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HITTING TIMES FOR INDEPENDENT RANDOM WALKS ON Zd

BY AMINE ASSELAH AND PABLO A. FERRARI

Université de Provence and IME-USP

We consider a system of asymmetric independent random walks on Zd ,
denoted by {ηt , t ∈ R}, stationary under the product Poisson measure νρ of
marginal density ρ > 0. We fix a pattern A, an increasing local event, and
denote by τ the hitting time of A. By using a loss network representation
of our system, at small density, we obtain a coupling between the laws of ηt

conditioned on {τ > t} for all times t . When d ≥ 3, this provides bounds
on the rate of convergence of the law of ηt conditioned on {τ > t} toward
its limiting probability measure as t tends to infinity. We also treat the case
where the initial measure is close to νρ without being product.

1. Introduction. We consider asymmetric independent random walks
(AIRW), denoted by {ηt , t ∈ R}. Informally, we first draw an initial configuration
η0 : Zd → N. For i ∈ Zd , η0(i) represents the number of particles at site i at time 0.
Then, independently of each other, particles perform continuous-time random
walks with transition function p(·, ·) with a nonvanishing drift

∑
i p(0, i)i �= 0.

For each ρ > 0, the AIRW process is stationary under νρ , a product over Zd , of
Poisson measures of marginal intensity ρ > 0.

It is convenient to realize the trajectories of the stationary AIRW process as a
marked Poisson process obtained as follows: (i) for each i ∈ Zd , draw Ni accord-
ing to a Poisson variable of intensity ρ; (ii) mark each particle at i with a trajec-
tory {γt , t ∈ R} drawn from dP0,i (γ ), where we write dPs,i(γ ) for the law of a
continuous-time random walk {γt , t ∈ R}, of transition p(·, ·) such that γs = i. We
denote by � a realization of such a marked Poisson process, and its law, denoted
by P, is of intensity

dPρ(γ ) = ρ
∑
i∈Zd

dP0,i (γ ).

We retrieve the occupation number ηt by taking a time-slice of �:

∀ i ∈ Zd ηt (�)(i) = |{γ ∈ � :γt = i}|,
and {ηt (�), t ∈ R} is a stationary process with respect to νρ . On the configuration
space, there is a natural order: η ≺ ζ , if for all i ∈ Zd , η(i) ≤ ζ(i). Accordingly,
we say that an event A is increasing if η ∈ A and η ≺ ζ imply that ζ ∈ A.
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We consider an increasing event A with support in a finite subset of Zd (local),
and denote by τ the hitting time of A. We are concerned with sharp asymptotics
of the tail distribution of τ . Indeed, the existence of the following limit is obtained
as a simple consequence of subadditivity (see [3])

λ(ρ) = − lim
t→∞

1

t
log
(
Pνρ (τ > t)

)
,(1.1)

where, for a probability measure µ, Pµ denotes the law of {ηt , t ≥ 0} with η0
drawn from µ, and Eµ[·] denotes the corresponding expectation. Also, when the
drift is nonzero, it is proved in [3] that λ(ρ) > 0 in any dimensions, whereas when
d ≥ 3, uniform regularity estimates are established for the law of ηt conditioned
on {τ > t} with initial measure νρ , that we denote by Tt(νρ). More precisely,

sup
t≥0

∫ (
dTt (νρ)

dνρ

)p

dνρ < ∞ for any integer p.(1.2)

Thus, if we call LW the generator of the AIRW process, and assume d ≥ 3,
[3] shows that a principal eigenfunction for LW , denoted by u, with Dirich-
let boundary on A, is obtained by taking the limit of convex combinations of
{Tt (νρ), t ≥ 0} [and similarly of the dual process in L2(νρ) whose generator and
principal eigenvector we denote resp. by L∗

W and u∗]. Thus, u,u∗ ∈ Lp(νρ) for
any integer p, are decreasing with the following normalization:

u,u∗ ≥ 0 and
∫

udνρ =
∫

u∗ dνρ = 1.

Note that when d ≥ 3, λ(ρ) given in (1.1) is the principal eigenvalue of LW with
Dirichlet boundary on A, and a variational formula for λ(ρ) is obtained in [2].

However, neither the existence of µρ = limt→∞ Tt(νρ), the so-called Yaglom
limit, nor sharp asymptotics for the tail distribution of τ were established. Beside
this goal, we are interested in approaching such results as obtained in an irreducible
context by the Birkhoff–Hopf’s theorem (see [6] for a statement in a general con-
text and a simple proof). That is, for instance, to find explicit constants β and M

such that for ϕ (in certain cones) with ϕ|A ≡ 0∫ ∣∣∣∣eλ(ρ)t S̄t (ϕ)(η) −
∫

ϕu∗ dνρ∫
uu∗ dνρ

u(η)

∣∣∣∣dνρ(η) ≤ Me−βt ,(1.3)

where {S̄t , t ≥ 0} is the semi-group of the AIRW process stopped when hitting A.
Recently, one of the authors [2] obtained for d ≥ 3 some L1(νρ) convergence

for the Cesaro mean of S̄t (1{Ac}) for a larger class of processes (the so-called
monotone zero-range). This was based on uniqueness for the principal Dirichlet
eigenfunction in a natural class, and an ergodic theorem. Thus, rate of convergence
escaped his approach. In the present work, we are using a special representation of
the AIRW process at low density to obtain explicitly computable constant β and M



1298 A. ASSELAH AND P. A. FERRARI

such that for a probability measure µ close enough to νρ , and for a nonnegative
function g with bounded oscillation [see (1.12) for a precise statement],∣∣∣∣Eµ[g(ηt )|τ > t] −

∫
gu∗ dνρ

∣∣∣∣≤ Me−βt‖g‖νρ ,(1.4)

where ‖ · ‖νρ denotes the L2(νρ)-norm.
To avoid unnecessary length, we have written all our results and proofs for

events of the type A := {η(0) > L} for an integer L. Any local increasing event can
be treated by straightforward adaptation of the arguments with more intricate no-
tation and expressions. More importantly, to realize the stationary AIRW process
as a marked Poisson process allows us to treat also increasing space–time patterns.
Indeed, fix � ⊂ Zd finite, and T > 0. Let {Ai , i ∈ N} be increasing events with
support in �, and {ti , i ∈ N} be an increasing subdivision of [−T ,0]. Then, we
form

AT := {� :ηs(�) ∈ Ai , ∀ s ∈ [ti , ti+1[, ∀ i ∈ N}.(1.5)

We define the time-shift of a trajectory γ by (θtγ )s = γs+t , and denote by θt� the
set of trajectories of � shifted by t . Then, we define the first occurrence of AT as

τ = inf{t ≥ T : θt (�) ∈ AT }.
Our results hold also for the pattern AT when the density is small enough and
when d ≥ 3.

Before stating our first result, we recall (see the Appendix) that if (z) :=∑
i p(0, i) exp(z · i) for z ∈ Rd , then, under mild assumptions on the transition

function (see Section 2.1), we have that 0 < inf < 1. Also, our random walk is
transient, so that if H0 is the first return time to 0, then P0,0(H0 = ∞) > 0. Fi-
nally, if σ(γ ) is the diameter of the set of times, the walk {γt , t ∈ R} spends on
site {0}, and if βd = min(1 − inf,P0,0(H0 = ∞)) > 0, we see in Lemma A.3 of
the Appendix that, for any fixed 0 < β1 < βd , we can define the following density
threshold:

ρc(β1) = 1∫ [eβ1σ(γ )(1 + σ(γ ) + σ(γ )2)]dP0,0(γ )
.(1.6)

We now can state a result concerning the tail asymptotics of the hitting time.

PROPOSITION 1.1. Assume that d ≥ 3. For any β1 < βd , and any ρ < ρc(β1),
there is a number M(β1), such that∣∣∣∣eλ(ρ)tPνρ (τ > t) − 1∫

uu∗ dνρ

∣∣∣∣≤ M(β1) exp(−β1t).(1.7)

Next, we consider the Yaglom limit.
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PROPOSITION 1.2. Under the same hypotheses as Proposition 1.1, the
Yaglom limit µρ exists. Furthermore,

dTt (νρ)

dνρ

t→∞−→ u∗ = dµρ

dνρ

in L2(νρ).(1.8)

The same results hold for the dual process.

REMARK 1.3. Our approach consists in coupling {Tt (νρ), t ≥ 0} through a
loss network dynamics, as developed for contour models in [7]. We actually con-
struct one probability space on which all the conditional laws {Tt (νρ), t ≥ 0} are
realized at once, as well as the limiting object µρ . Moreover, the convergence, in
this large space, is in the almost sure sense.

Next, we consider an initial measure which is not a product Poisson measure,
but is “sandwiched” between two product Poisson measures. To formulate the next
result, we need more notation. We denote by P ∗

s,i the law of a walk {γt , t ∈ R} with
dual transition function {p∗(k, j) := p(j, k), k, j ∈ Zd} conditioned on γs = i.

PROPOSITION 1.4. Assume that d ≥ 3 and ρ < ρc(β1). Let Cα be a positive
constant and {αi, i ∈ Zd} be positive reals with

0 ≤ 1 − αi/ρ ≤ CαP ∗
0,i (H0 < ∞) ∀ i ∈ Zd .(1.9)

Define να to be a product Poisson measure of marginal intensity αi at i ∈ Zd ,
that is,

for η, νρ-almost surely
(1.10)

ψα(η) := ∏
i∈Zd

e(ρ−αi)

(
αi

ρ

)η(i)

and dνα := ψα dνρ.

Let µG be a finite range Gibbs measure (see Section 2.3) with dµG := fG dνρ

and fG ∈ L2(νρ). Assume that (i) fG is decreasing, and (ii) fG/ψα is increasing.
Then,

dTt (µG)

dνρ

t→∞−→ u∗ in L2(νρ).(1.11)

Furthermore, assume that g is nonnegative and satisfies for some constant Cg

0 ≤ g(η) − g(A+
i η) ≤ CgP0,i (H0 < ∞)g(η) ∀ i ∈ Zd,(1.12)

where A+
i acts on configuration η by adding a particle at site i ∈ Zd . Then, for any

β1 < βd , there is M̄(β1) such that∣∣∣∣EµG
[g(ηt )|τ > t] −

∫
gu∗ dνρ

∣∣∣∣≤ CgM̄(β1)e
−β1t‖g‖νρ .(1.13)
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REMARK 1.5. Note that (i) and (ii) are stronger than να ≺ µG ≺ νρ . Also,
when d ≥ 3, the series

∑
i P

∗
0,i (H0 < ∞)2 is finite (which is equivalent to the

well-known fact that the Green function is square summable; see, e.g., [10]). Also,
ψα of (1.10), and g satisfying (1.12), are in L2(νρ) (see the proof of Theorem 3(c)
in [4]).

REMARK 1.6. When considering space–time event AT as in (1.5), the law
of ηt conditioned on {τ > t}, and initial measure νρ , that we still denote by dTt (νρ)

will converge to dµρ = u∗ dνρ , but u∗ is no more an eigenfunction of L∗
W with

Dirichlet boundaries. Also, {Tt (νρ), t ≥ 0} is no more a semi-group, and the sub-
additive argument giving the limit (1.1) does not hold.

Finally, a useful by-product of the loss network representation is a comparison
between hitting times for different patterns at any density. Let � be a finite subset
of Zd , and denote

0� := {η ∈ NZd

:∃ i ∈ �,η(i) > 0}.(1.14)

For a subset � of Zd , we denote by H� the return time in � for a single walk.
Also, we distinguish by a hat all quantities related to 0�.

PROPOSITION 1.7. Assume that A is a local increasing event such that
A ⊂ 0�. Then, for any dimensions d and any density ρ > 0, we have, for t ≥ 0,

T̂t (νρ) ≺ Tt (νρ) ≺ νρ and T̂ ∗
t (νρ) ≺ T ∗

t (νρ) ≺ νρ.(1.15)

As a consequence, for any integers i, j and any t, s ≥ 0,

∫ (
dT̂t (νρ)

dνρ

)i(dT̂ ∗
s (νρ)

dνρ

)j

dνρ

(1.16)

≥
∫ (

dTt (νρ)

dνρ

)i(dT ∗
s (νρ)

dνρ

)j

dνρ.

This result is useful since for 0� everything can be computed. In Section 3.3 we
first note that the conditional laws are ordered and converge: for t < t ′,

νρ � T̂t (νρ) � T̂t ′(νρ)
t ′→∞−→ µ̂ρ and

(1.17)

sup
t

∥∥∥∥dT̂t (νρ)

dνρ

∥∥∥∥
νρ

=
∥∥∥∥dµ̂ρ

dνρ

∥∥∥∥
νρ

(< ∞ when d ≥ 3).

Properties (1.17) hold as well for the dual process, with all notation weighed down
by an “∗”. Second, using P (λ) to denote a Poisson law of intensity λ, we have
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that, for t ≥ 0,

T̂t (νρ) = ⊗
i∈Zd

P
(
ρP ∗

0,i(H� > t)
)
,

µ̂ρ = ⊗
i∈Zd

P
(
ρP ∗

0,i(H� = ∞)
)
,

(1.18) ∫
dT̂t (νρ)

dνρ

dT̂ ∗
t (νρ)

dνρ

dνρ = exp

(
ρ
∑
i∈Zd

P ∗
0,i(H� ≤ t)P0,i (H� ≤ t)

)
,

∫ (
dT̂ ∗

t (νρ)

dνρ

)2

dνρ = exp

(
ρ
∑
i∈Zd

P0,i(H� ≤ t)2

)
.

REMARK 1.8. In the symmetric case (i.e., when p∗ = p), uniform L2(νρ)

estimates of the densities of {Tt (νρ), t ≥ 0} imply the existence of a Yaglom limit
(see Lemma 2.3 of [5]). Thus, the domination (1.15) provides a simple proof of
the existence of a Yaglom limit for independent random walks in d ≥ 5 [since∑

P0,i (H� = ∞)2 < ∞ only when d ≥ 5 in the symmetric case].

The paper is organized as follows. In Section 2 we set our notation and as-
sumptions. In Section 3 we construct the loss network representation. We have
postponed the technical proofs, that the clans are almost surely finite, to Section 6.
We treat the event 0� of (1.14) in Section 3.3, where we prove Proposition 1.7,
after showing (1.17) and (1.18). We consider the conditioned nonstationary AIRW
process in Section 3.4. In Section 4 we bound discrepancies between different con-
ditional laws, basing some estimates on classical random walks estimates which
we have gathered in the Appendix. Finally, in Section 5 we apply the estimates
on discrepancies to obtain hitting time estimates. Actually, Section 5 could be read
before Section 3, if one is willing to assume Lemmas 4.1 and 4.3, as well as Corol-
laries 4.2 and 4.4.

2. Notation and assumptions.

2.1. The single-particle random walk. We consider a random walk on Zd with
transition function {p(i, j)} satisfying the following assumptions:

(0) p(i, j) ≥ 0, p(i, i) = 0 and
∑

i p(0, i) = 1.
(i) Translation invariant: p(i, j) = p(0, j − i).

(ii) Finite range: p(i, j) = 0 if
∑d

k=1 |ik − jk| > R.
(iii) Irreducible: for any i, there is n such that pn(0, i) > 0.
(iv) Nonzero drift:

∑
i ip(0, i) �= 0.
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Note that by (0) and (i) the transition kernel p(·, ·) is doubly stochastic. Thus, we
can introduce a dual transition kernel {p∗(i, j), i, j ∈ Zd}, with p∗(i, j) := p(j, i)

satisfying (0)–(iv).
A continuous trajectory γ of the random walk is an element of D(R,Zd), the

space of cadlag step functions γ : R → Zd . D(R,Zd) endowed with the Skorohod
topology, S, is a complete separable metric space. For a trajectory γ , let �(γ ) :=
{t : γ (t) ∈ {0}}, let σ (γ ) be the closed convex hull of �(γ ), and let σ(γ ) be the
length of σ (γ ). Since the walk is transient, σ(γ ) is a.s. finite. The density of the
law of σ(γ ) is denoted by gσ , and we show in Lemma A.3 that there is βd > 0
such that

∫
exp(β1σ(γ )) dP0,0(γ ) < ∞, for any β1 < βd .

2.2. The AIRW process. The usual description of the AIRW is in terms of the
evolution of the occupation number η : Zd �→ N. To construct the semi-group, let

α(i) =
∞∑

n=0

2−npn(i,0) and

for η, ζ ∈ NZd ‖η − ζ‖ = ∑
i∈Zd

|η(i) − ζ(i)|α(i).

The configuration space is � = {η :‖η‖ < ∞}, and we call L the space of Lip-
shitz functions from (�,‖ · ‖) to (R, | · |), and Lb the subspace of L consisting of
bounded functions. A semi-group {St , t ≥ 0} can be constructed on L with formal
generator

LWϕ(η) := ∑
i,j∈Zd

p(i, j)η(i)
(
ϕ(T i

j η) − ϕ(η)
)
,(2.1)

where T i
j η(k) = η(k) if k /∈ {i, j}, T i

j η(i) = η(i)− 1 and T i
j η(j) = η(j) + 1. This

has been proven in [1] (see also [11] and [13], Section 2) for the more general
class of zero-range process (where particles at the same site can interact). In the
independent case, a construction can be realized by attaching a trajectory to each
initial particle as mentioned in the Introduction.

In [13], Section 2, LW is extended to a generator, again called LW for conve-
nience, on L2(νρ) for any ρ > 0. It is also shown that Lb is a core for LW .

The set of invariant measures for the AIRW process has as extremal points the
family {νρ, ρ > 0} of ergodic measures. The AIRW is monotone (also called at-
tractive): the partial order is preserved under the evolution.

2.3. Gibbs measures. We associate with each finite subset � of Zd a bounded
map � :� → R depending only on {η(i), i ∈ �}. Also, we make a finite-range
assumption: if � is such that sup{|i − j | : i, j ∈ �} > R, then � ≡ 0. With the
potential {� :� ⊂ Zd, finite}, we associate an energy

∀X ⊂ Zd HX(η) = ∑
�∩X �=∅

�(η).



HITTING TIMES FOR INDEPENDENT WALKS 1303

We denote by Gρ() the set of (Gibbs) probability measures such that, for any
finite X ⊂ Zd , their conditioned laws on ηXc := {η(i), i /∈ X}, projected on NX ,
are given by

∀ηX ∈ NX exp(−HX(ηX,ηXc))

ZX(ηXc)

∏
i∈X

dP(ρ)(ηX(i)),

where ZX(ηXc) is a positive normalizing constant, and (ηX,ηXc) is the config-
uration of � equal to ηX(i) for i ∈ X, and to ηXc(i) for i /∈ X. Note that, for
µG ∈ Gρ(),

∀ i ∈ Zd (
1 + η(i)

)dA+
i µG

dµG

(η) = ρ exp

(∑
��i

�(η) − �(A+
i η)

)
.

Now, hypotheses (i) and (ii) in Proposition 1.4 read for the potential

0 ≤∑
��i

(
�(A+

i η) − �(η)
)≤ log

(
ρ

αi

)
,(2.2)

with αi ≤ ρ and
∑

i (ρ −αi)
2 < ∞ by hypotheses (1.9) of Proposition 1.4. Finally,

note that the measures in Gρ() are in general not translation invariant.

3. The loss network representation.

On the use of loss network. We introduce in Section 3.1.1 a marked-Poisson
point process �∅ with law P. Also, for each positive number T , we are given a
compatibility condition CT on G, the space of realizations of �∅. The problem
that we will face in Section 4 is to compare P conditioned on CT for different T ’s.
For this purpose, we build a birth and death process on G reversible with respect
to P. We actually realize the birth and death dynamics as a point process on a larger
space, where we incorporate birth-time and death-time of each point, thus obtain-
ing the noninteracting rectangle process which we denote by C in Section 3.1.2.
The key observation is that the evolution obtained by canceling births which vi-
olate CT is reversible with respect to P(·|CT ). The loss network is the trimmed
rectangle process of Section 3.2.1 where we erase all rectangles violating CT . The
trimming algorithm requires that the distribution of points be sparse enough. Thus,
when the particle density ρ is small enough, the loss network yields a coupling for
all {P(·|CT ), T > 0}.

3.1. The noninteracting process.

3.1.1. Static. Let mc be the counting measure on Zd , that is, mc :P (Zd) →
N ∪ {∞} with mc(�) = |�|, the number of sites in � ∈ P (Zd), the collection
of subsets of Zd . For any density ρ > 0, consider the Poisson point process on Zd
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with intensity measure ρdmc, and denote its counting variable at site i ∈ Zd by Ni .
Our mark-space is (D(R,Zd),S) and we consider the marked-point process with
counting measure

pc(ω,� × A) :=∑
i∈�

∑
k≥1

1
{
γ

(i)
k (ω) ∈ A

}
1{Ni(ω) ≥ k} for A ∈ S,� ⊂ Zd,

where for each site i ∈ Zd , {γ (i)
k , k ∈ N} are i.i.d. random walks drawn from dP0,i ,

independent from {Ni, i ∈ Zd}. Thus, ω �→ pc(ω, ·) is a random measure on
Zd × D(R,Zd) with the product Borel σ -field and deterministic intensity mea-
sure

λ(�,dγ ) :=∑
i∈�

ρP0,i(dγ ).

We define the intensity measure [on D(R,Zd)] due to all sites of Zd :

Pρ(dγ ) := λ(Zd, dγ ) = ρ
∑
i∈Zd

P0,i (dγ ).(3.1)

We show now that Pρ(dγ ) is space and time translation invariant.
For a trajectory γ ∈ D(R,Zd), a time t and a site i ∈ Zd , we call θ ′

i γ the space-
translation by i, that is, θ ′

i γ = γ + i. For a measure P on D(R,Zd), we call
θtP (A) = P(θtA) and θ ′

iP (A) = P(θ ′
iA). First, note that θsPt,i = Pt−s,i . Indeed,

it is enough to consider

A = {γ ∈ D(R,Zd) :γtn ∈ Un,n ∈ N
}
,

where {tn} is a sequence in R, and {Un} in P (Zd). Now

θsA = {γ ∈ D(R,Zd) :γtn+s ∈ Un

}
and

Pt,i(θsA) = P
({

γtn+s ∈ Un,n ∈ N
}|γt = i

)
= P

({
γtn ∈ Un,n ∈ N

}|γt−s = i
)

= Pt−s,i(A),

since the generator of a single walk is time-independent. Now, for any t, t ′ and
i, j ∈ Zd ,

Pt,i(dγ )1{γt ′ = j} = Pt ′,j (dγ )1{γt = i}.(3.2)

Indeed, first call Qt(i, j) the probability that γt is in j at time t given it is in i at
time 0 and Q∗

t (i, j) the semigroup of the time-reversed walk with transition func-
tion p∗(·, ·). To see (3.2), divide the first member by Qt ′−t (i, j) and the second
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one by Q∗
t−t ′(j, i) (an identical quantity) to obtain in both terms the law of a ran-

dom walk with transition function p(·, ·) conditioned to be in i at time t and in j

at time t ′. Thus, ∑
i

Pt,i(dγ ) =∑
i

∑
j

1{γt ′ = j}Pt,i(dγ )

=∑
i

∑
j

1{γt = i}Pt,j ′(dγ )(3.3)

=∑
j

Pt ′,j (dγ ),

where we used (3.2) in the second equality. The time-translation invariance follows
at once. The space-translation invariance is obvious by definition of dPρ .

Let G be the space of point measures on D(R,Zd). Let �∅ be the marked-
Poisson process in D(R,Zd) with intensity measure dPρ , that is, a random
variable with value in G. The index ∅ refers to the fact that trajectories are non-
interacting. We denote by P and E, respectively, the probability and expectation
induced by �∅. By translation invariance of Pρ(dγ ), the law of �∅ is invariant by
time and space translations:

θsθ
′
j�∅

d= �∅ for (s, j) ∈ R × Zd .(3.4)

We associate with the Poisson process �∅, and at each time t ∈ R, a configura-
tion dubbed its time-slice defined by

ηt (�∅)(i) := |{γ ∈ �∅ :γt = i}|.(3.5)

Note that by time-translation invariance, ηt (�∅) has the same law as {pc({i} ×
D(R,Zd)), i ∈ Zd}, so that ηt (�∅) = {ηt (�∅)(i) : i ∈ Zd} has law νρ . Moreover,
by the independence of the trajectories in �∅, each evolving with transition p(·, ·),
and the translation invariant property (3.4), {ηt (�∅), t ∈ R} is a stationary Markov
process with generator LW and time marginal νρ .

3.1.2. Birth and death process. We define a birth and death process on G,
whose unique reversible measure is the law of �∅. Following [7], we define a
Poisson process on D(R,Zd)×R×R+ of intensity Pρ(dγ ) db e−l dl. Each point
of this process is a triplet (γ, b, l) which is associated with the rectangle

R = γ × [b, b + l],(3.6)

with basis γ , birth-time b, death-time b+ l and life-epoch [b, b+ l]. In this case we
use the notation γ (R) = γ , epoch(R) = [b, b + l] and birth(R) = b. The random
set of rectangles induced by a realization of the Poisson process is called C, and
its law is denoted by Q.
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The process {�b
∅ :b ∈ R} with

�b
∅ := {γ (R) : R ∈ C, epoch(R) � b}(3.7)

is stationary, Markov and has generator

Lbdf (�) =
∫

Pρ(dγ )[f (� ∪ {γ }) − f (�)] + ∑
γ∈�

[f (� \ {γ }) − f (�)].(3.8)

The unique invariant (and reversible) measure for this process is P. We omit
the proofs since these facts are similar to [7], proof of Theorem 3.1, and [8],
Appendix A, proof of Theorem 1. Note also that, for any b, the time-slices
{ηt (�

b
∅), t ∈ R} define an AIRW process stationary with respect to νρ .

3.2. The conditioned process. Let A := {η(0) > L} for any integer L. Fix an
interval I ⊂ R, and define

AI := {� ∈ G :∃ s ∈ I with ηs(�) ∈ A}.(3.9)

We now need to study P conditioned on Ac
I , that is,

dPI (�) := 1{Ac
I }(�)dP(�)

P(Ac
I )

.(3.10)

Let {�b
I ,b ∈ R} be a process evolving with the same dynamics as {�b

∅,b ∈ R},
except that jumps to AI are prohibited. Since P is reversible for {�b

∅,b ∈ R}, one
expects that PI is reversible for {�b

I ,b ∈ R}. This is shown in the next section. The
formal generator of {�b

I ,b ∈ R} is given by

LI
bdf (�) =

∫
Pρ(dγ )1

{
� ∪ {γ } ∈ Ac

I

}[f (� ∪ {γ }) − f (�)]
(3.11)

+ ∑
γ∈�

[f (� \ {γ }) − f (�)].

3.2.1. Construction of the loss network. For each interval I ⊂ R, we say that
trajectories γ and γ ′ I -interact if σ (γ )∩σ (γ ′)∩I �= ∅. We say that a rectangle R′
is an I -parent of R if γ (R) I -interacts with γ (R′), and the birth of R belong to the
epoch of R′. We call AR

1 (I ) the set of I -parents of R. Also, we define the nth
generation of I -parents and the I -clan of R, respectively, by

AR
n (I ) := ⋃

R′∈AR
n−1

AR′
1 (I ) and AR(I ) := ⋃

n≥1

AR
n (I ) ∪ {R}.(3.12)

Note that if J ⊂ I , then AR(J ) ⊂ AR(I ). Thus, the following result needs only to
be proven for I = R.
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LEMMA 3.1. Let β1 < βd given in (A.9), and ρc(β1) > 0 given in (1.6). For
any density ρ < ρc(β1), for any interval I ⊂ R, the clan of each rectangle R in C
is finite Q-almost surely.

We prove this lemma in Section 6.1.

REMARK 3.2. We could show that, for all bounded interval I , and any ρ > 0,
the I -clan of R is finite for all R ∈ C, Q-almost surely. Indeed, since the interaction
of trajectories γ is through σ (γ ), we have to study a loss network of intervals in a
finite box.

The I -trimming algorithm. Since the clan of every rectangle is finite when
ρ < ρc(β1), we can order those rectangles by birth time. Iteratively, we label each
rectangle of the clan as I -kept or I -deleted in the following way. Fix a time b and
let R be a rectangle of C alive at b:

• Let R1 be the eldest rectangle of AR(I ). If {γ (R1)} ∈ AI , then R1 is I -deleted,
else it is I -kept.

• Assume we have I -labeled Cn := {R1, . . . ,Rn}, the eldest n rectangles of the
clan. If {γ (R) : R ∈ Cn, I -kept, epoch(R) � birth(Rn+1)} ∪ {γ (Rn+1)} ∈ AI ,
then Rn+1 is I -deleted, else it is I -kept.

• Stop the labeling once R is labeled.

Repeating this procedure with all rectangles alive at b, we obtain K(I,b) ⊂ C, the
resulting set of I -kept rectangles alive at b. The construction of K(I,b) does not
depend on the order the clans are chosen since the labeling of a rectangle depends
only on its parents.

Define, for any b ∈ R,

�b
I := {γ (R) : R ∈ K(I,b)}.(3.13)

PROPOSITION 3.3. For any interval I ⊂ (−∞,0], the process {�b
I :b ∈ R} is

stationary and it is Markov with generator LI
bd defined in (3.11). The time mar-

ginal law of �b
I is the measure PI .

PROOF. Both stationarity and the fact that the process is Markov with gener-
ator LI

bd follow from the construction. Moreover, the measure PI is reversible for
the process. These facts are easy to check (see [7], proof of Theorem 3.1, and [8],
Appendix A, proof of Theorem 1, where details are given). �

For any interval I , and any s,b ∈ R, we define the configuration

ηs(�
b
I )(i) = |{R ∈ �b

I :γ (R)s = i}|.(3.14)

Since the law of �b
I is stationary, we often drop the superscript b when no confu-

sion is possible.
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LEMMA 3.4. For t > 0, we set I = [−t,0]. The particle configuration η0(�
b
I )

defined by (3.14) has law Tt(νρ).

PROOF. Using the shorthand notation η· = {ηs, s ∈ R}, we define τ(η·) :=
inf{s > 0 :ηs ∈ A}, and note that{

�∅ /∈ A[0,t]
}= {�∅ :ηs(�∅) /∈ A, for s ∈ [0, t]} = {τ(η·(�∅)) > t}.

Now, we have seen that θt� = � in law. Thus, since θtA
c
I = {τ > t}, we have

P(Ac
I ) = Pνρ (τ > t), and

E[f (η0(�
b
I ))] =

∫
f (η0(�))

1{Ac
I }(�)dP(�)

P(Ac
I )

=
∫

f (ηt )
1{τ(η·) > t}dP

Pνρ (τ > t)

=
∫

f dTt (νρ). �

We introduce now a key object. For a realization of C and R ∈ C, we introduce
the width of the clan of R, denoted W(R), as follows:

W(R) :=⋃{σ (R′) : R′ ∈ AR((−∞,0])}.(3.15)

This width is similar to the space-width of [7] (compare with the definition of SW

in page 917 of [7]).

REMARK 3.5. A simple observation is that, for t ≥ 0, if W(R) ∩ (−∞,

−t] = ∅, then AR((−t,0]) = AR((−∞,0]).

REMARK 3.6. We call T∞(νρ) the law of η0(�
b
(−∞,0]). The study of dis-

crepancies between Tt (νρ) and T∞(νρ), in Section 4.1 and Section 5, shows that
T∞(νρ) is the Yaglom limit.

3.3. Example: 0� := {η : ∑� η(i) > 0}. We recall that all quantities refer-
ring to 0� have a hat. The event 0� is particularly nice since when trimming C
into K̂(I,b), the trajectories touching � in the time-interval I are I -deleted. Thus,
there is no need for I -parents, and no threshold in density. Thus, for any ρ > 0 and
b ∈ R, the following is well defined:

K̂(I,b) = {R ∈ C :�(R) ∩ I = ∅, epoch(R) � b},(3.16)

where �(R) := {t ∈ R :γt (R) ∈ �}. If I ⊂ J , then K̂(I,b) ⊃ K̂(J,b), from where
�̂b

I ⊃ �̂b
J , which implies

ηs(�̂
b
I ) ≥ ηs(�̂

b
J ) for all s ∈ R.(3.17)
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Taking t ′ > t > 0, I = [−t,0], J = [−t ′,0] and s = 0, and using Lemma 3.4, we
get

νρ � T̂t (νρ) � T̂t ′(νρ) � µ̂ρ := T̂∞(νρ).(3.18)

Note, however, that (3.18) is not true for any increasing pattern. Also, when
I = [−t,0], T̂t (νρ) is the law of η0(�̂

b
I ) by Lemma 3.4. Thus, a convenient way of

obtaining T̂t (νρ) is to draw at time 0, at each site i ∈ Zd , a Poisson process of in-
tensity ρ associated with trajectories γ drawn from P0,i (dγ ), but to keep only the
marks which satisfy �(γ ) ∩ I = ∅. In other words, at each mark—at site i—we
toss a coin with tail probability P ∗

0,i (H� > t), and keep the mark if tail comes up.
This yields by a classical exercise

T̂t (νρ) = ⊗
i∈Zd

P
(
ρP ∗

0,i(H� > t)
)
,

and the explicit expressions (1.18) follow easily.

PROOF OF PROPOSITION 1.7. Let A be a local increasing pattern with
A ⊂ 0�, and set I = [−t,0]. By Remark 3.2, the I -clan is always almost-surely
finite when I itself is finite. It is obvious that K̂(I,b) ⊃ K(I,b), so that

η0(�̂
b
I ) ≺ η0(�

b
I ) ≺ η0(�

b
∅) �⇒ T̂t (νρ) ≺ Tt (νρ) ≺ νρ.(3.19)

A similar bound holds for the dual process. Note that when the Yaglom limits exist
for both conditional laws (e.g., when d ≥ 3 and ρ small enough), then (3.19) yields
that µ̂ρ ≺ µρ ≺ νρ , and for the dual dynamics µ̂∗

ρ ≺ µ∗
ρ ≺ νρ . In general, let us call

ût = dT̂ ∗
t (νρ)

dνρ

, û∗
t = dT̂t (νρ)

dνρ

,

(3.20)

ut = dT ∗
t (νρ)

dνρ

and u∗
t = dTt (νρ)

dνρ

.

For any integers i, j, k, l, with j ≥ 1, we note that ûi
t (û

∗
s )

j−1uk
t (u

∗
s )

l is decreasing.
Now, we use (3.19) to obtain∫

ûi
t (û

∗
s )

juk
t (u

∗
s )

l dνρ =
∫

ûi
t (û

∗
s )

j−1uk
t (u

∗
s )

l dT̂s(νρ)

≥
∫

ûi
t (û

∗
s )

j−1uk
t (u

∗
s )

l dTs(νρ).

Note that when i ≥ 1,∫
ûi

t (û
∗
s )

j−1uk
t (u

∗
s )

l dTs(νρ) =
∫

ûi−1
t (û∗

s )
j−1uk

t (u
∗
s )

l+1 dT̂ ∗
t (νρ),
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and we use that ûi−1
t (û∗

s )
j−1uk

t (u
∗
s )

l+1 is decreasing and (3.19) (for the dual) to
obtain∫

ûi−1
t (û∗

s )
j−1uk

t (u
∗
s )

l+1 dT̂ ∗
t (νρ) ≥

∫
ûi−1

t (û∗
s )

j−1uk
t (u

∗
s )

l+1 dT ∗
t (νρ)

=
∫

ûi−1
t (û∗

s )
j−1uk+1

t (u∗
s )

l+1 dνρ.

Combining the last two inequalities and proceeding by induction, we obtain (1.16),
and conclude the proof. �

3.4. Gibbs measure as initial conditions. We construct a birth and death
process similar to that of Section 3.1.2, but with time-slice configurations at
time −t drawn from µG ∈ Gρ() (see Section 2.3). First, let us define rates of
birth and death satisfying detailed balance with respect to µG. If the configuration
is η, a particle is added at site i with rate ci(η) and dies with rate 1; in terms of
occupation numbers, η(i) grows to η(i) + 1 with rate ci(η), whereas η(i) + 1 de-
creases to η(i) with rate η(i)+1. Thus, at each site i ∈ Zd , we choose ci :� → R+
as

ci(η) = (η(i) + 1
)dA+

i µG

dµG

(η)

[
and

αi

ρ
≤ ci ≤ 1 by (2.2)

]
.(3.21)

Also, since µG is finite range, we have ci(η) = ci(A
+
j η) for all j such that

|i − j | > R, where R is the range of µG.
With each rectangle R of C, introduced in Section 3.1.2, we associate a random

variable U , uniform in [0,1] and independent of “everything” else. Let CU be the
collection of couples (R,U) just introduced, whose law we continue to call Q and
whose elements we continue to call rectangles for simplicity.

For pedagogical reasons, we first build a configuration whose law is Tt (να). For
any s ∈ R, we define

Cs := {(R,U) ∈ CU :U ≤ αi/ρ with i = γ (R)s},(3.22)

and for an arbitrary b, its corresponding time-slice at t > s

η
t
(i) := |{(R,U) ∈ Cs :γ (R)t = i, and epoch(R) � b}|.

Then, {η
t
, t ≥ s} is Markov with generator LW and initial distribution να at time s.

Henceforth, we fix t > 0 and set I = [−t,0]. We apply the trimming algo-
rithm of Section 3.2.1 to C−t to obtain a set of I -kept rectangles which we
call K(t,b) ⊂ C−t such that the configuration ζ

t
, defined by ζ

t
(i) := |{(R,U) ∈

K(t,b) :γ (R)0 = i}|, has law Tt (να). The proof follows the same lines as that of
Lemma 3.4. Note that the U variables played no role in building K(t,b) from C−t .
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We deal now with the conditioned process starting at time −t with the Gibbs
measure µG. First, we need to introduce a new type of parent. We say that
(R′,U ′) ∈ CU is a µ-parent of (R,U) if

U >
αi

ρ
with i = γ (R)−t ,

(3.23)
epoch(R′) � birth(R) and |γ (R′)−t − i| < R.

Note that when U < αi/ρ, then the birth of the rectangle (R,U) is certain since
the minimum of ci(η) over η is larger than αi/ρ by hypotheses.

REMARK 3.7. Actually, µ-parents depend only on the sequence {αi, i ∈ Zd}
introduced in Proposition 1.4. Thus, we could have used the notation α-parents.
We keep the name of the initial measure µ to distinguish with the previous case
where the initial measure is νρ .

Let BR,U
1 (I,µ) be the first generation of both µ-parents and I -parents [as de-

fined in Section 3.2.1, but considered as couples (R,U)]. Let BR,U
n (I,µ) and

BR,U (I,µ) be respectively the nth generation and the clan of (R,U) defined by

BR,U
n (I,µ) = ⋃

(R′,U ′)∈BR,U
n−1(I,µ)

BR′,U ′
1 (I,µ) and

(3.24)
BR,U (I,µ) = ⋃

n≥1

BR,U
n (I,µ) ∪ {(R,U)}.

LEMMA 3.8. Fix t > 0 and let I = [−t,0]. For ρ < ρc(β1) given in (1.6),
and µG given in Proposition 1.4, we have that BR,U (I,µ) is Q-almost surely finite.

Lemma 3.8 is proved in Section 6.3.

The (I,µ)-trimming algorithm. Fix a time b and let (R,U) ∈ CU be alive at b.

• Let (R1,U1) be the eldest element of BR,U (I,µ). If �1 := {γ (R1)} ∈ AI , or

U1 > ci(η−t (�1)) with i = γ (R1)−t ,

then (R1,U1) is deleted, else it is kept.
• Assume we have labeled Cn := {(R1,U1), . . . , (Rn,Un)}, the eldest n elements

of the clan. If

�n := {γ (R) : (R,U) ∈ Cn, is kept, epoch(R) � birth(Rn+1)}
∪ {γ (Rn+1)} ∈ AI ,

or

Un+1 > ci(η−t (�n)) with i = γ (Rn+1)−t ,

then (Rn+1,Un+1) is deleted, else it is kept.



1312 A. ASSELAH AND P. A. FERRARI

• Stop the labeling once all elements in the clan are labeled.

Repeating this procedure with all elements of CU alive at b, we build the set of
kept rectangles denoted by K(I,µ,b), and we define �b

I,µ := {γ (R) : (R,U) ∈
K(I,µ,b)}. We omit the easy proofs of the following proposition (and refer the
interested reader to similar arguments in [7], proof of Theorem 3.1, and [8], Ap-
pendix A, proof of Theorem 1).

PROPOSITION 3.9. Fix t > 0 and let I = [−t,0]. The process {�b
I,µ :b ∈ R}

is stationary and it is Markov with generator L
I,µ
bd defined by

L
I,µ
bd f (�) = ∑

i∈Zd

∫
P−t,i (dγ )ci(η−t (�))

× 1
{
� ∪ {γ } ∈ Ac

I

}[f (� ∪ {γ }) − f (�)](3.25)

+ ∑
γ∈�

[f (� \ {γ }) − f (�)].

Furthermore, the law of �b
I,µ is the measure induced in G by the AIRW process

starting with µG at time −t and conditioned on not hitting A in the interval I .
The time-slice η0(�

b
I,µ) has law Tt (µG).

4. Estimating discrepancies. Henceforth, we assume d ≥ 3. Let βd be given
in (A.9) and ρc(β1) be given in (1.6). We fix β1 < βd and ρ < ρc(β1). Also, we fix
an arbitrary b ∈ R.

4.1. Discrepancies between Tt (νρ) and T∞(νρ). We call, for notational con-
venience, ζt := η0(�

b[−t,0]) and ζ∞ := η0(�
b
(−∞,0]). This is a coupling of Tt (νρ)

and T∞(νρ) built in Section 3.2.1 as a deterministic function of C. Also, for a
realization of C, we define, for i ∈ Zd ,

ξ(i) := |{R ∈ C :γ (R)0 = i,�(R) ∩ (−∞,0] = ∅, epoch(R) � b}|.(4.1)

The main result of this section is the following.

LEMMA 4.1. The variable ξ ≺ ζt ∧ ζ∞, and there is an explicit configura-
tion ξ̄t satisfying:

• ξ̄t and ξ are independent.
• |ζt − ζ∞| ≺ ξ̄t .

Furthermore, there are positive constants C1,C2 such that, for any site i ∈ Zd ,

E[ξ̄t (i)] ≤ ρP ∗
0,i(t < H0 < ∞) + C2P

∗
0,i (H0 < ∞)e−β1t

(4.2)

+ C1
∑
j

p(0, j)

∫ t

0
P0,j (γt−s = i,H0 = ∞)e−β1s ds.
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The following corollary combines Lemma 4.1 and Lemma A.4 of the Appendix.

COROLLARY 4.2. There is a constant C(β1) such that∑
i∈Zd

P0,i (H0 < ∞)E[ξ̄t (i)] ≤ C(β1)e
−β1t(4.3)

and

lim
t→∞

∑
i∈Zd

P ∗
0,i (H0 < ∞)E[ξ̄t (i)] = 0.(4.4)

PROOF OF LEMMA 4.1. First, we characterize ξ . For any I ⊂ (−∞,0],
the rectangles making up ξ have no I -parents, and are always I -kept so that

ξ ≺ ζt ∧ ζ∞. Note that in (4.1), ξ is distributed as T̂∞(νρ), with the notation of
Section 3.3 with � = {0}. Thus, its law is a product of Poisson laws with marginal
at site j of mean ρP ∗

0,j (H0 = ∞).

Second, we consider the discrepancies. Note that AR[−t,0] ⊂ AR(−∞,0], and
that if AR(−∞,0] = AR[−t,0], then R would not be a discrepancy since it would
have the same fate under the I -trimming algorithm for both I = (−∞,0] and
I = [−t,0]. We now define

C̃ := {R ∈ C :�(R) ∩ (−∞,0] �= ∅},(4.5)

and observe that

|ζt − ζ∞|(i) =
∣∣∣∣∣
∑
R∈C̃

1{γ (R)0 = i}

× (1{R ∈ K
([−t,0],b)}− 1

{
R ∈ K

(
(−∞,0],b)})

∣∣∣∣∣
(4.6)

≤ ξ̄t (i) := ∑
R∈C̃

1{γ (R)0 = i, epoch(R) � b}

× 1{AR[−t,0] �= AR(−∞,0]}.
Also, since ξ̄t is a function of C̃, and ξ is a function of C̃c, ξ̄t and ξ are independent.

�

Finally, we divide the rectangles contributing to ξ̄t into three collections that
we treat separately. We need more notation: let s̄(R) = sup{σ (R)}, and s(R) =
inf{σ (R)}, and define the following:

• C0 = {R ∈ C̃ :σ (R) ⊂ (−∞,−t]}, with which we associate ξ0
t . That is to say

∀ i ∈ Zd ξ0
t (i) = |{R ∈ C0 :γ (R)0 = i, epoch(R) � b}|.
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• C1 = {R ∈ C̃ : s̄(R) ∈]−t,0],AR[−t,0] �= AR(−∞,0]}. We associate ξ1
t to C1.

• C2 = {R ∈ C̃ : s̄(R) > 0, s(R) < 0,AR[−t,0] �= AR(−∞,0]}. We associate ξ2
t

to C2.

Case ξ0
t . The rectangles which participate to C0 are associated with trajectories

drawn independently at t = 0, which do not meet site {0} during [−t,0]. Since Q

consists in drawing at each site i ∈ Zd a Poisson process of intensity ρ whose
time-realizations are marked with a trajectory drawn from P0,i , it is obvious that

E[ξ0
t (i)] = ρP ∗

0,i(t < H0 < ∞).

Case ξ1
t . For R ∈ C1, since AR[−t,0] �= AR(−∞,0], we have W(R) ∩

(−∞,−t] �= ∅, by Remark 3.5. Thus, estimates on the width of a clan, obtained in
Section 6.1, will play a key role here. But first, it is convenient to give an alterna-
tive construction of the marked-Poisson process corresponding to C1, by marking
the last visit time to 0, that is, by considering{(

s̄(R),birth(R),death(R)
)
,R ∈ C1},(4.7)

and by partitioning this set in terms of first exit sites from {0}: that is, the set
of j �= 0 such that at t = s̄(R), γ (R)t− = 0 and γ (R)t+ = j . As j runs over
{j :p(0, j) > 0}, we obtain independent point processes with respective intensity
gj (s̄) ds̄ db e−l dl with

gj (s̄) := 1{−t < s̄ < 0}ρp(0, j)P0,j (H0 = ∞).(4.8)

Marking the point process. For each j of {j : p(0, j) > 0}, we mark each
point (s̄, b, l) by a trajectory γ̃ made up by concatenating two trajectories in the
following way:

• γ + is drawn from 1{H0 = ∞}dP0,j (γ
+)/P0,j ({H0 = ∞}) (this is what hap-

pens after the last visit to 0 when the exit is from j ).
• γ − is drawn from dP ∗

0,0 (but we take trajectories which are left continuous with
a right limit, so that the time-reversed trajectory has the correct shape).

Now, for s < s̄, γ̃s = γ −
s̄−s , whereas for s ≥ s̄, γ̃s = γ +

s−s̄ . Thus, γ̃ is drawn from∑
i dP0,i conditioned on making the jump 0 → j at time s̄, and never visiting 0

after time s̄. Note also that σ (γ̃ ) = σ (γ −) is independent of γ +. For each j of
{j :p(0, j) > 0}, we denote the above mentioned marked-point process by

{Nj(s̄, γ̃ , b, l), s̄ ∈ R, γ̃ ∈ D(R,Zd), b ∈ R, l ∈ R+}.(4.9)

It is clear that the corresponding rectangle process{
γ̃ × [b, b + l[ : (s̄, γ̃ , b, l) ∈ support

(⋃
j

Nj

)}

has the same law as C1.
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The point of such a representation is that, conditioned on s̄, we have indepen-
dence of {γ +

|s̄| = i} from the width of R = (γ −, γ +) × [b, b + l[, W(R), defined
in (3.15) to be the union of σ(γ (R′)) := s̄(γ (R′)) − s(γ (R′)), where R′ runs
over AR((−∞,0]). Now, since W(R) depends only on {(s̄(R′), σ (R′)) : R′ ∈
AR((−∞,0])}, we can further simplify the description of the processes {Nj }.
Thus, we consider the projected marked processes made up of{

x = (s̄, σ (γ̃ ), b, l
)
: (s̄, γ̃ , b, l) ∈ support(Nj )

}
,(4.10)

that we still call Nj for convenience, and we denote by Np :=⋃{Nj : j such that
p(0, j) > 0}. For x ∈ support(Np), we denote the width of the corresponding rec-
tangle by W(x). Now, we have

ξ1
t (i) ≤ ∑

j : p(0,j)>0

∫
1
{
γ|s̄| = i

}
1{b ≤ b < b + l}

× 1{W(s̄, σ, b, l) � s̄ + t}dNj (s̄, σ, b, l)(4.11)

× 1{H0(γ ) = ∞}dP0,j (γ )

P0,j (H0 = ∞)
.

By taking expectation and performing an obvious change of variables,

E[ξ1
t (i)] ≤ ρ

∑
j

p(0, j)

∫
R

db

∫ ∞
0

dl e−l
∫ t

0
ds

∫
gσ (σ ) dσ

× 1{b ≤ b < b + l}(4.12)

× P0,j (γs = i,H0 = ∞)P
(
W(0, σ, b, l) � t − s

)
.

We show in Section 6.1 that P(W(0, σ, b, l) � t − s) is independent of b and l, and
a simple computation yields

∀b ∈ R

∫
R

db

∫ ∞
0

dl e−l1{b ≤ b < b + l} = 1.

Now, by Lemma 6.1, there is a positive (explicit) constant C1 such that

E[ξ1
t (i)] ≤ C1

∑
j

p(0, j)

∫ t

0
P0,j (γs = i,H0 = ∞)e−β1(t−s) ds.(4.13)

Case ξ2
t . We need here to condition on both s̄ and σ to obtain independence of

the width of the clan, and of {γ̃0(R) = i}. Thus, we consider the point process{(
s̄(R), s(R),birth(R),death(R)

)
,R ∈ C̃

}
,

which we partition into the last site before hitting {0}, say, j �= 0, and the first
exit site from {0}, say, j ′ �= 0. Proceeding similarly as for ξ1

t , for each j and j ′,



1316 A. ASSELAH AND P. A. FERRARI

with p(j,0) > 0 and p(0, j ′) > 0, we consider the point processes on {(s̄, s, b, l) ∈
R × R × R × R+} with mean measure

1{s̄ > 0 > s}gσ (s̄ − s)ρp(j,0)P ∗
0,j (H0 = ∞)p(0, j ′)

(4.14)
× P0,j ′(H0 = ∞) ds̄ ds db e−l dl,

where gσ is the density of the law of s̄ − s; in Lemma A.3 of the Appendix, we
bound gσ .

We denote by {Nj ′
j , j, j ′} the marked-point process obtained by attaching to the

previous points trajectories denoted by γ̃ obtained as follows. Fix s̄ > 0 and s < 0,
and σ = s̄ − s:

• Draw γ m and γ − respectively from

1{γ m
σ = 0}dP0,0(γ

m)

P0,0(γσ = 0)
and

1{H0(γ
−) = ∞}dP ∗

0,j (γ
−)

P ∗
0,j ({H0 = ∞}) .

• Draw γ + as in the previous case.
• Concatenate the time-reversed γ − before time s, γ m between time s and s̄,

and γ + after time s̄, to obtain γ̃ .

Then, we have the bound

ξ2
t (i) ≤∑

j

∑
j ′

∫
1
{
γ m|s| = i

}
1{b ≤ b < b + l}

(4.15)
× 1{W(s̄, σ, b, l) � t + s̄}dN

j ′
j (s̄, s, γ̃ , b, l).

Fixing s̄ and s, we have the conditional independence of {γ m|s| = i} and {W(s̄, σ, b,

l) � t + s̄}. Thus, after time-shifting the variables s and s̄, integrating over b and l,
and summing the j and j ′, we obtain

E[ξ2
t (i)] ≤ ρ

∫ ∞
t

ds̄

∫ t

−∞
ds P0,0(γt−s = i)gσ (s̄ − s)

× P
(
W(0, s̄ − s, b, l) � s̄

)
(4.16)

≤ ρ

∫ t

−∞
ds P ∗

0,i(H0 < t − s)

∫ ∞
t

ds̄ gσ (s̄ − s)

× P
(
W(0, s̄ − s, b, l) � s̄

)
.

We use that t �→ P(W(0, σ, b, l) � t) is decreasing in t ≥ 0 to obtain

E[ξ2
t (i)] ≤ ρP ∗

0,i(H0 < ∞)

(∫ t

0
ds

∫ ∞
0

gσ (σ )P
(
W(0, σ, b, l) � t

)
dσ

(4.17)

+
∫ ∞
t

ds

∫ ∞
s

gσ (σ ) dσ

)
.
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Finally, using Lemmas 6.1 and A.3, there is a constant C2 such that

E[ξ2
t (i)] ≤ C2P

∗
0,i (H0 < ∞)e−β1t .(4.18)

4.2. Discrepancies between Tt(νρ) and Tt (µG). We fix b and t > 0 and con-
sider henceforth I = [−t,0]. We call, for notational convenience, ζt := η0(�

b
I ) and

ζ
µ
t := η0(�

b
I,µ). We recall that we have introduced in Section 3.4 the set of rectan-

gles CU , whose elements are of the form (R,U) with R ∈ C and U are uniform
variables in [0,1].

We first build a configuration ξ
t

coming from rectangles of K(I,b)∩K(I,µ,b).
We say that a rectangle (R,U) ∈ CU is good if it is alive at b and (i) U ≤ αi/ρ

where i = γ (R)−t , and (ii) �(R) ∩ I = ∅. Thus, a good rectangle has neither
µ-parents nor I -parents. We define, for each i ∈ Zd ,

ξ
t
(i) := |{(R,U) good :γ0(R) = i}|.(4.19)

LEMMA 4.3. For any t > 0, the configuration ξ
t
≺ ζt ∧ ζ

µ
t , and there is an

explicit ξ̄t satisfying the following:

• ξ̄t and ξ
t

are independent.

• |ζt − ζ
µ
t | ≺ ξ̄t .

• ξ
t

is distributed according to a product of Poisson law, that we denote by νβt .

Moreover, {νβt , t ≥ 0} have densities with respect to νρ which are uniformly
bounded in L2(νρ).

Furthermore, there is a constant C such that, for any site i ∈ Zd ,

E[ξ̄t (i)] ≤ C
∑
j �=0

∫ ∫ t

0
ρp(0, j)P0,j (γt−s = i,H0 = ∞)e−β1s ds

(4.20)
+ CP ∗

0,i(H0 < ∞)e−β1t .

As a corollary of Lemmas 4.3 and A.4, we have the following.

COROLLARY 4.4. There is a positive constant C such that∑
i∈Zd

P0,i (H0 < ∞)E[ξ̄t (i)] ≤ Ce−β1t(4.21)

and

lim
t→∞

∑
i∈Zd

P ∗
0,i (H0 < ∞)E[ξ̄t (i)] = 0.(4.22)
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PROOF OF LEMMA 4.3. Since the proof is close to the proof of Lemma 4.1,
we mainly focus on the differences.

The first step is to characterize ξ
t
. Note that the good rectangles have no

(I,µ)-parents and, thus, ξ
t
≺ ζt ∧ ζ

µ
t . Now, we consider the law of ξ

t
: at time −t ,

the trajectories are picked up with rate αi at site i, and only those with H0 ◦ θt > t

are kept. Thus, {ξ
t
(j), i ∈ Zd} are independent Poisson variables of intensity

βt
j = ∑

i∈Zd

αiP0,i(γt = j,H0 > t) at site j ∈ Zd .

Now, by reversing time and using (1.9),

1 − βt
j

ρ
= 1 − ∑

i∈Zd

αi

ρ
P ∗

0,j (γt = i,H0 > t)

= 1 − P ∗
0,j (H0 > t) + ∑

i∈Zd

(
1 − αi

ρ

)
P ∗

0,j (γt = i,H0 > t)

(4.23)
≤ P ∗

0,j (H0 < ∞) + Cα

∑
i∈Zd

P ∗
0,j (γt = i,H0 > t)P ∗

0,i (H0 < ∞)

≤ (1 + Cα)P ∗
0,j (H0 < ∞).

Thus, the densities of the laws of {ξ
t
, t ≥ 0} are uniformly bounded in L2(νρ) as

soon as d ≥ 3, by Remark 1.5.
The second step is to deal with discrepancies. A rectangle (R,U) can make up a

discrepancy between ζt and ζ
µ
t if either it has µ-parents [and, therefore, U > αi/ρ,

where i = γ (R)−t ], or one of his I -parents has a µ-parent. Since we only need to
overcount the discrepancies, we introduce the following subset Cbad of CU of bad
rectangles. A rectangle (R,U) is bad when U > αi/ρ, where i = γ (R)−t . Then,
a rectangle is susceptible of being a discrepancy if one of its I -ancestors is bad.
Thus,

ξ t (i) := |{(R,U) ∈ CU : AR(I ) ∩ Cbad �= ∅, γ (R)0 = i, epoch(R) � b}|.(4.24)

Thus, it is clear that ξ
t

and ξ̄t are independent.

Following Section 4.1, we divide the rectangles contributing to ξ̄t into two sets:

• C1 = {(R,U) ∈ CU : AR(I ) ∩ Cbad �= ∅, s̄(R) ∈ [−t,0]}, with which we asso-
ciate ξ1

t .
• C2 = {(R,U) ∈ CU : AR(I ) ∩ Cbad �= ∅, s̄(R) > 0 > s(R)}, with which we as-

sociate ξ2
t .

Case ξ1
t . As in the preceding section, we consider the projected marked-Poisson

process Np given in (4.10) which will correspond to the I -ancestors. As in the
proof of Lemma 4.1, we give an alternative construction of Cbad. Thus, we consider{(

s̄(R),birth(R),death(R)
)
, (R,U) ∈ Cbad

}
,
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and we partition this set in terms of exit sites j �= 0 with γ (R)t− = 0 and
γ (R)t+ = j with t = s̄(R). As j covers {j : p(0, j) > 0}, we obtain independent
point processes with respective intensity g̃j (s̄) ds̄ db e−l dl. We first show that, for
any β1 < βd , there is a constant c0(β1) such that∑

j

g̃j (s̄) ≤ ρc0(β1)1{−t < s̄ < 0}e−β1(s̄+t),(4.25)

where c0(β1) := c1(β1)Cα < ∞ and M(β1) is given in Lemma A.4(v). First, when
s̄ + t ≥ 0, it is easy to see that

g̃j (s̄) = p(0, j)P0,j (H0 = ∞)
∑
i∈Zd

(ρ − αi)P
∗
0,0(γs̄+t = i)

(4.26)
≤ ρCαp(0, j)P0,j (H0 = ∞)

∑
i∈Zd

P ∗
0,0(γs = i)P ∗

0,i(H0 < ∞),

where we used 1 − αi/ρ ≤ CαP ∗
0,i(H0 < ∞). Now, (4.25) follows from the esti-

mate (v) of Lemma A.4. Now, we mark each point (s̄, b, l), as in the paragraph
following (4.8), by the time spent at site 0. Thus, since we need to overcount dis-
crepancies, we overcount the number of bad points by introducing, independently
of Np , a Poisson process Ñ on E+ := {x = (s, σ, b, l) ∈ R+ × R+ × R × R+},
whose intensity measure has density

ρc0(β1) exp(−β1s) ds gσ (σ ) dσ db exp(−l) dl.(4.27)

Note that the variable s corresponds to s̄ + t ≥ 0. We denote by m̃ the support
of Ñ . We call the points of m̃ the bad points. For a point x = (s, σ, b, l) of Np ,
we introduce K(x), which is the event that x has an I -ancestor which is bad. In
Section 6.2 we estimate the probability of K(x).

In this section K(x) plays the role that the width of the clan played in Sec-
tion 4.1. Here also, conditioned on s̄, K(x) is independent of γ +

|s̄| = i. Thus, using

the point processes Nj defined in (4.10), we obtain

ξ1
t (i) ≤ ∑

j : p(0,j)>0

∫
1
{
γ|s̄| = i

}
1{b ≤ b ≤ b + l}

× 1{K(s̄, σ, b, l)}dNj(s̄, σ, b, l)(4.28)

× 1{H0(γ ) = ∞}dP0,j (γ )

P0,j (H0 = ∞)

and, after integration [see (4.12) for some intermediary steps],

E[ξ1
t (i)] ≤ ρ

∑
j

p(0, j)

∫ ∞
0

gσ (σ ) dσ

∫ t

0
ds

(4.29)
× P0,j (γs = i,H0 = ∞)P

(
K(t − s, σ, b, l)

)
.
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Finally, Lemma 6.2 is used to obtain inequality (4.13).

Case ξ2
t . This case is also analogous to that of the previous section. Let {Nj ′

j } be
independent Poisson processes (corresponding to I -ancestors) with intensities
given in (4.14). As for (4.15), we have

ξ2
t (i) ≤∑

j

∑
j ′

∫
1
{
γ m|s| = i

}
1{K(s̄, σ, b, l)}

(4.30)
× 1{b ≤ b ≤ b + l}dN

j ′
j (s̄, s, γ̃ , b, l),

and, after integration,

E[ξ2
t (i)] ≤ ρ

∫ ∞
t

ds̄

∫ t

−∞
ds gσ (s̄ − s)P0,0(γt−s = i)P

(
K(s̄, s̄ − s, b, l)

)
.(4.31)

Lemma 6.2 is used to obtain inequality (4.18) using similar arguments as in Sec-
tion 4.1. �

5. Hitting times.

5.1. Proof of Proposition 1.1. We recall that in [3], principal Dirichlet eigen-
functions denoted by u and u∗, respectively for LW and L∗

W , were shown to exist
in Lp(νρ) for any integer p, by considering limits of linear combinations of re-
spectively

ut (η) := Pη(τ > t)

Pνρ (τ > t)
and u∗

t (η) := P ∗
η (τ > t)

P ∗
νρ

(τ > t)
.(5.1)

Note that ut = dT ∗
t (νρ)/dνρ [and, similarly, u∗

t = dTt (νρ)/dνρ ]. Indeed, for any
ϕ ∈ L2(νρ), we have

∫
ϕ dT ∗

t (νρ) =
∫

S̄∗
t (ϕ)1{Ac}dνρ

Pνρ (τ > t)
=
∫

ϕS̄t (1{Ac}) dνρ

Pνρ (τ > t)
=
∫

ϕut dνρ.

We recall also that in an L2(νρ)-sense, u and u∗ satisfy

S̄t (u) = e−λtu and S̄∗
t (u∗) = e−λtu∗.

The key result in this section is the following.

LEMMA 5.1. Assume d ≥ 3. For any β1 < βd (where βd is given in
Lemma A.1) and ρ < ρc(β1), there is an explicit number M(β1) such that, for
any t ≥ 0,

sup
s,t ′≥t

∣∣∣∣
∫

us(u
∗
t − u∗

t ′) dνρ

∣∣∣∣≤ M(β1) exp(−β1t),(5.2)
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and

lim
t→∞ sup

s,t ′≥t

∣∣∣∣
∫

us(ut − ut ′) dνρ

∣∣∣∣= 0.(5.3)

The same result holds when {u∗
t , t > 0} replaces {ut , t > 0}.

REMARK 5.2. Propositions 1.2 and 1.1 are simple corollaries of Lemma 5.1.
Indeed, first note that (5.3) implies that {ut , t > 0} and {u∗

t , t > 0} are L2(νρ)-
Cauchy sequences, since∫

(ut − ut ′)
2 dνρ =

∫
(ut − ut ′)ut dνρ −

∫
(ut − ut ′)ut ′ dνρ

≤ 2 sup
s,t ′≥t

∣∣∣∣
∫

us(ut − ut ′) dνρ

∣∣∣∣ t→∞−→ 0.

Thus, u (resp. u∗) is the L2(νρ)-limit of {ut , t > 0} (resp. of {u∗
t , t > 0}). Now, we

take in (5.2) s to infinity, then t ′ to infinity to obtain∣∣∣∣
∫

u(u∗
t − u∗) dνρ

∣∣∣∣≤ M(β1)e
−β1t .

By duality,
∫

uu∗
t dνρ = exp(−λt)/Pνρ (τ > t), and (1.7) follows with a con-

stant M(β1)e
λtPνρ (τ > t)/(

∫
uu∗ dνρ). Now, since our event is decreasing

eλtPνρ (τ > t) ≤ 1 (see, e.g., [3]), and since u and u∗ are decreasing, by FKGs
inequality,

∫
uu∗ dνρ ≥ ∫ udνρ

∫
u∗ dνρ = 1. This yields (1.7).

PROOF OF LEMMA 5.1. First, note that∣∣∣∣
∫

us(u
∗
t − u∗

t ′) dνρ

∣∣∣∣≤
∣∣∣∣
∫

us dTt (νρ) −
∫

us dT∞(νρ)

∣∣∣∣
(5.4)

+
∣∣∣∣
∫

us dTt ′(νρ) −
∫

us dT∞(νρ)

∣∣∣∣.
Thus, it is enough to treat∫

us dTt (νρ) −
∫

us dT∞(νρ) = E[us(ζt ) − us(ζ∞)],
where (ζt , ζ∞) is the coupling of dTt (νρ) and dT∞(νρ) introduced in Section 4.1.
We recall that Lemma 4.1 establishes that there are two independent variables
ξ ≺ ζt ∧ ζ∞ and ξ̄t � |ζt − ζ∞| with ξ ∼ µ̂ρ [with the notation of (1.18) with
� = {0}].

Now, we recall a simple observation. Since the process is monotone and A is
increasing, η �→ us(η) is decreasing for any s and, by coupling the η-particles,

us(η) − us(A
+
i η) ≤ us(η)P0,i (H0 < ∞).
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By induction, this implies that

|us(ζt ) − us(ζ∞)| ≤ us(ξ)
∑
i∈Zd

P0,i (H0 < ∞)ξ̄t (i).(5.5)

A bound like (5.5) holds for u∗
s with P ∗

0,i (H0 < ∞) replacing P0,i (H0 < ∞).
By taking the expectation of (5.5), and using independence of ξ̄t and ξ , we

obtain

|E[us(ζt ) − us(ζ∞)]| ≤ E[us(ξ)] ∑
i∈Zd

E[ξ̄t (i)]P0,i(H0 < ∞)

(5.6)
≤ C1

∑
i∈Zd

E[ξ̄t (i)]P0,i(H0 < ∞),

with, by Cauchy–Schwarz and Proposition 1.7 [see (1.17) with � = {0}],

sup
s

E[us(ξ)] = sup
s

∫
us dµ̂ρ ≤ sup

s

(‖us‖νρ

)∥∥∥∥dµ̂ρ

dνρ

∥∥∥∥
νρ

(5.7)

≤ C1 :=
∥∥∥∥dµ̂∗

ρ

dνρ

∥∥∥∥
νρ

∥∥∥∥dµ̂ρ

dνρ

∥∥∥∥
νρ

< ∞.

Finally, by (4.3) of Corollary 4.2, we deduce (5.2) from (5.6) with M(β1) :=
C1c0(β1).

Now, by a similar argument, we would have, for s ≥ t ,∣∣∣∣
∫

u∗
s

(
u∗

t dνρ − dT∞(νρ)
)∣∣∣∣= |E[u∗

s (ζt ) − u∗
s (ζ∞)]|

(5.8)

≤
∥∥∥∥dµ̂ρ

dνρ

∥∥∥∥
2

νρ

∑
i∈Zd

E[ξ̄t (i)]P ∗
0,i(H0 < ∞).

�

5.2. Proof of Proposition 1.4. We first express f ∗
t := dTt (µG)/dνρ in terms

of the killed semi-group. For any function ϕ in L2(νρ) with ϕ|A ≡ 0,
∫

ϕ dTt (µG) =
∫

S̄t (ϕ) dµG

PµG
(τ > t)

=
∫

ϕS̄∗
t (fG)dνρ

PµG
(τ > t)

�⇒ f ∗
t = S̄∗

t (fG)

PµG
(τ > t)

.(5.9)

STEP 1. We prove that there is a sequence {εi, i ∈ Zd} such that, for any η,
and i ∈ Zd ,

0 ≤ f ∗
t (η) − f ∗

t (A+
i η) ≤ εif

∗
t (η),(5.10)

with
∑

i ε
2
i < ∞. It is only necessary to prove (5.10) for η �→ S̄∗

t (fG)(η), since this
inequality is homogeneous. Now, η �→ S̄∗

t (fG)(η) = E∗
η[fG(ηt )1{τ > t}] vanishes

on A and is decreasing. Indeed, since the process is monotone, if η ≺ ζ , there is a



HITTING TIMES FOR INDEPENDENT WALKS 1323

coupling of the trajectories (η·, ζ·) such that, almost surely, for all t ≥ 0, ηt ≺ ζt .
Now, since fG is decreasing and nonnegative,

fG(ηt )1{τ(η·) > t} ≥ fG(ζt )1{τ(ζ·) > t}.(5.11)

Now, we choose i �= 0, and for any η, we denote by ζ := A+
i η. We denote by E∗

η,i
the law of a coupling between (η·, ζ·) such that the η-particles move together.
Then,

S̄∗
t fG(η) − S̄∗

t fG(A+
i η) = E∗

η,i

[
fG(ηt )1{τ(η·) > t, τ (ζ·) ≤ t}
+ (fG(ηt ) − fG(ζt )

)
1{τ(ζ·) > t}]

≤ E∗
η[fG(ηt )1{τ(η·) > t}]P ∗

0,i(H0 < ∞)

+ E∗
η,i

[(
1 − fG(ζt )

fG(ηt )

)
fG(ηt )1{τ(η·) > t}

]
.

We denote by γt the position at time t of the particle starting in i, and thus,
ζt = A+

γt
ηt . Now, since fG/ψα is increasing, we have

fG

ψα

(ζt ) ≥ fG

ψα

(ηt ) �⇒ fG(ζt )

fG(ηt )
≥ ψα(A+

γt
ηt )

ψα(ηt )
= αγt

ρ
.(5.12)

Thus,

E∗
η,i

[(
1 − fG(ζt )

fG(ηt )

)
fG(ηt )1{τ(η·) > t}

]
(5.13)

≤ E∗
i

[
1 − αγt

ρ

]
E∗

η[fG(ηt )1{τ(η·) > t}].
Now, we note that, by (1.9),

E∗
i

[
1 − αγt

ρ

]
=∑

j

P ∗
0,i(γt = j)

(
1 − αj

ρ

)
≤ CαP ∗

0,i (H0 < ∞).

Now, for i �= 0, we set

εi := 1 ∧ [(1 + Cα)P ∗
0,i (H0 < ∞)].

For i = 0, we set εi = 1, and (5.10) holds trivially for any η. This implies by
induction, as in (5.5), that, for any ξ ≺ ζt ∧ ζ∞, and any ξ̄t � |ζt − ζ∞|, we have

|f ∗
t (ζt ) − f ∗

t (ζ∞)| ≤ f ∗
t (ξ )

∑
i

εi ξ̄t (i).(5.14)

Note that, using the arguments in the proof of Lemma 5.1, we deduce from (5.14)
that

lim
t→∞ sup

s

∣∣∣∣
∫

f ∗
s dTt (νρ) −

∫
f ∗

s dT∞(νρ)

∣∣∣∣= 0.(5.15)

Indeed, we only need that sups ‖f ∗
s ‖νρ < ∞, which is a simple consequence

of (5.10) (see Lemma 7.1 of [2]).
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STEP 2. Now, let (ζt , ζ
µ
t ) be the coupling of Section 4.2 between Tt (νρ)

and Tt(µG). Let ξ
t

and ξ̄t be the two independent configurations obtained in
Lemma 4.3, and recall that the laws of {ξ

t
, t ≥ 0}, denoted by {νβt , t ≥ 0}, have

densities which are uniformly bounded in L2(νρ). Then, by taking expectation
in (5.14), we obtain, for any s and t ,∣∣∣∣

∫
f ∗

s dTt (νρ) −
∫

f ∗
s dTt (µG)

∣∣∣∣≤ E[f ∗
s (ξ

t
)] ∑

i∈Zd

E[ξ̄t (i)]εi.(5.16)

Now, by Cauchy–Schwarz,

E[f ∗
s (ξ)] ≤ sup

s
‖f ∗

s ‖νρ sup
t

∥∥∥∥dνβt

dνρ

∥∥∥∥
νρ

< ∞.(5.17)

Now, by Corollary 4.4,

lim
t→∞ sup

s

∣∣∣∣
∫

f ∗
s dTt (νρ) −

∫
f ∗

s dTt (µG)

∣∣∣∣= 0.(5.18)

By combining (5.15) and (5.18), we conclude that {f ∗
t , t ≥ 0} is an L2(νρ)-Cauchy

sequence with limf ∗
t = u∗.

STEP 3. Let g be as in Proposition 1.4. Arguments similar to those used in
Step 2 imply that there is an explicit number M ′(β1) such that∣∣∣∣

∫
g dTt (µG) −

∫
g dTt (νρ)

∣∣∣∣≤ CgM
′(β1)e

−β1t‖g‖νρ ,(5.19)

while the proof of Lemma 5.1, with g replacing us , implies that, for an ex-
plicit M(β1), ∣∣∣∣

∫
g dTt (νρ) −

∫
g dT∞(νρ)

∣∣∣∣≤ CgM(β1)e
−β1t‖g‖νρ .(5.20)

By combining (5.19) and (5.20), we have (1.13) for M̄(β1) = 2(M(β1)∨M ′(β1)).

6. Bounding the clan.

6.1. The clan of I -parents. We bound the number of elements of an I -clan,
and the clan’s width of (3.15), when the particle density ρ is small, and I = R.

By Lemma A.3 of the Appendix, there is βd explicit such that, for any β1 < βd ,
we have a positive density threshold ρc(β1) given in (1.6). Henceforth, we consider
ρ ≤ ρc(β1).

PROOF OF LEMMA 3.1. The rectangles I -interact only through their time
spent on site {0}, that we have called σ (R) in Section 2.1. We can parametrize σ (R)

by the time of the last visit to {0}, say, s̄(R), and by σ(R), the total length of σ (R),
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whose density gσ is estimated in Lemma A.3. Thus, we will think of the basis of
each rectangle to be (s̄(R), σ (R)), rather than the full trajectory γ (R). We call this
new process the projected process Np defined on E := R×R+ ×R×R+ equipped
with its Borel σ -field BE . The elements of E are denoted x = (s, σ, b, l). Actually,
it is more convenient to reverse time, and think of s as the hitting time of {0}.
We also use, when convenient, xs, xσ , xb and xl for s, σ, b and l, respectively.
We denote by m the support of Np . The density of the intensity measure of Np is
easily seen to be

ρP0,0(H0 = ∞) ds gσ (σ ) dσ db exp(−l) dl,

in which we will replace henceforth P0,0(H0 = ∞) by 1, since we only need to
bound the clan’s size and width.

We consider now I -parents, for I = R, of a point x0 = (s0, σ0, b0, l0) ∈ m. We
denote by P1(x0) the domain that I -parents of x0 could occupy:

P1(x0) := {(s, σ, b, l) :b < b0, l > b − b0, [s, s + σ [∩ [s0, s0 + σ0[ �= ∅}.(6.1)

Then, for A ∈ BE , we call M1(x0,A) the variable counting the parents of x0 falling
in A:

M1(x0,A) := Np

(
A ∩ P1(x0)

)
and denote its density by M1(x0, dx).(6.2)

We denote by m1(x0) the (random) support of M1(x0,E). Now, let P2(x0) be the
domain corresponding to the grand-parents of x0:

P2(x0) :=⋃{P1(x) :x ∈ m1(x0)} \ P1(x0).(6.3)

For A ∈ BE , we form the counting variable M2(x0,A) := Np(A ∩ P2(x0)), and
denote by m2(x0) the support of M2(x0,E). We proceed by induction to define,
for the k-parents of x0,

Pk(x0) :=⋃{P1(x) :x ∈ mk−1(x0)}
∖(k−1⋃

i=1

Pi (x0)

)
,(6.4)

and Mk(x0,A) := Np(A∩Pk(x0)) with corresponding support mk(x0). The I -clan
of x0 are the points of

⋃
k mk(x0). For A ∈ BE , a first obvious bound on Mk(x0,A)

is obtained as we count the parents of the (k − 1)st generation with their multiplic-
ity:

Mk(x0,A) ≤
∫

Np

(
A ∩ P1(x)

∖(k−1⋃
i=1

Pi (x0)

))
Mk−1(x0, dx),(6.5)

and by integrating counting variables over disjoint sets, we have, by independence,

E[Mk(x0,A)] ≤
∫

E

[
Np

(
A ∩ P1(x)

∖(k−1⋃
i=1

Pi (x0)

))]
E[Mk−1(x0, dx)]

≤
∫

E
[
Np

(
A ∩ P1(x)

)]
E[Mk−1(x0, dx)],
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where the second inequality corresponds to counting the parents of points
of mk−1(x0) even if they are part of an earlier generation. By induction, we obtain
the upper bound

E[Mk(x0,A)] ≤
∫

· · ·
∫

E[M1(xk−1,A)]
(6.6)

× E[M1(xk−2, dxk−1)] · · ·E[M1(x0, dx1)].
The following estimates provide an upper bound for (6.6): consider the cylinder
dAσ := R × [σ,σ + dσ [×R × R+, infinitesimal in the σ -direction, and

E[M1(x0, dAσ )]
=
∫

· · ·
∫

1{b < b0, l > b0 − b, [s, s + σ [∩ [s0, s0 + σ0[ �= ∅}
× ρ ds e−l db dl gσ (σ ) dσ(6.7)

= ρ

∫ ∞
−∞

1{[s, s + σ [∩ [s0, s0 + σ0[ �= ∅}ds gσ (σ ) dσ

= ρ(σ0 + σ)gσ (σ ) dσ.

The expression (6.7) depends only on σ0 and σ . Thus, when performing the inte-
gral of (6.6), we first integrate xs

i , x
b
i and xl

i , for i = 1, . . . , k, over R × R × R+.
If we call f (σ ′, σ ) = ρ(σ ′ + σ)gσ (σ ), we have from (6.6) a bound on the number
of R-parents of the kth generation,

E[Mk(x0,E)] ≤
∫

· · ·
∫

f (σ0, σ1)f (σ1, σ2) · · ·f (σk−1, σk) dσ1 · · ·dσk.(6.8)

Note that the following simple inequality,

(σ0 + σ1)(σ1 + σ2) · · · (σk−1 + σk)
(6.9)

≤ (1 + σ0 + σ 2
0 ) · · · (1 + σk + σ 2

k ),

implies that E[Mk(x0,E)] ≤ (ρE[1 + σ + σ 2])k(1 + σ0 + σ 2
0 ). Since E[exp(β1 ×

σ)] < ∞, by Lemma A.3, we have E[1 + σ + σ 2] < ∞, and for ρ < ρc(β1), the
I -clan is Q-a.s. finite. �

We define the width of the clan of x0 for the projected point process Np [com-
pare with (3.15)] by

W(x0) =⋃
{
[xs, xs + xσ ] :x ∈⋃

k

mk(x0)

}
.(6.10)

Note that in Section 4.1 we have introduced Np with s constrained in some time
interval [−t,0] rather than R. The following lemma is similar to [8].
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LEMMA 6.1. For β1 < βd of Lemma A.1, and ρ < ρc(β1), we have, for any
t ∈ R,

∀ s0, b0, l0 ∈ R × R × R+,
(6.11) ∫

P
(
t ∈ W

(
(s0, σ0, b0, l0)

))
gσ (σ0) dσ0 ≤ e−β1|t−s0|

ρc(β1) − ρ
.

PROOF. Looking at the definition (6.10), it is clear that if the width of the clan
contains t , then at some generation the total width contains t . In other words,

1{t ∈ W(x0)} ≤∑
k≥0

1{t ∈ [xs, xs + xσ [ :x ∈ mk(x0)}

[where we set m0(x0) := {x0}]
(6.12)

≤∑
k≥0

∫
· · ·
∫

1{xσ
0 + · · · + xσ

k > |t − xs
0|}

×
k∏

i=1

M1(xi−1, dxi).

To compute the expectation of the right-hand side of (6.12), we first inte-
grate xs

i , x
b
i , xl

i for i = 1, . . . , k. For x0 = (s0, σ0, b0, l0), we obtain, using (6.8),
that

P
(
t ∈ W(x0)

)≤∑
k≥1

∫
· · ·
∫

1{σ0 + · · · + σk > |t − s0|}
(6.13)

×
k∏

i=1

(
f (σi−1, σi) dσi

)+ 1{σ0 > |t − s0|}.

If we define

ψ(t) :=
∫

P
(
t ∈ W(x0)

)
gσ (σ0) dσ0,(6.14)

then, from (6.13), we obtain

ψ(t) ≤ e−β1|t−s0|
(6.15)

×
(∑

k≥0

∫
· · ·
∫

eβ1(σ0+···+σk)gσ (σ0)

k∏
i=1

(
f (σi−1, σi) dσi

)
dσ0

)
.

Using (6.9), we obtain, for ρ < ρc(β1),

ψ(t) ≤ e−β1|t−s0|
(

1

ρc(β1)
+∑

k≥1

(
ρ

ρc(β1)

)k
)

≤ e−β1|t−s0|

ρc(β1) − ρ
.(6.16)

�
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6.2. Bad parents. We consider the point process Ñ introduced in Section 4.2,
on E+ := R+ × R+ × R × R+, whose density of the intensity measure is given
in (4.27). In this section we evaluate the probability that a point x0 = (s0, σ0, b0, l0)

has a bad parent. In other words, we estimate the event

K(x0) =
{
Ñ
({⋃

P1(x) :x ∈ mk(x0), k ∈ N
})

≥ 1
}
.(6.17)

LEMMA 6.2. For β1 < βd of Lemma A.1, and ρ < ρc(β1), we have

∀x0 = (s0, σ0, b0, l0) ∈ R+ × R+ × R × R+,
(6.18)

P(K(x0)) ≤ ρc0(β1)

β1(1 − ρ/ρc(β1))
e−β1s0 .

PROOF. First note that [with m0(x0) = {x0}]

1{K(x0)} ≤
∞∑

k=0

Ñ
({⋃

P1(x) :x ∈ mk(x0)
})

(6.19)

≤
∞∑

k=0

∫
Ñ(P1(x))Mk(x0, dx).

Thus, using independence of Np and Ñ , and the bound (6.6),

P(K(x0)) ≤
∞∑

k=0

∫
E[Ñ(P1(xk))]E[M1(xk−1, dxk)] · · ·E[M1(x0, dx1)].(6.20)

We first integrate Ñ over dAσ ∩ P1(xk) to obtain

E
[
Ñ
(
dAσ ∩ P1(xk)

)]≤ ∫ ∞
0

ds ρc0(β1) exp(−β1s)

× 1{[s, s + σ [∩ [sk, sk + σk[ �= ∅}gσ (σ ) dσ

≤ ρc0(β1)

∫ (sk+σk)
+

(sk−σ)+
ds exp(−β1s)gσ (σ ) dσ(6.21)

≤ c0(β1)ρ

β1
exp
(−β1(sk − σ)+

)
gσ (σ ) dσ.

Note that this is independent of bk, lk and σk . Thus, after integrating the bad points
intensity,

P(K(x0)) ≤
∞∑

k=0

c0(β1)ρ

β1

∫
· · ·
∫ ∞

0
exp
(−β1(sk − σ)+

)
gσ (σ ) dσ

(6.22)

×
k∏

i=1

E[M1(xi−1, dxi)].
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Note that |s0 − sk| ≤ σ1 + · · · + σk , so that with the notation of the proof of
Lemma 6.1,

P(K(x0)) ≤
∞∑

k=1

c0(β1)ρ

β1

∫
· · ·
∫ ∞

0
exp

(
−β1

(
s0 −

k∑
i=1

σi

)+)

×
k∏

i=1

gσ (σi)f (σi−1, σi) dσi

≤
∞∑

k=1

c0(β1)ρ

β1

∫
· · ·
∫ ∞

0
exp

(
−β1

(
s0 −

k∑
i=1

σi

))

(6.23)

×
k∏

i=1

(
ρgσ (σi)(1 + σi + σ 2

i ) dσi

)

≤ e−β1s0

∞∑
k=1

c0(β1)ρ

β1

(
ρ

ρc(β1)

)k

= c0(β1)ρ

β1(1 − ρ/ρc(β1))
e−β1s0 . �

6.3. The clan of (I,µ)-parents. In this section we prove that BR,U (I,µ) is
a.s. finite.

PROOF OF LEMMA 3.8. If R is the range of the Gibbs measure µG, we define
K := (2R + 1)d . We choose I = [−t,0], and for ease of notation, we set s = −t .

As in [7], we consider at time b = 0 one rectangle, R0, and build its clan back-
ward in time. For simplicity, we work with positive backward time. For each (back-
ward) time b, we build a set of rectangles, denoted by Bb with the property that if at
a certain time b we have Bb = ∅, then none of the parents of R0 are alive at time b.
If we denote by τ∅ the first time where Bb = ∅, then we show that E[τ∅] < ∞.

First, B0 := {R0}. Then, for each small δ > 0, we partition Zd into Dδ := {i ∈
Zd :αi/ρ ≥ 1 − δ}, and its complement Dc

δ . Note that Dc
δ is bounded since

∑
(1 −

αi/ρ)2 < ∞, by Remark 1.5. The point of this partition of Zd is that a rectangle R
with γs(R) ∈ Dδ have a small probability [less than δ by (3.23)] to have a µ-parent.

Now, Bb contains all rectangles of C whose trajectory is in Dc
δ at time s and

whose life-epoch contains b. Thus, it is convenient to associate with each site i

of Dc
δ a birth and death process of intensity ρ, and to attach, to each birth-time,

a trajectory drawn from dPs,i(γ ), which we color in blue. The trajectories of rec-
tangles in Bb with a position in Dδ at time s are colored in yellow.

It is also convenient to think that rectangles of B generate (I,µ)-parents at their
death time. This does not lengthen the life-time of parents, since the exponential
life-time τ satisfies P(τ > t + s|τ > s) = P(τ > t), but we underestimate the
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number of parents alive at a given time. However, since we are only interested in
showing that there is a finite time at which the clan dies out, the life-times we are
ignoring are insignificant since their children are alive at the overlapping times.

We recall that to build the I -parents, one only considers {σ(R),R ∈ C}. Now,
in the stationary rectangle process, a rectangle R0 has a Poisson number of parents
with σ(R) ∈ [σ,σ + dσ [ with an intensity measure whose density m(R0, σ ) is
bounded by ρ(σ(R0) + σ)gσ (σ ). Note that this bound only depends on σ(R0),
and that the distribution of σ(R0) (once we assume the trajectory has touched {0})
is independent of γ (R0)s . Thus, the only relevant properties of a trajectory are its
time-width σ(R), and its location at time s (actually only whether it is blue or
yellow). Now, we overcount the number of I -parents when we assume that each
point has an independent Poisson number of parents, all of them colored yellow.
Indeed, we do not need to worry about the blue ones, since we have included
them all in {Bb,b ≥ 0}. To make things easier, we actually discretize the possible
values of the time-width. Thus, a rectangle R0 with σ(R0) ∈ [k − 1, k[ gives rise
to a Poisson number of I -parents with σ(R) ∈ [i − 1, i[ with intensity measure
bounded by

m(k, i) ≤ ρ(k + i)qi with qi :=
∫ i

i−1
gσ (σ ) dσ.

We can simplify the description of the above-mentioned birth and death process
giving rise to the blue trajectory. We actually consider, at each site of Dc

ρ , a Poisson
process of intensity ρ and we associate with every mark a time-width variable
with distribution {qi}. This procedure has the effect of overestimating the parents
number, since a trajectory can very well not touch {0} during the time-period I .
The configuration of blue marks is denoted by β : 1,2, . . . → N, where β(i) is the
number of blue marks with a time-width in [i − 1, i[. Similarly, the configuration
of yellow marks is denoted by y.

We describe now the full evolution of a rectangle at its death-time:

• If it is blue, we assume it gives rise to K yellow points with an independent dis-
tribution of the time-width drawn from {qi, i ≥ 1}. It also gives rise to I -parents
as described above.

• If it is yellow, with probability δ, it behaves as a blue point, and with probabil-
ity, 1 − δ it has only I -parents.

Thus, we are giving to trajectories touching Dδ at time s more parents than what
comes from the prescription of detailed balance. The advantage is that we do not
keep track of the whole trajectory, but only of its color.

We write now the generator of the evolution of colored rectangles in set B back-
ward in time. The configuration variable is x = (β, y) with β,y ∈ N{1,2,...}. We
denote by i = (i1, . . . , iK), where ij ∈ {1,2, . . . }, and we use A+

i (resp. A−
i ) for

the action of adding (resp. canceling) a mark with time-width in [i − 1, i[. For a
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function f of (β, y),

Lf (β, y) = L̄f (β, y) + Lf (β, y),(6.24)

where L̄ accounts for the evolution of blue parents, and L accounts for the yellow
parents,

L̄f (β, y)

= ρ|Dc
δ|
∑
i≥1

qi

(
f (A+

i β, y) − f (β, y)
)

+∑
k≥1

β(k)
∑
i

∑
ζ :
∑

j ζ(j)<∞

(
K∏

j=1

qij

)
Q(k, ζ )(6.25)

×
(
f

(
A−

k β,

K∏
j=1

A+
ij
y + ζ

)
− f (β, y)

)
,

where, for a configuration of parents ζ , we set Q(k, ζ ) = ∏j∈N e−m(k,j)m(k,

j)ζ(j)/ζ(j)!, and

Lf (β, y)

=∑
k≥1

y(k)δ
∑
i

∑
ζ :
∑

j ζ(j)<∞

(
K∏

j=1

qij

)
Q(k, ζ )

×
(
f

(
β,

(
K∏

j=1

A+
ij

)
A−

k y + ζ

)
− f (β, y)

)
(6.26)

+∑
k≥1

y(k)(1 − δ)

×∑
i

∑
ζ :
∑

j ζ(j)<∞
Q(k, ζ )

(
f (β,A−

k y + ζ ) − f (β, y)
)
.

Now, we look for a Lyapounov function, following the classical Foster’s argu-
ments. We consider the function f (β, y) = ∑j ϕj (Cβ(j) + y(j)), with ϕj =√

1 + j + j2 and C a positive (large) constant to be chosen later. With this choice
of f , simple algebra yields

L̄f (β, y) = Cρ|Dc
δ|
∑
i≥1

qiϕi − C
∑
k

β(k)ϕk

(6.27)

+ K

(∑
k

β(k)

)(∑
i

qiϕi

)
+∑

k,i

β(k)m(k, i)ϕi,
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and

Lf (β, y) = −∑
k

y(k)ϕk + Kδ

(∑
k

y(k)

)∑
i≥1

qiϕi +∑
k,i

y(k)m(k, i)ϕi.(6.28)

Now, m(k, i) ≤ ρ(k + i)qi ≤ ρϕkϕiqi . By Lemma A.3, c0 :=∑i qiϕ
2
i < ∞, and

we obtain ∑
k,i

y(k)m(k, i)ϕi ≤ ρc0
∑
k

y(k)ϕk and

(6.29) ∑
k,i

β(k)m(k, i)ϕi ≤ ρc0
∑
k

β(k)ϕk.

Moreover, for ρ < ρc(β1), using that ϕi ≤ 2ϕi−1,∑
i≥1

qiϕi ≤ c1 := 2(E[1 + σ + σ 2])1/2 < ∞ and

(6.30) ∑
k

y(k) ≤∑
k

y(k)ϕk.

Thus,

Lf (β, y) ≤ −(1 − ρc0 − δKc1)
∑
k

y(k)ϕk.(6.31)

Also, with similar computations,

L̄f (β, y) ≤ Cρ|Dc
δ|c1 − (C − Kc1 − ρc0)

∑
k

β(k)ϕk.(6.32)

First, we choose ρ < ρc(β1) so that ρc0 < 1 (this can always be achieved by
making the discretization fine enough). Second, we choose δ so that c3 := 1 −
ρc0 − δKc1 > 0, and C > 1 such that c4 := C − Kc1 − ρc0 > 0. Then, if we set
c5 := Cρ|Dc

δ|c1, we obtain

Lf (β, y) ≤ c5 − c4
∑
k

β(k)ϕk − c3
∑
k

y(k)ϕk ≤ c5 − c6f (β, y),(6.33)

where c6 = min(c3, c4/C). Let k0 be such that c6ϕk0 − c5 > 0, and define

Z = {(β, y) :y(k) = β(k) = 0 for k > k0 and y(i) ∨ Cβ(i) < Mi, i = 1, . . . , k0},
where Mi are such that c6 min{Miϕi : i ≤ k0} − c5 > 0. Note that Z has finitely
many configurations. Define

c7 := c6 min
(
ϕk0,min({Miϕi : i ≤ k0}))− c5 > 0,
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and τZ = inf{s :xs ∈ Z}, and note that on {τZ > t}, we have from (6.33) that
Lf (xt ) ≤ −c7. Now, for any state x = (β, y), we consider the mean-zero mar-
tingale

Mt = f
(
xt∧τZ

)− f (x) −
∫ t

0
Lf (xs)1{τZ > s}ds

(6.34)
≥ f
(
xt∧τZ

)− f (x) + c7(t ∧ τZ).

We take the expectation of each side of (6.34) and take t to infinity to obtain
f (x) ≥ c7Ex[τZ]. Now, for each z ∈ Z, the probability of reaching the empty
configuration {y ≡ 0, β ≡ 0} in a unit-time interval is positive. Finally, a standard
renewal argument yields that Ex[τ∅] < ∞.

APPENDIX

To ease the reading, we first derive some classical bound for P0,0(t <

H0 < ∞). We denote by {Sn,n ∈ N} the discrete sums Sn = γ1 + · · · + γn, where
the γi are i.i.d. with law {p(0, ·)}. We introduce some definitions with the notation
of [12]. For z ∈ Rd , the finite range assumption on {p(0, i), i ∈ Zd} implies that
the exponential moments of the increments of γ1 exist and

∀ z ∈ Rd (z) := E[ez·γ1] = ∑
i∈Zd

p(0, i)ez·i and

(A.1)
D := {z ∈ Rd :(z) ≤ 1}.

The finite range and irreducibility assumptions imply that  is well defined and
strictly positive on Rd . It is shown in [9] (see also [12], Lemma 1.1) that D is
compact and convex, that ∇ does not vanish on ∂D := {z :(z) = 1}, and that
z �→ ∇(z)/‖∇(z)‖ is a continuous bijection from ∂D to the unit sphere of Rd .
A simple consequence is that D \ ∂D is not empty. Indeed, by contradiction, as-
sume that D = ∂D and let z∗ �= 0 ∈ ∂D. Then, for any z ∈ D and t ∈ [0,1],

(tz) = 1 and 
(
z + t (z∗ − z)

)= 1.

Thus, by differentiating, for any t, s ∈ [0,1],
∇(tz)·z = 0 and ∇

(
z + s(z∗ − z)

) · (z∗ − z) = 0.(A.2)

We choose t = 1 and s = 0 in (A.2), and add the two gradients to obtain

∇(z)·z∗ = 0 ∀ z ∈ ∂D.

This contradicts that ∇(·)/‖∇‖ : ∂D → Sd−1 is bijective. Thus, there is z0 ∈ D

such that

0 < (z0) = inf{(z)} < 1.(A.3)
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We denote by H̃0 = inf{n ≥ 1 :Sn = 0} and by H0 the analogue for continuous-
time walks. In other words, H0 = ∞ if H̃0 = ∞, and otherwise,

H0 =
H̃0∑
i=1

τi,(A.4)

where {τi, i ∈ N} are i.i.d. exponential times of intensity 1. From (A.3), we obtain
the following estimates.

LEMMA A.1. Let β = 1 − (z0) (with 0 < β < 1). Then,∫ [
eβH0(γ )1{H0(γ ) < ∞}]dP0,0(γ ) ≤ 1 and

(A.5)
P0,0(t < H0 < ∞) ≤ e−βt .

PROOF. We first work in discrete time. Form the martingale Mn = exp(z0 ·
Sn)/(z0)

n. Note that {M
H̃0∧n

, n ∈ N} is a positive martingale [though P0,0(H̃0 =
∞) > 0]. Thus,

1 = E0,0
[
M

H̃0∧n

]= E0,0[ez0·Sn1{H̃0 > n}]
(z0)n

+ E0,0

[
1{H̃0 ≤ n}
(z0)H̃0

]
.(A.6)

As we take the limit n to infinity in (A.6), we obtain

1 ≥ E0,0

[
1{H̃0 < ∞}
(z0)H̃0

]
.(A.7)

Note that this implies, by Chebyshev’s inequality, P0,0(n < H̃0 < ∞) ≤ (z0)
n.

Using (A.4) and (A.7), we obtain

E0,0[exp(βH0)1{H0 < ∞}] = E0,0

[(
1

1 − β

)H̃0

1{H̃0 < ∞}
]

(A.8)

= E0,0

[
1{H̃0 < ∞}
(z0)H̃0

]
≤ 1.

The second inequality in (A.5) is a direct consequence of Chebyshev’s inequality.
�

We need now a bound on the width of a point, which we had called σ . We
decompose a walk starting at 0 into its renewal parts:

• Let {Y (i), i ∈ N} be i.i.d. with law {p(0, ·)} representing the first random move
away from 0.

• Let {τ (i), i ∈ N} be i.i.d. exponential times of mean 1, representing the waiting
times at 0 (before doing the move Y (i)).
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• Let {{γ (i)
s , s ≥ 0}, i ∈ N} be independent walks with transition {p(i, j)} and

γ
(i)
0 = 0.

The convex hull of �(γ ) is made up by adding the successive excursions times
and waiting times in 0. Let H(i) be the ith excursion time, H(i) = inf{s > 0 :
γ

(i)
s + Y (i) = 0}, and denote the label of the last excursion by κ = sup{i ∈ N :

H(i) < ∞}. Note that κ is a geometric variable with P(κ = n) = P0,0(H0 <

∞)nP0,0(H0 = ∞). Then,

σ = 1{κ = 0}(τ (0))+ 1{κ = 1}(τ (0) + H(1) + τ (1))+ · · ·

+ 1{κ = n}
(
τ (0) +

n∑
i=1

(
H(i) + τ (i)))+ · · · .

Note that since P0,0(H0 < ∞) < 1, we have (with τ denoting an exponential time)

Gσ(z) := E0,0[ezσ ] = E0,0[ezτ ]∑
i≥0

P(κ = i)(E0,0[ezH01{H0 < ∞}]E[ezτ ])i

= P0,0(H0 = ∞)

1 − z

1

1 − P0,0(H0 < ∞)E0,0[ezH01{H0 < ∞}]E[ezτ ] .
Thus, as a simple consequence of Lemma A.1, we have the following estimate.

LEMMA A.3. Let β be as in Lemma A.1. If we define the positive constant

βd := min
(
β,P0,0(H0 = ∞)

)
,

(A.9)
then, for z < βd , Gσ(z) := E0,0[exp(zσ )] < ∞.

To control discrepencies, we need the following simple estimates.

LEMMA A.4. Let d ≥ 3. Then:

(i)
∑
i �=0

∑
j

P0,i (H0 < ∞)p(0, j)P0,j (γt = i,H0 > t) ≤ e−βd t .

(ii)
∑
i �=0

P0,i (H0 < ∞)P ∗
0,i(t < H0 < ∞) ≤ e−βd t .

(iii) lim
t→∞

∑
i �=0

∑
j

P ∗
0,i (H0 < ∞)p(0, j)P0,j (γt = i,H0 > t) = 0.

(iv)

lim
t→∞

∑
i �=0

P0,i (H0 < ∞)P0,i (t < H0 < ∞) = 0.(A.10)

(v) For any β1 < βd , there is c1(β1) such that∑
i∈Zd

P0,0(γt = i)P0,i(H0 < ∞) ≤ c1(β1)e
−β1t .
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Moreover, if {εi} is such that
∑

i ε
2
i < ∞, and if we replace P0,i (H0 < ∞) or

P ∗
0,i(H0 < ∞) in (i)–(iv) by εi , then the limit as t tends to infinity is zero.

PROOF. (i) We first show the discrete version of (i). We fix an integer n, con-
dition on Sn using the Markov property and Lemma A.1,

(z0)
n ≥ P0,0(n < H̃0 < ∞)

(A.11)
=∑

i �=0

P0,0(Sn = i, H̃0 > n)P0,i (H̃0 < ∞).

To pass to continuous time, let Nt be the Poisson number of marks before t , and
decompose over the possible values of Nt , for j with p(0, j) �= 0,

P0,j (γt = i,H0 > t) = ∑
n∈N

P0,j (Nt = n,Sn = i, H̃0 > n)

=
∞∑

n=0

P(Nt = n)P0,j (Sn = i, H̃0 > n).

Thus, ∑
j,i �=0

P0,i (H0 < ∞)p(0, j)P0,j (γt = i,H0 > t)

= ∑
n≥1,i

P (Nt = n − 1)P0,0(Sn = i, H̃0 > n)P0,i (H̃0 < ∞)

=
∞∑

n=1

P(Nt = n − 1)P0,0(n < H̃0 < ∞) ≤ (z0)E0,0[(z0)
Nt ]

≤ exp
(−t
(
1 − (z0)

))
.

(ii) Similarly, it is enough to prove the discrete version of (ii). By reversing time,
note that, for i �= 0, P ∗

0,i (H̃0 = n) = P0,0(Sn = i, H̃0 > n). Thus, by (A.11),∑
i �=0

P0,i (H̃0 < ∞)P ∗
0,i (H̃0 = n) = P0,0(n < H̃0 < ∞).(A.12)

The extention to continuous time is done as in point (i).
(iii) By reversing time,∑

i �=0

∑
j

P ∗
0,i (H0 < ∞)p(0, j)P0,j (Sn = i, H̃0 > n) ≤∑

i �=0

fn(i),(A.13)

with fn(i) := P ∗
0,i (H0 < ∞)P ∗

0,i(H̃0 = n + 1). Note that, for any fixed i, fn(i)

tends to 0 as n tends to infinity. Now, since

fn(i) ≤ P ∗
0,i(H0 < ∞) and in d ≥ 3,

∑(
P ∗

0,i(H0 < ∞)
)2

< ∞,(A.14)
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Lebesgue dominated convergence yields the discrete version (iii). The passage to
continuous time is similar to (i). Point (iv) presents now no difficulty. We omit its
proof.

(v) First note that γt = 0 implies that σ ≥ t , thus,∑
i∈Zd

P0,0(γt = i)P0,i(H0 < ∞) ≤ P0,0(σ ≥ t) +∑
i �=0

P0,0(γt = i)P0,i(H̃0 < ∞).

Note that, by Lemma A.3, P0,0(σ ≥ t) ≤ Gσ(βd) exp(−βdt). Now, we deal with
the discrete walk, and show that, for any δ1 with 1 < δ1 < 1/(z0), there is a
number M such that, for any integer n,∑

i �=0

P0,0(Sn = i)P0,i(H̃0 < ∞) ≤ Mδn
1 .

Indeed, by conditioning on the last time the walk meets 0 in the period [0, n], we
obtain ∑

i �=0

P0,0(Sn = i)P0,i(H̃0 < ∞)

≤ ∑
0≤k<n

P0,0(Sk = 0)P0,0(n − k < H̃0 < ∞)(A.15)

≤ 1/δn
1

∑
0≤k<n

P0,0(Sk = 0)δk
1 .

Now, note that, for k ≥ 1,

P0,0(Sk = 0) =
k−1∑
i=1

P0,0(H̃0 = i)P0,0(Sk−i = 0) + P0,0(H̃0 = k),

so that, by (A.7),

M :=∑
k≥0

P0,0(Sk = 0)δk
1 = E[δH̃0

1 1{H̃0 < ∞}]
1 − E[δH̃0

1 1{H̃0 < ∞}]
< ∞.

It is now easy to see how estimate (v) follows.
The last property is seen by first applying the Cauchy–Schwarz inequality as,

for instance, for the discrete version of (ii):(∑
i

εiP0,i(H̃0 = n)

)2

≤
(∑

i

ε2
i

)∑
i

P0,i(H̃0 = n)2 n→∞−→ 0 for d ≥ 3.
�
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