ (x, t)?(1)

Here � denotes the Laplacian and Ẇ is space–time white noise on R+ × R. It is
known that uniqueness in law holds for solutions to (1) in the appropriate space
of continuous functions and such solutions are the density for one-dimensional
super-Brownian motion (see, e.g., Section III.4 of [4]). One motivation for study-
ing pathwise uniqueness is the hope that such an approach would be more ro-
bust and establish uniqueness for closely related equations in which

√
u(t, x)

could be replaced by
√

γ (u(t, x))u(t, x). Such models arise as scaling limits of
critical branching particle systems in which the branching rate at (t, x) is given
by γ (u(t, x)). The method used to establish uniqueness in law for solutions of (1)
is duality. This approach has the advantage of giving a rich toolkit for the study of
solutions to (1), but the disadvantage of being highly nonrobust, although one of
us was able to extend this method to powers of u(t, x) between 1/2 and 1 (see [3]).

The difficulty in proving pathwise uniqueness in (1) arises from the fact that√
u is non-Lipschitz. The above equation does have the advantage of having a

diagonal form—that is, when viewed as a continuum-dimensional stochastic dif-
ferential equation, there are no off-diagonal terms in the noise part of the equation
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and the diffusion coefficient for the x coordinate is a function of that coordinate
alone. For finite-dimensional SDEs, this was the setting for Yamada and Watan-
abe’s extension [14] of Itô’s pathwise uniqueness results to Hölder continuous
coefficients, and so an optimist may hope this approach can carry over to our
infinite-dimensional setting. As we will be using their conditions later, let us recall
the Yamada–Watanabe result. Let ρ be a strictly increasing function on R+ such
that ∫

0+
ρ−2(x) dx = ∞.(2)

Now assume that σ : R → R is such that, for all x, y ∈ R,

|σ(x) − σ(y)| ≤ ρ(|x − y|).(3)

Then pathwise uniqueness holds for solutions of the one-dimensional SDE

X(t) = X(0) +
∫ t

0
σ(X(t)) dB(t),(4)

where B is a standard Brownian motion. The square root function clearly satisfies
the above hypotheses, but the infinite-dimensional setting has stymied attempts to
carry the methodology over. Yamada and Watanabe’s proof has been simplified
(see, e.g., Theorem IX.3.5 of [6]) by the notion of the local time of a semimartin-
gale and the fact that u(t, x) will not be a semimartingale in t for x fixed (it will
only be Hölder continuous of index 1/4) would seem to be a serious obstacle in
directly applying these methods.

We will not resolve the uniqueness question posed above, but will succeed in
extending the above ideas to stochastic heat equations of the form

∂

∂t
u(t, x) = 1

2
�u(t, x) dt + σ

(
u(t, x)

)
Ẇ (x, t)(5)

for colored noises other than white, and appropriate Hölder continuous, but not
necessarily Lipschitz continuous, σ . Here, u is a random function on R+ ×Rd and
we sometimes write ut for u(t, ·). The coefficient σ is a real-valued continuous
function on R. It is assumed throughout this work to satisfy the following global
growth condition: For all u ∈ R, there exists a constant c6 such that

|σ(u)| ≤ c6(1 + |u|).(6)

Here and elsewhere ci and ci.j will denote fixed positive constants, while C will
denote a positive constant which may change from line to line. The noises
W considered here are Gaussian martingale measures on R+ × Rd in the sense
of Walsh [13]. W is defined on a filtered probability space (�,F ,Ft ,P) and
Wt(φ) = ∫ t

0
∫
Rd φ(s, x)W(dx ds) is an Ft -martingale for φ ∈ C∞

c (R+ × Rd), the
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space of compactly supported, infinitely differentiable functions on R+ × Rd . If
W(φ) = W∞(φ), W can be characterized by its covariance functional

Jk(φ,ψ) := E[W(φ)W(ψ)]
(7)

=
∫ ∞

0

∫
Rd

∫
Rd

φ(s, x)k(x, y)ψ(s, y) dx dy ds,

for φ,ψ ∈ C∞
c (R+ × Rd). We call the function k : R2d → R the correlation ker-

nel of W. Some sufficient conditions for the existence of a martingale measure
W corresponding to k are that Jk is symmetric, positive definite and continuous.
Thus, necessarily, k(x, y) = k(y, x) for all x, y ∈ Rd . Continuity on C∞

c is im-
plied, for example, if k is integrable on compact sets. We also note that a gen-
eral class of martingale measures, spatially homogeneous noises, can be described
by (7), where k(x, y) = k̃(x − y).

If σ(u) = u, then equation (5) arises as the diffusion limit of super-Brownian
motion in Rd where the offspring law depends on a random environment, whose
spatial correlation is described by k. For k bounded, this was proven in [11]. More
general coefficients σ may be thought of as reflecting an additional dependence of
the offspring law on the local particle density.

If k is bounded, Viot [12] proved pathwise uniqueness for solutions to (5) on
bounded domains of Rd for σ(u) = √

u(1 − u)+, where the subscript indicates
that the positive part of the function is taken. We will extend this result to our
setting for solutions of (5) on Rd with bounded k in Theorem 1.6 below. Note that
white noise will correspond to the case where we set k̃ equal to the generalized
function δ0 in the above. Our main result (Theorem 1.4 below) will interpolate
between these settings and establish pathwise uniqueness for colored noises for
which the correlation is bounded by a Riesz kernel,

|k(x, y)| ≤ c8[|x − y|−α + 1] for all x, y ∈ Rd and appropriate α > 0.(8)

In order to formulate a condition on the singularity of k and relate our condi-
tions to those in the literature, we define the spectral measure, µ, of a spatially
homogeneous covariance kernel k̃:∫

Rd
k̃(x)φ(x) dx =

∫
Rd

F φ(ξ)µ(dξ)(9)

for any rapidly decreasing test function φ where F φ(ξ) = ∫
Rd exp(−2iπξ ·

x)φ(x) dx is the Fourier transform. Later on we will assume µ to be a tempered
measure fulfilling, for some η ∈ [0,1],∫

Rd

µ(dξ)

(1 + |ξ |2)η < ∞.(10)

To relate (8) with condition (10) used in the literature, we introduce the following:
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(A)η: (η > 0) W is a Gaussian noise with correlation kernel |k(x, y)| ≤ c10k̃(x −
y), x, y ∈ Rd for some symmetric, locally bounded and positive definite
kernel k̃ whose spectral measure satisfies (10).

(A)0: W is a Gaussian noise and its correlation kernel k is bounded.

REMARK 1.1. Note that (8) implies (A)η for α ∈ (0,2η ∧ d) : Here, k̃(x) =
|x|−α + 1 and the spectral measure is of the form µ(dξ) = c1.1[|ξ |α−ddξ +
δ0(dξ)]. Hence, condition (10) is satisfied if and only if α ∈ (0,2η ∧ d) (see Chap-
ter V, Lemma 2(a) of [9]). Note also that the positive definite spatially homoge-
neous kernels kα(x, y) = |x − y|−α give a natural family of kernels for which our
results will hold.

In order to make sense of the formal equation (5), we use the variation of con-
stants form of solutions: Denote by p the d-dimensional heat kernel

pt(x) = 1

(2πt)d/2 exp
(
−|x|2

2t

)
.(11)

A stochastic process u :� × R+ × Rd → R, which is jointly measurable and
Ft -adapted, is said to be a solution to the stochastic heat equation (5) in the vari-
ation of constants sense with respect to the martingale measure W, defined on �,

and initial condition u0, if for each t ≥ 0, a.s. for almost all x ∈ Rd ,

u(t, x) =
∫

Rd
pt (x − y)u0(y) dy

(12)

+
∫ t

0

∫
Rd

pt−s(x − y)σ
(
u(s, y)

)
W(dy ds).

Solutions to (12) have been well studied in the case where σ is Lipschitz contin-
uous in u. A sufficient condition for strong existence and uniqueness of solutions
is given by (A)η for η ≤ 1 see [1] (see also Theorem A.1 in the Appendix) and [5].
Hölder continuity of the sample paths was established by Sanz-Solé and Sarrà [8]
if η < 1 (cf. Lemma A.4 in the Appendix).

To state the main results, we introduce some notation, which will be used
throughout this work: We write C(Rd) for the space of continuous functions
on Rd . A superscript k, respectively ∞, indicates that functions are in addition
k times, respectively infinitely often, continuously differentiable. A subscript b,

respectively c, indicates that they are also bounded, respectively have compact
support. We also define

‖f ‖λ,∞ := sup
x∈Rd

|f (x)|e−λ|x|,

set Ctem := {f ∈ C(Rd),‖f ‖λ,∞ < ∞ for any λ > 0} and endow it with the
topology induced by the norms ‖ · ‖λ,∞ for λ > 0. That is, fn → f in Ctem iff
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limn→∞ ‖f − fn‖λ,∞ = 0 for all λ > 0. For I ⊂ R+, let C(I,E) be the space
of all continuous functions on I taking values in a topological space E, endowed
with the topology of uniform convergence on compact subsets of I . A stochas-
tically weak solution to (12) is a solution on some filtered space with respect to
some noise W , that is, the noise and space is not specified in advance.

With this notation we can state the following standard existence result whose
proof is outlined in the Appendix:

THEOREM 1.2. Let u0 ∈ Ctem, and let σ be a continuous function satisfying
the growth bound (6). Assume that (8) holds for some α ∈ (0,2 ∧ d). Then there
exists a stochastically weak solution to (12) with sample paths a.s. in C(R+,Ctem).

REMARK 1.3. (a) The proof in fact only requires that (A)η hold for some
η ∈ [0,1), a condition which follows from the above bound on k by Remark 1.1.

(b) In the case where the correlation kernel is bounded, existence has been
shown for more general initial conditions and solution spaces in [11]: Define
L

p
λ(Rd) := Lp(Rd, e−λ|x| dx) and denote the associated norm by ‖ · ‖λ,p. Then

if E(‖u0‖p
λ,p) < ∞, for some p > 2 and λ > 0, there exists a stochastically weak

solution u ∈ C(R+,L
p
λ(Rd)) to (12) which satisfies

E

(
sup

0≤t≤T

‖u(t, ·)‖p
λ,p

)
< ∞ for any T > 0.(13)

We say pathwise uniqueness holds for solutions of (12) in C(R+,Ctem) if, for
every u0 ∈ Ctem, any two solutions to (12) with sample paths a.s. in C(R+,Ctem)

must be equal with probability 1. For Lipschitz continuous σ , it is easy to modify
Theorem 13 of [1] and Theorem 2.1 of [8] to get pathwise uniqueness and Hölder
continuity of solutions for α < 2 ∧ d . Also, Theorem 11 and Remark 12 of [1]
show that function-valued solutions will not exist for α > 2 ∧ d . Here then is our
main result—it holds in any spatial dimension d:

THEOREM 1.4. Assume that, for some α ∈ (0,1), σ : R → R satisfies (6), is
Hölder continuous of index γ for some γ ∈ (1+α

2 ,1], and

|k(x, y)| ≤ c1.4[|x − y|−α + 1] for all x, y ∈ Rd .

Then pathwise uniqueness holds for solutions of (12) in C(R+,Ctem).

REMARK 1.5. The Hölder condition on σ may be weakened to the local
Hölder condition: For any K > 0, there exists L = L(K) such that

|σ(u) − σ(v)| ≤ L(|u − v|γ + |u − v|) ∀u, v : |u|, |v| ≤ K,

where γ is as in Theorem 1.4. The required modifications in the proof are elemen-
tary.
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It also looks possible to weaken the pointwise bound on k to the following
condition:∫

Rd

∫
Rd

k(x, y)h(x)h(y) dx dy ≤ c

∫
Rd

∫
Rd

[|x − y|−α + 1]|h(x)‖h(y)|dx dy,

for all h in an appropriate class of functions decaying to 0 at infinity. We have used
the stronger pointwise bound as it is more convenient and explicit.

In the above result there is a trade-off between the Hölder continuity of σ

and the singularity of the covariance kernel of the noise. For d = 1, let-
ting α → 1− and renormalizing will give white noise. More specifically, if
k̃α(x − y) = 1−α

2 |x − y|−α , then for φ,ψ ∈ C∞
c (R+ × R), limα→1− J

k̃α
(φ,ψ) =∫ ∞

0
∫

φ(s, x)ψ(s, x) dx ds. The Hölder condition in Theorem 1.4 approaches Lip-
schitz continuity. (As k̃ should be locally integrable, we cannot expect to take
α = 1.) Hence, although the result does not say anything about white noise itself,
it at least coincides with the known Lipschitz conditions which imply pathwise
uniqueness in the limit as α approaches 1. The same cannot be said for higher
dimensions. Here, the aforementioned results of Dalang, and Sanz-Solé and Sarrá
show that, for α < 2, we will have pathwise unique continuous solutions when
the coefficients are Lipschitz continuous. Unfortunately, our hypotheses become
vacuous in the above uniqueness theorem when α exceeds 1 and so we believe our
condition on the Hölder index in Theorem 1.4 is nonoptimal in dimensions greater
than 1. At the other end of the scale, we see that as α approaches 0, the required
Hölder exponent approaches 1/2, the critical power in the one-dimensional results
of Yamada and Watanabe. In fact, if the covariance kernel is bounded, we can
weaken the Hölder condition on σ to precisely the Yamada–Watanabe condition
(2), (3) introduced above. Again, the result holds in any spatial dimension.

THEOREM 1.6. Assume that (A)0 holds and that σ : R → R satisfies (6) and
(3). Then pathwise uniqueness holds for solutions of (12) in C(R+,Ctem).

REMARK 1.7. (a) The conclusions of Theorems 1.2, 1.4 and 1.6 remain valid
if we allow for an additional drift term in the heat equation. More precisely, we
can add a term of the form

∫ t
0

∫
pt−s(x − y)f (u(s, y)) dy ds to the right-hand side

of (12), where f satisfies the growth bound (6), is continuous in the existence the-
orem, Theorem 1.2, and is Lipschitz continuous for the uniqueness results, Theo-
rems 1.4 and 1.6. The additional arguments are standard.

(b) The pathwise uniqueness conclusions of Theorems 1.4 and 1.6, and weak
existence given by Theorem 1.2 imply the existence of a strong solution to (12),
that is, a solution which is adapted with respect to the canonical filtration of the
noise W . The proof follows just as in the classical SDE argument of Yamada and
Watanabe (see, e.g., Theorem IX.1.7 of [6]).
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(c) Theorem 1.6 holds true if we consider solutions with paths in C(R+,

L
p
λ(Rd)) as was done in Viot’s work [12]. In fact, the arguments given in Sec-

tions 2 and 3 remain the same in this case. The only difference is that a bit more
care has to be taken to justify some of the convergences as the solutions are not
necessarily continuous. But this can be done in a straightforward way.

The proof of our pathwise uniqueness theorems will require some moment
bounds for arbitrary continuous Ctem-valued solutions to the equation (12). Let
Stφ(x) = ∫

pt(y − x)φ(y) dy. The following result will be proved in the Appen-
dix.

PROPOSITION 1.8. Let u0 ∈ Ctem, and let σ be a continuous function satisfy-
ing the growth bound (6). Assume that (8) holds for some α ∈ (0,2 ∧ d). Then any
solution u ∈ C(R+,Ctem) to (12) has the following properties:

(a) For any T ,λ > 0 and p ∈ (0,∞),

E

(
sup

0≤t≤T

sup
x∈Rd

|u(t, x)|pe−λ|x|
)

< ∞.(14)

(b) For any ξ ∈ (0,1 − α/2), the process u(·, ·) is a.s. uniformly Hölder con-
tinuous on compacts in (0,∞) × Rd , and the process Z(t, x) ≡ u(t, x) − Stu0(x)

is uniformly Hölder continuous on compacts in [0,∞) × Rd , both with Hölder
coefficients ξ

2 in time and ξ in space.
Moreover, for any T ,R > 0, and 0 ≤ t, t ′ ≤ T ,x, x′ ∈ Rd such that |x − x′| < R,

as well as p ∈ [2,∞) and ξ ∈ (0,1 − α/2), there exists a constant c15 =
c15(T ,p,λ,R, ξ) such that

E
(|Z(t, x) − Z(t ′, x′)|pe−λ|x|) ≤ c15

(|t − t ′|(ξ/2)p + |x − x′|ξp)
.(15)

REMARK 1.9. The proof of the above will only require (A)η for some η ∈
[0,1), a condition which is implied by the hypotheses above (see Remark 1.1).
In this case we should take ξ ∈ (0,1 − η) in (b) as is done in the proof in the
Appendix.

It is straightforward to show that, under the hypotheses of Theorem 1.2, so-
lutions to (12) with continuous Ctem-valued paths are also solutions to the heat
equation in its distributional form for suitable test functions �. More specifically,
for � ∈ C∞

c (Rd),∫
Rd

u(t, x)�(x)dx

=
∫

Rd
u0(x)�(x)dx +

∫ t

0

∫
Rd

u(s, x)1
2��(x)dx ds(16)

+
∫ t

0

∫
Rd

σ
(
u(s, x)

)
�(x)W(dx ds) ∀t ≥ 0 a.s.
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In fact, given an appropriate class of test functions, the two notions of solutions
(12) and (16) are equivalent. In our case, {� ∈ C∞(Rd) : �(x) ≤ Ce−λ|x| for some
C > 0 and all x ∈ Rd} is a suitable class of test functions. For the details of the
proof, we refer to [10], Proposition 3.2.3. There, the setting is a bit different as it
works in the setting of Remark 1.3 with bounded k. However, the arguments do
not change for the case of k unbounded as long as the stochastic integral in (16) is
well defined, which can easily be checked.

We now briefly outline the proof of our main result (Theorem 1.4) and the
contents of the paper. To emulate Yamada and Watanabe, consider a pair of so-
lutions, u1 and u2, to (12), set ũ = u1 − u2, and use (16) and Itô’s lemma
to derive a semimartingale decomposition for

∫ t
0

∫ |ũ(s, x)|�s(x) dx ds, where
�s(x) ≥ 0 is a smooth test function. This involves approximating |ũ(s, x)| by
ψn(〈ũs,�m(· − x)〉) as m,n → ∞, where {ψn} are smooth functions approxi-
mating the absolute value function as in [14], and {�m} is a smooth approximate
identity. In Section 2 the martingale and standard drift terms which arise are han-
dled in a relatively straightforward manner in a general setting, including that of
both Theorems 1.6 and 1.4 (see Lemma 2.2). Here we may let m,n → ∞ in any
manner. The problematic term, called I

m,n
3 below, is the one arising from the ψ ′′

n/2
term in using Itô’s lemma and so will involve the quadratic variation of the martin-
gale term. In the context of the Yamada–Watanabe proof, it is the one which leads
to the local time at 0 of the difference of two solutions to the SDE, L0

t (X
1 − X2).

There, this term is shown to be 0 using the modulus of continuity of σ and the
regularity of the sample paths of the solutions (the latter implicitly, as one needs
the stochastic calculus associated with continuous semimartingales).

In Section 3 I
m,n
3 is shown to approach 0 if we first let m → ∞ and then n → ∞

in the simpler context of Theorem 1.6. This leads to∫
E

(|ũ(t, x)|)�t(x) dx ≤
∫ t

0

∫
E

(|ũ(s, x)|)∣∣1
2��s(x) + �̇s(x)

∣∣dx ds,(17)

from which ũ = 0 follows easily by taking �s(x) = ∫
pt−s(y − x)φ(x) dx. We

feel the ease of this argument is partly related to the greater path regularity ũ in
this context—it is Hölder continuous in space with index 1 − ε and in time with
index 1

2 − ε by results of Sanz-Solé and Sarra (see [8] and Lemma A.4 below).
In Section 4 we complete the proof of Theorem 1.4 by showing limn→∞ I

mn,n
3 =

0 for a judicious choice of mn, which again leads to (17). In this setting ũ(t, x)

is only Hölder continuous of index 1−α/2
2 − ε in time and 1 − α

2 − ε in space
(see Lemma A.4 or [8]) and this additional irregularity makes the argument more
involved. In the Yamada–Watanabe context, the key fact that L0

t (X
1 − X2) = 0

reflects the fact that the solutions must separate “slowly” if they do so at all. In
our setting we will argue along similar lines by showing that ũ(t, x) is more reg-
ular in (t, x) at small values of ũ(t, x), that is, when the solutions are close (see
Theorem 4.1). For example, they will be Hölder of index 1−α/2

1−γ
∧ 1 − ε in space
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near space–time points where ũ is sufficiently small (see Corollary 4.2). Theo-
rem 4.1 is proved in Section 5 and is the key to the proof of Theorem 1.4 which
is completed in Section 4. This improved modulus of continuity result may be of
independent interest. In fact, a similar result to Theorem 4.1 was derived indepen-
dently by Mueller and Tribe in the context of white noise, in their ongoing work
on the zero set of solutions to (1). The continuity results of Sanz-Solé and Sarra
[8] and the factorization method they use (see [2]) play a critical role in the proof
of Theorem 4.1 in our colored noise setting. The Appendix includes the proofs
of the weak existence theorem (Theorem 1.2) and the required moment estimates
(Proposition 1.8).

2. Some auxiliary results. Let ρ be as in (2). An elementary argument shows
that

∫
0+(ρ(x) + √

x )−2 dx = +∞ [e.g., consider lim infx↓0 ρ−2(x)x ≥ 1 and
lim infx↓0 ρ−2(x)x < 1 separately]. As we will be using ρ as a modulus of conti-
nuity [see (3)], we may replace ρ with ρ(x) + √

x and so assume

ρ(x) ≥ √
x.(18)

As in the proof of Yamada and Watanabe [14], we may define a sequence of func-
tions φn in the following way. First, let an ↓ 0 be a strictly decreasing sequence
such that a0 = 1, and ∫ an−1

an

ρ−2(x) dx = n.(19)

Second, we define functions ψn ∈ C∞
c (R) such that supp(ψn) ⊂ (an, an−1), and

that

0 ≤ ψn(x) ≤ 2ρ−2(x)

n
≤ 2

nx
(20)

for all x ∈ R as well as
∫ an−1

an

ψn(x) dx = 1.

Finally, set

φn(x) =
∫ |x|

0

∫ y

0
ψn(z) dz dy.(21)

From this, it is easy to see that φn(x) ↑ |x| uniformly in x ≥ 0. Note that each ψn

and, thus, also each φn, is identically zero in a neighborhood of zero. This implies
that φn ∈ C∞(R) despite the absolute value in its definition. We have

φ′
n(x) = sgn(x)

∫ |x|
0

ψn(y) dy,(22)

φ′′
n(x) = ψn(|x|).(23)

Thus, |φ′
n(x)| ≤ 1, and

∫
φ′′

n(x)h(x) dx → h(0) for any function h which is con-
tinuous at zero.
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Now let u1 and u2 be two solutions of (12) with sample paths in C(R+,Ctem)

a.s., with the same initial condition, u1(0) = u2(0) = u0 ∈ Ctem, and the same
noise W in either the setting of Theorem 1.6 or Theorem 1.4. We proceed assum-
ing Proposition 1.8 which will be derived in the Appendix. Define ũ ≡ u1 −u2. Let
� ∈ C∞

c (Rd) be a positive function with supp(�) ⊂ B(0,1) (the open ball cen-
tered at 0 with radius 1) such that

∫
Rd �(x) dx = 1 and set �m

x (y) = md�(m(x −
y)). Let 〈·, ·〉 denote the scalar product on L2(Rd). By applying Itô’s formula to
the semimartingale 〈ũt ,�

m
x 〉 of (16), it follows that

φn(〈ũt ,�
m
x 〉)

=
∫ t

0

∫
Rd

φ′
n(〈ũs,�

m
x 〉)(σ (

u1(s, y)
) − σ

(
u2(s, y)

))
�m

x (y)W(dy ds)

+
∫ t

0
φ′

n(〈ũs,�
m
x 〉)〈ũs,

1
2��m

x

〉
ds

+ 1
2

∫ t

0

∫
R2d

ψn(|〈ũs,�
m
x 〉|)

× (
σ

(
u1(s, y)

) − σ
(
u2(s, y)

))(
σ

(
u1(s, z)

) − σ
(
u2(s, z)

))
× �m

x (y)�m
x (z)k(y, z) dy dz ds.

We integrate this function of x against another nonnegative test function � ∈
C∞

c ([0, t] × Rd). Assume

� ≡ {x :�s(x) > 0 ∃ s ≤ t} ⊂ B(0,K) for some K > 0.(24)

We then obtain by the classical and stochastic version of Fubini’s theorem, and
arguing as in the proof of Proposition II.5.7 of [4] to handle the time dependence
in ψ , that, for any t ≥ 0,〈

φn(〈ũt ,�
m
. 〉),�t

〉
=

∫ t

0

∫
Rd

〈
φ′

n(〈ũs,�
m
. 〉)�m

. (y),�s

〉(
σ

(
u1(s, y)

) − σ
(
u2(s, y)

))
W(dy ds)

+
∫ t

0

〈
φ′

n(〈ũs,�
m
. 〉)〈ũs,

1
2��m

.

〉
,�s

〉
ds

+ 1
2

∫ t

0

∫
R3d

ψn(|〈ũs,�
m
x 〉|)

(25)
× (

σ
(
u1(s, y)

) − σ
(
u2(s, y)

))(
σ

(
u1(s, z)

) − σ
(
u2(s, z)

))
× �m

x (y)�m
x (z)k(y, z) dy dz�s(x) dx ds

+
∫ t

0

〈
φn(〈ũs,�

m
. 〉), �̇s

〉
ds

≡ I
m,n
1 (t) + I

m,n
2 (t) + I

m,n
3 (t) + I

m,n
4 (t).
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We need a calculus lemma. For f ∈ C2(Rd), let ‖D2f ‖∞ = maxi ‖ ∂2f

∂x2
i

‖∞.

LEMMA 2.1. Let f ∈ C2
c (Rd) be nonnegative and not identically zero. Then

sup
{(

∂f

∂xi

(x)

)2

f (x)−1 :f (x) > 0
}

≤ 2‖D2f ‖∞.

PROOF. Assume first d = 1. Choose x so that f (x)|f ′(x)| > 0. Without loss
of generality, assume f ′(x) > 0. Let

x1 = sup{x′ < x :f ′(x′) = 0} ∈ (−∞, x).

By the Cauchy (or generalized mean value) theorem, there is an x2 ∈ (x1, x) so
that

(
f ′(x)2 − f ′(x1)

2)
f ′(x2) = (

f (x) − f (x1)
)d((f ′)2)

dx
(x2)

and, as f ′(x2) > 0, we get

f ′(x)2 = (
f (x) − f (x1)

)
2f ′′(x2).

Since f is strictly increasing on (x1, x), and f (x1) ≥ 0,

f ′(x)2

f (x)
≤ f ′(x)2

f (x) − f (x1)
≤ 2‖f ′′‖∞.

For the d-dimensional case, assume x satisfies f (x) > 0 and let ei be the ith unit
basis vector. Now apply the one-dimensional result to g(t) = f (x + tei), t ∈ R, at
t = 0. �

We now consider the expectation of expression (25) stopped at a stopping
time T , which we will specify later on. For all the terms except I

m,n
3 , we can

give a unified treatment for the settings of both Theorems 1.4 and 1.6.

LEMMA 2.2. For any stopping time T and constant t ≥ 0, we have the follow-
ing:

(a)

E
(
I

m,n
1 (t ∧ T )

) = 0 for all m,n.(26)

(b)

lim sup
m,n→∞

E
(
I

m,n
2 (t ∧ T )

) ≤ E

(∫ t∧T

0

∫
R

|ũ(s, x)|1
2��s(x) dx ds

)
.(27)
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(c)

lim
m,n→∞ E

(
I

m,n
4 (t ∧ T )

) = E

(∫ t∧T

0
|ũ(s, x)|�̇s(x) ds

)
.(28)

PROOF. (a) Let gm,n(s, y) = 〈φ′
n(〈ũs,�

m
. 〉)�m

. (y),�s〉. Note first that
I

m,n
1 (t ∧ T ) is a continuous local martingale with square function

〈Im,n
1 〉t∧T =

∫ t∧T

0

∫ ∫
gm,n(s, y)gm,n(s, z)

(
σ

(
u1(s, y)

) − σ
(
u2(s, y)

))

× (
σ

(
u1(s, z)

) − σ
(
u2(s, z)

))
k(y, z) dy dz ds

≤ C

∫ t∧T

0

∫ ∫
|gm,n(s, y)||gm,n(s, z)|(|u1(s, y)| + |u2(s, y)| + 1

)

× (|u1(s, z)| + |u2(s, z)| + 1
)
(|z − y|−α + 1) dy dz ds.

An easy calculation shows that |gm,n(s, y)| ≤ ‖�‖∞1(|y| ≤ K + 1), where K is
defined in (24). Now use Hölder’s inequality and (14) to conclude that

E(〈Im,n
1 〉t∧T )

≤ C

∫ t

0

∫ ∫
1(|y| ≤ K + 1)1(|z| ≤ K + 1)(|y − z|−α + 1) dy dz ds < ∞

∀ t > 0.

This shows I
m,n
1 (t ∧ T ) is a square integrable martingale and so has mean 0, as

required.
(b) In order to rewrite I

m,n
2 , we note that both φ′

n(〈ũs,�
m
. 〉), as well as

〈ũs,
1
2��m

. 〉, are in C∞(Rd) a.s. This follows from the infinite differentiability
of the test functions φn and � and from (14). Denote by �x the Laplacian act-
ing with respect to x. Since ũs is locally integrable and � smooth, we have, for
|x| ≤ K , ∫

Rd
ũ(s, y)1

2�y�
m(x − y)dy =

∫
Rd

ũ(s, y)1
2�x�

m(x − y)dy

(29)
= 1

2�x

∫
Rd

ũ(s, y)�m(x − y)dy,

for all m. This implies, for any t ≥ 0,

I
m,n
2 (t) =

∫ t

0

∫
Rd

φ′
n(〈ũs,�

m
x 〉)1

2
�x(〈ũs,�

m
x 〉)�s(x) dx ds

= −
d∑

i=1

1

2

∫ t

0

∫
Rd

∂

∂xi

(
φ′

n(〈ũs,�
m
x 〉)) ∂

∂xi

(〈ũs,�
m
x 〉)�s(x) dx ds
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−
d∑

i=1

1

2

∫ t

0

∫
Rd

φ′
n(〈ũs,�

m
x 〉) ∂

∂xi

(〈ũs,�
m
x 〉) ∂

∂xi

�s(x) dx ds

= −
d∑

i=1

1

2

∫ t

0

∫
Rd

ψn(|〈ũs,�
m
x 〉|)

(
∂

∂xi

〈ũs,�
m
x 〉

)2

�s(x) dx ds

−
d∑

i=1

1

2

∫ t

0

∫
Rd

φ′
n(〈ũs,�

m
x 〉) ∂

∂xi

(〈ũs,�
m
x 〉) ∂

∂xi

�s(x) dx ds

= −
d∑

i=1

1

2

∫ t

0

∫
Rd

ψn(|〈ũs,�
m
x 〉|)

(
∂

∂xi

〈ũs,�
m
x 〉

)2

�s(x) dx ds

+
d∑

i=1

1

2

∫ t

0

∫
Rd

ψn(〈ũs,�
m
x 〉) ∂

∂xi

(〈ũs,�
m
x 〉)〈ũs,�

m
x 〉 ∂

∂xi

�s(x) dx ds

+
∫ t

0

∫
Rd

φ′
n(〈ũs,�

m
x 〉)〈ũs,�

m
x 〉1

2
��s(x) dx ds

=
∫ t

0
I

m,n
2,1 (s) + I

m,n
2,2 (s) + I

m,n
2,3 (s) ds.

Above, we have used that φ′′
n = ψn and we have repeatedly used integration by

parts, the product rule as well as the chain rule on φ′
n(〈ũs,�

m
x 〉). In order to deal

with the various parts of I
m,n
2 , we will first jointly consider I

m,n
2,1 and I

m,n
2,2 . For

fixed s and i = 1, . . . , d , we define, a.s.,

As
i =

{
x :

(
∂

∂xi

〈ũs,�
m
x 〉

)2

�s(x) ≤ 〈ũs,�
m
x 〉 ∂

∂xi

〈ũs,�
m
x 〉 ∂

∂xi

�s(x)

}

∩ {x :�s(x) > 0}
= A

+,s
i ∪ A

−,s
i ∪ A

0,s
i ,

where

A
+,s
i = As

i ∩
{

∂

∂xi

〈ũs,�
m
x 〉 > 0

}
,

A
−,s
i = As

i ∩
{

∂

∂xi

〈ũs,�
m
x 〉 < 0

}
,

A
0,s
i = As

i ∩
{

∂

∂xi

〈ũs,�
m
x 〉 = 0

}
.

On A
+,s
i we have

0 <

(
∂

∂xi

〈ũs,�
m
x 〉

)
�s(x) ≤ 〈ũs,�

m
x 〉 ∂

∂xi

�s(x),
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and therefore, for any t ≥ 0,∫ t

0

∫
A

+,s
i

ψn(|〈ũs,�
m
x 〉|)〈ũs ,�

m
x 〉 ∂

∂xi

�s(x)
∂

∂xi

〈ũs,�
m
x 〉dx ds

≤
∫ t

0

∫
A

+,s
i

ψn(|〈ũs,�
m
x 〉|)〈ũs,�

m
x 〉2 (∂/∂xi�s(x))2

�s(x)
dx ds

≤
∫ t

0

∫
A

+,s
i

2

n
1{an−1≤|〈ũs ,�m

x 〉|≤an}|〈ũs,�
m
x 〉|(∂/∂xi�s(x))2

�s(x)
dx ds by (20)

≤ 2an

n

∫ t

0

∫
Rd

1
(
�s(x) > 0

)( ∂
∂xi

�(x))2

�s(x)
dx ds

≤ 2an

n

∫ t

0
2‖D2�s‖∞ Area(�)ds ≡ 2an

n
C(�),

where Lemma 2.1 is used in the last line, and � is defined in (24). Similarly, on
the set A

−,s
i ,

0 >
∂

∂xi

〈ũs,�
m
x 〉�s(x) ≥ 〈ũs,�

m
x 〉 ∂

∂xi

�s(x).

Hence, with the same calculation,∫ t

0

∫
A

−,s
i

ψn(|〈ũs,�
m
x 〉|)〈ũs,�

m
x 〉 ∂

∂xi

�s(x)
∂

∂xi

〈ũs,�
m
x 〉dx ds

≤ 2an

n

∫ t

0

∫
Rd

1
(
�s(x) > 0

)(∂/∂xi�s(x))2

�s(x)
dx ds

≤ 2an

n
C(�).

Finally, for any t ≥ 0,∫ t

0

∫
A

0,s
i

ψn(|〈ũs,�
m
x 〉|)〈ũs,�

m
x 〉 ∂

∂xi

�s(x)
∂

∂xi

〈ũs,�
m
x 〉dx ds = 0,

and we conclude that

E
(
I

m,n
2,1 (t ∧ T ) + I

m,n
2,2 (t ∧ T )

) ≤ 4C(�)
an

n
,

which tends to zero as n → ∞. For I
m,n
2,3 , recall that φ′

n(u)u ↑ |u| uniformly in u

as n → ∞, and that 〈ũs,�
m
x 〉 tends to ũ(s, x) as m → ∞ for all s, x a.s. by the

a.s. continuity of ũ. This implies that φ′
n(〈ũs,�

m
x 〉)〈ũs,�

m
x 〉 → |ũ(s, x)| pointwise

a.s. as m,n → ∞, where it is unimportant how we take the limit. We also have the
bound

|φ′
n(〈ũs,�

m
x 〉)〈ũs,�

m
x 〉| ≤ |〈ũs,�

m
x 〉| ≤ 〈|ũs |,�m

x 〉.(30)
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The a.s. continuity of ũ implies a.s. convergence for all s, x of 〈|ũs |,�m
x 〉 to

|ũ(s, x)| as m → ∞. A simple application of Jensen’s inequality and (14) shows
that |〈|ũs |,�m

x 〉| is Lp bounded on ([0, t]×B(0,K)×�,ds × dx ×P) uniformly
in m. This implies

{〈|ũs |,�m
x 〉 :m} is uniformly integrable on

([0, t] × B(0,K) × �
)

(31)

and so gives uniform integrability of {|φ′
n(〈ũs,�

m
x 〉)〈ũs ,�

m
x 〉| :m,n} by our earlier

bound (30). This implies

lim
m,n→∞ E

(
I

m,n
2,3 (t ∧ T )

) = E

(∫ t∧T

0

∫
|ũ(s, x)|1

2��s(x) dx ds

)
.

Collecting the pieces, we have shown that (27) holds.
(c) As in the above argument, we have

φn(〈ũs,�
m
x 〉) → |ũ(s, x)| as m,n → ∞ a.s. for all x and all s ≤ t.(32)

The uniform integrability in (31) and the bound φn(〈ũs,�
m
x 〉) ≤ 〈|ũs |,�m

x 〉 imply

{φn(〈ũs,�
m
x 〉 :n,m} is uniformly integrable on [0, t] × B(0,K) × �.

Therefore, the result now follows from the above convergence and the bound

|�̇s(x)| ≤ C1(|x| ≤ K). �

3. Proof of Theorem 1.6. Here, we let T = t be deterministic. Given the
results from Section 2, it now remains to estimate E(I

m,n
3 (t)). We will then let

m → ∞ before letting n → ∞. By the boundedness of the correlation kernel k

and Jensen’s inequality, I
m,n
3 (t) is bounded by

1
2‖k‖∞

∫ t

0

∫
Rd

(∫
Rd

∣∣σ (
u1(s, y)

) − σ
(
u2(s, y)

)∣∣�m
x (y) dy

)2

× ψn(|〈ũs,�
m
x 〉|)�s(x) dx ds

≤ 1
2‖k‖∞

∫ t

0

∫
Rd

(
σ

(
u1(s, y)

) − σ
(
u2(s, y)

))2

×
(∫

Rd
ψn(|〈ũs,�

m
x 〉|)�m

x (y)�s(x) dx

)
dy ds.

The integral in parentheses is bounded by a constant, independent of m, is zero for
all m if |y| > K + 1, and as m → 0, converges to ψn(ũ(s, y))�s(y) for all (s, y)

by the continuity of ũ. Our growth condition on σ and (14) imply the integrability
of ∫ t

0

∫ (
σ

(
u1(s, y)

) − σ
(
u2(s, y)

))21{|y|≤K+1} dy ds.
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Therefore, the dominated convergence theorem implies that

lim sup
m→∞

E(I
m,n
3 (t)) ≤ 1

2
‖k‖∞E

(∫ t

0

〈
ψn(ũs)

(
σ(u1

s ) − σ(u2
s )

)2
,�s

〉
ds

)
(33)

≤ C(�)‖k‖∞
t

n
,

where the last line follows by (3) and (20).
Return to equation (25) and let first m → ∞ and then n → ∞. Use the above

and Lemma 2.2 on the right-hand side, and (32) and Fatou’s lemma on the left-
hand side, to conclude that∫

Rd
E

(|ũ(t, x)|)�t(x) dx ≤
∫ t

0

∫
Rd

E(|ũs(x)|)∣∣1
2��s(x) + �̇s(x)

∣∣dx ds.(34)

Let {gN } be a sequence of functions in C∞
c (Rd) such that gN : Rd → [0,1],

B(0,N) ⊂ {x :gN(x) = 1}, B(0,N + 1)c ⊂ {x :gN(x) = 0}
and

sup
N

[‖∇gN‖∞ + ‖D2gN‖∞] ≡ C(g) < ∞,

where ∇gN denotes the gradient with respect to the spatial variables. Now let φ ∈
C∞

c (Rd), and for (s, x) ∈ [0, t] × Rd , set �N(s, x) = (St−sφ(x))gN(x). It is then
easy to check that �N ∈ C∞

c ([0, t] × Rd) and for λ > 0, there is a C = C(λ,φ)

such that, for all N ,

∣∣∣∣�2 �N(s, x) + �̇N(s, x)

∣∣∣∣ =
∣∣∣∣∣

d∑
i=1

∂

∂xi

St−sφ(xi)
∂

∂xi

gN(xi) + St−sφ(x)
�

2
gN(x)

∣∣∣∣∣
≤ Ce−λ|x|1{|x|>N}.

Use this in (34) to conclude that∫
Rd

E
(|ũ(t, x)|)φ(x) dx ≤ C

∫ t

0

∫
Rd

E
(|ũ(s, x)|)e−λ|x|1{|x|>N} dx ds.

By Proposition 1.8, the right-hand side of the above approaches zero as N → ∞
and we see that

E

(∫
Rd

|ũ(t, x)|dx

)
= 0.

Therefore, u1(t) = u2(t) for all t ≥ 0 a.s. by a.s. continuity.
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4. Proof of Theorem 1.4. We continue to use the notation of Section 2 and
also assume the hypotheses of Theorem 1.4. In particular, u1 and u2 are solutions
of (12), ũ = u1 − u2, σ is Hölder continuous with exponent γ ,

|σ(u) − σ(v)| ≤ L|u − v|γ for u, v ∈ R,

and |k(x, y)| ≤ c1.4[|x − y|−α + 1] for some α ∈ (0,1). We choose ρ(x) = √
x for

our smooth approximation of the absolute value function throughout noting that
(3) is not necessarily satisfied for large values. Nevertheless, we will use the test
function φn and its derivatives as defined in (21) to (23) corresponding to this ρ.

Fix some λ > 0 and let TK = inf{t ≥ 0 : supx∈Rd (|u1(t, x)|+ |u2(t, x)|)e−λ|x| >
K} ∧ K. Note that

TK → ∞, P -a.s.,(35)

since ui ∈ C(R+,Ctem).
Also define a metric d by

d
(
(t, x), (t ′, x′)

) =
√

|t − t ′| + |x − x′|, t, t ′ ∈ R+, x, x′ ∈ Rd,

and set

ZK,N,ξ = {
(t, x) ∈ R+ × Rd : t ≤ TK, |x| ≤ K,d

(
(t, x), (t̂ , x̂)

)
< 2−N for some

(t̂ , x̂) ∈ [0, TK ] × Rd satisfying |ũ(t̂ , x̂)| ≤ 2−Nξ }
.

We will now use the following key result on the improved Hölder continuity
of ũ when ũ is small. It will be proved in Section 5.

THEOREM 4.1. Assume the hypotheses of Theorem 1.4, except now allow γ ∈
(0,1]. Let u0 ∈ Ctem and ũ = u1 − u2, where ui is a solution of (12) with sample
paths in C(R+,Ctem) a.s. for i = 1,2. Let ξ ∈ (0,1) satisfy

∃Nξ = Nξ(K,ω) ∈ N a.s. such that ∀N ≥ Nξ, (t, x) ∈ ZK,N,ξ

(36)
d
(
(t ′, y), (t, x)

) ≤ 2−N, t, t ′ ≤ TK ⇒ |ũ(t, x) − ũ(t ′, y)| ≤ 2−Nξ .

Let 0 < ξ1 < [ξγ + 1 − α
2 ] ∧ 1. Then there is an Nξ1 = Nξ1(K,ω) ∈ N a.s. such

that, for any N ≥ Nξ1 in N and any (t, x) ∈ ZK,N,ξ ,

d
(
(t ′, y), (t, x)

) ≤ 2−N, t, t ′ ≤ TK ⇒ |ũ(t, x) − ũ(t ′, y)| ≤ 2−Nξ1 .(37)

Moreover, there are strictly positive constants R,δ, c38.1, c38.2 depending only on
(ξ, ξ1) and N(K) ∈ N, which also depends on K, such that

P
(
Nξ1 ≥ N

) ≤ c38.1
(
P(Nξ ≥ N/R) + Kd+1 exp(−c38.22Nδ)

)
,(38)

provided that N ≥ N(K).
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REMARK. Results similar to the above for white noise were independently
found by Carl Mueller and Roger Tribe in their parallel work on level sets of
solutions of SPDEs.

Recall λ > 0 is a fixed parameter used in the definition of TK .

COROLLARY 4.2. Assume the hypotheses of Theorem 1.4, except now allow
γ ∈ (0,1]. Let u0 and ũ be as in Theorem 4.1, and 1 − α

2 < ξ <
1−α/2
1−γ

∧ 1. There
is an a.s. finite positive random variable Cξ,K(ω) such that, for any ε ∈ (0,1], t ∈
[0, TK ] and |x| ≤ K , if |ũ(t, x̂)| ≤ εξ for some |x̂ −x| ≤ ε, then |ũ(t, y)| ≤ Cξ,Kεξ

whenever |x − y| ≤ ε. Moreover, there are strictly positive constants δ, c39.1, c39.2,
depending on ξ , and an r0(K), which also depends on K, such that

P(Cξ,K ≥ r) ≤ c39.1

[(
r − 6

(K + 1)eλ(K+1)

)−δ

(39)

+ Kd+1 exp
(
−c39.2

(
r − 6

(K + 1)eλ(K+1)

)δ)]

for all r ≥ r0(K) > 6 + (K + 1)eλ(K+1).

PROOF. By Proposition 1.8(b) and the equality ũ = Z1−Z2, where Zi(t, x) =
ui(t, x) − Stu0(x), we have (36) with ξ = ξ0 = 1

2(1 − α
2 ). Indeed, ũ is uniformly

Hölder continuous on compacts in [0,∞) × Rd with coefficient ξ in space and ξ
2

in time provided that ξ < 1 − α
2 .

Inductively, define ξn+1 = [(ξnγ + 1 − α
2 )∧ 1](1 − 1

n+3) so that ξn ↑ 1−α/2
1−γ

∧ 1.
Fix n0 so that ξn0 ≥ ξ > ξn0−1. Apply Theorem 4.1 inductively n0 times to get (36)
for ξn0−1 and, hence, (37) with ξ1 = ξn0 .

First consider ε ≤ 2−Nξn0 . Choose N ∈ N so that 2−N−1 < ε ≤ 2−N (N ≥
Nξn0

), and assume t ≤ TK , |x| ≤ K and |ũ(t, x̂)| ≤ εξ ≤ 2−Nξ ≤ 2−Nξn0−1 for

some |x̂ − x| ≤ ε ≤ 2−N . Then (t, x) ∈ ZK,N,ξn0−1 . Therefore, (37) with ξ1 = ξn0

implies that, if |y − x| ≤ ε ≤ 2−N , then

|ũ(t, y)| ≤ |ũ(t, x̂)| + |ũ(t, x̂) − ũ(t, x)| + |ũ(t, x) − ũ(t, y)|
≤ 2−Nξ + 2 · 2−Nξn0 ≤ 3 · 2−Nξ ≤ 3(2ε)ξ ≤ 6εξ .

For ε > 2−Nξn0 , we have for (t, x) and (t, y), as in the corollary,

|ũ(t, y)| ≤ (K + 1)eλ(K+1) ≤ (K + 1)eλ(K+1)2Nξn0 εξ .

This gives the conclusion with Cξ,K = (K + 1)eλ(K+1)2Nξn0 + 6. A short calcula-
tion and (38) now imply that there are strictly positive constants R̃, δ̃, c40.1, c40.2,
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depending on ξ and K , such that

P(Cξ,K ≥ r) ≤ c40.1

[
P

(
N1/2(1−α/2) ≥ 1

R̃
log2

(
r − 6

(K + 1)eλ(K+1)

))
(40)

+ Kd+1 exp
(
−c40.2

(
r − 6

(K + 1)eλ(K+1)

)δ̃)]

for all r ≥ r0(K). The usual Kolmogorov continuity proof applied to (15) with
ũ = Z1 − Z2 in place of Z [and ξ = 1

2(1 − α
2 )] shows there are ε̃, c̃3 > 0 such that

P
(
N1/2(1−α/2) ≥ M

) ≤ c̃32−Mε̃

for all M ∈ R. Thus, (39) follows from (40). �

Now fix α,γ satisfying the conditions of Theorem 1.4, so α < (2γ − 1) and
notice that since 1 ≥ γ > 1

2 , this implies that 1−α/2
1−γ

> 1. Hence, we can choose
ξ ∈ (0,1) such that

α < ξ(2γ − 1)(41)

and 1 − α
2 < ξ <

1−α/2
1−γ

∧ 1. This means that ξ satisfies the conditions of Corol-
lary 4.2.

We return to the setting and notation in Section 2. In particular, � ∈ C∞
c ([0, t]×

Rd) with � = {x :�s(x) > 0 ∃ s ≤ t} ⊂ B(0,K). Recall Lemma 2.2 is valid in the
setting of Theorem 1.4.

Let m(n) := a
−1/ξ
n−1 . Note that m(n) ≥ 1 for all n. We set c0(K) := r0(K)∨K2eλK

[where r0(K) is chosen as in Corollary 4.2] and define the stopping time

Tξ,K = inf{t ≥ 0 : t > TK or t ≤ TK and there exist ε ∈ (0,1],
x̂, x, y ∈ R with |x| ≤ K, |ũ(t, x̂)| ≤ εξ , |x − x̂| ≤ ε,

|x − y| ≤ ε such that|ũ(t, y)| > c0(K)εξ }.
Assuming our filtration is completed as usual, Tξ,K is a stopping time by the stan-
dard projection argument. Note that, for any t ≥ 0, by Corollary 4.2,

P(Tξ,K ≤ t) ≤ P(TK ≤ t) + P
(
Cξ,K > c0(K)

)
≤ P(TK ≤ t)

(42)

+ c39.1

[(
K2eλK − 6

(K + 1)eλ(K+1)

)−δ

+ Kd+1 exp
(
−c39.2

(
K2eλK − 6

(K + 1)eλ(K+1)

)δ)]
,(43)

which tends to zero as K → ∞ due to (35).
With this set-up we can show the following lemma:
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LEMMA 4.3. For all x ∈ � and s ∈ [0, Tξ,K ], if |〈ũs,�
m(n)

x 〉| ≤ an−1, then

sup
y∈B(x,1/m(n))

|ũ(s, y)| ≤ c0(K)an−1.

PROOF. Since |〈ũs,�
m(n)

x 〉| ≤ an−1 and ũs(·) is continuous, there exists a x̂ ∈
B(x, 1

m(n) ) such that |ũ(s, x̂)| ≤ an−1. Apply the definition of the stopping time

with ε = 1/m(n) ∈ (0,1] and so εξ = an−1 to obtain the required bound. �

Next, we bound |Im(n),n
3 | using the Hölder continuity of σ, as well as the defini-

tion of ψn. If |σ(x) − σ(y)| ≤ L|x − y|γ , then∣∣Im(n),n
3 (t ∧ Tξ,K)

∣∣
≤ c8L

2

n

∫ t∧Tξ,K

0

∫
R3d

1{an≤|〈ũs ,�m(n)
x 〉|≤an−1}a

−1
n |ũs(y)|γ |ũs(z)|γ

× �m(n)

x (y)�m(n)

x (z)[|y − z|−α + 1]dy dz�s(x) dx ds.

Now set �1 = {x ∈ Rd, d(x,�) < 1}. Since �(x) ≤ C1B(0,1)(x) and

1B(0,1)

(
m(n)(x − y)

) · 1B(0,1)

(
m(n)(x − z)

)
≤ 1B(0,1)

(
m(n)(x − y)

) · 1B(0,1)

(1
2m(n)(y − z)

)
,

we obtain from Lemma 4.3∣∣Im(n),n
3 (t ∧ Tξ,K)

∣∣
≤ c8L

2c0(K)2γ
a

2γ
n−1

nan

×
∫ t∧Tξ,K

0

∫
R3d

1{an≤|〈ũs ,�m(n)
x 〉|≤an−1}

× �m(n)

x (y)�m(n)

x (z)[|y − z|−α + 1]dy dz�s(x) dx ds

≤ c8L
2‖�‖∞c0(K)2γ

n

a
2γ
n−1

an

×
∫ t∧Tξ,K

0

∫
�1×�1

(∫
�

�m(n)

x (y)�m(n)

x (z) dx

)
[|y − z|−α + 1]dy dzds

≤ c8L
2‖�‖∞c0(K)2γ t

n

a
2γ
n−1

an

×
∫
�1×�1

(
m(n))d1B(0,1)

(1
2m(n)(y − z)

)[|y − z|−α + 1]dy dz
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≤ C(c8,L,�,�)c0(K)2γ t

n

a
2γ
n−1

an

[(
m(n))α + 1

]

= C(c8,L,�,�)c0(K)2γ t

n

a
(2γ−α/ξ)
n−1

an

.

Observe now that
∫ an−1
an

x−1 dx ∼ n so that an−1
an

∼ en or (using that a0 = 1) an ∼
e−(n(n+1))/2. Thus,

lim
n→∞ E

(∣∣Im(n),n
3 (t ∧ Tξ,K)

∣∣) = 0(44)

if n(n + 1) − (2γ − α
ξ
)(n − 1)n < 0 for n large. This is equivalent to

1 −
(

2γ − α

ξ

)
< 0 ⇐⇒ α < ξ(2γ − 1),

which holds by (41).
Use (32) and Fatou’s lemma on the left-hand side of (25), and Lemma 2.2

and (44) on the right-hand side, to take limits in this equation and so conclude∫
Rd

E
(|ũ(t ∧ Tξ,K, x)|)�t(x) dx

≤ lim inf
n→∞

∫
Rd

E
(
φn

(〈
ũt∧Tξ,K

,�m(n)

x

〉))
�t(x) dx

≤ E

(∫ t∧Tξ,K

0

∫
Rd

|ũ(s, x)|1
2

(
��s(x) + �̇s(x)

)
dx ds

)

≤
∫ t

0

∫
Rd

E
(|ũ(s, x)|)∣∣1

2��s(x) + �̇s(x)
∣∣dx ds.

Since Tξ,K tends in probability to infinity as K → ∞ according to (42), we know
that ũ(t ∧ Tξ,K, x) → ũ(t, x) and so we finally conclude with another application
of Fatou’s lemma that∫

Rd
E

(|ũ(t, x)|)�t(x) dx

≤
∫ t

0

∫
Rd

E
(|ũ(s, x)|)∣∣1

2��s(x) + �̇s(x)
∣∣dx ds.

This is (34) of Section 3 and the conclusion now follows as in the proof of Theo-
rem 1.6 given there.

5. Proof of Theorem 4.1. In this section we will first prove three technical
lemmas needed for the proof of Theorem 4.1.
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LEMMA 5.1. Let B be a standard d-dimensional Brownian motion. For α < d ,
there exists a constant c5.1 = c5.1(α, d) such that, for all x, y ∈ Rd and t, t ′ > 0,∫

Rd

∫
Rd

pt (x − w)pt ′(y − z)|w − z|−α dw dz = Ex−y(|Bt+t ′ |−α)

≤ E0(|Bt+t ′ |−α)(45)

≤ c5.1(t + t ′)−α/2.

In addition, for any λ′ > 0, c ≥ 0 and 0 < t ≤ t ′,∫
Rd

∫
Rd

eλ′(|w|+|z|)pt (x − w)pt ′(y − z)[|w − z|−α + c]dw dz

(46)
≤ c5.1e

2(λ′)2t ′eλ′(|x|+|y|)[(t + t ′)−α/2 + c].

PROOF. The first equality of (45) is immediate from change of variables. The
second inequality then follows from a simple coupling argument: Let |Bi

t | for i =
1,2 be the radial part of a d-dimensional Brownian motion started at 0 and |x −y|,
respectively. Define the stopping time T := inf{t ≥ 0 : |B1

t | > |B2
t |}. Then

|B3
t | =

{ |B2
t |, for t ≤ T ,

|B1
t |, for t > T ,

has the same law as |B2| and the property that |B3
t | ≥ |B1

t | for all t ≥ 0 a.s., which
implies the inequality of the expectations in (45). We finally compute by setting

r = |w|2
2t

,

E0(|Bt |−α) =
∫

Rd
|w|−α(2πt)d/2 exp

(
−|w|2

2t

)
dw

= cd

∫ ∞
0

r(d−α)/2−1 exp(−r) dr · t−α/2

= c(α, d)t−α/2,

provided that α < d. This shows (45). For proving (46), we note that, for
0 < t ≤ t ′,

eλ′|w|pt(w) ≤ 2d/2 exp
(
λ′|w| − 1

4t
|w|2

)
p2t (w) ≤ cde(λ′)2t ′p2t (w)(47)

since λ′|w| − 1
4t

|w|2 ≤ (λ′)2t. Therefore,∫
Rd

∫
Rd

eλ′(|w|+|z|)pt (x − w)pt ′(y − z)[|w − z|−α + c]dw dz

≤ eλ′(|x|+|y|)
∫

Rd

∫
Rd

eλ′(|w|+|z|)pt (w)pt ′(z)[|w − z + x − y|−α + c]dw dz
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≤ c2
de2(λ′)2t ′eλ′(|x|+|y|)

∫
Rd

∫
Rd

p2t (w)p2t ′(z)[|w − z + x − y|−α + c]dw dz

≤ c(α, d)e2λ2t ′eλ(|x|+|y|)[(t + t ′)−α/2 + c].
Here, we have used a shift of variables in the first and (47) in the second inequality,
as well as (45) in the third. This shows (46). �

The next lemma provides some estimates of the temporal and spatial differences
of the heat kernels:

LEMMA 5.2. There are constants c48(d) and c49(α, d) such that if 0 < β ≤ 1
and λ′ ≥ 0, then for any x, y ∈ Rd, 0 < t ≤ t ′,∫

Rd
|pt(x − w) − pt ′(y − w)|eλ′|w| dw

≤ c48e
2(λ′)2t ′(eλ′|x| + eλ′|y|)e2βλ′(|x−y|)(48)

× (t−β/2|x − y|β + t−β |t ′ − t |β),∫
Rd

∫
Rd

|pt(x − w) − pt(y − w)||pt(x − z) − pt(y − z)|
× [|w − z|−α + 1]dw z(49)

≤ c49[t−1−α/2 + t−1]|x − y|2
and ∫

Rd

∫
Rd

|pt(x − w) − pt ′(x − w)||pt(x − z) − pt ′(x − z)|
× [|w − z|−α + 1]dw dz(50)

≤ c49[t−2−α/2 + t−2]|t ′ − t |2.

PROOF. We consider the space and time differences separately. For the former,
define v = x − y, and set v̂0 = 0, v̂d = v and v̂i − v̂i−1 = viei, where vi is the ith
component of v and ei is the ith unit vector in Rd . Therefore,∣∣∣∣ exp

(
−|w + v|2

2t

)
− exp

(
−|w|2

2t

)∣∣∣∣
≤

d∑
i=1

∣∣∣∣ exp
(
−|w + v̂i |2

2t

)
− exp

(
−|w + v̂i−1|2

2t

)∣∣∣∣
=

d∑
i=1

∣∣∣∣
∫ vi

0

wi + ri

t
exp

(
−|w + v̂i−1 + riei |2

2t

)
dri

∣∣∣∣.
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Hence, by a change of variables, (47) and using |w| ≤ |ŵi |+|wi | (ŵi = w−wiei),
we have∫

Rd
|pt(x − w) − pt(y − w)|eλ′|w| dw

≤ eλ′|x|(2πt)d/2

×
d∑

i=1

∫ |vi |
0

∫
Rd

|wi + ri |
t

exp
(
−|w + v̂i−1 + riei |2

2t

)
eλ′|w| dw dri

≤ cde(λ′)2t ′eλ′(|x|+|v|)t−1/2(51)

×
d∑

i=1

∫ |vi |
0

∫ ∞
−∞

|wi + ri |
t

exp
(
−(wi + ri)

2

2t

)
eλ′|wi | dwi dri

≤ cde(λ′)2t ′eλ′(|x|+|v|)t−1/2

(
d∑

i=1

eλ′|vi ||vi |
)∫ ∞

0

r

t
exp

(
−r2

4t

)
dr

≤ cde(λ′)2t ′eλ′|x|+2λ′|x−y|t−1/2|x − y|.

Similarly, using that a ≤ c exp(a2/4) for all a ∈ R+, we get

∫
Rd

∫
Rd

|pt(x − w) − pt(y − w)| · |pt(x − z) − pt(y − z)|[|w − z|−α + 1]dw dz

≤ Ct−d

×
∫

Rd

∫
Rd

d∑
i,j=1

∫ |vi |
0

∫ |vj |
0

|wi + ri |
t

× exp
(
−|w + v̂i−1 + riei |2

2t

)

× |zi + r̃i |
t

exp
(
−|z + v̂i−1 + r̃iei |2

2t

)
dri dr̃i

× [|w − z|−α + 1]dw dz

≤ Ct−d−1

×
d∑

i,j=1

∫ |vi |
0

∫ |vj |
0

(∫
Rd

∫
Rd

exp
(
−|w + v̂i−1 + riei |2

2t

+ |wi + ri |2
4t

)
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× exp
(
−|z + v̂i−1 + r̃iei |2

2t

+ |zi + r̃i |2
4t

)

× [|w − z|−α + 1]dw dz

)
dri dr̃i

≤ C(α,d)t−1
d∑

i,j=1

∫ |vi |
0

∫ |vj |
0

[t−α/2 + 1]dri dr̃i

≤ C(α,d)[t−1−α/2 + t−1]|x − y|2,
where we have used an appropriate shift of variables and Lemma 5.1 in the previ-
ous to last line. This shows (49).

For the time differences observe that for some C = C(α,d),

|pt(w) − pt ′(w)|

≤ C|td/2 − t ′d/2| exp
(
−|w|2

2t

)

+ Ct ′d/2
∣∣∣∣ exp

(
−|w|2

2t

)
− exp

(
−|w|2

2t ′
)∣∣∣∣(52)

≤ C|t ′ − t |td/2−1 exp
(
−|w|2

2t

)
+ Ct ′d/2

∫ t ′

t
exp

(
−|w|2

2s

) |w|2
2s2 ds

≤ Ct−1|t ′ − t |(pt(w) + p2t ′(w)
)
,

since |w|2
4s

≤ exp(
|w|2
4s

). Therefore, another application of (47) yields

∫
Rd

|pt(w) − pt ′(w)|eλ′|w| dw ≤ C(d)e(λ′)2t ′ t−1|t ′ − t |.

Taking this estimate with a change of variables, together with (51), we obtain∫
|pt(x − w) − pt ′(y − w)|eλ′|w| dw

(53)

≤ C(d)e2λ2t ′eλ′|x|
[
e2λ′|x−y| |x − y|√

t
+ |t ′ − t |

t

]
.

An application of (47) and a change of variables also show that∫
|pt(x − w) − pt ′(y − w)|eλ′|w| dw ≤ C(d)e(λ′)2t ′(eλ′|x| + eλ′|y|).(54)
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If β ∈ (0,1], the inequality z ∧ 1 ≤ zβ for z ≥ 0, and the previous two bounds now
show that ∫

|pt(x − w) − pt ′(y − w)|eλ′|w| dw

≤ C(d)e2(λ′)2t ′(eλ′|x| + eλ′|y|)
× [

e2βλ′|x−y||x − y|βt−β/2 + |t ′ − t |βt−β]
,

which implies (48). Similarly, using (52) and (45),∫
Rd

∫
Rd

|pt(x − w) − pt ′(x − w)|
× |pt(x − z) − pt ′(x − z)|[|w − z|−α + 1]dw dz

≤ Ct−2|t ′ − t |2

×
∫

Rd

∫
Rd

(
pt(w) + p2t ′(w)

)(
pt(z) + p2t ′(z)

)[|w − z|−α + 1]dw dz

≤ C(α,d)(t−2−α/2 + t−2)|t ′ − t |2,
which proves (50). �

We will also need the following rather technical lemma:

LEMMA 5.3. For b, c ≥ 0 with c < 1
2(b + 1 − α

2 ), and a ∈ (c,1 − α/2), there
is a finite constant c5.3 = c5.3(a, b, c,α) such that t ≥ 0,

Q(t, a, b, c,α)

:=
∫ t

0

∫ t

0
(t − r)a−1−c(t − r ′)a−1−c

×
∫ r∧r ′

0
(t − s)b(r − s)−a(r ′ − s)−a

×
∫

Rd

∫
Rd

pr−s(w)pr ′−s(z)[|w − z|−α + 1]dw dzds dr dr ′

≤ c5.3[tb+1−α/2−2c + tb+1−2c].

PROOF. By Lemma 5.1, it suffices to estimate∫ t

0

∫ t

0
(t − r)a−1−c(t − r ′)a−1−c

×
∫ r∧r ′

0
(t − s)b(r − s)−a(r ′ − s)−a[(r − s + r ′ − s)−α/2 + 1]ds dr dr ′
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= 2
∫ t

0

∫ t

s
(t − r)a−1−c(t − s)b(r − s)−a

×
(∫ t

r
(t − r ′)a−1−c[(r ′ − s)−a−α/2 + (r ′ − s)−a]dr ′

)
dr ds,

where we have used the symmetry in r and r ′ and concentrated on the case
r ≤ r ′. Substituting v = r ′−r

t−r
and using that c < a < 1 − α

2 , we calculate, for
t ≥ r ≥ s,∫ t

r
(t − r ′)a−1−c[(r ′ − s)−a−α/2 + (r ′ − s)−a]dr ′

= (t − r)−α/2−c
∫ 1

0
(1 − v)a−1−c

[(
v + r − s

t − r

)−a−α/2

+ (t − r)α/2
(
v + r − s

t − r

)−a]
dv

≤ C(a, c,α)(t − r)a−c

× [(t − r)−a−α/2 ∧ (r − s)−a−α/2 + (t − r)−a ∧ (r − s)−a].
Hence, the required Q is at most C(a, c,α) times the sum of the following integral,
I (β), for β = a and β = a + α/2:

I (β) =
∫ t

0
(t − s)b

∫ t

s
(t − r)2a−1−2c(r − s)−a(

(t − r)−β ∧ (r − s)−β)
dr ds.

For these values of β , I (β) is at most∫ t

0
(t − s)b

(∫ (t+s)/2

s
(t − r)2a−1−2c−β(r − s)−a dr

+
∫ t

(t+s)/2
(t − r)2a−1−2c(r − s)−a−β dr

)
ds

≤ C(a,α)

∫ t

0

(
(t − s)b+2a−1−2c−β

∫ (t+s)/2

s
(r − s)−a dr

+ (t − s)b−a−β
∫ t

(t+s)/2
(t − r)2a−1−2c dr

)
ds

≤ C(a, c,α)

∫ t

0
(t − s)b+a−2c−β ds ≤ C(a, b, c,α)tb+a−2c−β+1.

Here, we have used that t − r ≥ t−s
2 for r ∈ [s, t+s

2 ] and, analogously, r − s ≥ t−s
2

for r ∈ [ t+s
2 , t], as well as our assumption of a > c and c < 1

2(b + 1 − α
2 ). The

result follows upon summing over the two values of β . �

PROOF OF THEOREM 4.1. Fix arbitrary (deterministic) (t, x), (t ′, y) such that
d((t, x), (t ′, y)) ≤ ε ≡ 2−N (N ∈ N) and t ≤ t ′ (the case t ′ ≤ t works analogously).
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As ξ1 < (ξγ + 1 − α/2) ∧ 1, we may choose δ ∈ (0,1 − α/2) so that

1 > ξγ + 1 − α/2 − δ > ξ1.(55)

Note that ξγ < 1 shows we may choose δ in the required range. Next choose
δ′ ∈ (0, δ) and p ∈ (0, ξγ ) so that

1 > p + 1 − α/2 − δ > ξ1(56)

and

1 > ξγ + 1 − α/2 − δ′ > ξ1.(57)

Now consider, for some random N1 = N1(ω, ξ, ξ1) to be chosen below,

P
(|ũ(t, x) − ũ(t, y)| ≥ |x − y|1−α/2−δεp, (t, x) ∈ ZK,N,ξ ,N ≥ N1

)
+ P

(|ũ(t ′, x) − ũ(t, x)| ≥ |t ′ − t |1/2(1−α/2−δ)εp,(58)

(t, x) ∈ ZK,N,ξ , t
′ ≤ TK,N ≥ N1

)
.

In order to simplify notation, we define

Dx,y,t,t ′(w, z, s) = |pt−s(x − w) − pt ′−s(y − w)||pt−s(x − z) − pt ′−s(y − z)|
× |ũ(s,w)|γ |ũ(s, z)|γ [|w − z|−α + 1],

Dx,t ′(w, z, s) = pt ′−s(x − w)pt ′−s(x − z)|ũ(s,w)|γ |ũ(s, z)|γ [|w − z|−α + 1].
With this notation expression (58) is bounded by

P

(
|ũ(t, x) − ũ(t, y)| ≥ |x − y|1−α/2−δεp, (t, x) ∈ ZK,N,ξ ,N ≥ N1,

∫ t

0

∫
Rd

∫
Rd

Dx,y,t,t (w, z, s) dw dzds ≤ |x − y|2−α−2δ′
ε2p

)

+ P

(
|ũ(t ′, x) − ũ(t, x)| ≥ |t ′ − t |1/2(1−α/2−δ)εp,

(t, x) ∈ ZK,N,ξ , t
′ ≤ TK,N ≥ N1,∫ t ′

t

∫
Rd

∫
Rd

Dx,t ′(w, z, s) dw dzds

+
∫ t

0

∫
Rd

∫
Rd

Dx,x,t,t ′(w, z, s) dw dzds ≤ (t ′ − t)1−α/2−δ′
ε2p

)

+ P

(∫ t

0

∫
Rd

∫
Rd

Dx,y,t,t (w, z, s) dw dzds > |x − y|2−α−2δ′
ε2p,

(t, x) ∈ ZK,N,ξ ,N ≥ N1

)
(59)
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+ P

(∫ t ′

t

∫
Rd

∫
Rd

Dx,t ′(w, z, s) dw dzds

+
∫ t

0

∫
Rd

∫
Rd

Dx,x,t,t ′(w, z, s) dw dzds

> (t ′ − t)1−α/2−δ′
ε2p, (t, x) ∈ ZK,N,ξ , t

′ ≤ TK,N ≥ N1

)

=: P1 + P2 + P3 + P4.

Notice that the processes

t̃ �→
∫ t̃

0

∫
Rd

pt−s(x − w)
(
σ

(
u1(s,w)

) − σ
(
u2(s,w)

))
W(dw ds)

are continuous local martingales for any fixed x, t on 0 ≤ t̃ ≤ t . We bound the
appropriate differences of these integrals by considering the respective quadratic
variations of ũ(t, x) − ũ(t, y) and ũ(t ′, x) − ũ(t, x) [see (12)]. If |σ(u) − σ(v)| ≤
L|u − v|γ and recalling that |k(x, y)| ≤ c1.4[|x − y|−α + 1], we see that the time
integrals in the above probabilities differ from the appropriate square functions by
a multiplicative factor of L2c1.4.

If δ′′ = δ − δ′ > 0, B is a standard one-dimensional Brownian motion with
B(0) = 0, and B∗(t) := sup0≤s≤t |B(s)|, then the first two probabilities of (59)
can be bounded using the Dubins–Schwarz theorem

P1 ≤ P
(
B∗(c1.4L

2|x − y|2−α−2δ′
ε2p) ≥ |x − y|1−α/2−δεp)

= P
(
B∗(1)

√
c1.4L|x − y|1−α/2−δ′

εp ≥ |x − y|1−α/2−δεp)
(60)

= P
(
B∗(1) ≥ (√

c1.4L
)−1|x − y|−δ′′)

≤ c60 exp(−c′
60|x − y|−δ′′

),

where we have used the reflection principle in the last line. Likewise,

P2 ≤ P
(
B∗(c1.4L

2|t ′ − t |1−α/2−δ′
ε2p) ≥ |t ′ − t |1/2(1−α/2−δ)εp)

= P
(
B∗(1) ≥ (√

c1.4L
)−1|t ′ − t |−δ′′/2)

(61)

≤ c60 exp(−c′
60|t ′ − t |−δ′′/2).

Here the constants c60 and c′
60 depend on d , L and c1.4.

In order to bound P3 and P4, we estimate the respective integral expressions
by splitting them up in several parts: Let δ1 ∈ (0, 1

2(1 − α
2 )) and t0 = 0, t1 = t −

ε2, t2 = t and t3 = t ′. We also define

A
1,s
1 (x) = {

w ∈ Rd : |x − w| ≤ 2
√

t − sε−δ1
}

and
(62)

A
1,s
2 (x) = Rd \ A

1,s
1 (x),

A2
1(x) = {w ∈ Rd : |x − w| ≤ 2ε1−δ1} and A2

2(x) = Rd \ A2
1(x).(63)
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For notational convenience, we will sometimes omit the index s for A1
i (x). We

continue to write

Qx,y,t,t ′ :=
∫ t

0

∫
Rd

∫
Rd

Dx,y,t,t ′(w, z, s) dw dzds = ∑
i,j,k=1,2

Q
x,y,t,t ′
i,j,k ,

where

Q
x,y,t,t ′
i,j,k :=

∫ ti

ti−1

∫
Ai

j (x)

∫
Ai

k(x)
Dx,y,t,t ′(w, z, s) dw dzds.

And likewise,

Qx,t,t ′ :=
∫ t ′

t

∫
Rd

∫
Rd

Dx,t ′(w, z, s) dw dzds = ∑
j,k=1,2

Q
x,t,t ′
j,k ,

where

Q
x,t,t ′
j,k :=

∫ t ′

t

∫
A2

j (x)

∫
A2

k(x)
Dx,t ′(w, z, s) dw dzds.

Before we proceed, let us note that ũ can be bounded on the sets Ai
1 as follows:

Set

N1(ω) =
[

5Nξ(ω)

δ1

]
≥

[
Nξ(ω) + 4

1 − δ1

]
∈ N,(64)

where [·] is the greatest integer function and assume N ≥ N1 in the following.
Recall λ > 0 is a fixed constant used in the definition of TK and, hence, ZK,N,ξ .

As it is fixed, we often suppress dependence on λ in our notation. �

LEMMA 5.4. Let N ≥ N1. Then on {ω : (t, x) ∈ ZK,N,ξ },
|ũ(s,w)| ≤ 10ε(1−δ1)ξ for s ∈ [t − ε2, t ′],w ∈ A2

1(x),(65)

|ũ(s,w)| ≤ (8 + 3K2Nξ ξ )eλ|w|(t − s)ξ/2ε−δ1ξ

(66)
for s ∈ [0, t − ε2],w ∈ A

1,s
1 (x).

PROOF. We choose N ′ ∈ N so that 2−N ′−1 ≤ 3ε1−δ1 ≤ 2−N ′
. Then 2−N ′−3 <

2−N(1−δ1) ≤ 2−N ′−1, and so by (64),

N ′ > N(1 − δ1) − 3 ≥ N1(1 − δ1) − 3 ≥ Nξ .(67)

Assume (t, x) ∈ ZK,N,ξ , 0 ≤ t ′ ≤ TK , and choose (t̂ , x̂) such that

t̂ ≤ TK,d
(
(t, x), (t̂, x̂)

)
< ε = 2−N and |ũ(t̂ , x̂)| ≤ 2−Nξ = εξ .(68)

We first observe that for s ∈ [t − ε2, t ′] and w ∈ A2
1(x) so that |w − x| ≤ 2ε1−δ1,

we have

d
(
(s,w), (t, x)

) ≤ ε + 2ε1−δ1 ≤ 3ε1−δ1 ≤ 2−N ′
.(69)
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Therefore, by (36) and (67), for s ∈ [t − ε2, t ′] and w ∈ A2
1(x),

|ũ(s,w)| ≤ |ũ(t̂ , x̂)| + |ũ(t̂ , x̂) − ũ(t, x)| + |ũ(t, x) − ũ(s,w)|
≤ 2 · 2−Nξ + 2−N ′ξ

(70)
≤ 2εξ + (8ε1−δ1)ξ

≤ 10ε(1−δ1)ξ ,

which proves (65). Similarly, if s ∈ [0, t − ε2] and w ∈ A
1,s
1 (x), meaning that

|w − x| ≤ 2
√

t − sε−δ1, we have

d
(
(s,w), (t, x)

) ≤ √
t − s + 2

√
t − sε−δ1 ≤ 3

√
t − sε−δ1 .(71)

Notice that if 3
√

t − sε−δ1 ≤ 2−Nξ , then there exists an N ′ ≥ Nξ such that
2−(N ′+1) ≤ 3

√
t − sε−δ1 ≤ 2−N ′

so that we can as in (65) bound

|ũ(s,w)| ≤ |ũ(t̂ , x̂)| + |ũ(t̂ , x̂) − ũ(t, x)| + |ũ(t, x) − ũ(s,w)|
≤ 2−Nξ + 2−Nξ + 2−N ′ξ

≤ 2 · 2−Nξ + 2 · 2−(N ′+1)ξ(72)

≤ 2(t − s)ξ/2 + 2 · 3ξ (t − s)ξ/2ε−δ1ξ

≤ 8(t − s)ξ/2ε−δ1ξ ,

since ε = 2−N ≤ √
t − s. If, on the other hand, 3

√
t − sε−δ1 > 2−Nξ , then we

bound

|ũ(s,w)| ≤ Keλ|w|

= (
K(t − s)−ξ/2)

eλ|w|(t − s)ξ/2(73)

≤ (Kε−δ1ξ 3ξ 2Nξ ξ )eλ|w|(t − s)ξ/2.

Taking (72) and (73) together, we obtain (66). �

In the rest of this section C(K) denotes a constant depending on K (and pos-
sibly λ) which may change from line to line. We will first consider the terms for
which j = k = 1 so that we can use the bounds (65) and (66) of Lemma 5.4:

LEMMA 5.5. If 0 < β < 1 − α
2 , β ′ < ξγ + 1 − α

2 , and β ′ ≤ 1, then on
{ω : (t, x) ∈ ZK,N,ξ },

Q
x,y,t,t
2,1,1 ≤ c74(α, d,β,K)ε2(1−δ1)ξγ |x − y|2β,(74)

Q
x,x,t,t ′
2,1,1 ≤ c74(α, d,β,K)ε2(1−δ1)ξγ |t ′ − t |β,(75)

Q
x,y,t,t
1,1,1 ≤ c76(α, d,β ′, ξγ,K)(8 + 3K2Nξ ξ )2γ ε−2δ1ξγ |x − y|2β ′

,(76)
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Q
x,x,t,t ′
1,1,1 ≤ c76(α, d,β ′, ξγ,K)(8 + 3K2Nξ ξ )2γ ε−2δ1ξγ |t ′ − t |β ′

,(77)

Q
x,t,t ′
1,1 ≤ c78(α, d)ε2γ ξ(1−δ1)|t ′ − t |1−α/2.(78)

PROOF. Using the bounds (65) and (66) of Lemma 5.4, we obtain

Q
x,y,t,t ′
2,1,1 ≤ 100γ ε2(1−δ1)ξγ

×
∫ t

t−ε2

∫
A2

1(x)

∫
A2

1(x)
|pt−s(x − w) − pt ′−s(y − w)|

(79)
× |pt−s(x − z) − pt ′−s(y − z)|
× [|w − z|−α + 1]dw dzds,

Q
x,y,t,t ′
1,1,1 ≤ (8 + 3K2Nξ ξ )2γ ε−2δ1ξγ

×
∫ t−ε2

0
(t − s)ξγ

∫
A1

1(x)

∫
A1

1(x)
eλγ |w|eλγ |z|

× |pt−s(x − w) − pt ′−s(y − w)|(80)

× |pt−s(x − z) − pt ′−s(y − z)|
× [|w − z|−α + 1]dw dzds.

Note that the above integrals only become larger if we integrate over the domain
[0, t] × R2d, which we will do in the following. We will use a version of the
factorization method first introduced in [2] to estimate them. Noting that, for s ≤ t

and 0 < a < 1, ∫ t

s
(t − r)a−1(r − s)−a dr = π

sin(πa)
,(81)

and that for s ≤ r ≤ t,

|pt−s(x − w) − pt ′−s(y − w)|
(82)

≤
∫

Rd
pr−s(w

′ − w) · |pt−r (x − w′) − pt ′−r (y − w′)|dw′,

we obtain, with (79),

Q
x,y,t,t ′
2,1,1 ≤ C(a)ε2(1−δ1)ξγ

×
∫ t

0

∫ t

0
(t − r)a−1(t − r ′)a−1

×
∫

Rd

∫
Rd

J 2
r,r ′(w′, z′)(83)

× |pt−r (x − w′) − pt ′−r (y − w′)|
× |pt−r ′(x − z′) − pt ′−r ′(y − z′)|dw′ dz′ dr dr ′,
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where

J 2
r,r ′(w′, z′)

:=
∫ r∧r ′

0

∫
Rd

∫
Rd

(r − s)−a(r ′ − s)−apr−s(w
′ − w)pr ′−s(z

′ − z)(84)

× [|w − z|−α + 1]dw dzds,

where J 2
r,r ′(w′, z′) ≤ J 2

r,r ′(0,0) according to (45) of Lemma 5.1. So we get

Q
x,y,t,t ′
2,1,1 ≤ C(a)ε2(1−δ1)ξγ

×
∫ t

0

∫ t

0
(t − r)a−1(t − r ′)a−1J 2

r,r ′(0,0)

(85)

×
(∫

Rd
|pt−r (x − w′) − pt ′−r (y − w′)|dw′

)

×
(∫

Rd
|pt−r ′(x − z′) − pt ′−r ′(y − z′)|dz′

)
dr dr ′.

The integrals in brackets can now be estimated with the help of (48) in Lemma 5.2.
Recall that (t, x) ∈ ZK,N,ξ and |x − y| ≤ 2−N , so that |x| ≤ K , |y| ≤ K + 1, and
t ≤ K , and so (48) implies

Q
x,y,t,t
2,1,1 ≤ C(a,α, d)ε2(1−δ1)ξγ |x − y|2βQ(t, a,0, β/2, α)

(86)
≤ C(α,d,β,K)ε2(1−δ1)ξγ |x − y|2βt1−α/2−β [1 + tα/2].

Here we use β < 1 − α
2 and choose a ∈ (β/2,1 − (α/2)) so that Lemma 5.3 may

be applied in the last line. As t ≤ K , (74) follows. Likewise, we get for the time
differences, β < 1 − α

2 and β
2 < a < 1 −α/2 (use Lemma 5.2 with β/2 in place of

β),

Q
x,x,t,t ′
2,1,1 ≤ C(a, d)ε2(1−δ1)ξγ |t ′ − t |βQ(t, a,0, β/2, α)

(87)
≤ C(β,α, d,K)ε2(1−δ1)ξγ |t ′ − t |β,

which is (75).
With an analogous calculation as in (81) to (85) except now using (80) instead

of (79), we obtain that

Q
x,y,t,t ′
1,1,1 ≤ C(a)(8 + 3K2Nξ ξ )2γ ε−2δ1ξγ

×
∫ t

0

∫ t

0
(t − r)a−1(t − r ′)a−1

×
∫

Rd

∫
Rd

J 1
r,r ′(w′, z′)(88)
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× |pt−r (x − w′) − pt ′−r (y − w′)|

× |pt−r ′(x − z′) − pt ′−r ′(y − z′)|dw′ dz′ dr dr ′,

where

J 1
r,r ′(w′, z′) =

∫ r∧r ′

0
(t − s)ξγ

∫
Rd

∫
Rd

(r − s)−a(r ′ − s)−a

× pr−s(w
′ − w)pr ′−s(z

′ − z)

× eλγ (|w|+|z|)[|w − z|−α + 1]dw dzds

≤ c2
deλ2(r+r ′)eλγ (|w′|+|z′|)

(89)

×
∫ r∧r ′

0
(t − s)ξγ

∫
Rd

∫
Rd

(r − s)−a(r ′ − s)−a

× p2(r−s)(w
′ − w)p2(r ′−s)(z

′ − z)

× [|w − z|−α + 1]dw dzds

=: c2
deλ2(r+r ′)eλγ (|w′|+|z′|)J̃ 1

r,r ′(w′, z′),

where in the second inequality we have bounded |w| ≤ |w′| + |w′ − w| (and like-
wise for z) and then used (47). Again, J̃ 1

r,r ′(w′, z′) ≤ J̃ 1
r,r ′(0,0) independent of w′

and z′ due to (45) of Lemma 5.1. Hence, we get

Q
x,y,t,t ′
1,1,1 ≤ C(d, a)e2λ2K(8 + 3K2Nξ ξ )2γ ε−2δ1ξγ

×
∫ t

0

∫ t

0
(t − r)a−1(t − r ′)a−1J̃ 1

r,r ′(0,0)

(90)

×
(∫

Rd
|pt−r (x − w′) − pt ′−r (y − w′)|eλγ |w′| dw′

)

×
(∫

Rd
|pt−r ′(x − z′) − pt ′−r ′(y − z′)|eλγ |z′| dz′

)
dr dr ′.

And so, after a change of variables, the spatial differences are bounded by

Q
x,y,t,t
1,1,1 ≤ C(d, a)e2λ2K(8 + 3K2Nξ ξ )2γ e4λ2K+2λ(K+1)+4λ

× ε−2δ1ξγ |x − y|2β ′
Q

(
2t, a, ξγ,

β ′

2
, α

)
(91)

≤ C(d, ξγ,β ′, α,K)(8 + 3K2Nξ ξ )2γ ε−2δ1ξγ |x − y|2β ′

if β ′ < ξγ + 1 − α
2 , β ′ ≤ 1, and a is chosen in (β ′/2,1 − α/2) �= ∅ (recall

α < 1), according to (48) of Lemma 5.2 and Lemma 5.3 combined with (47). This
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proves (76). Similarly, for the time differences, we obtain

Q
x,x,t,t ′
1,1,1 ≤ C(d, a)e2λ2K(8 + 3K2Nξ ξ )2γ e4λ2(K+1)+2λ(K+1)+4λ

× ε−2δ1ξγ |t ′ − t |β ′
Q

(
2t, a, ξγ,

β ′

2
, α

)
(92)

≤ C(d, ξγ,β ′, α,K)(8 + 3K2Nξ ξ )2γ ε−2δ1ξγ |t ′ − t |β ′

if again β ′ < ξγ + 1 − α
2 , β ′ ≤ 1 and a is chosen as above. This shows (77).

Finally, we address the remaining case using (65) of Lemma 5.4 to bound ũ and
Lemma 5.1:

Q
x,t,t ′
1,1 ≤ Cε2γ ξ(1−δ1)

×
∫ t ′

t

∫
Rd

∫
Rd

pt ′−s(x − w)pt ′−s(x − z)[|w − z|−α + 1]dw dzds

(93)

≤ C(α,d)ε2γ ξ(1−δ1)
∫ t ′

t
[(t ′ − s)−α/2 + 1]ds

≤ C(α,d)ε2γ ξ(1−δ1)[|t ′ − t |1−α/2 + |t ′ − t |],
and (78) follows as |t ′ − t | ≤ 1. �

Next, we consider all the terms for which j = k = 2. Here, we will use that, for
t ≤ TK , we can bound |ũ(t, x)| ≤ Keλ|x|.

LEMMA 5.6. For 0 < β < 1 − α
2 , we obtain, for i = 1,2, and on {ω : (t, x) ∈

ZK,N,ξ },
Q

x,y,t,t
i,2,2 ≤ c94(d,α,K) exp

(−1
4ε−2δ1(1 − β)

)|x − y|2β,(94)

Q
x,x,t,t ′
i,2,2 ≤ c95(d,α,K) exp

(
−1

4
ε−2δ1

(
1 − β

2

))
|t ′ − t |β,(95)

Q
x,t,t ′
2,2 ≤ c96(d,α,β,K) exp

(−1
2ε−2δ1(1 − β)

)|t ′ − t |1−α/2.(96)

PROOF. Recall d((t, x), (t ′, y)) ≤ ε. For i = 1, we are interested in the case
s ∈ [0, t − ε2] and |x − w| > 2

√
t − sε−δ1 . Since |x − y| < ε, this implies that

|y − w| ≥ ||x − w| − |x − y|| > 2
√

t − sε−δ1 − ε >
√

t − sε−δ1 . Furthermore,
t ′ − s = t ′ − t + t − s ≤ ε2 + t − s ≤ 2(t − s). This implies

exp
(
−|x − w|2

4(t ′ − s)

)
∨ exp

(
−|y − w|2

4(t ′ − s)

)

≤ exp
(
−|x − w|2

8(t − s)

)
∨ exp

(
−|y − w|2

8(t − s)

)
(97)

≤ exp
(
−1

8
ε−2δ1

)
.
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Therefore, for v = x or v = y and r = t or r = t ′,

pr−s(v − w) ≤ 2d/2 exp
(−1

8ε−2δ1
)
p2(r−s)(v − w).(98)

Using this, we obtain for any β ∈ (0,1) by applying Hölder’s inequality that

Q
x,y,t,t ′
1,2,2 is bounded by

∫ t−ε2

0

(∫
A

1,s
2 (x)

∫
A

1,s
2 (x)

(
pt−s(x − w) + pt ′−s(y − w)

)
× (

pt−s(x − z) + pt ′−s(y − z)
)

× [|w − z|−α + 1]

× |ũ(s,w)|γ /(1−β)|ũ(s, z)|γ /(1−β) dw dz

)1−β

×
(∫

A
1,s
2 (x)

∫
A

1,s
2 (x)

|pt−s(x − w) − pt ′−s(y − w)|

× |pt−s(x − z) − pt ′−s(y − z)|
(99)

× [|w − z|−α + 1]dw dz

)β

ds

≤ C(d,α)e2λ2KK2γ e2λγ (K+1) exp
(−1

4ε−2δ1(1 − β)
)

×
∫ t−ε2

0

[
(t − s)−α/2(1−β) + 1

]

×
(∫

Rd

∫
Rd

|pt−s(x − w) − pt ′−s(y − w)|
× |pt−s(x − z) − pt ′−s(y − z)|

× [|w − z|−α + 1]dw dz

)β

ds.

Here, we have used that ũ(t, x) ≤ Keλ|x| and (98), as well as (46) of Lemma 5.1.
We have also used the fact that eλγ |x| and eλγ |y| are both bounded by eλγ (K+1)

since |x| < K and |x − y| < ε < 1. Using (49) of Lemma 5.2 to estimate the
integral in parentheses when t = t ′, we obtain

Q
x,y,t,t
1,2,2 ≤ C(d,α)e2λ2K(

Keλ(K+1))2 exp
(−1

4ε−2δ1(1 − β)
)|x − y|2β

×
∫ t−ε2

0
(t − s)−α/2−β + (t − s)−β ds(100)

≤ C(d,α)K3e2(λ2+λ)(K+1) exp
(−1

4ε−2δ1(1 − β)
)|x − y|2β,
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provided that β < 1 − α
2 , showing (94) for i = 1. Likewise, using (50) of

Lemma 5.2 for the time differences when x = y implies (95) for i = 1 if again
0 < β < 1 − α

2 —here we replace β with β/2 in the above.

For i = 2 and Q
x,t,t ′
2,2 , we will proceed analogously. We merely have to estab-

lish (97) in the case: s ∈ [t − ε2, t ′] and |x − w| > 2ε1−δ1 . Since |x − y| < ε, this
implies now |y − w| ≥ ||x − w| − |x − y|| > 2ε1−δ1 − ε > ε1−δ1 . Furthermore,
t ′ − s = t ′ − t + t − s ≤ ε2 + t − s ≤ 2ε2. From this, the bound (97) follows and
we obtain immediately (94) and (95) for i = 2, provided that β < 1 − α

2 .

Last, we obtain with the help of (97) (verified above) and (46) of Lemma 5.1,

Q
x,t,t ′
2,2 ≤ C(d,β)K2γ exp

(
−1

2
ε−2δ1(1 − β)

)

×
∫ t ′

t

∫
Rd

∫
Rd

eλγ (|w|+|z|)p(t ′−s)/β(x − w)p(t ′−s)/β(x − z)

× [|w − z|−α + 1]dw dzds

≤ C(d,β,α)K2γ e2λ2(K+1)/βe2λ(K+1)(101)

× exp
(
−1

2
ε−2δ1(1 − β)

)∫ t ′

t

[(
2

β
(t ′ − s)

)−α/2

+ 1
]
ds

≤ C(d,α,β,K) exp
(
−1

2
ε−2δ1(1 − β)

)
|t ′ − t |1−α/2,

which is (96) and, hence, completes the proof. �

It remains to consider the “mixed terms” for which j = 2 and k = 1 or vice
versa. Say j = 2. In this case (97) holds for the exponential in the w integral,
and we can bound the exponential in the z integral by one. Otherwise, we fol-
low the same steps as in Lemma 5.6, treating the case j = k = 2. In this man-
ner, we obtain the same bounds as in (94) to (96) with the only difference that
exp(−1

4ε−2δ1(1 − β)) is replaced by exp(−1
8ε−2δ1(1 − β)) and exp(−1

2ε−2δ1(1 −
β)) by exp(−1

4ε−2δ1(1 − β)).

We are now taking the estimates (74), (76) and (94) together with those for the
mixed terms and choosing β = 1 − α

2 − δ′, respectively, β ′ = 1 − α
2 − δ′ + ξγ < 1

[by (57)], in those estimates. This shows that, for (t, x) ∈ ZK,N,ξ , |x − y| < ε =
2−N and N ≥ N1,

Qx,y,t,t ≤ C(K)|x − y|2(1−α/2−δ′)

×
[
ε2(1−δ1)ξγ + (8 + 3K2Nξ ξ )2γ ε−2δ1ξγ |x − y|2ξγ

+ exp
(
−1

4
ε−2δ1

(
α

2
+ δ′

))
+ exp

(
−1

8
ε−2δ1

(
α

2
+ δ′

))]
(102)
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≤ C(K)|x − y|2(1−α/2−δ′)
[
ε2(1−δ1)ξγ 22Nξ ξγ + exp

(
− α

16
ε−2δ1

)]
.

We have the analogous bounds for Qx,x,t,t ′ + Qx,t,t ′ with the help of (75), (77),
(78), (95) and (96); just replace |x − y|2 with |t ′ − t | and use |t ′ − t | < ε2. We
deduce that, for N ≥ N1 and (t, x) ∈ ZK,N,ξ ,

Qx,x,t,t ′ + Qx,t,t ′

(103)
≤ C(K)|t ′ − t |1−α/2−δ′

[
ε2(1−δ1)ξγ 22Nξ ξγ + exp

(
− α

16
ε−2δ1

)]
.

We can finally conclude that, in (59), P3 = P4 = 0 if

C(K)

[
ε2(1−δ1)ξγ 22Nξ ξγ + exp

(
− α

16
ε−2δ1

)]
< ε2p.(104)

For this, it is sufficient that

C(K)ε2(1−δ1)ξγ 22Nξ ξγ < 1
2ε2p,(105)

C(K) exp
(
− α

16
ε−2δ1

)
<

1

2
ε2p.(106)

Since (105) is equivalent to 2C(K) < 22N[(1−δ1)ξγ−p]−2Nξ ξγ , it suffices to choose
δ1 > 0 small enough so that (1 − δ1)ξγ − p > 0 (which is possible since ξγ > p)
and then to assume N ≥ [C0(ξ, δ1)Nξ ] ∈ N, as well as N ≥ N0(K, ξ, δ1,p) ∈ N

deterministic, so that both (105) and (106) hold. Note that the constants depend ul-
timately on ξ, ξ1 and K. Hence, (59), (60) and (61) imply that if N2(ω, ξ, ξ1,K) =
[5Nξ

δ1
r] ∨ [C0(ξ, δ1)Nξ ] ∨ N0(K, ξ, δ1,p), then for d((t, x), (t ′, y)) ≤ 2−N , t ≤ t ′,

P
(|ũ(t, x) − ũ(t, y)| ≥ |x − y|1−α/2−δ2−Np, (t, x) ∈ ZK,N,ξ ,N ≥ N2

)
+ P

(|ũ(t ′, x) − ũ(t, x)| ≥ |t ′ − t |1/2(1−α/2−δ)2−Np,
(107)

(t, x) ∈ ZK,N,ξ , t
′ ≤ TK,N ≥ N2

)
≤ c60

(
exp(−c′

60|x − y|−δ′′
r) + exp(−c′

60|t ′ − t |−δ′′/2r)
)
.

Now let el be the lth unit vector in Rd and set

Mn,N,K = max

{
d∑

l=1

∣∣ũ(
j2−2n, (z + el)2

−n) − ũ(j2−2n, z2−n)
∣∣

+ ∣∣ũ(
(j + e)2−2n, z2−n) − ũ(j2−2n, z2−n)| :

|z| ≤ K2n, (j + e)2−2n ≤ TK, j ∈ Z+, z ∈ Zd,

e ∈ {1,2,3}, (j2−2n, z2−n) ∈ ZK,N,ξ

}
.
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(107) implies that if

AN = {ω : for some n ≥ N,Mn,N,K ≥ (d + 1) · 2−n(1−α/2−δ)2−Np,N ≥ N2},
then for some fixed constants C(d), c1, c2 > 0,

P

( ⋃
N ′≥N

AN ′

)
≤ C(d)

∞∑
N ′=N

∞∑
n=N ′

Kd+12(d+2)ne−c12nδ′′

≤ C(d)Kd+1ηN,

where ηN = e−c22Nδ′′
. Therefore, N3(ω) = min{N ∈ N :ω ∈ Ac

N ′for all N ′ ≥ N} <

∞ a.s. and, in fact,

P(N3 > N) = P

( ⋃
N ′≥N

AN ′

)
≤ C(d)Kd+1ηN.(108)

Choose m ∈ N with m > log2(3 + √
d ) and assume N ≥ (N3 + m) ∨ N2. Let

(t, x) ∈ ZK,N,ξ , d((t ′, y), (t, x)) ≤ 2−N , and t ′ ≤ TK . For n ≥ N , let tn ∈ 4−nZ+
and xn,i ∈ 2−nZ (i = 1, . . . , d) be the unique points so that tn ≤ t < tn + 4−n,

xn,i ≤ xi < xn,i + 2−n for xi ≥ 0 and xn,i − 2−n < xi ≤ xn,i if xi < 0. Similarly,
define t ′n and yn with (t ′, y) in place of (t, x). Choose (t̂ , x̂) as in the definition of
ZK,N,ξ [recall (t, x) ∈ ZK,N,ξ ]. If n ≥ N , then

d
(
(t ′n, yn), (t̂ , x̂)

) ≤ d
(
(t ′n, yn), (t

′, y)
) + d

(
(t ′, y), (t, x)

) + d
(
(t, x), (t̂ , x̂)

)
≤

√
|t ′n − t ′| + |y − yn| + 2−N + 2−N

<
(
3 + √

d
)
2−N < 2m−N.

Therefore, (t ′n, yn) ∈ ZK,N−m,ξ , and similarly (and slightly more simply),
(tn, xn) ∈ ZK,N−m,ξ . Our definitions imply that tN and t ′N are equal or adjacent
in 4−NZ+ and similarly for the components of xN and yN in 2−NZ+. This, to-
gether with the continuity of ũ, the triangle inequality and our lower bound on N

(which shows N − m ≥ N3), implies

|ũ(t, x) − ũ(t ′, y)|
≤ |ũ(tN , xN) − ũ(t ′N,yN)|

+
∞∑

n=N

|ũ(tn+1, xn+1) − ũ(tn, xn)| + |ũ(t ′n+1, yn+1) − ũ(t ′n, yn)|

≤ MN,N−m,K +
∞∑

n=N

2Mn+1,N−m,K
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≤ 4
∞∑

n=N

(d + 1) · 2−n(1−α/2−δ)2−(N−m)p

≤ c0(d,p)2−N(1−α/2−δ+p)

≤ 2−Nξ1 .

The last line is valid for N ≥ N4 because 1 − α
2 − δ + p > ξ1 by (56). Here N4 is

deterministic and may depend on p, ξ1, δ, c0 and, hence, ultimately on ξ, ξ1. This
proves the required result with

Nξ1(ω) = max
(
N3(ω) + m,

[
5Nξ(ω)

δ1

]
, [C0(ξ, δ1)Nξ ],N0 ∨ N4

)
.

Therefore, if R = 5/δ1 ∨ C0(ξ, δ1) and N ≥ N(K) := N0 ∨ N4 (deterministic),
(108) implies that

P(Nξ1 ≥ N) ≤ P(N3 ≥ N − m) + 2P(Nξ ≥ N/R)

≤ c(d)Kd+1ηN−m + 2P(Nξ ≥ N/R),

which gives the required probability bound (38).

APPENDIX: PROOFS OF THEOREM 1.2 AND PROPOSITION 1.8

In this appendix we briefly describe the construction of solutions to (12) with
colored noise and non-Lipschitz coefficients. We start by citing the following re-
sult which states necessary conditions for the existence of solutions to (12) with
Lipschitz coefficients and bounded initial conditions (see [1]):

THEOREM A.1. Let u0 be measurable and bounded and let σ be a Lipschitz
continuous function. Assume that (A)η holds for η = 1. Then there exists a path-
wise unique solution u to (12) which is also a strong solution. The process u satis-
fies a uniform moment bound: For any T > 0, and p ∈ [1,∞),

sup
0≤t≤T

sup
x∈Rd

E
(|u(t, x)|p)

< ∞.(109)

We would like to remark that the original theorem of Dalang [1] stipulates that
the noise be spatially homogeneous. However, it is not hard to see that all that is
needed is that it be bounded by an appropriate spatially homogeneous term in the
sense of condition (A)η.

Denote L∞
tem = {u : ess supx∈Rd |u(x)|e−λ|x| < ∞ for all λ > 0}. Here the

ess sup is of course with respect to the Lebesgue measure.
We introduce some frequently used notation. For any function v : R+ ×Rd → R

and stopping time τ , we set

J a−1v(t, x) = sin(πa)

π

∫ t

0

∫
Rd

(t − s)a−1pt−s(x − y)v(s, y) dy ds,(110)
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as well as

J τ
a v(t, x) =

∫ t

0

∫
Rd

1(s ≤ τ)(t − s)−apt−s(x − y)σ
(
v(s, y)

)
W(dy ds).(111)

The stochastic Fubini theorem implies

J a−1J τ
a v(t, x) =

∫ t

0

∫
Rd

1(s ≤ τ)pt−s(x − y)σ
(
v(s, y)

)
W(dy ds).(112)

We will use the notation Jav(t, x) = J t
av(t, x), when τ = t in the above. Also, set

Gτ
λ,pv(t, x) := E

(|v(t, x)|p1(t ≤ τ)e−λ|x|),
and again Gλ,pv(t, x) ≡ Gt

λ,pv(t, x) whenever τ = t .

LEMMA A.2. Let σ be a continuous function satisfying the growth condition

|σ(u)| ≤ c113(1 + |u|).(113)

Assume that (A)η holds for some η ∈ [0,1) and let a < (1−η)/2. Let v :�×R+ ×
Rd → R be P (F.) × B(Rd)-measurable [P (F.) is the (Ft )-predictable σ -field].
Then for any T ,λ > 0, p ≥ 2, and stopping time τ ,

sup
0≤s≤t

sup
x∈Rd

E
(|J τ

a v(t, x)|pe−λ|x|)
(114)

≤ C(T ,λ,p)c
p
113 sup

0≤s≤t

sup
x∈Rd

(
1 + Gτ

λ,pv(s, x)
) ∀ t ≤ T .

PROOF. First fix arbitrary p ≥ 2 and x ∈ Rd . Then, using the growth condition
on σ , as well as Burkholder’s inequality and |k(x, y)| ≤ c10k̃(x − y), we get

E
(|J τ

a v(t, x)|p)
≤ Cc

p
113E

((∫ t

0

∫
Rd

∫
Rd

(t − s)−2apt−s(x − y)pt−s(x − z)k̃(y − z)

× (
1 + 1(s ≤ τ)|v(s, y)|)

× (
1 + 1(s ≤ τ)|v(s, z)|)dy dzds

)p/2)

≤ Cc
p
113

(∫ t

0
(t − s)−2a

∫
Rd

∫
Rd

pt−s(y)pt−s(z)k̃(y − z) dy dz ds

)p/2−1

×
(∫ t

0
(t − s)−2a

∫
Rd

∫
Rd

pt−s(y)pt−s(z)k̃(y − z)

× E
((

1 + 1(s ≤ τ)|v(s, y − x)|)p/2

× (
1 + 1(s ≤ τ)|v(s, z − x)|)p/2)

dy dzds

)
.
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Apply Hölder’s inequality to the expected value in this expression and shift vari-
ables to bound it by

E
((

1 + 1(s ≤ τ)|v(s, y − x)|)p)1/2
E

((
1 + 1(s ≤ τ)|v(s, z − x)|)p)1/2

(115)

≤ C(λ,p)eλ/2(|y|+|z|)+λ|x|
(

1 + sup
z̃∈Rd

Gτ
λ,pv(s, z̃)

)
.

Hence, we arrive at

E
(|J τ

a v(t, x)|pe−λ|x|)
≤ C(λ,p)c

p
113

×
(∫ t

0
(t − s)−2a

∫
Rd

∫
Rd

pt−s(y)pt−s(z)k̃(y − z) dy dz ds

)p/2−1

×
(∫ t

0
(t − s)−2a

×
(∫

Rd

∫
Rd

eλ/2(|y|+|z|)pt−s(y)pt−s(z)k̃(y − z) dy dz

)
(116)

×
(

1 + sup
z̃∈Rd

Gτ
λ,pv(s, z̃)

)
ds

)

≤ C(λ,p)c
p
113

(∫ t

0
f

(
s

2

)
ds

)p/2−1

×
(∫ t

0
f (t − s)

(
1 + sup

z̃∈Rd

Gτ
λ,pv(s, z̃)

)
ds

)

≤ C(T ,λ,p)c
p
113 sup

0≤s≤t

sup
z̃∈Rd

(
1 + Gτ

λ,pv(s, z̃)
) ∀ t ≤ T ,x ∈ Rd,

where

f (r) = r−2a

(∫
Rd

∫
Rd

p2r (y)p2r (z)k̃(y − z) dy dz

)
.

Here, we have used that eλ/2|y|pt(y) ≤ C(T ,λ)p2t (y) for t ≤ T see (47). We have
also used the fact that f is integrable on [0, T ] for a <

1−η
2 (cf. proof of Lemma 2.2

of [8]). This proves (114) for all p ≥ 2. �

LEMMA A.3. Let u0 ∈ L∞
tem and let σ be a continuous function satisfying the

growth condition (113). Assume that (A)η holds for some η ∈ [0,1). If u is any
solution to (12) such that

sup
0≤t≤T

sup
x∈Rd

E
(|u(t, x)|pe−λ|x|) < ∞ ∀T > 0,p > 0, λ > 0,(117)
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then for any T ,p,λ > 0, there exists p̃ ≥ p such that

E

(
sup

0≤t≤T

sup
x∈Qd

|u(t, x)|pe−λ|x|
)

≤ CT,λ,p(c113,‖u0‖λ/p,∞)

(118)

×
(

1 + sup
0≤t≤T

sup
x∈Rd

Gλ/2,p̃u(t, x)

)
,

where CT,λ,p(·, ·) is bounded on the compacts of R+ × R+.

PROOF.

E

(
sup

0≤t≤T

sup
x∈Qd

|u(t, x)|pe−λ|x|
)

≤ CE

(
sup

0≤t≤T

sup
x∈Qd

∣∣∣∣
∫

Rd
pt (x − y)u0(y) dy

∣∣∣∣
p

e−λ|x|
)

(119)

+ CE

(
sup

0≤t≤T

sup
x∈Qd

∣∣∣∣
∫ t

0

∫
Rd

pt−s(x − y)

× σ
(
u(s, y)

)
W(dy ds)

∣∣∣∣
p

e−λ|x|
)
.

The first term on the right-hand side of (119) is bounded by

sup
0≤t≤T

sup
x∈Rd

∣∣∣∣
∫

Rd
pt (x − y)|u0(y)|p dy e−λ|x|

∣∣∣∣
≤ C(T ,λ)‖u0‖p

λ/p,∞ sup
0≤t≤T

sup
x∈Rd

∣∣∣∣
∫

Rd
pt (x − y)eλ|y| dy e−λ|x|

∣∣∣∣(120)

≤ C(T ,λ,p)‖u0‖p
λ/p,∞.

In this calculation we have used Jensen’s inequality, as well as the fact that∫
Rd

pt (x − y)eλ|y| dy ≤ C(T ,λ)eλ|x|(121)

for t ≤ T and λ ∈ R (see Lemma 6.2 of [7]).
We bound the second term on the right-hand side of (119) with the help

of the factorization method of [2] [cf. (81) and (82)]. Let 0 < a < (1 − η)/2
and choose arbitrary p∗ >

1+d/2
a

> 2. Assume that p ≥ p∗. Recall ‖v‖λ,p =
[∫ |v(x)|pe−λ|x| dx]1/p . Use (112) and apply Hölder’s inequality to get

E

(
sup
t≤T

sup
x∈Qd

∣∣∣∣
∫ t

0

∫
Rd

pt−s(x − y)σ
(
u(s, y)

)
W(dy ds)

∣∣∣∣
p

e−λ|x|
)

= E

(
sup
t≤T

sup
x∈Qd

|J a−1Jau(t, x)|pe−λ|x|
)

(122)
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≤ CE

(
sup
t≤T

sup
x∈Qd

∣∣∣∣
∫ t

0
(t − s)a−1

×
(∫

Rd
pt−s(x − y)eλ/2|y|

× |Jau(s, y)|p/2e−λ/2|y| dy

)2/p

ds

∣∣∣∣
p

e−λ|x|
)

≤ CE

(
sup
t≤T

sup
x∈Qd

∣∣∣∣
∫ t

0
(t − s)a−1

(∫
Rd

pt−s(x − y)2eλ|y| dy

)1/p

× ‖Jaus‖λ,p ds, |pe−λ|x|
)

≤ C(T ,λ)E

(
sup
t≤T

(∫ t

0
(t − s)a−1−d/(2p) · ‖Jaus‖λ,p ds

)p)

≤ C(T ,λ)

(∫ T

0
s(a−1−d/(2p))p/(p−1)ds

)p−1

·
∫ T

0
E(‖Jaus‖p

λ,p) ds.

Here, we have also used (121) and pt(x) ≤ Ctd/2. Lemma A.2 implies

E

(∫
Rd

|Jau(t, x)|pe−λ|x| dx

)

≤ C(T ,λ,p)c
p
113 sup

0≤s≤t

sup
x∈Rd

(
1 + Gλ/2,pu(s, x)

)
.

Recall that a <
1−η

2 and p ≥ p∗ >
1+d/2

a
. A bit of algebra shows that the whole

expression in (122) is finite and bounded by

C(T ,λ,p)c
p
113 sup

0≤s≤T

sup
x∈Rd

(
1 + Gλ/2,pu(s, x)

)
.

This together with (119) and (120) proves (118) for all p ≥ p∗ with p̃ = p. Note,
however, that if p < p∗, then (118) also holds with p̃ = p∗ due to the fact that
up ≤ 1 + up∗

for any u ≥ 0,p < p∗. Hence, we are done. �

The next result gives bounds on spatial and temporal differences of stochastic
convolution integrals which, in particular, will imply they are Hölder continuous.
The result is an adaptation of Theorem 2.1 of [8] to our situation.

LEMMA A.4. Let u be a solution to (12) satisfying the assumptions of
Lemma A.3. Define

Z(t, x) =
∫ t

0

∫
pt−s(x − y)σ

(
u(s, y)

)
W(ds dy), t ≥ 0, x ∈ Rd .(123)
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Then, for T ,R > 0, and 0 ≤ t, t ′ ≤ T ,x, x′ ∈ Rd such that |x − x′| < R, as well as
p ∈ [2,∞) and ξ ∈ (0,1 − η),

E
(|Z(t, x) − Z(t ′, x′)|pe−λ|x|)

≤ C(T ,λ,p)c
p
113

(
1 + sup

0≤s≤T

sup
z∈Rd

Gλ/(p+1),pu(s, z)

)
(124)

× (|t − t ′|ξ/2p + |x − x′|ξp).

In particular, if Gλ/(p+1),pu(·, ·) is bounded on [0, T ]×Rd , then there is a version
of Z which is uniformly Hölder continuous on compact subsets of [0, T ]×Rd with
coefficients ξ

2 in time and ξ in space.

PROOF. The proof follows the proof of Theorem 2.1 in [8]. We use the same
notation as in the proof of Lemma A.3, so Z(t, x) = J a−1Jau(t, x) by (112). Now
assume that t ′ ≥ t. By Lemma A.2 and Hölder’s inequality, we obtain

E
(|Z(t ′, x′) − Z(t, x)|p)

e−λ|x|

≤ C(p)E

(∣∣∣∣
∫ t

0

∫
Rd

(
pt ′−s(x

′ − y)(t ′ − s)a−1

− pt−s(x − y)(t − s)a−1)
× Jau(s, y) dy ds

∣∣∣∣
p)

e−λ|x|

+ C(p)E

(∣∣∣∣
∫ t ′

t

∫
Rd

pt ′−s(x
′ − y)(t ′ − s)a−1Jau(s, y) dy ds

∣∣∣∣
p)

e−λ|x|

≤ C(T ,λ,p)c
p
113

(
1 + sup

0≤s≤T

sup
x∈Rd

Gλ/(p+1),pu(s, x)

)
e−λ|x|

×
{(∫ t

0

∫
Rd

|pt ′−s(x
′ − y)(t ′ − s)a−1

− pt−s(x − y)(t − s)a−1|eλ/(p+1)|y| dy ds

)p

+
(∫ t ′

t

∫
Rd

pt ′−s(x
′ − y)(t ′ − s)a−1eλ/(p+1)|y| dy ds

)p}
.

Here, we have in the second inequality also inserted additional factors of
e−λ/(p+1)|y|eλ/(p+1)|y| so that we could apply Lemma A.2 to bound the expectation
of Jau by using Jensen’s inequality. From this point, we proceed as in [8] (proof of
Theorem 2.1), the only difference being that we have to take care of the additional
nuisance factors eλ/(p+1)|y|. This can be done with the help of (121) and (48) of
Lemma 5.2 using the remaining factor e−λ|x|. �
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The next lemma assures that, for any u ∈ C(R+,Ctem) which solves (12),
Gλ,pu(t, x) is bounded.

LEMMA A.5. Let u0 ∈ Ctem and let σ be a continuous function satisfying
the growth condition (113). Assume that (A)η holds for some η ∈ [0,1). If u ∈
C(R+,Ctem) a.s. is a solution to (12), then it satisfies the following moment bound.
For any T > 0 and p ≥ 1,

sup
0≤t≤T

sup
x∈Rd

E
(|u(t, x)|pe−λ|x|) ≤ CT,λ,p(c113,‖u0‖λ/p,∞),(125)

where CT,λ,p(·, ·) is bounded on the compacts of R+ × R+.

PROOF. Define

τn = inf{t :‖ut‖λ/p,∞ ≥ n}.
We set

G
τn

λ,pu(t, x) := E
(|u(t, x)|p1(t ≤ τn)e

−λ|x|).
Note that, by definition,

sup
s≤t

sup
x∈Rd

G
τn

λ,pu(t, x) ≤ np ∀ t ≥ 0, n ≥ 1.(126)

From (12), we get

sup
0≤t≤T

sup
x∈Rd

G
τn

λ,pu(t, x)

≤ C sup
0≤t≤T

sup
x∈Rd

E

(∣∣∣∣
∫

Rd
pt (x − y)u0(y) dy

∣∣∣∣
p

e−λ|x|
)

(127)

+ C sup
0≤t≤T

sup
x∈Rd

E

(∣∣∣∣
∫ t

0

∫
Rd

pt−s(x − y)1(s ≤ τn)

(128)

× σ
(
u(s, y)

)
W(dy ds)

∣∣∣∣
p

e−λ|x|
)
.

By (120), the term on line (127) is bounded by

C(T ,λ,p)‖u0‖p
λ/p,∞.(129)

Again, as in Lemma A.3, we use the factorization method to bound the term
in (128). First, we assume that p > 2

1−η
> 2 so that we can choose a constant a

with 0 < 1
p

< a <
1−η

2 < 1. Recall (112), and by several applications of Hölder’s
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inequality, we obtain

E
(|J a−1J τn

a u(t, x)|pe−λ|x|)
= CE

(∣∣∣∣
∫ t

0

∫
Rd

(t − s)a−1pt−s(x − y)J τn
a u(s, y) dy ds

∣∣∣∣
p

e−λ|x|
)

≤ CE

((∫ t

0
(t − s)a−1

×
(∣∣∣∣

∫
Rd

pt−s(x − y)J τn
a u(s, y) dy

∣∣∣∣
p

e−λ|x|
)1/p

ds

)p)

≤ C(T ,λ)E

((∫ t

0
(t − s)a−1

(130)

×
(∫

Rd
|J τn

a u(s, y)|ppt−s(x − y)e−λ|x| dy

)1/p

ds

)p)

≤ C(T ,λ)

(∫ T

0
sp/(p−1)(a−1) ds

)p−1

×
(∫ t

0

∫
Rd

E
(|J τn

a u(s, y)|p)
e−λ|x|pt−s(x − y)dy ds

)

≤ C(T ,λ,p)c
p
113

(
1 +

∫ t

0
sup

0≤r≤s

sup
z∈Rd

G
τn

λ,pu(r, z) ds

)

∀ t ≤ T ,x ∈ Rd,

where we have also used Lemma A.2 and (121) in the last inequality, as well
as a > 1

p
. Taking (129) together with (130), we obtain that there is a constant

C = C(T ,λ,p) independent of n such that, for all t ≤ T ,

sup
0≤s≤t

sup
x∈Rd

G
τn

λ,pu(t, x)

≤ C(c
p
113 + ‖u0‖p

λ/p,∞)(131)

×
(

1 +
∫ t

0
sup

0≤r≤s

sup
x∈Rd

G
τn

λ,pu(r, x) ds

)
∀n ≥ 1.

But the left-hand side is bounded [due to (126)]. Thus, by Gronwall’s lemma,

sup
0≤t≤T

sup
x∈Rd

G
τn

λ,pu(t, x) ≤ CT,λ,p(c113,‖u0‖λ/p,∞) ∀n ≥ 1,(132)

where CT,λ,p(·, ·) is bounded on the compacts of R+ ×R+. (We have obtained this
result with the restriction p > 2

1−η
, which then immediately implies that it is true

for all p > 0 since we are considering Lp norms with respect to a finite measure.)
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Now, recall that u ∈ C(R+,Ctem) a.s. so that τn ↑ ∞ a.s., and, hence,

E
(|u(t, x)|pe−λ|x|) = E

(
lim

n→∞|u(t, x)|p1(t ≤ τn)e
−λ|x|

)

≤ lim inf
n→∞ G

τn

λ,pu(t, x),

where the second inequality follows by Fatou’s lemma. Use this and the fact that
the right-hand side of (132) does not depend on n to obtain

sup
0≤t≤T

sup
x∈Rd

E
(|u(t, x)|pe−λ|x|) ≤ CT,λ,p(c113,‖u0‖λ/p,∞) ∀n ≥ 1,(133)

where CT,λ,p(·, ·) is bounded on the compacts of R+ × R+. �

PROOF OF THEOREM 1.2. Recall our hypotheses imply (A)η holds for some
η ∈ [0,1) (see Remark 1.1). We can choose a sequence of Lipschitz continuous
functions σn on Rd such that the growth bound (6) holds uniformly [σn(u) ≤
c6(1 + |u|) for all u ∈ R, n ∈ N], and such that the σn converge uniformly to σ

as n → ∞. We also set

um
0 (x) =




u0(x), if |u0(x)| < m,

m, if u0(x) ≥ m,

−m, if u0(x) ≤ −m,

which implies that um
0 ∈ Cb(R

d) and

sup
m∈N

sup
x∈Rd

|um
0 (x)|e−λ|x| < ∞.(134)

Hence, by Theorem A.1, for each m,n, there exists a unique solution to

um,n(t, x) =
∫

Rd
pt (x − y)um

0 (y) dy

(135)

+
∫ t

0

∫
Rd

pt−s(x − y)σn

(
um,n(s, y)

)
W(dy ds).

It is easy to check that the first term on the right-hand side of (135) is jointly con-
tinuous on [0,∞)×Rd . Moreover, by Theorem A.1, sup0≤t≤T supx∈Rd E(|um,n(t,

x)|p) < ∞, and, hence, by Lemmas A.3 and A.4 we obtain that

um,n ∈ C(R+,Ctem).(136)

Now let us go to the limit as m,n → ∞. Let Zm,n denote that stochastic integral
on the right-hand side of (135). Since um,n ∈ C(R+,Ctem), we may apply Lem-
mas A.4 and A.5 to get

E
(|Zm,n(t, x) − Zm,n(t ′, x′)|pe−λ|x|) ≤ CT,λ,p(c6,‖um

0 ‖λ/p,∞),(137)

where CT,λ,p(·, ·) is bounded on the compacts of R+ ×R+. Inequality (137) com-
bined with a Kolmogorov type tightness criterion (see Lemma 6.3 of [7]) now
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implies that the stochastic integrals Zm,n are tight in C(R+,Ctem). It is also not
hard to show that (t, x) �→ ∫

Rd pt (x − y)um
0 dy are tight in C(R+,Ctem) by using

the Arzela–Ascoli theorem and the uniformity in m as in (134).
Therefore, um,n are tight in C(R+,Ctem) and we can choose an appropriate

probability space and define um,n on it identical in distribution to a subsequence
of the original sequence of solutions which converge a.s. in C(R+,Ctem) to some
process u. It is routine to establish from this that all the terms in (12) converge
a.s. to the appropriate limits so that the limit u ∈ C(R+,Ctem) is indeed a solution
to (12) with the desired σ and u0 ∈ Ctem. �

PROOF OF PROPOSITION 1.8. Recall from Remark 1.1 that our hypotheses
imply (A)η for any η ∈ (α/2,1). Lemmas A.3 and A.5 now imply (a). Now use
Lemma A.4 (and Lemma A.5) to derive part (b) for Z. For u0 ∈ Ctem, Stu0(x) ≡∫

pt(y − x)u0(y) dy is smooth on (0,∞) × Rd , and so is uniformly Lipschitz on
compact subsets of (0,∞) × Rd . This gives the required Hölder continuity for u.

�
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