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THRESHOLD FOR MONOTONE SYMMETRIC PROPERTIES
THROUGH A LOGARITHMIC SOBOLEV INEQUALITY

BY RAPHAËL ROSSIGNOL

Université René Descartes

Threshold phenomena are investigated using a general approach, follow-
ing Talagrand [Ann. Probab. 22 (1994) 1576–1587] and Friedgut and Kalai
[Proc. Amer. Math. Soc. 12 (1999) 1017–1054]. The general upper bound for
the threshold width of symmetric monotone properties is improved. This fol-
lows from a new lower bound on the maximal influence of a variable on a
Boolean function. The method of proof is based on a well-known logarithmic
Sobolev inequality on {0,1}n. This new bound is shown to be asymptotically
optimal.

1. Introduction. Threshold phenomena that occur in most discrete proba-
bilistic models have received a lot of attention. One of the archetypal examples
is that of the random graphs G(n,p(n)); see [4, 12] or [27]. Consider, for in-
stance, connectivity; see [3]. The probability for G(n,p(n)) to be connected goes
from ε + o(1) to 1 − ε + o(1) when p(n) = logn/n + c/n and c goes from
log (1/ log(1/ε)) to log(1/ log(1/(1 − ε))). In this example, the threshold is lo-
cated around logn/n and its width is of order O(1/n); see Definition 1.2 below.
In the language of statistical physics, threshold phenomena are the “finite-size scal-
ing” parts of phase transitions; see [5]. They have been shown to occur in perco-
lation (see [16]), satisfiability in random constraint models (see, e.g., [5, 10, 14]),
local properties in random images (see [9]), reliability (see [21]) and so on. It is
therefore of prime interest to find general conditions under which such phenomena
occur.

Actually, all the examples cited above can be embedded in the common setting
of products of Bernoulli measures on {0,1}n; see [15]. Let n be an integer, p a real
number in [0,1] and denote by µn,p the probability measure on {0,1}n defined by

∀x ∈ {0,1}n µn,p(x) = p
∑n

i=1 xi (1 − p)
∑n

i=1(1−xi).

We write µp instead of µn,p when no confusion is possible.
We are interested in subsets A of {0,1}n, the probability µn,p(A) of which

goes from “almost 0” to “almost 1” over a relatively short interval of values of
the probability p. The first condition that we shall assume on these subsets is
monotonicity.
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DEFINITION 1.1. Let A be a subset of {0,1}n. The subset A is monotone if
and only if

(x ∈ A and x � y) �⇒ y ∈ A,

where � is the partial order on {0,1}n, defined coordinate-wise.

We shall say that A is nontrivial if it is nonempty and different from {0,1}n
itself. Let A be a nontrivial monotone subset of {0,1}n. It then follows from an
elementary coupling technique that the mapping p �→ µp(A) is strictly increasing
and continuous, thus invertible; see also Lemma 2.2. For α ∈ [0,1], let p(α) be
the unique real number in [0,1] such that µp(α)(A) = α. The threshold width of a
subset is the length of the interval over which its probability increases from ε to
1 − ε.

DEFINITION 1.2. Let A be a nontrivial monotone subset of {0,1}n. Let
ε ∈]0,1/2]. The threshold width of A at level ε is

τ(A, ε) = p(1 − ε) − p(ε).

The first general results on thresholds seem to be those of Margulis [20] and
Russo [25], later completed by Talagrand [28, 29]. They related the threshold width
to the notion of influence of coordinates. Intuitively, one might say that a subset A

will have a narrow threshold unless a few coordinates have a strong influence on
its definition [as an example, think of A = {x s.t. x(1) = 1}]. In many cases, this
idea is captured by the notion of symmetry.

FIG. 1. Example of a threshold width of level ε.
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DEFINITION 1.3. The subset A of {0,1}n is said to be symmetric if and only
if there exists a subgroup G of Sn (group of permutations) acting transitively on
{1, . . . , n} such that A is invariant under the action of G, that is,

∀g ∈ G, ∀x ∈ A g · x = (
xg−1(1), . . . , xg−1(n)

) ∈ A.

This notion of symmetry implies that no coordinate has a stronger influence
than any other. It turns out that in most applications, interesting properties are
both monotone and symmetric (invariant under permutations of vertices in ran-
dom graphs, under permutation of clauses in constraint satisfaction problems, etc.).
From Corollary 1.4 of [29], one can easily deduce the following theorem that was
independently stated by Friedgut and Kalai; see Theorem 3.2 in [15]:

THEOREM 1.4. There exists a constant C > 0 such that, for any nontrivial
monotone symmetric subset A of {0,1}n and for all 0 < p < 1,

dµp(A)

dp
≥ C

logn

p(1 − p) log(2/(p(1 − p)))
µp(A)

(
1 − µp(A)

)
.

It is then easy to derive an upper bound on τ(A, ε) from such a result; see
Lemma 2.1.

COROLLARY 1.5. There exists a constant C > 0 such that, for any nontrivial
monotone symmetric subset A of {0,1}n and for all 0 < ε < 1/2,

τ(A, ε) ≤ C sup
p∈[p(ε),p(1−ε)]

{
p(1 − p) log

2

p(1 − p)

}
log((1 − ε)/ε)

logn
.(1)

Corollary 1.5 may in turn be simplified into the following statement:

COROLLARY 1.6. There exists a constant C′ > 0 such that, for any nontrivial
monotone symmetric subset A of {0,1}n and for all 0 < ε < 1/2,

τ(A, ε) ≤ C′ log ((1 − ε)/ε)

logn
.(2)

Thus, the threshold width of a symmetric monotone property goes to zero as n

tends to infinity, and is of order O(1/ logn). When the threshold occurs at a loca-
tion p(n) which goes to 0 or 1 when n tends to infinity, inequality (2) may be very
rough and (1) sharpens this assertion. A natural question regarding these results is
whether one can find reasonable bounds for the universal constants C and C′.

Both in [29] and [15], the values of C and C′ are not explicit. A careful reading
of Talagrand’s article gives the value C = 120; see [23], page 23. By following
the steps of Friedgut and Kalai, the best value that we were able to reach was
C = 5.66, for a version of Corollary 1.5 where p(1 − p) log(2/(p(1 − p))) is
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replaced by p(1 − p) log(3/(p(1 − p))); see [24], page 74. This gives the value
C′ = 7.03. In a recent paper devoted to first passage percolation, [2] gives a new
proof of Talagrand’s theorem for p = 1/2. It is straightforward to generalize this
result for any p ∈ [0,1] and then to deduce a version of Corollary 1.6 with the
constant C′ = 3. Nevertheless, asymptotically, this amounts to twice the best value
we offer in this paper.

Our main results are Theorem 4.1 and Corollary 4.3. The first one gives a lower
bound on the derivative dµp(A)/dp similar to that of Theorem 4.1, and this bound
is asymptotically sharp. Actually, it follows from a slightly more general result on
the largest influence of a variable on a Boolean function which we state in Theo-
rem 4.2. Theorem 4.1 implies a sharp version of Corollary 1.5. In particular, we
derive a bound for the threshold τ(A, ε), similar to that of Corollary 1.6, which
is asymptotically equivalent to (log((1 − ε)/ε))/ logn, thus showing that the uni-
versal constant C′ can be taken arbitrarily close to 1 for large n. These two conse-
quences of Theorem 4.1 are grouped together in Corollary 4.3.

It is tempting to see threshold phenomena as mere consequences of the con-
centration of product measures, accounted for by a huge variety of probabilistic
inequalities; see, for instance, Chapter III in [22], Chapter 2 in [11], the work of
Boucheron, Lugosi and Massart [7], Ledoux [19] and Talagrand [30, 31]. Nev-
ertheless, it seems that none of the existing concentration inequalities are able to
recover results like Theorem 1.4. The existing proofs of this result all rely on the
use of the Beckner–Bonami hypercontractive inequality; see [1, 6]. The main idea
of the current article is to replace this central tool by another one, namely a well-
known logarithmic Sobolev inequality [see inequality (5)] which allows us to get
a sharper result.

Note that another very natural question about the threshold width of a subset A

is to what extent it depends on the invariance subgroup G mentioned in Defini-
tion 1.3. This question is addressed by Bourgain and Kalai in [8]. Notably, for all
but the most basic types of symmetry, the main result of that article asymptoti-
cally improves on the bound given in Theorem 4.1. On the other hand, for some
“small” symmetry groups (e.g., the cyclic group), Theorem 4.1 is better than the
main result in [8].

The paper is organized as follows. Section 2 is devoted to technical results on
the derivative of the expectation of a function defined on {0,1}n. These results
generalize Russo’s lemma; see [25] or [16], page 41. The logarithmic Sobolev
inequality on which the proof of Theorem 4.1 is based will be explained in Sec-
tion 3. The proof of the main result is given in Section 4. Finally, the sharpness of
Theorem 4.1 is discussed in Section 5.

2. Threshold width and Russo’s lemma. The usual way to achieve general
upper bounds for the threshold width of a set A is to bound dµp(A)/dp below
by a suitable function of p and µp(A). To be precise, we will use the following
technical lemma:
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LEMMA 2.1. Let A be a monotone, nontrivial subset of {0,1}n, g be a contin-
uous positive function on [0,1] and a be a positive real number. The two following
propositions are equivalent:

(i) ∀p ∈ [0,1], dµp(A)

dp
≥ a

g(p)
µp(A)(1 − µp(A));

(ii) ∀α ≤ β ∈]0,1[, pβ − pα ≤ 1
a

supr∈[p(α),p(β)]{g(r)} log β(1−α)
α(1−β)

.

PROOF. First, let us suppose that (i) is true. Let α and β be two real numbers
in ]0,1[ such that α ≤ β . For any p ∈ [p(α),p(β)], we can write

d log(µp(A)/(1 − µp(A)))

dp
≥ a

supr∈[p(α);p(β)]{g(r)} .

Integrating this inequality between p(α) and p(β) the gives (ii). The converse is
obtained as follows:

(ii) �⇒ ∀α,β,0 < α < β < 1

a

supr∈[p(α),p(β)]{g(r)} ≤ log((β(1 − α))/(α(1 − β)))

p(β) − p(α)
,

�⇒ ∀p,q,0 < p < q < 1
a

supr∈[p,q]{g(r)}

≤ log(µq(A)(1 − µp(A))/(µp(A)(1 − µq(A))))

q − p
,

which gives (i) by letting q tend to p. �

In order to obtain a lower bound for dµp(A)/dp, let us define the discrete gra-
dient of a function f , from {0,1}n to R:

∇if (x) = f (x1, . . . , xi−1,1, xi+1, . . . , xn) − f (x1, . . . , xi−1,0, xi+1, . . . , xn).

The following lemma is easily obtained by considering the derivative of µp(x)

with respect to p:

LEMMA 2.2. For any real function f on {0,1}n,

d

dp

∫
f (x) dµp(x) =

n∑
i=1

∫
∇if (x) dµp(x).

This expression, when applied to the characteristic function of a monotone
set A, is equivalent to Russo’s lemma; see [16], page 41, or [25]. Indeed, recall
the definition of IA(i), the influence of coordinate i on the subset A:



1712 R. ROSSIGNOL

DEFINITION 2.3. Let n be a positive integer and f a function from {0,1}n to
{0,1}. For every i in {1, . . . , n}, the influence of variable i on f is the probability
of f being nonconstant on the ith fiber:

Ii(f ) = µn−1,p

({
x ∈ {0,1}n−1, s.t. f is not constant on li(x)

})
,

where

li(x) = {
(x1, . . . , xi−1, u, xi, . . . , xn−1) s.t. u ∈ {0,1}}.

Let A be a subset of {0,1}n. For every i in {1, . . . , n}, the influence of variable i

on A is its influence on the characteristic function 1A.

When f is the characteristic function of a monotone set A, we have∫
∇if (x) dµp(x) = IA(i).

Thus, Lemma 2.2 implies Russo’s lemma, which states that for any monotone
subset A,

dµp(A)

dp
=

n∑
i=1

IA(i).

3. The logarithmic Sobolev inequality on the hypercube. We introduce
(see [29]) the linear operator �i which acts on any function f : {0,1}n → R as
follows:

�if = f −
∫

f dµ1,p(xi).

This operator is closely related to ∇i :

�if (x) =
{

(1 − p)∇if (x), if xi = 1,
−p∇if (x), if xi = 0.

(3)

The key property of the operator �i , is that it is the opposite of the generator of a
semigroup acting on the ith coordinate. To be precise, let us define the semigroup
{Tt , t ≥ 0}, acting on ({0,1},µ1,p), of a Markovian jump process with transition
rates p from 0 to 1 and 1 − p from 1 to 0. Its generator H is the following; see
Chapter X in [13]:

Hg(x) =
{

(1 − p)
(
g(0) − g(1)

)
, if x = 1,

p
(
g(1) − g(0)

)
, if x = 0.

(4)

Tensorising this semigroup, we obtain a semigroup {Tn,t , t ≥ 0} on ({0,1}n,µn,p),
with generator L:

L = −
n∑

i=1

�i.
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It is known that H satisfies a logarithmic Sobolev inequality. Let us denote by
Entµ(f ) the entropy of a nonnegative function g with respect to a measure µ:

Entµ(g) =
∫

g logg dµ −
(∫

g dµ

)
log

(∫
g dµ

)
.

The following logarithmic Sobolev inequality, due to Higuchi and Yoshida [18]
can be found in [26], Theorem 2.2.8, page 336. For every function g from {0,1}
to R,

Entµ1,p
(g) ≤ cLS(p)

∫
−gHg dµ1,p,

where

cLS(p) =




log(1 − p) − logp

1 − p − p
, if p �= 1

2
,

2, if p = 1

2
.

A representation of p �→ cLS(p) is given in Figure 2.
We will now use the tensorization inequality for entropy; see for instance [19]:

Entµn,p (g) ≤
n∑

i=1

Eµn,p

(
Entµi

(g)
)
,

where Entµi
means that only the ith coordinate is concerned with the integration.

This allows us to obtain the following logarithmic Sobolev inequality for any real
function f on {0,1}n:

Entµn,p (f ) ≤ cLS(p)

∫
−f Lf dµn,p.(5)

In order to see the relevance of inequality (5) in bounding from below the derivative
of p �→ µp(A), notice now that the term

∫ −f Lf dµn,p , called the “energy” of the

FIG. 2. The graph of p �→ cLS(p).
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function f , is closely related to this derivative if f = 1A. Indeed, whenever f is
such that ∇if ∈ {0,1} for all i, Lemma 2.2 can be reformulated as follows:

LEMMA 3.1. For any function f such that ∇if ∈ {0,1} for all i,

d
∫

f dµp

dp
= 1

p(1 − p)

∫
−f Lf dµn,p.

PROOF. A simple computation shows how the moments of �if and ∇if are
related. For any real function f on {0,1}n and any real number α ≥ 0,∫

|�if |α dµp = (
p(1 − p)α + (1 − p)pα) ∫

|∇if |α dµp.(6)

Therefore, as soon as the function f is such that ∇if ∈ {0,1} for all i,∫
∇if (x) dµp(x) =

∫
(∇if (x))2 dµp(x) = 1

p(1 − p)

∫
(�if (x))2 dµp(x).

This, together with Lemma 2.2, leads to

d

dp

∫
f (x) dµp(x) = 1

p(1 − p)

n∑
i=1

∫
(�if (x))2 dµp(x).(7)

Notice that for all functions f and g,∫
f �ig dµn,p =

∫
�if �ig dµn,p.(8)

Indeed,∫
f �ig dµn,p −

∫
�if �ig dµn,p

=
∫ (∫

f dµ1,p(xi)

)(
g −

∫
g dµ1,p(xi)

)
dµn,p

=
∫ (∫

f dµ1,p(xi)

)(∫ (
g −

∫
g dµ1,p(xi)

)
dµ1,p(xi)

)
dµn,p

= 0.

Therefore, from equation (7) we obtain

d

dp

∫
f (x) dµp(x) = 1

p(1 − p)

n∑
i=1

∫
f (x)�if (x) dµp(x)

= 1

p(1 − p)

∫
f (x)

n∑
i=1

�if (x) dµp(x),

which leads to the desired result. �
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The role played by the logarithmic Sobolev inequality (5) in the subsequent
proof is very similar to the one played by hypercontractivity of the same semi-
group in the result of Talagrand [29]. In that article, hypercontractivity for the
semigroup {Tn,t , t ≥ 0} is achieved from the p = 1/2 case by using a symmetriza-
tion technique. Actually, a theorem due to Gross [17] gives an exact equivalence
between hypercontractivity and the existence of a logarithmic Sobolev inequality.
But the hypercontractivity function found by Talagrand is not optimal. Indeed, the
one obtained by using Gross’ theorem and inequality (5) is better (and optimal).
Notice, though, that when Talagrand’s article was published in 1994, the precise
logarithmic Sobolev constant cLS(p) was not yet known.

We finish this section by recalling a classical Poincaré inequality on {0,1}n that
will be useful in the sequel. Let g be a function on {0,1}. A simple computation
relates the variance of g and the energy of g associated to H:

Varµ1,p
(g) =

∫
−gHg dµ1,p.

The Jensen inequality implies the following tensorization property for the variance
of a function f from {0,1}n to R; see [19]:

Varµn,p (f ) ≤
n∑

i=1

Eµn,p

(
Varµi

(f )
)
,

where Varµi
means that only the ith coordinate is concerned with the integration.

This leads to the following Poincaré inequality for any real function f on {0,1}n:

Varµn,p (f ) ≤
∫

−f Lf dµn,p.(9)

4. Main result. We now turn to the statement of Theorem 4.1, the main result
of this article.

THEOREM 4.1. Let s(n) be the following sequence of real numbers:

s(n) = logn − max
{

log
(

e2+4/e

25+4/e

(
log

n

(logn)2

)3+4/e)
,2 log(logn)

}
.

For every integer n ≥ 2, every real number p ∈]0,1[ and every nontrivial
monotone symmetric subset A of {0,1}n,

∀p ∈]0,1[ dµp(A)

dp
≥ s(n)

p(1 − p)cLS(p)
µp(A)

(
1 − µp(A)

)
.

A graph of p �→ p(1 − p)cLS(p) is shown in Figure 3. Also, one can check
numerically that

∀n ≥ 2 s(n) > 0
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FIG. 3. The graph of p �→ p(1 − p)cLS(p).

and

∀n ≥ 275 log
(

e2+4/e

25+4/e

(
log

n

(logn)2

)3+4/e)
≥ 2 log(logn).

Therefore,

∀n ≥ 275 s(n) ≥ logn −
(

3 + 4

e

)
log log

n

(logn)2 .

Of course, as n tends to infinity, s(n) is equivalent to logn.
Actually, Theorem 4.1 is an easy consequence of the following, slightly more

general, result on the largest influence of a variable on a Boolean function (see
Definition 2.3):

THEOREM 4.2. For every integer n ≥ 2, every real number p ∈]0,1[ and
every function f from {0,1}n to {0,1}, the largest influence of a variable on f is
bounded below as follows:

max{Ij (f ) s.t. j = 1, . . . , n} ≥ Var(f )s(n)

np(1 − p)cLS(p)
.

PROOFS OF THEOREMS 4.1 AND 4.2. Let f be a function on {0,1}n with
values in R and define

∀ j ∈ {1, . . . , n} Vj = E[f |(x1, . . . , xj )] − E[f |(x1, . . . , xj−1)].
Then, we write f − E(f ) as a sum of the martingale increments Vj , for j =
1, . . . , n:

f − E[f ] =
n∑

j=1

Vj .
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Notice that martingale increments are always orthogonal:

∀ j �= k

∫
VjVk dµp = 0.

In addition, since
∫

Vj dxi and
∫

Vk dxi are two different martingale increments
for another filtration, they are also orthogonal:

∀ i, ∀ j �= k

∫ (∫
Vj dxi

∫
Vk dxi

)
dµp = 0.

We apply the logarithmic Sobolev inequality (5) to each increment Vj :

cLS(p)

∫
Vj

n∑
i=1

�iVj dµp ≥ Entµp(V 2
j )

=
∫

V 2
j logV 2

j dµp −
∫

V 2
j dµp log

∫
V 2

j dµp.

Summing these inequalities for j = 1, . . . , n results in the following:

cLS(p)

n∑
i=1

n∑
j=1

∫
Vj�iVj dµp

≥
n∑

j=1

∫
V 2

j logV 2
j dµp +

n∑
j=1

‖Vj‖2
2 log

1

‖Vj‖2
2

.

We now claim that the sum of the energies of the increments Vj is equal to the
energy of f :

n∑
j=1

∫
Vj�iVj dµp =

∫
f �if dµp.(10)

Indeed, ∫
f �if dµp =

∫ n∑
j=1

Vj�i

n∑
k=1

Vk dµp

=
n∑

j=1

∫
Vj�iVj dµp + ∑

j �=k

∫
Vj�iVk dµp.

Recall that

�iVk = Vk −
∫

Vk dxi.

Thus, ∫
Vj�iVk dµp =

∫
VjVk dµp −

∫
Vj

(∫
Vk dxi

)
dµp

=
∫

VjVk dµp −
∫ (∫

Vj dxi

)(∫
Vkdxi

)
dµp,
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and each term of the last sum is null whenever j �= k. This proves the claim (10).
One can now write

cLS(p)

n∑
i=1

∫
f �if dµp ≥

n∑
j=1

∫
V 2

j logV 2
j dµp +

n∑
j=1

‖Vj‖2
2 log

1

‖Vj‖2
2

.

From equation (8), we deduce∫
f �if dµp =

∫
(�if )2 dµp,

and therefore,

cLS(p)

n∑
i=1

∫
(�if )2 dµp ≥

n∑
j=1

∫
V 2

j logV 2
j dµp

︸ ︷︷ ︸
(1)

+
n∑

j=1

‖Vj‖2
2 log

1

‖Vj‖2
2︸ ︷︷ ︸

(2)

.

First, let us rewrite Vj as follows:

Vj = E[−�jf |x1, . . . , xj ].(11)

Using Jensen’s inequality,

‖Vj‖2
2 ≤ ‖�jf ‖2

2.

Let us note that

� = max
j

‖�jf ‖2
2.

We can then obtain a lower bound for the term (2) as follows:

(2) =
n∑

j=1

‖Vj‖2
2 log

1

‖Vj‖2
2

≥
n∑

j=1

‖Vj‖2
2 log

1

‖�jf ‖2
2

(12)

≥ Var(f ) log
1

�
.

Let us split each term of the sum (1) in the following way:∫
V 2

j logV 2
j dµp =

∫
V 2

j logV 2
j 1V 2

j ≤t dµp︸ ︷︷ ︸
(1a)

+
∫

V 2
j logV 2

j 1V 2
j >t dµp︸ ︷︷ ︸

(1b)

.

Since the function x �→ x logx is nonincreasing on [0,1/e], we can write, for every
t ≤ 1/e2,

(1a) =
∫

2|Vj | × |Vj | log |Vj |1V 2
j ≤t dµp ≥ √

t log t

∫
|Vj |1V 2

j ≤t dµp

≥ √
t log t

∫
|Vj |dµp,
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since
√

t log t is nonpositive.
From equation (11), and using Jensen’s inequality, we derive the following:∫

|Vj |dµp ≤
∫

|�jf |dµp.

We now use equation (6) with α = 1, then the fact that ∇j f ∈ {0,1} and finally
equation (6) with α = 2:∫

|�j |dµp = 2p(1 − p)

∫
|∇jf |dµp

= 2p(1 − p)

∫
(∇j f )2 dµp

= 2
∫

(�jf )2 dµp.

Moreover, the log function being increasing, we have

(1b) ≥ log t

∫
V 2

j dµp.

Summing the lower bounds thus collected, we find

(1) ≥ 2
√

t log t

n∑
j=1

∫
−f Lj f dµp + log(t)

n∑
j=1

∫
V 2

j dµp

(13)
= 2I

√
t log t + Var(f ) log(t),

where we have introduced the notation

I =
n∑

i=1

∫
(�if )2 dµp.

We would like to choose t so as to maximize expression (13). It is easier to equalize
the terms 2I

√
t log t and Var(f ) log(t). We would therefore be tempted to take

t =
(

Var(f )

2I

)2

,

but we have to maintain agreement with the hypothesis that t ≤ 1/e2, whereas we
only know, by the Poincaré inequality (9), that

I ≥ Var(f ).

Let us choose, then,

t =
(

Var(f )

eI

)2

.
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Thus,

(1) ≥ Var(f ) log
(

Var(f )

eI

)2+4/e

.(14)

Collecting lower bounds on (1) and (2) from (12) and (14) and using the trivial
bound, we have

� ≥ I

n
,

so we get

cLS(p)I ≥ Var(f ) log
((

Var(f )

eI

)2+4/e 1

�

)
,

(15)

cLS(p)� ≥ 1

n
Var(f ) log

((
Var(f )

eI

)2+4/e 1

�

)
.

Now, let us consider the following disjunction:
• Either

cLS(p)I ≥ Var(f ) log
n

(logn)2 ,

and therefore,

cLS(p)� ≥ 1

n
Var(f ) log

n

(logn)2 ,

• or

cLS(p)I < Var(f ) log
n

(logn)2 ,

and thus, using (15),

cLS(p)� ≥ 1

n
Var(f ) log

((
cLS(p)

e log(n/(logn)2)

)2+4/e 1

�

)
.(16)

Then, again, we either have

cLS(p)� ≥ 1

n
Var(f ) log

n

(logn)2 ,

or,

cLS(p)� <
1

n
Var(f ) log

n

(logn)2 ,

which gives, via inequality (16),

cLS(p)� ≥ 1

n
Var(f ) log

((
cLS(p)

e log(n/(logn)2)

)2+4/e cLS(p)

Var(f ) log(n/(logn)2)

)
.
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In any case,

� ≥ Var(f )

ncLS(p)
(17)

× min
{

log
n

(logn)2 , log
(

ncLS(p)3+4/e

e2+4/e Var(f )(log(n/(logn)2))3+4/e

)}
.

Notice now that

� = p(1 − p)max{Ij (f ) s.t. j = 1, . . . , n}
and, of course, when f is a Boolean function on n variables,

Var(f ) ≤ 1
4 .

Therefore, inequality (17), together with the observation that cLS(p) ≥ 2, leads to

max{Ij (f ) s.t. j = 1, . . . , n} ≥ Var(f )s(n)

np(1 − p)cLS(p)
.

The proof of Theorem 4.2 is complete. To see how this implies Theorem 4.1, let
f = 1A be the characteristic function of a monotone symmetric subset A of {0,1}n.
Since f is a symmetric function, the influences of f are all equal and thus,

max{Ij (f ) s.t. j = 1, . . . , n} = 1

n

n∑
j=1

Ij (f )

= 1

n

dµp(A)

dp
,

where the last equality follows from Lemma 2.2 and the fact that A is monotone.
Therefore, Theorem 4.2 applied to the Boolean function f implies that

dµp(A)

dp
≥ Var(f )s(n)

p(1 − p)cLS(p)
. �

We now turn to the upper bound on the threshold width of a nontrivial symmet-
ric set.

COROLLARY 4.3. Let s(n) be defined as in Theorem 4.1. For every integer
n ≥ 2, every real number ε ∈]0,1/2[ and every nontrivial monotone symmetric
subset A of {0,1}n,

τ(A, ε) ≤ sup
p∈[p(ε),p(1−ε)]

{p(1 − p)cLS(p)} log((1 − ε)/ε)

2s(n)
(18)

and, in particular,

τ(A, ε) ≤ log((1 − ε)/ε)

s(n)
.(19)
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PROOF. Theorem 4.1 ensures that

dµp(A)

dp
≥ Var(f )s(n)

p(1 − p)cLS(p)
.

Since s(n) is positive for all n ≥ 2, inequality (18) follows from Lemma 2.1. Notice
that p(1 − p)cLS(p) ≤ 1/2 (see Figure 3). This implies inequality (19). �

Recalling that as n tends to infinity, s(n) is equivalent to logn, the second as-
sertion of Corollary 4.3 means that, asymptotically, we can lower by a factor of 2
the best constant in Friedgut and Kalai’s theorem ([15], Corollary 1.6), obtained
by following the work of Benjamini, Kalai and Schramm [2].

5. Sharpness of the bound. Let us discuss now the sharpness of Theorem 4.1
and its corollaries. The following lemma implies that Theorem 4.1 is optimal, if
the desired lower bound involves µp(A)(1−µp(A)) and p(1−p)cLS(p), or some
equivalents, as µp(A) or p tends to zero:

LEMMA 5.1. Suppose that there exist two positive functions f and g and a
sequence of positive real numbers {a(n), n ∈ N

∗} such that for every n ∈ N
∗, every

monotone symmetric subset A ⊂ {0,1}n and every p ∈]0,1[,
dµp(A)

dp
≥ a(n)

g(p)
f (µp(A)),

with

f (x)

x

x→0−→ 1 and
g(p)

p log(1/p)

p→0−→ 1.

Then,

lim sup
n→+∞

a(n)

logn
≤ 1.

PROOF. For n ≥ 2, consider the following monotone symmetric subset:

Bn = {
x ∈ {0,1}n s.t. ∃ i ∈ {1, . . . , n}, xi = 1

}
.

The probability of Bn is

µp(Bn) = 1 − (1 − p)n.

Therefore,

dµp(Bn)

dp
= n(1 − p)n−1.
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Fix ε ∈]0,1/2[. Suppose now that p = p(n) is such that µp(Bn) = ε. Then p(n)

tends to zero as n tends to infinity. Therefore,
(
1 − p(n)

)n−1 = 1 − ε + o(1),

np(n) = log
1

1 − ε
+ o(1).

Thus,

dµp(Bn)

dp

∣∣∣∣
p=p(n)

= 1

p(n)
(1 − ε) log

1

1 − ε
+ o

(
1

p(n)

)

and

log
(

1

p(n)

)
= log

n

log(1/(1 − ε))
+ o(1).

Hence,

dµp(Bn)

dp

∣∣∣∣
p=p(n)

= logn

p(n) log(1/p(n))
(1 − ε) log

1

1 − ε
+ o

(
logn

p(n) log(1/p(n))

)
.

Therefore,

lim
n→+∞

dµp(Bn)

dp

∣∣∣∣
p=p(n)

× 1

logn

p(n) log(1/p(n))

(1 − ε) log(1/(1 − ε))
= 1.

Suppose now that there exist two positive functions f and g and a sequence of
positive real numbers {a(n), n ∈ N} such that for every n ∈ N, every monotone
symmetric subset A ⊂ {0,1}n and every p ∈]0,1[, we have

dµp(A)

dp
≥ a(n)

g(p)
f (µp(A))(20)

and

f (x)

x

x→0−→ 1 and
g(p)

p log(1/p)

p→0−→ 1.

Inequality (20) holds, in particular, for A = Bn and p = p(n). Therefore,

1 = lim
n→+∞

dµp(Bn)

dp

∣∣∣∣
p=p(n)

× 1

logn

p(n) log(1/p(n))

(1 − ε) log(1/(1 − ε))

≥ lim sup
n→+∞

a(n)

logn
× p(n) log(1/p(n))

g(p(n))
× f (ε)

(1 − ε) log(1/(1 − ε))

= f (ε)

(1 − ε) log(1/(1 − ε))
lim sup
n→+∞

a(n)

logn
.
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This inequality is valid for any ε ∈]0,1[. Since f (ε)
(1−ε) log 1/(1−ε)

tends to one as ε

goes to zero,

lim sup
n→+∞

a(n)

logn
≤ 1. �

As suggested by Lemma 2.1, one can see that inequality (18) in Corollary 4.3
is also asymptotically sharp. Nevertheless, it remains unknown whether inequal-
ity (19) is optimal or not. Indeed, this inequality is equivalent to equality (18) only
when the threshold is located at p = 1/2. Following [15] in studying the “Tribes
example,” it is possible to construct a sequence of monotone symmetric subsets
Cn ⊂ {0,1}n with a threshold located in 1/2 and such that, for all ε in ]0,1/2[,

τ(Cn, ε) = log 2(log log(1/(1 − ε)) − log log(1/ε))

logn
+ o

(
1

logn

)
.

When ε tends to 1/2, this threshold width gets close to log((1 − ε)/ε)/2 logn.
Therefore, it remains an open problem to find an optimal upper bound for the
threshold width of a symmetric property whose threshold is located at 1/2.
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