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CARNE–VAROPOULOS BOUNDS FOR CENTERED
RANDOM WALKS

BY PIERRE MATHIEU

CMI

We extend the Carne–Varopoulos upper bound on the probability transi-
tions of a Markov chain to a certain class of nonreversible processes by intro-
ducing the definition of a “centering measure.” In the case of random walks
on a group, we study the connections between different notions of centering.

1. Introduction. Let X = (Xt , t ∈ N) be a Markov chain taking its values in
some discrete set, V .

The paper is concerned with two related issues: in Section 2, the state space
of the Markov chain is not assumed to have any special algebraic structure. We
introduce a “centering condition” which generalizes the classical reversibility as-
sumption. The main result is an extension of the Carne–Varopoulos inequality for
the transition probabilities of a not necessarily reversible Markov chain; see The-
orems 2.8 and 2.10. In Section 3 we restrict our attention to random walks on
groups. We then investigate the relation between different possible definitions of a
“centered random walk.”

The initial motivation of this work was to find a different, more geometrical
and combinatorial interpretation of the bounds obtained by Alexopoulos for ran-
dom walks on nilpotent groups; see [1]. This is partially achieved, as far as the
upper bound is concerned, in Proposition 3.3(a). But it turned out that our notion
of centering measure can also be used to study nonreversible random walks on
other examples of groups, such as Baumslag Solitar groups or wreath products;
see Section 3.

The Carne–Varopoulos bound. A measure, π , on V is called reversible for the
Markov chain X if the following detailed balance condition is satisfied: for all x,
y ∈ V ,

π(x)P[X1 = y|X0 = x] = π(y)P[X1 = x|X0 = y].(1)

Not all Markov chains admit a reversible measure.
The detailed balance condition is equivalent to saying that the transition opera-

tor of X is symmetric in L2(V ,π). It is then possible to apply different tools from
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analysis, in particular spectral theory, to study the Markov chain. As an example
of a distinguished property of reversible Markov chains, let us quote the Carne–
Varopoulos upper bound: assume that π is a reversible measure for X; then, for all
x, y ∈ V and t ∈ N

∗, we have

P[Xt = y|X0 = x] ≤ 2

√
π(y)

π(x)
e−d2(x,y)/(2t).(2)

In (2), d(x, y) is the natural distance associated to X, that is, the minimal num-
ber of steps required for the Markov chain to go from x to y. The first paper to
deal with such long-range estimates for transition probabilities is [11]. We refer
to [3] or [13], Theorem 14.12 and Lemma 14.21 for a proof of (2) which relies
on spectral theory. Inequality (2) gives a crude upper bound on the tail of the law
of Xt which turned out to be very useful in the analysis of the long-time behavior
of reversible Markov chains.

Centered random walks on a graph. This paper arose as an attempt to get
a similar bound for a not necessarily reversible Markov chain. Thus we do not
assume that X admits a reversible measure and ask: does there exist a constant C

such that, for all x, y ∈ V and t ∈ N
∗,

P[Xt = y|X0 = x] ≤ Ce−d2(x,y)/(Ct)?(3)

In the case of random walks in Z
d , that is, if Xt is obtained as a sum of t in-

dependent, identically distributed random variables with finite support in Z
d , then

inequality (3) holds if and only if the mean value of X1 vanishes or, equivalently,
E[Xt ] = 0 for all t ∈ N. By analogy, we interpret (3) as a centering condition for
the Markov chain X although, for a general set V , it does not make sense anymore
to speak of “vanishing mean” for X1.

The transition probabilities of X endow its state space V with a structure of
weighted oriented graph. In the second part of the paper, we define the class
of centered Markov chains in terms of a splitting on this graph into oriented
cycles; see Definition 2.1. Markov chains admitting a reversible measure are cen-
tered. We then prove a Carne–Varopoulos upper bound of the form (3) in The-
orem 2.8. We also prove that the Dirichlet form satisfies a sector condition and
derive some easy consequences in terms of Green kernels; see Lemma 2.12 and
Proposition 2.13. In order to illustrate our definition, a special case of our general
result is described at the end of this introduction.

Centered random walks on a group. The third part of the paper is devoted to
random walks on groups. That is, we assume that V is a discrete group; choose a
finite generating set for V , say G and define Xt as a sum of independent, uniformly
distributed random variables on G. Let µ be the uniform probability distribution
on G, and let µt denote the t th convolution power of µ. Thus µt is the law of Xt .
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In this context, (3) reads: does there exist a constant C such that, for all x ∈ V and
t ∈ N

∗,

µt(x) ≤ Ce−d2(id,y)/(Ct)?(4)

Here id is the unit element in V . d(x, y) is the word distance between x and y. Up
to multiplicative constants, d(x, y) is independent of the choice of the generating
set.

The graph associated to the random walk X is now a Cayley graph of V , but,
unless G is symmetric, this is an oriented Cayley graph. Finding cycles in this
Cayley graph amounts to writing id as a product of elements of G. We may apply
results of the second part to derive sufficient conditions on G that imply (4): let
N be the semigroup made of the elements of V that can be written as products
of elements in G where each of the elements of G appears the same number of
times. In Proposition 3.1, we show that if id ∈ N , then (4) is satisfied for some
constant C. One can also consider sums of independent, identically distributed
random variables with a more general law than the uniform distribution over G.

Checking whether id ∈ N is an—apparently new—combinatorial problem in-
volving the geometry of V and the choice of G. We solve it for nilpotent groups.
Baumslag–Solitar groups, examples of wreath products and free groups are also
considered; see Section 3.3.

As a consequence, in the above mentioned examples, we obtain the equivalence
of the following two centering conditions:

(C1) id ∈ N ;
(C2) the image of the uniform measure on G by any homomorphism of V on R

has vanishing mean.

Application to the rate of escape. Carne–Varopoulos bounds can be used in
order to bound the rate of escape of the random walk from its initial point. In the
case of a centered Markov chain, it is easy to deduce from the Carne–Varopoulos
bound that the rate of escape vanishes if the volume growth is subexponential; see
Theorem 2.11. In the case of random walks on a group, one can do much better
and prove that the speed vanishes if and only if the Poisson boundary is trivial; see
Proposition 3.11. This last statement extends well-known results for symmetric
random walks; see [5, 9] or [12], among other references.

An example. We consider the special case of a Markov chain associated to an
oriented unweighted graph structure on V . So let E ⊂ V × V be such that, for all
x ∈ V , the number of points y ∈ V such that (x, y) ∈ E is finite and uniformly
bounded in x. The Markov process (Xt , t ∈ N) is defined by the usual rule: at
each step, one selects at random (with uniform distribution) one of the edges in E

starting from the current position. Then the random walker jumps along the chosen
edge.
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A cycle is a sequence γ = (x0, x1, . . . , xk) in V such that xk = x0 and
(xi, xi+1) ∈ E for all i = 0, . . . , (k − 1). We allow cycles of the form (x0, x0) or
(x0, x1, x0). Let |γ | = k be the length of γ . We write that the edge (x, y) belongs
to γ if, for some i, we have x = xi and y = xi+1.

Assume that there exists a collection of cycles, (γi, i ∈ N), satisfying the follow-
ing two properties: (i) supi |γi | < ∞, (ii) any edge (x, y) ∈ E belongs to exactly
one of the γi’s; then (3) holds for some constant C.

Now suppose that V is a group with generating set G = (g1, . . . , gK). Then
E = {(x, y) :x−1y ∈ G} defines an oriented Cayley graph on V . Cycles correspond
to relations in V . Conditions (i) and (ii) are satisfied if there is a permutation of
{1, . . . ,K}, say σ , such that gσ(1) · gσ(2) · · ·gσ(K) = id. Then (4) is satisfied.

The condition gσ(1) · gσ(2) · · ·gσ(K) = id obviously implies that, for any ho-
momorphism h of V on R,

∑K
i=1 h(gi) = 0. Whether the converse is true or not

depends on the group; see Section 3.

Further references. The idea of using a decomposition of the state space of
a Markov chain into cycles is not new. We refer in particular to the work of
Kalpazidou [10] and to the first chapters of the book [7]. However, these authors
are mostly interested in recurrent Markov chains.

The main technical tools used to prove our main result, Theorem 2.8, are bor-
rowed from the work of Hebisch and Saloff-Coste, although some extra work is
necessary to handle the lack of reversibility.

Comparison theorems for Green kernels similar to our Proposition 2.13(i) have
been obtained by various authors; see, for instance, [2] or [4].

2. Centered Markov chains on graphs.

2.1. Definitions. In this section we introduce the definitions related to the
graph structure induced by a Markov chain on its state space. As in the Introduc-
tion, let (Xt , t ∈ N) be a Markov chain taking its values in some infinite countable
set, V . We assume that X is irreducible.

For x and y in V , define q(x, y) = P[X1 = y|X0 = x]. Considering q(x, y)

as the weight of the edge (x, y) ∈ V × V , we can see � = (V , q) as a weighted,
oriented graph.

Call a cycle a finite sequence γ = (x0, x1, . . . , xk) of points in V such that
xk = x0 and q(xi, xi+1) > 0 for all i = 0, . . . , (k − 1). We allow cycles of the
form (x0, x0) or (x0, x1, x0). Sometimes we identify the cycle γ with a se-
quence of edges, that is, γ = ((x0, x1), . . . , (xk−1, xk)). Define |γ | = k to be the
length of γ . We further suppose that cycles are edge self-avoiding, that is, that
(xi, xi+1) = (xj , xj+1) implies that i = j . But we do not assume that cycles are
vertex self-avoiding.

DEFINITION 2.1. Let m be a measure on V . The graph � is centered if there
is a collection of cycles (γi , i ∈ N) and positive weights (qi, i ∈ N) such that:
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(i) supi |γi | < ∞,
(ii) for any x, y ∈ V , we have

m(x)q(x, y) = ∑
i

qi1(x,y)∈γi
.(5)

We then call m a centering measure for the process (Xt) (or for the graph �).

To avoid empty statements, we shall always assume that m is not identically
vanishing. From Remark 2.6 below it will follow that m(x) > 0 for all x ∈ V .

We shall use the notation ε = infx∈V m(x) ≥ 0 and C0 = supi |γi |.

REMARK 2.2. We may suppress the condition that cycles have to be edge self-
avoiding. Let us call “generalized cycle” a sequence satisfying all the properties of
cycles except it may have edge self-intersections. For a given edge, (x, y) ∈ V ×V ,
let N((x, y), γ ) = #{e ∈ γ : (x, y) = e} be the number of occurrences of (x, y) in
the generalized cycle γ .

� is then centered iff there exists a collection of generalized cycles, (γi, i ∈ N),
such that supi |γi | < ∞ and, for all x, y ∈ V , we have

m(x)q(x, y) = ∑
i

qiN
(
(x, y), γi

)
.(6)

This fact is easy to prove by splitting generalized cycles into edge self-avoiding
cycles.

REMARK 2.3 (The reversible case). Suppose that m is a reversible measure
for X, that is, assume that the detailed balance condition is satisfied: for any
x, y ∈ V ,

m(x)q(x, y) = m(y)q(y, x).

Choose cycles of the form γ = (x, y, x) whenever q(x, y) > 0 and γ = (x, x)

whenever q(x, x) > 0. To the cycle (x, y, x), we attach the weight q = m(x)q(x, y);
to the cycle (x, x), we attach the weight q = m(x)q(x, x). It is then immediate to
deduce from the detailed balance condition that condition (5) holds. In other words,
reversible graphs are centered.

EXAMPLE 2.4 (Unweighted graphs). Let E ⊂ V × V . Assume that, for all
y ∈ V , the number of points x ∈ V such that (x, y) ∈ E is finite. Let N+(x) =
{y ∈ V : (x, y) ∈ E}, and define

q(x, y) =



1

#N+(x)
, if (x, y) ∈ E,

0, otherwise,
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so that the random walker moves by choosing uniformly at random an edge in E

starting from its current position and then jumping along the chosen edge. Let
m(x) = #N+(x).

Assume that there exists a collection of cycles, (γi, i ∈ N), and an integer, n,
such that (i) supi |γi | < ∞, and (ii) for any edge e ∈ E, #{i : e ∈ γi} = n. Then �

is centered.

PROOF. Indeed we have∑
i

1(x,y)∈γi
= n = nm(x)q(x, y),

for any edge (x, y) ∈ E. Thus we may choose the weights qi = 1
n

to check condi-
tion (5). �

Note that, for � to be centered for the measure m, it is necessary that
#{y ∈ V : (y, x) ∈ E} = #{y ∈ V : (x, y) ∈ E} for all x ∈ V .

LEMMA 2.5. Let � be centered for m. Then m is an invariant measure for X,
that is, for all y ∈ V , one has

∑
x∈V m(x)q(x, y) = m(y).

PROOF. For given x ∈ V and i ∈ N, note that there exists y ∈ V with
(x, y) ∈ γi iff there exists y ∈ V with (y, x) ∈ γi . Because cycles are edge self-
avoiding, #{y ∈ V : (x, y) ∈ γi} = #{y ∈ V : (y, x) ∈ γi}. Therefore∑

y

∑
i

qi1(x,y)∈γi
= ∑

y

∑
i

qi1(y,x)∈γi
.

Thus ∑
x

m(x)q(x, y) = ∑
x

∑
i

qi1(x,y)∈γi

= ∑
x

∑
i

qi1(y,x)∈γi

= ∑
x

m(y)q(y, x) = m(y). �

REMARK 2.6. As a consequence of the lemma, since we have assumed that
X is irreducible, we must have m(x) > 0 for all x ∈ V . Keeping in mind that the
weights qi are positive, we note that it implies that, for any x, y ∈ V , q(x, y) > 0
if and only if there exists at least one i ∈ N such that (x, y) ∈ γi .

We now recall the definition of the distance associated to �. For x, y ∈ V , let
d(x, y) be the smallest k ∈ N such that there is a sequence x0, . . . , xk with x0 = x,
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xk = y and q(xi, xi+1) + q(xi+1, xi) > 0. In other words, d is the classical graph
distance associated to the undirected graph structure on V defined by

E0 = {(x, y) ∈ V × V :q(x, y) + q(y, x) > 0}.
REMARK 2.7. Assume that � is centered. If d(x, y) = k, then there exists a

sequence (x0, . . . , xK) such that x0 = x, xK = y and q(xi, xi+1) > 0, for all i.
Besides we may choose K ≤ C0k.

Indeed, if d(x, y) = 1, then, either q(x, y) > 0—and then K = 1—or
q(x, y) = 0, in which case q(y, x) > 0. In the latter case, we choose one cycle γi

such that (y, x) ∈ γi , say γi = (y, x, x2, . . . , xa−1, y). Then a ≤ C0. Besides we
have found a path, (x, x2, . . . , xa−1, y), of length bounded by a ≤ C0, linking x

to y and such that q(e1, e2) > 0 when (e1, e2) ∈ γi . Thus the claim is proved for
k = 1. The general case follows.

We can now state the main result of this section:

THEOREM 2.8. Let � be a centered graph for the measure m. Assume that ε =
infx∈V m(x) > 0. Then there exists a constant C, that only depends on ε and C0,
such that, for all x, y ∈ V and t ∈ N

∗, we have

P[Xt = y|X0 = x] ≤ Cm(y)e−d2(x,y)/(Ct).

2.2. Proof of Theorem 2.8.

Preliminaries on Dirichlet forms. Define the operator Qf (x) = E[f (X1)|
X0 = x] = ∑

y∈V q(x, y)f (y) on functions with finite support. Qt will denote
the t th power of Q.

Let Q∗ be the adjoint of Q with respect to the measure m. Then Q∗f (x) =∑
y∈V q∗(x, y)f (y), with q∗(y, x) = m(x)

m(y)
q(x, y). Using (5), we get that

q∗(y, x)m(y) = ∑
i

qi1(x,y)∈γi
.

This last formula may as well be written

q∗(x, y)m(x) = ∑
i

qi1(x,y)∈γ ∗
i
,

where, for a cycle γ , we use the notation γ ∗ to denote the reversed cycle. (Reverse
the order of the sequence defining γ .) Thus the graph �∗ = (V , q∗) is also centered
for the same measure m. It is actually the graph associated to the time reversal of
the Markov chain X. In particular all the results we are about to prove for centered
graphs may be applied to �∗.

We have already noticed that m(Qf ) = m(f ). The operator Q being positivity
preserving, we thus have m(|Qf |) ≤ m(|f |). It is also clear that supx∈V |Qf (x)| ≤
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supx∈V |f (x)|. It follows from Jensen’s inequality, or by interpolation, that Q is
a contraction in Lp(V,m) for all p ∈ [1,∞]. By duality, Q∗ is also a contraction
in Lp(V,m).

Define the Dirichlet form E(f, g) = m(g·(I − Q)f ). It can be expressed with
the kernel q by

E(f, g) = ∑
x,y∈V

m(x)q(x, y)g(x)
(
f (x) − f (y)

)
.

We also consider the symmetrized Dirichlet form

E0(f, g) = 1

2

(
E(f, g) + E(g, f )

)

= m

(
g·

(
I − Q + Q∗

2

)
f

)

= ∑
x,y∈V

m(x)
q(x, y) + q∗(x, y)

2
g(x)

(
f (x) − f (y)

)
.

Since, m(x)(q(x, y) + q∗(x, y)) = m(x)q(x, y) + m(y)q(y, x), we have

E0(f, g) = 1
2

∑
x,y∈V

p0(x, y)
(
f (x) − f (y)

)(
g(x) − g(y)

)
,(7)

with

p0(x, y) = p0(y, x) = 1
2

(
m(x)q(x, y) + m(y)q(y, x)

)
.(8)

Let us now compute the antisymmetric part of E :

E(f, g) − E0(f, g) = m

(
g·

Q∗ − Q

2
f

)

= ∑
x,y∈V

m(x)g(x)f (y)
q∗(x, y) − q(x, y)

2

= 1

2

∑
x,y∈V

(
f (x)g(y) − f (y)g(x)

)
m(x)q(x, y).

And, using (5), we obtain the useful representation formula:

E(f, g) − E0(f, g) = 1
2

∑
i

qi

∑
(x,y)∈γi

(
f (x)g(y) − f (y)g(x)

)
.(9)

Poincaré inequality. We shall use the following Poincaré inequality on the dis-
crete circle: let γ be a cycle. There exists a constant, Cγ , such that, for all func-
tions g such that

∑
x∈γ g(x) = 0, we have∑

x∈γ

g(x)2 ≤ Cγ

∑
(x,y)∈γ

(
g(x) − g(y)

)2
.(10)
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The best constant in (10) is the inverse spectral gap of the nearest-neighbor sym-
metric random walk on γ ; thus (10) is a Poincaré inequality. Besides, the con-
stant Cγ depends only on the length |γ |.

PROOF OF THEOREM 2.8. The “symmetric” version of Theorem 2.8 is stated
as Theorem 14.12 in [13]. (The argument is due to Hebish and Saloff-Coste;
see [6].) We try to follow Woess as closely as possible, starting with the next
lemma, but there is an extra nonsymmetric term to be handled by specific argu-
ments. This is where the assumption (5) enters into play.

Keep in mind that C is a constant which is allowed to depend only on
ε and C0. Choose some reference point o ∈ V . For s ∈ R, define the function
ws(x) = esd(o,x). We need the following.

LEMMA 2.9. There exists a constant C, that depends on C0 only, and such
that, for all s ∈ R, |s| ≤ 1

C
, and for any function f with finite support, we have

E(wsf,w−sf ) ≥ −Cs2(
1 + eC|s|)m(f 2).

PROOF. We use the notation w = ws and note that, replacing f with wf , we
have to prove that

E(w2f,f ) ≥ −Cs2(
1 + eC|s|)m(w2f 2).

Using expression (7), we get that

4E(w2f,f ) = 4E0(w2f,f ) + 4E(w2f,f ) − 4E0(w2f,f )

= 2
∑

(x,y)∈V

p0(x, y)
(
w(y)2f (y) − w(x)2f (x)

)(
f (y) − f (x)

)

+ 4
(
E(w2f,f ) − E0(w2f,f )

)
= A1 + A2 + B,

where

A1 = ∑
(x,y)∈V

p0(x, y)
(
f (x) − f (y)

)2(
w(x)2 + w(y)2)

,

A2 = ∑
(x,y)∈V

p0(x, y)
(
f (x)2 − f (y)2)(

w(x)2 − w(y)2)
,

B = 4
(
E(w2f,f ) − E0(w2f,f )

)
.

From the proof of Lemma 14.14 in [13], we have

(A2)
2 ≤ 8s2(

1 + e2|s|)A1m(w2f 2).(11)



996 P. MATHIEU

We need a similar estimate for B . We first rewrite B using the set of paths
(γi, i ∈ N) as in (9):

B = 2
∑
i

qi

∑
(x,y)∈γi

f (x)f (y)
(
w(x)2 − w(y)2)

.

For i ∈ N, we use the notation ci for the mean value of f on the points of the
cycle γi , and fi(x) = f (x)− ci . Taking into account that γi is a closed path shows
that

∑
(x,y)∈γi

w(x)2 − w(y)2 = 0. Therefore

B = 2
∑
i

qi

( ∑
(x,y)∈γi

fi(x)fi(y)
(
w(x)2 − w(y)2)

+ 2ci

∑
(x,y)∈γi

(
fi(x) + fi(y)

)(
w(x)2 − w(y)2))

.

If d(x, y) = 1, then |w(x)−w(y)| ≤ C|s|(w(x)+w(y)). Writing wi (resp. wi)
for the min (resp. max) of w over the path γi , we have

|B| ≤ C|s|∑
i

qi(wi)
2

(( ∑
x∈γi

|fi(x)|
)2

+ |ci |
∑
x∈γi

|fi(x)|
)
.

We now use the Poincaré inequality (10) for the function fi to deduce that( ∑
x∈γi

|fi(x)|
)2

≤ |γi |
∑
x∈γi

(fi(x))2 ≤ Cγi
|γi |

∑
(x,y)∈γi

(
fi(x) − fi(y)

)2

= Cγi
|γi |

∑
(x,y)∈γi

(
f (x) − f (y)

)2
.

The length of γi being bounded by C0, we may therefore choose a constant C,
independent of i, such that( ∑

x∈γi

|fi(x)|
)2

≤ C
∑

(x,y)∈γi

(
f (x) − f (y)

)2
.

Also note that (ci)
2 ≤ C

∑
x∈γi

f 2(x).
From the previous inequalities, we conclude that

|B| ≤ C|s|∑
i

qi(wi)
2

( ∑
(x,y)∈γi

(
f (x) − f (y)

)2

+
√∑

x∈γi

f 2(x)

√ ∑
(x,y)∈γi

(
f (x) − f (y)

)2
)
.
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For the next step, we use the fact that w is roughly constant on each path γi .
More precisely, since |γi | ≤ C0, two points on γi are at distance at most C0. There-
fore wi ≤ eC|s|wi , where C depends only on C0. Therefore

|B| ≤ C|s|eC|s| ∑
i

qi

( ∑
(x,y)∈γi

(
f (x) − f (y)

)2(
w(x)2 + w(y)2)

+
√∑

x∈γi

f 2(x)w(x)2

×
√ ∑

(x,y)∈γi

(
f (x) − f (y)

)2(
w(x)2 + w(y)2

))

≤ C|s|eC|s|
(∑

i

qi

∑
(x,y)∈γi

(
f (x) − f (y)

)2(
w(x)2 + w(y)2)

+
√∑

i

qi

∑
x∈γi

f 2(x)w(x)2

×
√∑

i

qi

∑
(x,y)∈γi

(
f (x) − f (y)

)2(
w(x)2 + w(y)2

))
,

where we used the Cauchy–Schwarz inequality. Using (5), we deduce that

|B| ≤ C|s|eC|s|
( ∑

x,y∈V

(
f (x) − f (y)

)2(
w(x)2 + w(y)2)

m(x)q(x, y)

+
√∑

x∈V

f (x)2w(x)2
∑
i

qi1x∈γi

×
√ ∑

x,y∈V

(
f (x) − f (y)

)2(
w(x)2 + w(y)2

)
m(x)q(x, y)

)
.

But m(x) = ∑
y∈V m(x)q(x, y) = ∑

i qi

∑
y∈V 1(x,y)∈γi

≥ ∑
i qi1x∈γi

and
m(x)q(x, y) ≤ 2p0(x, y). Therefore

|B| ≤ C|s|eC|s|
( ∑

x,y∈V

(
f (x) − f (y)

)2(
w(x)2 + w(y)2)

p0(x, y)

+
√∑

x∈V

f (x)2w(x)2m(x)

×
√ ∑

x,y∈V

(
f (x) − f (y)

)2(
w(x)2 + w(y)2

)
p0(x, y)

)
,
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that is,

|B| ≤ C|s|eC|s|(A1 +
√

A1m(w2f 2)
)
.(12)

Inequalities (11) and (12) clearly imply the lemma. �

We shall not explain how to deduce the theorem from the lemma since the argu-
ments can be copied from the proof of Theorem 14.12 in [13]. (A referee pointed
out that this is true up to the following additional observation: in the middle of
page 156 of [13] one reads: “the adjoint of Ps is P−s .” This is not the case here but
everything applies to Q∗ in place of Q.) As in Theorem 14.12 in [13], we have in
fact proved the stronger result:

THEOREM 2.10. Let � be a centered graph for the measure m. Assume that
ε = infx∈V m(x) > 0. Assume that there are constants C1 and d ≥ 0 such that, for
all x, y ∈ V and all t ∈ N

∗, we have

P[Xt = y|X0 = x] ≤ C1m(y)t−d/2.(13)

Then there exists a constant C that only depends on ε, d , C0 and C1, such that, for
all x, y ∈ V and t ∈ N

∗, we have

P[Xt = y|X0 = x] ≤ Cm(y)t−d/2e−d2(x,y)/(Ct).

Theorem 2.8 is only the special case of Theorem 2.10 when d = 0. �

2.3. Rate of escape. The next statement is an easy consequence of the Carne–
Varopoulos bounds.

THEOREM 2.11. Assume that � is centered for a measure m such that
ε = infx∈V m(x) > 0. Let V (t) = �{x ∈ V :d(o, x) ≤ t} be the volume of the ball
centered at o. (o is an arbitrary reference point.) If lim supt→∞ 1

t
logV (t) = 0,

then for all α > 0, we have

lim
t→+∞P[d(o,Xt) ≥ αt |X0 = o] = 0.

PROOF. Use Theorem 2.8 and the fact that d(o,Xt) ≤ t if X0 = o, to get that

P[d(o,Xt) ≥ αt |X0 = o] = ∑
x;αt≤d(o,x)≤t

P[Xt = x|X0 = o]

≤ ∑
x;αt≤d(o,x)≤t

Ce−d2(o,x)/(Ct)

≤ Ce−α2t/CV (t) → 0. �
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2.4. Sector condition and Green kernels.

LEMMA 2.12 (Sector condition). Let � be a centered graph for the mea-
sure m. There exists a constant M , function of C0 only, such that, for all finitely
supported functions f and g, we have

E(f, g)2 ≤ M2E(f, f )E(g, g).

PROOF. We write that E(f, g) = E0(f, g)+E(f, g)−E0(f, g), where, as be-
fore, E0(f, g) = 1

2(E(f, g) + E(g, f )) is the symmetric part of E .
Since E0 is a symmetric bilinear form, we have E0(f, g)2 ≤ E0(f, f )E0(g, g) =

E(f, f )E(g, g). It remains to prove that (E(f, g)−E0(f, g))2 ≤ M2E(f, f )E(g, g).
From (9), we know that

E(f, g) − E0(f, g) = 1
2

∑
i

qi

∑
(x,y)∈γi

(
f (x)g(y) − f (y)g(x)

)
.

Note that the quantity
∑

(x,y)∈γi
(f (x)g(y) − f (y)g(x)) remains unchanged if

we modify by a constant the value of f or g on γi . Thus let ci (resp. di ) be the
mean of f (resp. g) on γi and set fi = f −ci (resp. gi = g−di ). From the Poincaré
inequality (10), we get a constant Mi , that depends on the length of γi only, such
that ∑

x∈γi

f 2
i (x) ≤ Mi

∑
(x,y)∈γi

(
f (x) − f (y)

)2
,

∑
x∈γi

g2
i (x) ≤ Mi

∑
(x,y)∈γi

(
g(x) − g(y)

)2
.

Since the length of γi is bounded by C0, we have M = supi Mi < ∞. Then( ∑
(x,y)∈γi

(
f (x)g(y) − f (y)g(x)

))2

=
( ∑

(x,y)∈γi

(
fi(x)gi(y) − fi(y)gi(x)

))2

≤ M2
∑
x∈γi

f 2
i (x)

∑
x∈γi

g2
i (x)

≤ M2
∑

(x,y)∈γi

(
f (x) − f (y)

)2 ∑
(x,y)∈γi

(
g(x) − g(y)

)2
,

and therefore(
E(f, g) − E0(f, g)

)2

≤ M2

(∑
i

qi

∑
(x,y)∈γi

(
f (x) − f (y)

)2
)(∑

i

qi

∑
(x,y)∈γi

(
g(x) − g(y)

)2
)
.
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It now only remains to note that
∑

i qi

∑
(x,y)∈γi

(f (x)−f (y))2 = ∑
x,y∈V (f (x)−

f (y))2q(x, y)m(x) = E(f, f ). �

We can use the sector condition of Lemma 2.12 to compare the Green kernel of
the Markov chain X with the Green kernel of the Markov chain associated to E0,
say X0. Let Q0 = Q+Q∗

2 . The operator Q0 is then symmetric with respect to m

and has kernel q0(x, y) = 1
2(q(x, y) + m(y)

m(x)
q(y, x)). By definition of the Dirichlet

forms E and E0, one has the relation

m
(
f·(I − Q)f

) = E(f, f )

= m
(
f·(I − Q0)f

) = E0(f, f ).

We use the notation g(x, y) [resp. g0(x, y)] to denote the Green kernel of Q

(resp. Q0), be it finite or infinite. Thus

g(x, y) = ∑
t≥0

P[Xt = y|X0 = x] = 1

m(x)
m

(
δx·(I − Q)−1δy

)
,

g0(x, y) = ∑
t≥0

P[X0
t = y|X0

0 = x] = 1

m(x)
m

(
δx·(I − Q0)−1δy

)
.

PROPOSITION 2.13. (i) For any x ∈ V , we have g(x, x) ≤ g0(x, x).
(ii) Assume that � is centered. Then, for all x ∈ V , g0(x, x) ≤ M2g(x, x),

where M is the same constant as in Lemma 2.12.
(iii) As a consequence, if � is centered, then X is recurrent if and only if X0 is

recurrent.

PROOF. Part (i) directly follows from Lemma 2.24 in [13] using the fact that
m(f·(I − Q)f ) = m(f·(I − Q0)f ).

Part (ii) follows from Lemma (2.12):(
m(x)g0(x, x)

)2

= m
(
(I − Q0)−1δx·δx

)2

= m
(
(I − Q0)−1δx·(I − Q)(I − Q)−1δx

)2

= E
(
(I − Q)−1δx, (I − Q0)−1δx

)2

≤ M2E
(
(I − Q)−1δx, (I − Q)−1δx

)
E

(
(I − Q0)−1δx, (I − Q0)−1δx

)
= M2m

(
δx·(I − Q)−1δx

)
m

(
δx·(I − Q0)−1δx

)
= M2m(x)g(x, x)m(x)g0(x, x),

where we used Lemma 2.12 from line 4 to line 5. �
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3. Centered Markov chains on groups.

3.1. Definitions. We shall apply the results of the previous section to the
analysis of (nonreversible) random walks on groups. Our main purpose is to dis-
cuss the connections between different “natural” definitions of what a centered
random walk on a group should be. Proposition 3.1 gives a simple sufficient con-
dition for a random walk to be centered in the sense of Definition 2.1, and moti-
vates the introduction of the centering condition (C1). We also consider the weaker
but somehow more natural centering condition (C2). One question is then to de-
cide whether, for a given group, conditions (C1) and (C2) are equivalent or not.
We take up this problem in two steps: Section 3.2 contains some easy remarks on
conditions (C1) and (C2) and a technical tool, Lemma 3.8, that turns out to be
useful to deduce (C1) from (C2). In Section 3.3 we discuss different examples of
groups. Finally, in Section 3.4 we prove that the velocity of a centered random
walk vanishes if and only if its entropy also vanishes.

We therefore assume that V is a discrete, infinite group of finite type and choose
a finite sequence, G = (g1, . . . , gK) of elements of V . Note that we really mean a
sequence, that is, the same element may appear more than once in G. id will denote
the unit element in V . We say that G is generating if the semigroup generated by G

is V : any element in V can be written as a product of elements in G.
To G, we associate a Markov chain, (Xt , t ∈ N), in the usual way: let

(Ui, i ∈ N
∗) be a sequence of independent random variables with uniform dis-

tribution in {1, . . . ,K}. Let ηi = gUi
. We define the sequence (Xt , t ∈ N) by the

recursion relations:

X0 = id,

Xt+1 = Xt·ηt+1.

Let P be the law of the sequence (Xt , t ∈ N). The law of X1, say µ, is easily
computed:

µ(x) = #{i :gi = x}
K

.

The law of Xt is then the t th convolution power of µ, that we denote by µt .
In the language of the first part of the paper, X is the Markov chain associated

to the graph � = (V , q) with q(x, y) = 1
K

#{i :gi = x−1 · y}.
We choose for reference measure m, the counting measure on V .
We recall that a function σ : {1, . . . , nK} → {1, . . . ,K} is said to be n to 1 if for

all i ∈ {1, . . . ,K}, then #{j ∈ {1, . . . , nK} :σ(j) = i} = n.

PROPOSITION 3.1. We assume that there exist an integer n ∈ N
∗ and a func-

tion σ : {1, . . . , nK} → {1, . . . ,K}, which is n to 1 such that

gσ(1) · gσ(2) · · ·gσ(nK) = id.(14)
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Then the graph � is centered for the counting measure m. In particular, the con-
clusions of Theorem 2.8 and Lemma 2.12 hold.

For further references, let us make a definition out of (14): we shall say that
a given sequence G satifies condition (C1) if there exist an integer n ∈ N

∗ and a
function σ : {1, . . . , nK} → {1, . . . ,K}, which is n to 1 and satisfies

gσ(1) · gσ(2) · · ·gσ(nK) = id.(15)

PROOF OF PROPOSITION 3.1. Let g̃t = gσ(1) · · ·gσ(t) and let γ1 be the cycle

γ1 = (
(id, g̃1), (g̃1, g̃2), . . . , (g̃nK−1, g̃nK)

)
.

By assumption g̃nK = id. Also define the translated cycles: γx = x·γ1, for all
x ∈ V .

Because the cycles γx may not be edge self-avoiding, we will use Remark 2.2
in Section 2.1 and check (6).

Let a, b ∈ V . The number of times the edge (a, b) appears in a path γx is the
number of couples (x, i) with x ∈ V and i ≤ nK − 1 and such that

(a, b) = (x·g̃i , x·g̃i+1),

or, equivalently,

a = x·g̃i and b = a·gσ(i+1).(16)

If q(a, b) = 0, that is, a−1· b /∈ G, then (16) has no solution. Otherwise, i being
given, x is uniquely determined by (16). Thus we are actually looking for the
number of i’s such that a−1· b = gσ(i+1). This number is nKq(x, y), as clearly
follows from the definition of q and the assumption of σ being n to 1. �

We now introduce a second centering condition: a given sequence satisfies
condition (C2) if for some integer n, (g1 · · ·gK)n ∈ [V,V ] or, equivalently,∑

i h(gi) = 0 for any homomorphism h from V to R; see Remark 3.6 below.
Note that the condition (g1 · · ·gK)n ∈ [V,V ] is independent of the order in

which the product is computed. Indeed, changing the order in this product would
only multiply the result by an element in [V,V ].

Although condition (C1) is the one we needed to prove our results, condi-
tion (C2) is, to a certain extent, more natural. In particular, it is easier to check
in examples.

It is also easy to see that (C1) implies (C2): indeed assume that (C1) holds. Then,
since σ is n to 1, we obtain the product (g1 · · ·gK)n as a reordering of the elements
of the product in (15). But changing the order in some product only multiplies this
product by an element in [V,V ]. Therefore (g1 · · ·gK)n ∈ [V,V ] and (C2) holds.
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DEFINITION 3.2. We will say that the group V satisfies property (C) if, for
any finite generating sequence, conditions (C1) and (C2) hold or fail simultane-
ously. In extenso, V satisfies property (C) if, for any finite generating sequence
G = (g1, . . . , gK) such that for some n ∈ N

∗ we have (g1 · · ·gK)n ∈ [V,V ], then
there exist an integer n ∈ N

∗ and a function σ : {1, . . . , nK} → {1, . . . ,K}, which
is n to 1 and satisfies

gσ(1) · gσ(2) · · ·gσ(nK) = id.(17)

PROPOSITION 3.3.

(a) Nilpotent groups satisfy property (C).
(b) The Baumslag–Solitar group BSq satisfies property (C).
(c) The wreath product Z � Z satisfies property (C).
(d) The free group F2 does not satisfy property (C).

REMARK 3.4. From Proposition 3.3(a) and property (C) it follows that if a
generating set on a nilpotent group satisfies condition (C2), it then satisfies the
Carne–Varopoulos upper bound. As a matter of fact, it would also be possible
to use Theorem 2.10 to get an upper bound of the form P[Xt = y|X0 = x] ≤
Ct−r/2e−d2(x,y)/(Ct) for any centered random walk. (Here r is the volume growth
exponent of the group.) But it should be pointed out that a more precise version of
this last bound, and the corresponding lower bound, were obtained by Alexopoulos
in [1] for more general centered random walks than ours. Alexopoulos’ method is
quite different from ours and does not use the equivalence between conditions (C1)
and (C2).

3.2. Centering conditions. We start with some easy remarks on conditions
(C1) and (C2):

REMARK 3.5. The random walk X, associated to the finite sequence G, lives
on the semigroup generated by G. If (C1) holds, it is easy to see that the semigroup
generated by G is in fact a group.

REMARK 3.6 (Homomorphisms on R). Let G = (g1, . . . , gK) be a finite se-
quence of elements of V .

First assume that for some n, (g1 · · ·gK)n ∈ [V,V ]. Then, for any homomor-
phism h from V to R, we have

∑
i h(gi) = 0.

Conversely, assume that, for any homomorphism from V to R, we have∑
i h(gi) = 0. Then, for some n, (g1 · · ·gK)n ∈ [V,V ].
Indeed, let γ be the image of the product g1 · · ·gK on V/[V,V ]. Either γ has

finite order—in which case the proof is finished—or it has infinite order. Since
V/[V,V ] is Abelian, there exists a homomorphism h̃ from V/[V,V ] to R such
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that h̃(γ ) = 1. Then h̃ induces a homomorphism on V such that h(g1 · · ·gK) = 1.
This is in contradiction with the assumption that

∑
i h(gi) = 0.

Thus we have proved that, for a given sequence G = (g1, . . . , gK), the following
two properties are equivalent:

(i) there exists n such that (g1 · · ·gK)n ∈ [V,V ],
(ii) for any homomorphism h from V to R, we have

∑
i h(gi) = 0.

REMARK 3.7. There are obvious counterexamples to the implication
(C2) 	⇒ (C1) for nongenerating sequences: choose K = 1. The condition (C1)
is then equivalent to saying that g1 has finite order. Condition (C2) is satisfied if
g1 ∈ [V,V ]. Thus if g1 ∈ [V,V ] but g1 is of infinite order, then (C2) is satisfied
but (C1) is not. We avoid this situation by assuming that the set G generates V . Let
us recall that the meaning of “generating” is: all elements of V belong to the semi-
group generated by G, that is, any x ∈ V can be written as a product of elements
in G.

The aim of the next section is to check that property (C) holds for some simple
enough groups. The proofs are based on the following combinatorial lemma:

LEMMA 3.8. Choose a finitely generated group, V , and some element a ∈ V .
The following two properties are equivalent:

(i) For any finite generating sequence, G = (g1, . . . , gK), such that
(g1 · · ·gK)n ∈ [V,V ] for some n ∈ N

∗, then (C1) holds.
(ii) For any finite generating sequence, G = (g1, . . . , gK), such that

(g1 · · ·gK)n ∈ [V,V ] for some n ∈ N
∗, then (C1) holds for the enlarged sequence

(g1, . . . , gK, a, a−1).

PROOF. Of course (i) implies (ii). Assume that (ii) is verified. Let G be some
finite generating sequence such that (g1 · · ·gK)n ∈ [V,V ]. We check that G satis-
fies (C1).

Since G generates V , we can write

a = gσ1(1) · · ·gσ1(k1) and a−1 = gσ2(1) · · ·gσ2(k2),

for some applications σ1 : {1, . . . , k1} → {1, . . . ,K} and σ2 : {1, . . . , k2} → {1,

. . . ,K}. Call G1 the sequence of elements in V obtained by forming all the prod-
ucts of elements of G of length k1. In other words,

G1 = (
gσ1(1) · · ·gσ1(k1);σ1 ∈ {1, . . . ,K}{1,...,k1}).

(Remember G1 is a sequence, not a set. The same element may appear more than
once.) Similarly, define G2 to be the sequence of elements in V obtained by form-
ing all the products of elements of G of length k2:

G2 = (
gσ2(1) · · ·gσ2(k2);σ2 ∈ {1, . . . ,K}{1,...,k2}).
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Thus a ∈ G1 and a−1 ∈ G2. Finally let G̃ be the concatenation of the sequences G,
G1 and G2. Then G̃ has K̃ = K + Kk1 + Kk2 elements.

We claim that G̃ satisfies the requirements of (ii). Indeed G̃ generates V since
it contains G and G generates V . We also have a, a−1 ∈ G̃. If we form the nth
power of the product of the elements of G̃, we get

(g̃1 · · · g̃
K̃

)n = (
(g1 · · ·gK)
σ1

(
gσ1(1) · · ·gσ1(k1)

)

σ2

(
gσ2(1) · · ·gσ2(k2)

))n
= (g1 · · ·gK)n(1+k1K

k1−1+k2K
k2−1) mod([V,V ]),

where the second equality holds up to reordering.
Since, by assumption, (g1 · · ·gK)n ∈ [V,V ], we see that (g̃1 · · · g̃2)

n ∈ [V,V ].
Therefore we deduce that G̃ satisfies the condition (C1): there exist some number ñ

and an application σ̃ : {1, . . . , ñK̃} → {1, . . . , K̃} such that

g̃σ̃ (1) · · · g̃σ̃ (ñK̃)
= id,(18)

and σ̃ is ñ to 1. Imagine you rewrite the product (18) with the elements of G.
From the construction of G̃, it then follows that each element of G will appear
exactly ñ(1+Kk1−1 +Kk2−1) times. We have thus checked condition (C1) for the
generating sequence G.

Note that all over this proof the roles of the different elements of G are sym-
metric. �

3.3. Examples and proof of Proposition 3.3. As a preliminary, let us first con-
sider the simplest example:

EXAMPLE 3.9 (Periodic groups). We assume that all elements of V have finite
order. Thus V is a periodic group, also called a torsion group. Given any finite
set G, we can choose n such that gn

i = id for all i ∈ {1, . . . ,K}. We then define σ(i)

to be the integer part of 1 + i−1
n

. σ is clearly n to 1. Besides,

gσ(1) · · ·gσ(nK) = gn
1 · · ·gn

K = id.

As a conclusion the graph � associated to G is centered.
We shall now extend this result to more general random walks on V : let µ be a

probability measure on V with finite support. Consider the Markov chain with
transition rates q(x, y) = µ(x−1· y). For x ∈ V and g in the support of µ, de-
fine the cycle γx,g = (x, x·g, x·g2, . . . , x·gp(g)), where p(g) is the order of g. Let
qg = 1

p(g)
µ(g).

Choose a, b ∈ V . For fixed g, count the total number of occurrences of the
edge (a, b) in cycles of the form γx,g , where x ranges through V . We get: p(g) if
a−1· b = g and 0 otherwise. Therefore∑

x,g

qgN
(
(a, b), γx,g

) = ∑
g

µ(g)1a−1· b=g = µ(a−1· b) = q(a, b).
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We have checked condition (6) and therefore the graph � = (V , q) is centered for
the counting measure.

EXAMPLE 3.10 (Abelian case). Assume that the product g1 · · ·gK has finite
order, say p. Then it is easy to construct a function σ , which is p to 1 and sat-
isfies (15). Now assume that V is Abelian. If (C1) holds, then we must have
(g1 · · ·gK)n = 1. [This is just a reordering of the product in (15).] Then g1 · · ·gK

has finite order. Thus we see that, for an Abelian group, (C1) is fullfilled if and
only if the product g1 · · ·gK has finite order. In particular, Abelian groups satisfy
property (C).

PROOF OF PROPOSITION 3.3. (a) Nilpotent groups satisfy property (C). We
proceed by induction on the nilpotency class of V . Let V = V0 > V1 > · · · > Vr =
{id} be the lower central series of V with Vi+1 = [V,Vi]. Let Z be the center of V .
The case r = 1 corresponds to an Abelian group V and was already discussed in
Example 3.10.

Note that Vr−1 is Abelian and finitely generated. We may, and do, choose ele-
ments (xi, yi, i = 1, . . . , k) such that the set ([xi, yi], i = 1, . . . , k) generates Vr−1.
Finally notice that Vr−1 ⊂ Z. Therefore if x, y ∈ V are such that [x, y] ∈ Vr−1,
then [xα, yβ] = [x, y]αβ for all nonnegative α and β .

Assume now that the statement of the proposition is true for any nilpotent group
of class r − 1 or less. Let V be of class r . Let G = (g1, . . . , gK) be a finite gener-
ating sequence and let n be such that (g1 · · ·gK)n ∈ [V,V ]. We wish to prove that
condition (C1) holds. Using Lemma 3.8, it is sufficient to prove that the sequence
(g1, . . . , gK, x1, . . . , xk, y1, . . . , yk, x

−1
1 , . . . , x−1

k , y−1
1 , . . . , y−1

k ) satisfies (C1).
We use the induction assumption: the group V/Vr−1 is nilpotent of class strictly

less than r . Therefore there is an integer p and a 1 to p function σ : {1, . . . , pK} →
{1, . . . ,K} such that gσ(1) · · ·gσ(pK) ∈ Vr−1. Therefore there exist l ≥ 0, l ≤ k and
α1, . . . , αl ∈ Z such that gσ(1) · · ·gσ(pK)[x1, y1]α1 · · · [xl, yl]αl = id. Interchanging
the roles of xi and yi when necessary, we may assume that the αi’s are nonnegative.

Let α be the product α = α1 · · ·αl . Note that [xi, yi]αiα = [xαi

i , y
αi

i ]α/αi .
We have

id = (
gσ(1) · · ·gσ(pK)[x1, y1]α1 · · · [xl, yl]αl

)α
= (

gσ(1) · · ·gσ(pK)

)α[x1, y1]α1α · · · [xl, yl]αlα

(because [xi, yi] ∈ Vr−1 ⊂ Z)

= (
gσ(1) · · ·gσ(pK)

)α[xα1
1 , y

α1
1 ]α/α1 · · · [xαl

l , y
αl

l ]α/αl

= (
gσ(1) · · ·gσ(pK)

)α[xα1
1 , y

α1
1 ]α/α1 · · · [xαl

l , y
αl

l ]α/αl (x1x
−1
1 y1y

−1
1 )α(p−1)

× · · · × (
xlx

−1
l yly

−1
l

)α(p−1)
(xl+1x

−1
l+1yl+1y

−1
l+1)

αp · · · (xkx
−1
k yky

−1
k )αp.
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In this last expression, each gi appears αp times; each term of the form xi , x−1
i ,

yi or y−1
i with i ≤ l appears α + α(p − 1) = αp times; each term of the form xi ,

x−1
i , yi or y−1

i with i > l appears αp times. Thus we have checked condition (C1).
(b) The Baumslag–Solitar group BSq satisfies property (C). By definition, the

Baumslag–Solitar group BSq is the group with presentation 〈a, b|ab = bqa〉,
where q ≥ 2 is an integer. It is an example of an amenable, solvable group of expo-
nential volume growth. It is also the subgroup of the affine group of R generated
by the transformations x → x + 1 and x → qx.

From the presentation, it is obvious that any homomorphism of V on R should
vanish on b. It is possible to prove that elements on V can be written in the
form x = (a−lbmal)ak . In particular, if x ∈ [V,V ], then x must be of the form
x = a−lbmal for some l ≥ 0 and m ∈ Z. We shall use the relation [bβ, aα] =
bβ(1−qα).

Let G = (g1, . . . , gK) be a finite generating sequence and choose n such
that (g1 · · ·gK)n ∈ [V,V ]. We wish to prove that condition (C1) holds. Ac-
cording to Lemma 3.8, it is sufficient to prove (C1) for the enlarged sequence
(g1, . . . , gK, a, a−1, b, b−1). Let l ≥ 0 and m ∈ Z be such that (g1 · · ·gK)n =
a−lbmal .

First assume that m ≥ 0. Choose α such that qα − 1 ≥ m and choose j such
that j (qα − 1) ≥ α + l. Let k = j (qα − 1), β = mj , k1 = nk − α − l ≥ 0 and
k3 = nk − β ≥ 0.

We have

(g1 · · ·gK)kna−l[bβ, aα]alak1a−k1bk3b−k3

= (a−lbmal)ka−lbβ(1−qα)al = a−lbkmbβ(1−qα)al = id,

since km + β(1 − qα) = 0.
Considering the expression (g1 · · ·gK)kna−l[bβ, aα]alak1a−k1bk3b−k3 as a

word in the alphabet G, we see that: the elements gi, i ≤ K , appear each exactly kn

times; a and a−1 appear α + l + k1 = kn times; b and b−1 appear β + k3 = kn

times. Therefore we have checked (15).
The proof is done very much the same way if m ≤ 0.
(c) The wreath product Z � Z satisfies property (C). Z � Z is isomorphic to the

group of affine transformations of R generated by the translation x → x + 1 and
the homothety x → ax where a is transcendental. It is also a semidirect product
of Z and a direct product of countably many copies of Z. It is therefore a two-step
solvable group of finite type, although it is not finitely presented.

To be more precise, and quoting from [13]: a configuration η is a function
from Z to Z such that the set {x :η(x) = 0} is finite. Equipped with pointwise ad-
dition, the set of configurations is a group, say Z̃. Z acts on Z̃ by automorphisms
via (y, η) → Tyη where Tyη(x) = η(x − y). The resulting semidirect product is
the wreath product Z � Z. We denote by ε the natural projection of Z � Z onto Z

and by H the projection of Z � Z on Z̃. Thus any element of Z � Z is a couple
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a = (ε(a), η) where η ∈ Z̃. Z � Z is generated by the following four elements:
τ1 = (1,0), τ−1 = τ−1

1 = (−1,0) and σ1 = (0, η1), σ−1 = σ−1
1 = (0, η−1), where

η1(0) = 1, η1(x) = 0 if x = 0, η−1(0) = −1, η−1(x) = 0 if x = 0. We will use |a|
to denote the distance between a ∈ Z � Z and id in the metric induced by the gen-
erating set {τ1, τ−1, σ1, σ−1}.

ε is a homomorphism of Z � Z on R. Another such homomorphism is a →∑
x∈Z H(a)(x).
Let G be a finite generating set: G = {g1, . . . , gK}. Assume that G satisfies

condition (C2). Therefore
∑K

i=1 ε(gi) = 0 and
∑K

i=1
∑

x∈Z H(gi)(x) = 0.
Using Lemma 3.8, in order to prove that condition (C1) holds we may, and

will, replace G by the enlarged generating set: G′ = {τ1, τ1, τ−1, τ−1, σ1, σ−1, g1,

. . . , gK}.
We let φ be the product φ = g1 · · ·gK and φn = φ(τ1·φ)n. In the sequel to this

proof, C and M will denote some constants that depend on G but not on n.
We first note that ε(φn) = n, since ε(φ) = 0. Also note that H(φn)(x) =∑n
j=0 H(φ)(x−j) = ∑x

j=x−n H(φ)(j). And since
∑

x∈Z H(φ)(x) = 0, then there
must be a constant M such that H(φn)(x) = 0 implies that x ∈ [−M,M] or
x ∈ [n − M,n + M]. Thus φn is of the form φn = A(n)τn

1 B(n) for some elements
A(n) and B(n) such that |A(n)| + |B(n)| ≤ C, for some constant C (that does not
depend on n!). Which means that we can write both A(n) and B(n) as products of
elements of {τ1, τ−1, σ1, σ−1} with less than C symbols.

Thus we have obtained a trivial product: id = φn(B
(n))−1τn−1(A

(n))−1 in which:

(i) each element gi appears n + 1 times;
(ii) the numbers of occurrences of σ1 and σ−1 are equal because∑

x∈Z H(φn)(x) = 0 = ∑
x∈Z H(A(n)B(n))(x). Call this number b(n). b(n) is

bounded by some constant that does not depend on n, since |A(n)| + |B(n)| ≤ C;
(iii) by the same argument, τ1 and τ−1 appear the same number of times,

say a(n) and a(n) ≤ n + C.
Choose n such that b(n) ≤ n and a(n) ≤ 2n + 2. We obviously have id =

φnB
(n)−1τn−1A

(n)−1(τ1τ−1)
2n+2−a(n)

(σ1σ−1)
n+1−b(n)

and this last expression
proves (15).

(d) The free group F2 does not satisfy property (C). Choose G = (g1 = a, g2 =
a−1, g3 = b,g4 = b−1, g5 = b−2, g6 = ababa−2). Clearly, G generates. Besides

g1g6g3g5g2g4 = a2· bab·a−2· b−1a−1b−1 = [a2, bab] ∈ [V,V ].
Let n be a positive integer. Let γ be an element of V that can be written as a

product of elements in G using exactly n times each of the gi’s. Let us prove that
γ = id.

First write γ as a product of elements in G with n occurrences of each gi .
We label the different occurrences of g6 by the numbers 1 to n according to the
order in which they appear. Replace the gi’s by their expressions in terms of a,



CENTERED RANDOM WALKS 1009

b, a−1, b−1. We obtain a nonreduced word in the alphabet (a, b, a−1, b−1). The
letters coming from the ith occurrence of g6 are labeled i. We run the following
algorithm to reduce it step by step: read the word starting from the left; do all
cancellations you find on your way; start again when you reach the end of the
word. For i, j ∈ {1, . . . , n}, we draw an edge between i and j if, while running
the cancellation algorithm, one of the “a−1” with label i cancels with one of the
“a” with label j or one of the “a−1” with label j cancels with one of the “a” with
label i. This way we obtain a nonoriented graph structure on {1, . . . , n}. Let J be
the total number of edges of this graph. If J < n, then γ is not id. Indeed, there
are 3n occurrences of “a−1” in the nonreduced word, n of them coming from g2

and 2n of them coming from g6. Of the 2n occurrences of “a−1” coming from g6,
J cancel with some “a” coming from some occurrence of g6, and, at most n of
them cancel with an “a” coming from g1. Thus, after the algorithm has run, there
will be at least (2n − (n + J )) “a−1” left in the reduced word.

The graph structure we have built on {1, . . . , n} satisfies the following proper-
ties:

(i) it has no double edge, that is, we did not draw two edges from i to j . This
is due to the presence of the “b” between the two “a” in g6;

(ii) it has no loop of the form i ↔ j ↔ i;
(iii) a configuration of the form i1 ↔ i2, i3 ↔ i4 with i4 strictly between

i1 and i2 implies that i3 lies between i1 and i2 (in the broad sense).

(iii) follows from the definition of the algorithm.
Thus the graph contains no cycle. Indeed, if i1 ↔ i2 ↔ ·· · ↔ ik was a minimal

cycle (ik = i1 and the labels i1, . . . , ik−1 are pairwise different), then, from (iii),
we deduce that, up to a circular permutation or running the cycle in the opposite
order, the sequence i1, . . . , ik−1 must be increasing. But this is impossible because
the “b” would not cancel.

We conclude that the graph has no cycle. Therefore its number of edges is
strictly less than n. �

3.4. On the velocity. Given the finite generating set G, we consider the in-
duced distance on V : d(x, y) is the minimum number of elements in G ∪ G−1

whose product equals x−1y. This definition corresponds to the definition of dis-
tance we used in Section 2.1.

The speed of the random walk (Xt , t ∈ N) is L = limt→∞ 1
t
d(id,Xt). The en-

tropy of the random walk is h = limt→∞ −1
t

logµt(Xt) where µ is the law of X1

(and therefore µt is the law of Xt ). The subadditive ergodic theorem implies that
the limits defining L and h exist in the almost sure sense as well as in the L1 sense;
both L and h are nonnegative numbers. (See [13], Theorem (8.14), [5], Section IV
or [9], Theorem 1.6.4.)
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It is known, without any symmetry assumption, that h = 0 if and only if the
Poisson boundary of the random walk is trivial; see [5], Section IV or [9], Sec-
tion 1.6. From Corollary 1 in [12] it follows that h = 0 if L = 0. The converse
follows from the classical Carne–Varopoulos inequality in the case of symmetric
random walks. We extend this result in the centered case in the next proposition
and then show in an example how this can be used to prove that some random
walks have vanishing speed.

PROPOSITION 3.11. Assume that (C1) holds. If the entropy vanishes, then
L = 0.

PROOF. It is straightforward once we recall the Carne–Varopoulos bound
from Theorem (2.8): for some constant C, we have

µt(x) ≤ Ce−d2(id,x)/(Ct).

For any α > 0, we then have

0 = h = lim−1

t
E[logµt(Xt)] = lim−1

t

∑
x∈V

logµt(x)µt (x)

≥ lim−1

t

∑
x;d(id,x)≥αt

logµt(x)µt (x)

≥ lim
1

t

∑
x;d(id,x)≥αt

(
− logC + d2(id, x)

Ct

)
µt(x)

≥ α2

C
lim

∑
x;d(id,x)≥αt

µt (x) = α2

C
P[Xt ≥ αt].

Therefore P[Xt ≥ αt] → 0 for any α > 0 and thus L = 0. �

EXAMPLE 3.12. We discuss the application of the last proposition in the case
of Z � Z using the same notation as in the proof of Proposition (3.3)(c).

Let G be a finite generating sequence in Z �Z satisfying condition (C1) or equiv-
alently condition (C2). Since G generates Z �Z, its image by the homomorphism ε

generates Z. Therefore the random walk ε(Xt) is recurrent. It then follows from
the fact that Z �Z is a semidirect product of a recurrent group and an Abelian group
that the Poisson boundary is trivial (see [8], Theorem 3.1), and therefore h = 0 and
therefore, applying our proposition, L = 0.

It should be noted that if we drop the assumption that G generates, the situa-
tion becomes quite different. Choose, for instance, G = {g1 = (+2, T1σ1), g2 =
(−2, σ−1)}. Then G satisfies condition (C2) since ε(g1) + ε(g2) = +2 − 2 = 0
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and
∑

x H(g1)(x)+H(g2)(x) = ∑
x σ1(x)+σ−1(x) = 0. Clearly, G does not sat-

isfy condition (C1). As a matter of fact, there is no way to write id as a non-
empty product of g1 and g2. Besides L = 0. Indeed, each multiplication by g1
adds a “1” at an odd location in Z and each multiplication by g2 adds a “−1” at an
even location in Z. Thus

∑
x∈Z H(Xt)(2x) = −#{s ≤ t :X−1

s−1Xs = g1} and simi-

larly
∑

x∈Z H(Xt)(2x + 1) = #{s ≤ t :X−1
s−1Xs = g2}. So

∑
x∈Z H(Xt)(2x + 1) −

H(Xt)(2x) = t and L > 0.
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