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HITTING PROPERTIES OF PARABOLIC S.P.D.E.’S

WITH REFLECTION

BY ROBERT C. DALANG1 C. MUELLER2 AND L. ZAMBOTTI

École Polytechnique Fédérale, University of Rochester and Politecnico di Milano

We study the hitting properties of the solutions u of a class of parabolic
stochastic partial differential equations with singular drifts that prevent u

from becoming negative. The drifts can be a reflecting term or a nonlinear-
ity cu−3, with c > 0. We prove that almost surely, for all time t > 0, the
solution ut hits the level 0 only at a finite number of space points, which de-
pends explicitly on c. In particular, this number of hits never exceeds 4 and if
c > 15/8, then level 0 is not hit.

1. Introduction. We consider the nonnegative solutions u of the following
classes of stochastic partial differential equations (s.p.d.e.’s) driven by space–time
white noise: the heat equation with repulsion from 0 (introduced in [18])

∂u

∂t
= 1

2

∂2u

∂x2 + c

u3 + ∂2W

∂t ∂x
, c > 0;(1.1)

and the heat equation with reflection at 0 (introduced in [11])

∂u

∂t
= 1

2

∂2u

∂x2 + ∂2W

∂t ∂x
+ η, c = 0.(1.2)

In (1.1) and (1.2), x ∈ [0,1], W = (W(t, x), t ≥ 0, x ∈ R) is a Brownian sheet
on a complete probability space (�,F ,P), the continuous solution u = (ut (x),

t ≥ 0, x ∈ [0,1]) satisfies homogeneous Dirichlet boundary conditions at 0 and 1,
and u ≥ 0 on [0,∞) × [0,1]. Moreover, in (1.2), η is a nonnegative measure on
(0,∞) × (0,1) that is supported by {(t, x) :ut(x) = 0} and is called the reflecting
measure.

The aim of this paper is to study the random contact set

Z = Z(c) := {(t, x) :ut(x) = 0}
for solutions u = u(c) of (1.1) for c > 0, respectively, (1.2) for c = 0. Notice that
(1.1) and (1.2) are stochastic obstacle problems: indeed u ≥ 0 solves an s.p.d.e.
outside the contact set Z, which itself is determined by u. Since the drifts of our
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equations become singular as u approaches 0, then we expect Z to be smaller than
level sets {(t, x) :ut(x) = a} with a > 0.

An important property of (u(c))c≥0 is monotonicity in c (see the proof of
Lemma 3.1): for given initial and boundary conditions, if c ≥ c′ ≥ 0, then a.s.
u(c) ≥ u(c′), so that a.s. Z(c) ⊆ Z(c′). Therefore, it is natural to conjecture that
there exists a c0 > 0, possibly random, such that Z(c) = ∅ for all c > c0. On the
other hand, it is not easy to guess the behavior of Z(c) for small c.

In this paper we study the cardinality of the x sections of the random set Z: that
is, for all t > 0 we define

ζt := |{x ∈ (0,1) :ut(x) = 0}|,
where | · | denotes the cardinality of a set. Then we consider the random variable

ζ = ζ (c) := sup
t∈(0,1]

ζt .(1.3)

Notice that in the definition of ζt , we exclude x ∈ {0,1}, because there u = 0 by
the boundary conditions. By the monotonicity in c, we have ζ (c) ≤ ζ (c′) if c ≥ c′.

Our main results give much more precise information about ζ . First we prove
that for all c ≥ 0, ζ (c) ≤ 4 a.s. This is rather surprising, due to the wild oscillations
of the space–time white noise and to the zero boundary conditions.

Notice that for all c ≥ 0, there exists a unique δ ≥ 3 such that

c = cδ := (δ − 3)(δ − 1)

8
.(1.4)

In [17] and [18], it is proven that the process (ut )t≥0 is stationary if and only if u0 is
distributed like a Bessel bridge of dimension δ; see [14], Chapter XI. In particular,
we have at hand the explicit law of ut(x) for stationary (ut )t≥0, which turns out to
be crucial for obtaining our results.

The second result of this paper states that for all δ > 6, ζ = 0 a.s. Therefore, if
c > 15/8, then the contact set is empty.

As δ decreases from 6 to 3, we have the intermediate behavior

ζ(δ) ≤ 4

δ − 2
a.s.(1.5)

In particular, since ζ is an integer, ζ = 0 a.s. for δ > 6, ζ ≤ 1 a.s. for all δ ∈ (4,6],
ζ ≤ 2 a.s. for all δ ∈ (10/3,4], ζ ≤ 3 a.s. for all δ ∈ (3,10/3] and ζ ≤ 4 a.s. for
δ = 3.

We also give nontrivial lower bounds for ζ . Indeed, we prove that with positive
probability, ζ ≥ 1 for all δ ∈ [3,5] and ζ ≥ 3 for δ = 3. The latter result is particu-
larly interesting, for the following reason. In [17], it was proved that for δ = 3 or,
equivalently, for c = 0, almost surely,

ζt = 1 for η
(
dt × (0,1)

)
-a.e. t.(1.6)
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Therefore, generically ζt = 1 at typical times. By the result of this paper, (1.6) is
not optimal and the set of times t > 0 such that ζt > 1 is a.s. negligible for η, but
nonempty with positive probability.

We recall that Mueller [7] and Mueller and Pardoux [8] considered the
s.p.d.e. with periodic boundary conditions,


∂û

∂t
= ∂2û

∂θ2 + û−α + g(û)
∂2W

∂t ∂θ
, t ≥ 0, θ ∈ S1 := R/Z,

û(0, ·) = û0(·),
where α > 0, û0 : S1 �→ R is continuous, inf û0 > 0 and g satisfies suitable growth
conditions, and proved that α = 3 is the critical exponent for û to hit zero in finite
time. More precisely, the following statements were proved.

1. If α > 3, then a.s. û(t, θ) > 0 for all t ≥ 0 and θ ∈ S1.
2. If α < 3, then with positive probability, there exist t > 0 and θ ∈ S1 such that

û(t, θ) = 0.

Existence for all time of a solution for α = 3 was first proved in [18]. In this
paper, we prove that, in the critical case α = 3, the hitting properties of the solu-
tion depend on the constant c. This is reminiscent of the behavior of the Bessel
processes (Xt)t≥0, solution of

dXt = δ − 1

2Xt

dt + dB, X0 ≥ 0,

where δ > 1 and B is a standard Brownian motion. Indeed, it is well known that X

hits 0 with positive probability if and only if δ < 2; see [14], Chapter XI, Section 1.
Further questions addressed in this paper concern the study of similar hitting

properties for multidimensional solutions of linear s.p.d.e.’s, which continues the
work of Mueller and Tribe [9]. For this class of Gaussian processes, we derive
optimal results.

2. Main results. We define C+ := {ū : [0,1] �→ [0,∞) : ū is continuous,
ū(0) = ū(1) = 0} and we consider a Brownian sheet (W(t, x) : t ≥ 0, x ∈ [0,1])
and the associated filtration (Ft , t ≥ 0), where

Ft = σ {W(s, x), s ≤ t, x ∈ [0,1]} ∨ N

and N is the σ -field generated by all P -null sets. For any δ > 0 and ū ∈ C+, we
consider the unique continuous nonnegative solutions (ut (x) : t ≥ 0, x ∈ [0,1]) of
the following s.p.d.e.’s:

δ ∈ (3,∞),




∂u

∂t
= 1

2

∂2u

∂x2 + (δ − 1)(δ − 3)

8u3 + ∂2W

∂t ∂x
,

ut (0) = ut(1) = 0, t ≥ 0,

u0(x) = ū(x), x ∈ [0,1],
(2.1)
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δ = 3,




∂u

∂t
= 1

2

∂2u

∂x2 + ∂2W

∂t ∂x
+ η(t, x),

u0(x) = ū(x), ut (0) = ut (1) = 0,

u ≥ 0, dη ≥ 0,

∫
udη = 0.

(2.2)

Rigorous meanings of the equations (2.1) and (2.2) are, respectively, given in [18]
and [11], where existence and uniqueness of solutions are also proved. We recall
that in (2.1), the unique solution satisfies u−3 ∈ L1

loc((0,∞) × (0,1)). Moreover,
in (2.2), the nonnegative measure η is a reflecting term, with support included in
{(t, x) :ut(x) = 0}. In [18], it is proved that the solution of (2.1) converges a.s. to
the solution of (2.2) as δ ↘ 3. For this reason, we interpret (2.2) as the case δ = 3
of (2.1).

The main results of this paper are the following two theorems.

THEOREM 2.1. For all ū ∈ C+, the following statements hold.

(a) For δ > 6, the probability that there exist t > 0 and x ∈ (0,1) such that
ut(x) = 0 is 0.

(b) For δ > 4, the probability that there exist t > 0 and {xi, i = 1,2} ⊂ (0,1),
x1 < x2, such that ut (xi) = 0, i = 1,2, is 0.

(c) For δ > 10
3 , the probability that there exist t > 0 and {xi, i = 1,2,3} ⊂

(0,1), x1 < x2 < x3, such that ut(xi) = 0, i = 1,2,3, is 0.
(d) For δ > 3, the probability that there exist t > 0 and {xi, i = 1, . . . ,4} ⊂

(0,1), x1 < · · · < x4, such that ut (xi) = 0, i = 1, . . . ,4, is 0.
(e) For δ = 3, the probability that there exist t > 0 and {xi, i = 1, . . . ,5} ⊂

(0,1), x1 < · · · < x5, such that ut (xi) = 0, i = 1, . . . ,5, is 0.

THEOREM 2.2. For all ū ∈ C+, the following statements hold.

(a) For all δ ∈ [3,5], with positive probability there exist t > 0 and x ∈ (0,1)

such that ut(x) = 0.
(b) For δ = 3, with positive probability there exist t > 0 and {x1, x2, x3} ⊂

(0,1), x1 < x2 < x3, such that ut(xi) = 0, i = 1,2,3.

Notice that these results are optimal only for δ ∈ (4,5], since it is only for such δ

that they imply that the upper bound for ζ [defined in (1.3)] is attained with positive
probability.

We recall that Mueller and Tribe [9] have defined the stationary pinned string,
that is, the solution Ut(x) ∈ Rd , d ∈ N, of

∂Ut

∂t
= 1

2

∂2Ut

∂x2 + ∂2Wd

∂t ∂x
, t > 0, x ∈ R,(2.3)
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where Wd = (W 1, . . . ,Wd), {Wi}i=1,...,d is an independent sequence of copies
of W and (U0(x) :x ∈ R) is a two-sided Rd -valued Brownian motion independent
of Wd and satisfying

U0(0) = 0, E
[(

U0(x) − U0(y)
)2] = |x − y|2.

In particular,

Ut(x) =
∫

R
Gt(x − z)U0(z) dz +

∫ t

0

∫
R

Gs(x − z)Wd(ds, dz),(2.4)

where Gt is the density of the Gaussian distribution with mean zero and variance t .
The following result identifies the dimensions in which the stationary pinned string
hits points.

THEOREM 2.3 ([9], Theorem 1). The probability that there exist t > 0 and
x ∈ R such that Ut(x) = 0 is positive if and only if d ≤ 5.

In this paper we complete this result as follows. First, following the definition
of ζ in (1.3), we introduce the random variable

Z = Z(d) := sup
t∈(0,1]

|{x ∈ R :Ut(x) = 0}|,(2.5)

where | · | again denotes cardinality.

THEOREM 2.4.

1. For d ≥ 4, the probability that there exist t > 0 and x1 < x2 such that
Ut(xi) = 0, i = 1,2, is 0. [In fact, for d ≥ 4, Z(d) ≤ 1 a.s. and by Theorem 2.3,
P {Z(d) = 1} > 0 if d ∈ {4,5} and Z(d) = 0 a.s. if d ≥ 6.]

2. The probability that there exist t > 0 and x1 < x2 < x3 such that Ut(xi) = 0,
i = 1,2,3, is positive if and only if d ≤ 3. In addition, Z(3) ≤ 3 a.s.

3. If d = 2, then for all k ∈ N, with positive probability, there exist t > 0 and
x1 < · · · < xk such that Ut(xi) = 0, i = 1, . . . , k.

Notice that for the Gaussian process U and for d ≥ 3, our upper bounds are at-
tained with positive probability. Notice also that Theorems 2.2 and 2.4 are related:
in fact, for d, k ∈ N with d ≥ 3, the following implications hold:

P
(
Z(d) = k

)
> 0 �⇒ P

(
ζ(δ) = k

)
> 0 ∀ δ ≤ d,

P
(
Z(d) = k

) = 0 �⇒ P
(
ζ(δ) = k

) = 0 ∀ δ > d.

These relationships can be explained with a result of [17] for c = 0 and [18] for
c > 0, relating (1.1), (1.2) and (2.3) for δ = d ∈ N: see the proofs of Theorems
2.1 and 2.2 below.

Although our approach does not yield optimal results for the nonlinear equa-
tions (1.1) and (1.2), on the basis of Theorem 2.4 we can propose the following
conjectures:
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1. We conjecture that ζ(δ) < 4
δ−2 a.s. for all δ ≥ 3.

2. We conjecture that P(ζ(δ) = 1) > 0 for δ ∈ [4,6), P(ζ(δ) = 2) > 0 for δ ∈
[10/3,4) and P(ζ(δ) = 3) > 0 for δ ∈ [3,10/3).

Part 1 would improve (1.5) and Theorem 2.1 when δ ∈ {3,10/3,4,6}, part 2 would
improve Theorem 2.2 for δ ∈ (3,4) ∪ (5,6) and these bounds would be optimal.

This paper is organized as follows. In Section 3 we study the same s.p.d.e.’s as
(2.1) and (2.2), but with positive boundary conditions for the former. This makes
it possible to establish some Hölder continuity properties of the solution and to
prove the analog of Theorem 2.1 in this case. In Section 4 we use the results of
Section 3 and some comparison theorems to prove Theorem 2.1. In Section 5 we
turn to the vector-valued linear equation (2.3), proving Theorem 2.4. In Section 6
we use Theorem 2.4 to establish Theorem 2.2.

3. Hölder continuity and a variant on Theorem 2.1. In this section we
prove a variant on Theorem 2.1 in which the boundary conditions of the
s.p.d.e. (2.1) are positive; those of (2.2) may be positive or may vanish. Our ap-
proach to proving this theorem uses a classical discretization technique [4]. After
choosing a grid in the rectangle [0, T ] × [0,1], we perform two steps: first, we
prove that the probability of finding a point on the grid where u is close to 0 is
small; second, we control the oscillations of u, proving that the result on the grid
extends to the whole rectangle.

The first step is based on the explicit knowledge of the invariant measure of
equations (2.1) and (2.2), obtained in [17] and [18]: indeed, in the stationary case
the distribution of ut(x) is known for fixed (t, x) in the grid.

The second step is based on an estimate of the Hölder regularity of u. This issue
is nontrivial since the nonlinearities in (2.1) and (2.2) become singular as u → 0. In
fact, we can prove that u is Hölder-continuous in space, but as far as time regularity
is concerned, only our lower bound is optimal: since the singular terms are positive,
u does not decrease too quickly. See Lemma 3.1 and, in particular (3.5), as well as
Remark 3.7.

Let δ ≥ 3, [b, c] ⊆ [0,1] and a ≥ 0, and denote by (vt (x) : t ≥ 0, x ∈ [b, c]) the
unique solution of

δ ∈ (3,∞),




∂v

∂t
= 1

2

∂2v

∂x2 + (δ − 1)(δ − 3)

8v3 + ∂2W

∂t ∂x
,

vt (b) = vt (c) = a, t ≥ 0,

v0(x) = v(x), x ∈ [b, c],
(3.1)

δ = 3,




∂v

∂t
= 1

2

∂2v

∂x2 + ∂2W

∂t ∂x
+ ζ(t, x),

v0(x) = v(x), vt (b) = vt (c) = a,

v ≥ 0, dζ ≥ 0,

∫
v dζ = 0,

(3.2)
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where v : [b, c] �→ R is continuous nonnegative with v(b) = v(c) = a. Clearly,
u = v if a = 0 and [b, c] = [0,1].

For b < c and β > 0, let Cβ([b, c]) denote the space of Hölder-continuous func-
tions on [b, c] with Hölder exponent β , equipped with the norm

‖v‖β := sup
x∈[b,c]

|v(x)| + sup
b<x<y<c

|v(x) − v(y)|
|x − y|β .

In the proof of Theorem 2.1, the following lemma plays a key role.

LEMMA 3.1. Let δ ≥ 3, a ≥ 0 satisfy (I) or (II), where

(I) δ = 3, a ≥ 0; (II) δ > 3, a > 0.(3.3)

Let (vt (x) : t ≥ 0, x ∈ [b, c]) satisfy (3.1) or (3.2). Then for all β ∈ (0,1/2) and
T > 0, if v ∈ Cβ([b, c]), then there exists a finite random variable γv such that

|vt (x) − vt (y)| ≤ γv|x − y|β, x, y ∈ [0,1], T ≥ t ≥ 0,(3.4)

and

vt (x) − vs(x) ≥ −γv(t − s)β/2, T ≥ t ≥ s ≥ 0, x ∈ [0,1].(3.5)

We postpone the proof of Lemma 3.1 to the end of this section. Let (gt (x, y) : t >

0, x, y ∈ [b, c]) be the Green function of the heat equation with homogeneous
Dirichlet boundary conditions


∂g

∂t
= 1

2

∂2g

∂x2 , t > 0, x ∈ (b, c),

gt (b, y) = gt (c, y) = 0, t > 0, y ∈ (b, c),

g0(x, y) = δx(y), x ∈ (b, c),

where δx is the Dirac mass at x ∈ (b, c).

REMARK 3.2. As proven in [16], for the stochastic convolution,

S
(v̄)
t (x) :=

∫ c

b
gt (x, y)v(y) dy +

∫ t

0

∫ c

b
gt−s(x, y)W(ds, dy),(3.6)

if v ∈ Cβ([b, c]), then there exists a finite random variable γS such that a.s., for all
t, s ∈ [0, T ], x, y ∈ [b, c],∣∣S(v̄)

t (x) − S(v̄)
s (y)

∣∣ ≤ γS(|t − s|β/2 + |x − y|β).(3.7)

By (3.4), v satisfies the same Hölder continuity in space as S
(v̄)
t (·). On the other

hand, the singular drift v−3 might produce worse behavior in time, in particular
around (t, x) such that vt (x) = 0. Nevertheless, by (3.5), t �→ vt (x) cannot de-
crease more quickly than t �→ S

(v̄)
t (x).
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We denote by (Xθ : θ ∈ [b, c]) a Bessel bridge of dimension δ between a and a

over the interval [b, c] (see [14]). We shall exploit the relationship of this bridge
with the Bessel process Y (δ) of dimension δ. Let pt(x, y) denote the transition
semigroup of Y (δ). We recall that for x > 0, y ≥ 0 and t > 0,

pt(x, y) := 1

t

(
y

x

)(δ/2)−1

y exp
(
−x2 + y2

2t

)
I(δ/2)−1

(
xy

t

)
,(3.8)

where I is the modified Bessel function and for x = 0,

pt(0, y) = 1

2δ/2−1tδ/2�(δ/2)
yδ−1e−y2/(2t);

see [14], Chapter XI, Section 1. We note for future reference that for x ≥ 0, Iν(x) =
xνλν(x) with λν locally bounded and λν(0) > 0. In particular, for all t0 > 0, there
exists a constant C such that

pt(x, y) ≤ Cyδ−1 ∀ t ≥ t0, x, y ∈ [0,1].(3.9)

We recall that the laws of (Xθ : θ ∈ [b, (b+ c)/2]) and (Y
(δ)
θ : θ ∈ [b, (b+ c)/2])

are mutually absolutely continuous. Indeed, let b = 0 for simplicity. By the Markov
property, for any bounded functional �,

E
(
�(Xθ, θ ≤ c/2)

) = E
(
�

(
Y

(δ)
θ , θ ≤ c/2

)
p̃c/2

(
Y

(δ)
c/2, a

))
,(3.10)

where

p̃c/2(y, a) = pc/2(y, a)

pc(0, a)
if a �= 0(3.11)

and p̃c/2(y,0) = lima↓0 p̃c/2(y, a) = exp(−y2/c)/(c/2).
We now recall the following result, proved in [17] for δ = 3 and in [18] for

δ > 3.

PROPOSITION 3.3. For any δ ≥ 3, v is stationary if and only if (v(x) :x ∈
[b, c]) is distributed like X and independent of W .

We now prove the following lemma.

LEMMA 3.4. For all δ ≥ 3 and β ∈ (0,1/2), there exists a finite real random
variable γX such that a.s.

|Xθ − Xθ ′ | ≤ γX|θ − θ ′|β, θ, θ ′ ∈ [b, c].

PROOF. Without loss of generality, we can suppose that b = 0. Let Y (δ) be a
Bessel process of dimension δ with Y

(δ)
0 = a. Since the laws of (Xθ : θ ∈ [0, c/2])

and (Y
(δ)
θ : θ ∈ [0, c/2]) are mutually absolutely continuous and the law of X is
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invariant under the time reversal θ �→ c − θ , it is enough to prove the Hölder con-
tinuity of Y (δ) on [0, c/2].

For δ = 3, the result follows from the equality in law between Y (3) and the mod-
ulus of a Brownian motion of dimension 3. Let (Bθ )θ∈[0,1] be a standard Brownian
motion. We recall that for all δ ≥ 3, we can realize Y (δ) as the unique strong solu-
tion of the stochastic differential equation (s.d.e.)

Y
(δ)
θ = a +

∫ θ

0

δ − 1

2Y
(δ)
s

ds + Bθ, θ ∈ [0,1]

(see [14], Chapter XI, Section 1, which also gives the s.d.e. for the square of Y (δ)).
Moreover, via standard comparison theorems (see, e.g., [14], Chapter IX, Sec-
tion 3), which apply to the s.d.e. for the square of Bessel processes, the following
monotonicity holds: if δ ≥ δ′, then Y (δ) ≥ Y (δ′) a.s. Now for any δ > 3 and θ ≤ θ ′,∣∣Y (δ)

θ ′ − Y
(δ)
θ

∣∣ ≤ ∣∣(Y (δ)
θ ′ − Y

(δ)
θ

) − (Bθ ′ − Bθ)
∣∣ + |Bθ ′ − Bθ |

and the first term on the right-hand side is equal to∫ θ ′

θ

δ − 1

2Y
(δ)
s

ds ≤
∫ θ ′

θ

δ − 1

2Y
(3)
s

ds

= δ − 1

2

[(
Y

(3)
θ ′ − Y

(3)
θ

) − (Bθ ′ − Bθ)
];

hence, the result follows from the Hölder continuity of B and Y (3). �

THEOREM 3.5. Let δ and a satisfy (I) or (II) in (3.3). If k ∈ N satisfies

k >
4

δ − 2
,(3.12)

then the probability that there exist t > 0 and x1, . . . , xk ∈ [b, c] such that b <

x1 < · · · < xk < c and vt (xi) = 0 for all i = 1, . . . , k, is 0.

PROOF. First, we notice that it is enough to consider the case of stationary v,
that is, by Proposition 3.3, to consider v distributed like X and independent of W .
Indeed, for all n ∈ N, the law of (vt : t ≥ 1/n) for any v ∈ C+ is absolutely contin-
uous with respect to the law of (vt : t ≥ 1/n) with v stationary, since, as proven in
[18], page 341, for any v ∈ C+ the law of v1/n ∈ C+ is absolutely continuous with
respect to the law of X.

Now, by Lemma 3.4, v ∈ Cβ([0,1]) a.s. for all β ∈ (0,1/2) and, by Lemma 3.1,
v satisfies (3.4) and (3.5).

Let Q denote the set of rational numbers. For all {qi : i = 1, . . . ,2k} ⊂ Q such
that b < q1 < · · · < q2k < c, we define Q := [0,1] × ∏k

i=1[q2i−1, q2i] and the
random set

A := {(t, x1, . . . , xk) ∈ Q :vt (xi) = 0, i = 1, . . . , k}.
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Then the claim will follow if we prove that P(A �= ∅) = 0 for all such (qi)i .
By (3.12), we can fix α ∈ (0,1) such that

4 + 2k − αδk < 0.(3.13)

For such α, we define the random set

An := {(t, x1, . . . , xk) ∈ Q :vt (xi) ≤ 2−αn, i = 1, . . . , k}.
For all n ∈ N, let

Gn := {(j2−4n, i12−2n, . . . , ik2−2n) : j, i1, . . . , ik ∈ Z}
and consider the events

Kn := {An ∩ Gn �= ∅} and Ln := {A �= ∅,An ∩ Gn = ∅}.
Since A ⊂ An a.s.,

{A �= ∅} ⊆ Kn ∪ Ln.

To prove that P {A �= ∅} = 0, we will show that the probabilities of Kn and Ln

tend to 0 as n → ∞.
Step 1. By definition, on Ln there exists a random (t, x) ∈ [0,1] × (b, c) such

that vt (x) = 0 but An ∩Gn = ∅. In particular, on Ln there exists a random (s, y) ∈
{(j2−4n, i2−2n) : j = 1, . . . ,24n, i = 1, . . . ,22n} such that

vs(y) > 2−αn, 0 < t − s ≤ 2−4n, |x − y| ≤ 2−2n.

Let β ∈ (α/2,1/2). Then on Ln, by (3.4), (3.5) and because s < t ,

2−αn < vs(y) = vs(y) − vt (x)

= [vs(y) − vt (y)] + [vt (y) − vt (x)]
≤ γv

(
(t − s)β/2 + |y − x|β) ≤ γv2−2βn+1.

Therefore,

P(Ln) ≤ P(2−αn < γv2−2βn+1) = P
(
γv > 2(2β−α)n−1) → 0

as n → ∞, since 2β > α and γv is a.s. finite.
Step 2. We set In := Gn ∩ Q. Then, by definition,

P(Kn) = P
(∃ (t, x1, . . . , xk) ∈ In :vt (xi) ≤ 2−αn, i = 1, . . . , k

)
.
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Let Jn := {(x1, . . . , xk) : (0, x1, . . . , xk) ∈ In}. Then

P(Kn) ≤
24n∑
j=1

∑
(x1,...,xk)∈Jn

P
(
vj2−4n(xi) ≤ 2−αn, i = 1, . . . , k

)

= 24n
∑

(θ1,...,θk)∈Jn

P
(
Xθi

≤ 2−αn, i = 1, . . . , k
)
,

(3.14)

since we have chosen u to be stationary and therefore, for any t ≥ 0, vt is distrib-
uted like X. By (3.10), for ε > 0,

P
(
Xθi

≤ ε, i = 1, . . . , k
)

=
∫
[0,ε)k

[
k∏

i=1

pθi−θi−1(xi−1, xi)

]
p̃c−θk

(xk, a) dx1 · · ·dxk,

where θ0 := b, x0 := a and p̃c−θk
(xk, a) is defined in (3.11). We recall that

θi ∈ [q2i−1, q2i], i = 1, . . . , k, and 0 < q1 < · · · < q2k < 1. In all cases, the fac-
tor p̃c−θk

(xk, a) is bounded above and, therefore, by (3.9), there exists a constant
C > 0 such that for all (θi)i=1,...,k ∈ Jn,

P
(
Xθi

≤ ε, i = 1, . . . , k
) ≤ C

[∫ ε

0
xδ−1 dx

]k

≤ Cεδk, ε > 0.

Therefore, by (3.14), since the number of elements of Jn is not more than 22kn,

P(Kn) ≤ C24n22kn(2−αn)δk = C2(4+2k−αδk)n −→ 0

as n → ∞, by (3.13) above. �

In the proof of Lemma 3.1 we need the following result, which is essentially a
version of the maximum principle. For T > 0 we set OT := [0, T ] × [b, c] and

‖F‖T := sup
OT

|F |, F ∈ C(OT ).

LEMMA 3.6. Let V ∈ C1,2(OT ) and ψ,F ∈ C(OT ) with ψ ≤ 0. Suppose that
V solves the equation 


∂V

∂t
= 1

2

∂2V

∂x2 + ψ · V + ψ · F,

V0(x) = 0
(3.15)

with homogeneous Dirichlet or Neumann boundary conditions. Then the following
estimate holds:

‖V ‖T ≤ ‖F‖T .(3.16)
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PROOF. We consider first the case of homogeneous Neumann boundary con-
ditions. We denote by Ex the law of the reflecting Brownian motion (xτ , τ ≥ 0)

with values in [b, c] started at x0 = x ∈ [b, c]:
xτ = x + Bτ + 1

2Lb
τ − 1

2Lc
τ , τ ≥ 0,

where Lα is the local time process of (xτ )τ at α and B is a standard Brownian
motion. We define, for all 0 ≤ s ≤ t ≤ T ,

Ms := exp
(∫ s

0
ψt−r (xr) dr

)
Vt−s(xs).

By Itô’s formula and (3.15), we find that

dMs = exp
(∫ s

0
ψt−r (xr) dr

)
ψt−s(xs)Ft−s(xs) ds + dms,

where m is a martingale. Integrating over s ∈ [0, t] and taking expectations, we
obtain

Vt(x) = Ex

[∫ t

0
exp

(∫ s

0
ψt−r (xr) dr

)
ψt−s(xs)Ft−s(xs) ds

]
.

Using the hypothesis ψ ≤ 0, we find that

|Vt(x)| ≤ −‖F‖T Ex

[∫ t

0
exp

(∫ s

0
ψt−r (xr) dr

)
ψt−s(xs) ds

]
.

The ds integral inside the expectation can be evaluated explicitly and equals

exp
(∫ t

0
ψt−r (xr) dr

)
− 1 ≥ −1.

Therefore, |Vt(x)| ≤ ‖F‖T and (3.16) is proved in the case of Neumann boundary
conditions. The case of Dirichlet boundary conditions follows similarly by killing
(xτ )τ≥0 if it hits b or c before time t . �

PROOF OF LEMMA 3.1. We recall that the solutions of (3.1) and (3.2) are
constructed in [18], respectively, [11], as monotone nondecreasing limits for ε ↓ 0
and λ ↓ 0 of solutions z = zε,λ,δ of the s.p.d.e.


∂z

∂t
= 1

2

∂2z

∂x2 + fε,λ,δ(z) + ∂2W

∂t ∂x
,

zt (b) = zt (c) = a, t ≥ 0,

z0(x) = v(x), x ∈ [b, c],
(3.17)

where fε,λ,δ := f1 + f2 and using the notation (1.4),

f1(r) := arctan([r ∧ 0]2)

ε
,

f2(r) := cδ

λ + [r ∨ 0]3 , r ∈ R,
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and ε, λ > 0. Notice that [11] and [18] use f1(r) = r−/ε instead of the definition
above: our choice does not change the limit of zε,λ,δ as ε ↓ 0 and λ ↓ 0, but it
makes f1(·) differentiable at 0.

Observe that for fixed ε < ε′, λ < λ′ and δ > δ′ ≥ 3, Theorem I.3.1 of [12]
implies that zε,λ,δ ≥ zε′,λ′,δ′

and, therefore, c ≤ c′ implies u(c) ≤ u(c′).
Therefore, it is enough to prove that there exist finite random variables

γ1 and γ2, independent of ε, λ > 0, such that

|zε,λ,δ
t (x) − z

ε,λ,δ
t (y)| ≤ γ1|x − y|β, x, y ∈ [0,1], T ≥ t ≥ 0,(3.18)

and

z
ε,λ,δ
t (x) − zε,λ,δ

s (x) ≥ −γ2(t − s)β/2, T ≥ t ≥ s ≥ 0, x ∈ [0,1].(3.19)

Notice that fε,λ,δ is nonnegative and bounded with (bounded) Lipschitz-
continuous derivative f ′

ε,λ,δ (the bounds depend on ε, λ, δ), and f ′
ε,λ,δ ≤ 0 over R.

Moreover, since either (I) or (II) in (3.3) is satisfied, for δ = 3 and r ≥ 0 or for
δ > 3 and all r > 0, we have

sup
ε,λ

fε,λ,δ(r) < ∞.(3.20)

PROOF OF (3.18). For η ∈ (0, T ), set OT,η := [η,T ] × [b, c], and for β ∈
(0,1), denote by Cβ/2,β(OT,η) the set of continuous N :OT,η �→ R such that

[N]β/2,β := sup
η<s<t<T

sup
b<x<y<c

|Nt(x) − Ns(y)|
|t − s|β/2 + |x − y|β < ∞.

Moreover, let C
β/2,β
0 (OT,η) be the set of all N ∈ Cβ/2,β(OT,η) such that Nt(b) =

Nt(c) = 0 for all t ∈ [η,T ]. When η = 0, we write OT instead of OT,0.
It is easy to check that z

ε,λ,δ
t (x) = a +w

(S)
t (x)+S

(v̄−a)
t (x), where for any func-

tion N ∈ C
β/2,β
0 (OT ), w = w(N) is the unique solution of the partial differential

equation (p.d.e.)


∂wt(x)

∂t
= 1

2

∂2wt(x)

∂x2 + fε,λ,δ

(
a + wt(x) + Nt(x)

)
,

w0(x) = 0, x ∈ [b, c],
wt (b) = wt(c) = 0, t ≥ 0,

and S = S(v̄−a) is defined in (3.6), with v̄ replaced by v̄ − a. Clearly, w(N) =
hε,λ,δ + k(N), where for all N ∈ C

β/2,β
0 (OT ), h = hε,λ,δ and k = k(N) are the

unique solutions of 


∂ht (x)

∂t
= 1

2

∂2ht (x)

∂x2 + fε,λ,δ(a),

h0(x) = 0, x ∈ [b, c],
ht (b) = ht (c) = 0, t ≥ 0,

(3.21)
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and 


∂k(N)

∂t
= 1

2

∂2k(N)

∂x2 + fε,λ,δ

(
a + k(N) + h + N

) − fε,λ,δ(a),

k
(N)
0 (x) = 0, x ∈ [b, c],

k
(N)
t (b) = k

(N)
t (c) = 0, t ≥ 0.

(3.22)

Express ht (x) as the convolution of the Green function g and the constant
fε,λ,δ(a), and use (3.20) and the integrability of the partial derivative of g with
respect to x to see that

sup
ε,λ>0

‖∂xh
ε,λ,δ‖T = κ(a, δ, T ) < ∞,(3.23)

where ‖ · ‖T denotes the sup-norm over OT .
Fix N,M ∈ C

β/2,β
0 (OT ) and set V := k(N) − k(M). Then by the mean value

theorem, we find that V satisfies (3.15) with F := N − M and

ψt(x) = f ′
ε,λ,δ(rt (x)) ≤ 0,

where rt (x) is some number between a + k
(N)
t (x) + ht (x) + Nt(x) and a +

k
(M)
t (x) + ht (x) + Mt(x). Moreover, V satisfies homogeneous Dirichlet bound-

ary conditions. By Lemma 3.6, we obtain
∥∥k(N) − k(M)

∥∥
T ≤ ‖N − M‖T , N,M ∈ C

β/2,β
0 (OT ),(3.24)

where ‖ · ‖T denotes the sup-norm over OT . We notice that the same estimate can
also be proven with the arguments of [11], (B), page 83.

We now claim that for each β ∈ (0,1),

sup
ε,λ>0

sup
0<t<T

sup
b<x<y<c

|k(S)
t (x) − k

(S)
t (y)|

|x − y|β < ∞.(3.25)

To establish this, notice first, by [6], Proposition 7.3.2, that k(N) ∈ C1,2(OT,η)

and that the inhomogeneous term in (3.22) vanishes at x = b and x = c. Since
∂k(N)

∂t
(x) = 0 for x ∈ {b, c}, we see by continuity that

∂2k
(N)
t

∂x2 (b) = ∂2k
(N)
t

∂x2 (c) = 0, t ∈ (0, T ].(3.26)

Recall that S = S(v̄−a) is the stochastic convolution defined by (3.6) above, with
v̄ replaced by v̄ − a. For ρ > 0, set

S
ρ
t (x) :=

∫ c

b
gρ2(x, y)St (y) dy, x ∈ [b, c], t ≥ 0.
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By (3.7), S belongs to C
β/2,β
0 (OT ). Therefore, Sρ belongs to C

β/2,β
0 (OT ) and

admits a partial derivative in x, ∂xS
ρ ∈ Cβ/2,β(OT ). Moreover, a direct calculation

shows that there exists a constant Cβ < ∞ such that a.s. for all ρ > 0,

‖S − Sρ‖T ≤ CβρβγS, ‖∂xS
ρ‖T ≤ Cβ

ρ1−β
γS,(3.27)

where γS is the random variable in (3.7) above. In particular, by (3.24) and (3.27),∥∥k(S) − k(Sρ)
∥∥
T ≤ CβγSρβ.(3.28)

Let w̃ be the solution of the p.d.e.


∂w̃

∂t
= 1

2

∂2w̃

∂x2 + f ′
ε,λ,δ

(
a + k(Sρ) + hε,λ,δ + Sρ) · (w̃ + ∂xh

ε,λ,δ + ∂xS
ρ),

w̃0(x) = 0, x ∈ [b, c],
∂w̃t

∂x
(b) = ∂w̃t

∂x
(c) = 0, t ≥ 0.

Choosing N = Sρ and formally differentiating (3.22) with respect to x, we see
that, in fact, w̃ = ∂xk

(Sρ) [note that the boundary conditions for w̃ are compatible
with (3.26)]. Moreover, setting V := w̃, then V satisfies (3.15) with

ψ := f ′
ε,λ,δ(a + hε,λ,δ + k + Sρ) ≤ 0, F := ∂xh

ε,λ,δ + ∂xS
ρ,

and with homogeneous Neumann boundary conditions. Therefore, by Lemma 3.6,∥∥∂xk
(Sρ)

∥∥
T ≤ ‖∂xh

ε,λ,δ‖T + ‖∂xS
ρ‖T .(3.29)

Therefore, by (3.23), (3.27), (3.28) and (3.29), there exists a finite random vari-
able γk , not depending on ε or λ, such that∥∥k(S) − k(Sρ)

∥∥
T ≤ γkρ

β,
∥∥∂xk

(Sρ)
∥∥
T ≤ γk

ρ1−β
.(3.30)

It follows that∣∣k(S)
t (x) − k

(S)
t (y)

∣∣ ≤ 3γk|x − y|β, x, y ∈ [b, c], t ∈ [0, T ].(3.31)

Indeed, for x, y ∈ [b, c], setting ρ := |x − y|, by (3.30),∣∣k(S)
t (x) − k

(S)
t (y)

∣∣
≤ ∣∣k(S)

t (x) − k
(Sρ)
t (x)

∣∣
+ ∣∣k(Sρ)

t (x) − k
(Sρ)
t (y)

∣∣ + ∣∣k(Sρ)
t (y) − k

(S)
t (y)

∣∣
≤ 2γkρ

β + γk

ρ1−β
|x − y| = 3γk|x − y|β.

Since (3.31) is uniform in ε, λ, we obtain (3.25).
By (3.23) and (3.25), we obtain (3.18) with γ1 := κ(a, δ, T ) + 3γk + γS . �
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PROOF OF (3.19). The mild formulation of (3.17) yields

zt (x) =
∫ c

b
gt−s(x, y)zs(y) dy +

∫ t

s

∫ c

b
gt−r (x, y)fε,λ,δ(zr(y)) dy dr

+
∫ t

s

∫ c

b
gt−r (x, y)W(dr, dy).

Since fε,λ,δ ≥ 0, by (3.7),

zt (x) − zs(x) ≥ −
∫ c

b
gt−s(x, y)|zs(y) − zs(x)|dy − γS(t − s)β/2

for all T ≥ t ≥ s ≥ 0. By (3.18) and a standard Gaussian estimate for g,∫ c

b
gt−s(x, y)|zs(y) − zs(x)|dy ≤

∫
R

γz,1|y|β√
2π(t − s)

e−y2/(2(t−s)) dy

≤ γz,1(t − s)β/2.

Therefore, we obtain (3.19) with γ2 := γz,1 + γS . The proof of Lemma 3.1 is com-
plete. �

REMARK 3.7. In the case where δ > 6, one can easily obtain actual Hölder
continuity in time of the solution v of (3.1), rather than the lower bound obtained
in (3.5). Consider for simplicity the case [b, c] = [0,1]. More precisely, using the
mild formulation of (3.1), it suffices to consider the process

vt (x) = S
(v̄)
t (x) +

∫ t

0

∫ 1

0
gt−s(x, y)

cδ

(vs(y))3 ds dy,

where S(v̄) is defined in (3.6) with b = 0 and c = 1, and v̄ is a Bessel bridge
of dimension δ independent of W . The first term is Hölder-continuous in t with
exponent 1/4, by (3.7), so we check this property for the second term.

Fix ε > 0 and split the dy integral into three integrals, over [0, ε], [1 − ε,1]
and [ε,1 − ε], yielding, respectively, three terms v

(1)
t (x), v

(2)
t (x) and v

(3)
t (x). For

x ∈ [2ε,1 − 2ε], the first two terms are C∞. Notice that for such x and 0 < t1 <

t2 < T , by the Cauchy–Schwarz inequality,

(
v

(3)
t1

(x) − v
(3)
t2

(x)
)2 ≤

[∫ T

0

∫ 1−ε

ε

(
gt1−s(x, y)1{s≤t1} − gt2−s(x, y)1{s≤t2}

)2
ds dy

]

×
∫ T

0

∫ 1−ε

ε

c2
δ

(v
(3)
s (y))6

ds dy.

It is well known ([1], Lemma B.1) that the first factor is bounded by C(t2 − t1)
1/2,

so it suffices to check that the second factor is finite a.s. Using the explicit form of
the marginal densities of the Bessel bridge [14], one checks that this is indeed the
case.
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4. Proof of Theorem 2.1. The proof is based on Theorem 3.5 and on a com-
parison technique.

For δ ≥ 3, we define u(δ) as follows: u(3) is the solution of (2.2) and, for δ > 3,
u(δ) is the solution of (2.1). Notice that the result concerning u(3) is already es-
tablished by Theorem 3.5, since (I) in (3.3) and (3.12) are satisfied by k = 5 and
δ = 3.

Let δ > 3. By the monotonicity in δ (see the beginning of the proof of
Lemma 3.1), almost surely, u(δ) ≥ u(3). Let ε ∈ (0,1/2), T > 0 and β ∈
(1/4,1/2). Consider the intervals I1 = [0, ε] and I2 = [1 − ε,1], and the random
variable

η := inf
t∈[ε,T ] min

i=1,2
sup
x∈Ii

u
(3)
t (x).

By the result just established for u(3), there is no t ∈ [ε,1] such that u
(3)
t (·) vanishes

identically on I1 or I2, and therefore η > 0 a.s.
For n, j ∈ N, set tn,j = j2−8n and let jn = inf{j ≥ 0 : tn,j > ε}. Let Xn,j,i be

the leftmost (but in fact unique) point in Ii such that

u
(3)
tn,j

(Xn,j,i) = sup
x∈Ii

u
(3)
tn,j

(x).

Then Xn,j,i is Ftn,j
-measurable.

Let γv be the random variable that appears in (3.5) (for δ = 3, a = 0). For n ∈ N,
let

Fn = {
η > 2−n+1, γv < 2n(4β−1)}.

Because η > 0 a.s. and γv < ∞ a.s.,

P

( ⋃
n∈N

Fn

)
= 1.

We claim that for all n ∈ N, ω ∈ Fn, j ∈ [jn, T 24n], t ∈ [tn,j , tn,j+1] and x =
Xn,j,1 or x = Xn,j,2,

u
(δ)
t (x) ≥ 2−n.(4.1)

Indeed, u(δ) ≥ u(3) a.s. Moreover, by the definition of Fn, for ω ∈ Fn, we have

u
(3)
tn,j

(Xn,j,i) ≥ η > 2−n+1, i = 1,2.

Also, for t ∈ [tn,j , tn,j+1], by (3.5),

u
(3)
t (x) − u

(3)
tn,j

(x) ≥ −γv(t − tn,j )
β/2 ≥ −γv2−4βn ≥ −2−n.

Finally, for ω ∈ Fn and t ∈ [tn,j , tn,j+1],
u

(δ)
t (Xn,j,i) ≥ u

(3)
t (Xn,j,i) ≥ u

(3)
tn,j

(Xn,j,i) − 2−n > 2−n, i = 1,2.(4.2)
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Now let ũ be the solution of (3.1) in the domain [tn,j , tn,j+1] × [b, c], where
b = Xn,j,1 and c = Xn,j,2, with (random) initial condition

ũtn,j
(·) =




2−n, if min
(
u

(δ)
tn,j

(b), u
(δ)
tn,j

(c)
) ≤ 2−n,

min
(
u

(δ)
tn,j

(·),2−n
)
, otherwise,

and boundary conditions 2−n. Notice that Theorem 3.5 applies to ũ: since the
initial condition is Ftn,j

-measurable, we can condition on this σ -field.
We claim that the following holds:

u
(δ)
t (x) ≥ ũt (x), (t, x) ∈ [tn,j , tn,j+1] × [b, c], ω ∈ Fn.(4.3)

Since ũ has the desired property by Theorem 3.5, it would follow that u(δ) does
too. Thus, (4.3) would finish the proof of Theorem 2.1.

To establish (4.3), we consider again the process z = zε,λ,δ , which solves the
s.p.d.e. (3.17) with a and b replaced by 0, c replaced by 1 and v̄ replaced by ū. Re-
call that u(δ) is the monotone limit of zε,λ,δ as ε ↘ 0 and then λ ↘ 0. In particular,

u
(δ)
t (x) = sup

ε>0,λ>0
z
ε,λ,δ
t (x).

For ω ∈ Fn and t ∈ [tn,j , tn,j+1], by (4.2), u
(δ)
t (b) > 2−n and u

(δ)
t (c) > 2−n. By

Dini’s theorem, the convergence of zε,λ,δ to u(δ) is uniform on OT , so that we can
find �(ω) such that for all ε ≤ �(ω) and λ ≤ �(ω), we have z

ε,λ,δ
t (b) > 2−n and

z
ε,λ,δ
t (c) > 2−n.

For all such ε, λ, let z̃ = z̃ε,λ,δ be the solution of (3.17) in the domain
[tn,j , tn,j+1] × [b, c], where b = Xn,j,1 and c = Xn,j,2, with (random) initial con-
dition

z̃
ε,λ,δ
tn,j

(·) =



2−n, if min
(
z
ε,λ,δ
tn,j

(b), z
ε,λ,δ
tn,j

(c)
) ≤ 2−n,

min
(
z
ε,λ,δ
tn,j

(·),2−n
)
, otherwise,

and boundary conditions a = 2−n. Setting Vt(x) := z
ε,λ,δ
t+tn,j

(x) − z̃
ε,λ,δ
t+tn,j

(x), by the
mean value theorem, we have

∂V

∂t
= 1

2

∂2V

∂x2 + fε,λ,δ(z) − fε,λ,δ(z̃) = ∂2V

∂x2 + ψ · V,

where ψ :OT �→ R is bounded and ψ ≤ 0. Moreover, on Fn,

V0(x) ≥ 0, Vt (b) ≥ 0, Vt (c) ≥ 0.

Since fε,λ,δ(z) − fε,λ,δ(z̃) is in C
β/2,β
0 (OT ), it follows that V is in C1,2(OT ) and

we can apply the maximum principle (see, e.g., [13], Chapter 3, Theorem 7 and
the remark on page 174) to obtain V ≥ 0. In particular, on Fn, the following holds:

zε,λ,δ ≥ z̃ε,λ,δ on [tn,j , tn,j+1] × [b, c] for all ε, λ ≤ �(ω).

Taking ε, λ → 0, we get (4.3), which finishes the proof of Theorem 2.1.
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5. The Gaussian random string. In this section, we prove Theorem 2.4. We
prove first the “positive” assertions not contained in Theorem 2.3, which we sum-
marize in the following lemma.

LEMMA 5.1.

• If d = 3, then with positive probability, there exist t > 0 and x1 < x2 < x3 such
that Ut(xi) = 0, i = 1,2,3.

• If d = 2, then for all k ∈ N, with positive probability, there exist t > 0 and
x1 < · · · < xk such that Ut(xi) = 0, i = 1, . . . , k.

We recall the following results, proved, respectively, in Proposition 1 and Corol-
lary 3 of [9].

PROPOSITION 5.2. The components Ui of the stationary pinned string are
mutually independent centered Gaussian random fields with covariance function
determined by

E
[(

Ui
t (x) − Ui

s (y)
)2] =: c(t, x; s, y),

where c is such that there is a constant c1 > 0 such that for all x, y ∈ R and
0 ≤ s ≤ t ,

c1(|x − y| + |t − s|1/2) ≤ c(t, x; s, y) ≤ 2(|x − y| + |t − s|1/2).

PROPOSITION 5.3. For any compact set A ⊂ (0,∞)×R, the laws of the ran-
dom fields (Ut (x) : (t, x) ∈ A) and (Ut (x) + z : (t, x) ∈ A) are mutually absolutely
continuous.

The following result is stated in Corollary 5 of [9] (see also [10]).

PROPOSITION 5.4. For any compact sets A+ ⊂ (0,∞) × (0,∞) and A− ⊂
(0,∞) × (−∞,0), the law of((

Ut(x) : (t, x) ∈ A+)
,
(
Ut(x) : (t, x) ∈ A−))

and the law of ((
Ut(x) : (t, x) ∈ A+)

,
(
Ũt (x) : (t, x) ∈ A−))

are mutually absolutely continuous, where U and Ũ are independent copies of the
stationary pinned string.

PROOF OF LEMMA 5.1. Let d = 3 and k = 3 or let d = 2 and k ∈ N, and for
t ∈ [1,2] and xi ∈ [2i,2i + 1], i = 1, . . . , k, set

Z(t, x1, . . . , xk) := (
Ut(x1), . . . ,Ut (xk)

) ∈ Rkd,

X(t, x1, . . . , xk) := (
Ũ

(1)
t (x1), . . . , Ũ

(k)
t (xk)

) ∈ Rkd,
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where (Ũ (i))i are i.i.d. copies of the stationary pinned string in Rd . The lemma
will follow if we prove that 0 ∈ Rkd belongs to the range of Z with positive proba-
bility. By Proposition 5.4, the laws of Z and X are mutually absolutely continuous.
Therefore, it suffices to prove that 0 ∈ Rkd belongs to the range of X with positive
probability.

We use results on existence of occupation densities for Gaussian processes
proved in Sections 6 and 22 of [2]. Let T := [1,2] × ∏k

i=1[2i,2i + 1] and, for
τ = (t, x1, . . . , xk) ∈ T , set Xτ := X(t, x1, . . . , xk) ∈ Rkd . Then X :T �→ Rkd is a
centered continuous Gaussian process such that the determinant �(σ, τ) of the co-
variance matrix of Xσ −Xτ is positive for almost all (σ, τ ) ∈ T ×T . Following [2],
we say that X is (LT) (short for local time) if there exists a (random) measurable
kernel (α(z,A) : z ∈ Rd,A ⊆ T Borel), termed occupation kernel, such that a.s.,
for all bounded Borel f over Rd and A ⊆ T Borel,∫

A
f (Xτ ) dτ =

∫
Rd

f (z)α(z,A)dz.

We recall [2], Theorem 6.4(ii), that a.s., for all z ∈ Rd ,

α(z,T \ Mz) = 0 where Mz := {τ ∈ T :Xτ = z}.(5.1)

We want to show that X is (LT). As proved in Theorem 22.1 of [2],

sup
σ∈T

∫
T

(
�(σ, τ)

)−1/2
dτ < ∞ �⇒ X is (LT),(5.2)

so we check that �(σ, τ) has this property. By the independence of the coordinates
and Proposition 5.2, for some constant C > 0,

�(σ, τ) =
k∏

i=1

[c(t, xi; s, yi)]d ≥ C

k∏
i=1

(|xi − yi | + |t − s|1/2)d

for all τ = (t, x1, . . . , xk) and σ = (s, y1, . . . , yk) ∈ T .
If d = 3 and k = 3, then∫

T

(
�(σ, τ)

)−1/2
dτ ≤ C

∫ 1

0
dt

[∫ 1

0
dx (x + t1/2)−3/2

]3

≤ C

∫ 1

0

1

t3/4 dt < ∞.

If d = 2, then for any k ∈ N,
∫
T

(
�(σ, τ)

)−1/2
dτ ≤ C

∫ 1

0
dt

[∫ 1

0
dx (x + t1/2)−1

]k

= C

∫ 1

0
[log(t−1/2 + 1)]k dt < ∞.
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Therefore, α(·, ·) is well defined for such values of d and k.
For all bounded Borel f : Rd �→ R,

E

[∫
T

f (Xτ ) dτ

]
=

∫
Rd

f (z)E[α(z,T )]dz,

so for some z0 ∈ Rd , with positive probability, α(z0, ·) is not identically zero.
By (5.1), Mz0 is nonempty with positive probability. By Proposition 5.3, the laws
of Mz0 = {τ ∈ T :Xτ −z0 = 0} and M0 = {τ ∈ T :Xτ = 0} are mutually absolutely
continuous, so that M0 is nonempty with positive probability and the proof is com-
plete. �

We turn now to the “negative” assertions of Theorem 2.4: those not already
given in Theorem 2.3 are summarized in the following lemma.

LEMMA 5.5. If d ≥ 4, then the probability that there exist t ≥ 0 and x1 < x2
such that Ut(xi) = 0, i = 1,2, is 0. If d = 3, then the probability that there exist
t ≥ 0 and x1 < · · · < x4 such that Ut(xi) = 0, i = 1, . . . ,4, is 0.

We recall the following scaling lemma, proven in Corollary 1 of [9].

COROLLARY 5.6 ([9]). The stationary pinned string has the following prop-
erties:

(1) Translation invariance. For any t0 ≥ 0 and x0 ∈ R, the field(
Ut0+t (x0 ± x) − Ut0(x0) :x ∈ R, t ≥ 0

)
has the same law as the stationary pinned string.

(2) Scaling. For L > 0, the field(
L−1UL4t (L

2x) :x ∈ R, t ≥ 0
)

has the same law as the stationary pinned string.
(3) Time reversal. For any T > 0, the field(

UT −t (x) − UT (0) :x ∈ R,0 ≤ t ≤ T
)

has the same law as the stationary pinned string over the interval [0, T ].

PROOF OF LEMMA 5.5. All of these proofs follow the “replication” idea that
can be found in [9], which originated in the work of Lévy (see, in particular, [9],
Section 4, and [5], Theorem 2.2).

Case I: d ≥ 4. By projecting onto the first four coordinates, we see that it is
enough to consider the case d = 4.

Note at fixed times such as t = 0, that since (U0(x),U0(−x) :x ≥ 0) are inde-
pendent four-dimensional Brownian motions indexed by x, standard properties of
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Brownian motion imply that, with probability 1, there do not exist points x1 �= x2
such that U0(x1) = U0(x2) = 0 (see, e.g., [5], Theorem 1.1).

Let

Z0(t, x, y) = (
Ut(x),Ut(y)

)
.

Using Corollary 5.6, we see that it is enough to prove that, with probability 1, there
are no points

t ∈ [1,2], x ∈ [1,2], y ∈ [−2,−1](5.3)

such that Z0(t, x, y) = 0. By Proposition 5.4, it suffices to consider

Z(t, x, y) = (
Ut(x), Ũt (y)

)
instead of Z0.

For z ∈ R2d , let Q(z) be the event that there do not exist points t, x and y

that satisfy (5.3) such that Z(t, x, y) = z. Applying Proposition 5.3 to both
Ut(x) and Ũt (y), we conclude that for z ∈ R2d ,

P(Q(0)) = 0 ⇐⇒ P(Q(z)) = 0.

Next, for A ⊂ (0,∞) × R2, let Z(A) be the range of Z(t, x, y) for (t, x, y) ∈ A

and let m(·) be Lebesgue measure. By Fubini’s theorem,

E[m(Z(A))] =
∫

R4
P

(
Z(t, x, y) = z for some (t, x, y) ∈ A

)
dz.

Therefore, it suffices to show that for A = (1,2] × (1,2] × (−2,−1],
E[m(Z(A))] = 0.(5.4)

To prove (5.4), following Lévy, we use scaling to relate E[m(Z(A))] to
E[m(Z(Ai))], where Ai are certain subsets of A. We then show that E[m(Z(Ai)∩
Z(Aj ))] = 0 for i �= j . An independence argument will imply that
E[m(Z(Ai))] = 0 for each i and so E[m(Z(A))] = 0, and we will be finished.

Subdivide the cube A into 16 pairwise disjoint subsets as follows. Subdivide
each space interval [1,2] and [−2,−1] into two disjoint subintervals of equal
length and subdivide the time interval [1,2] into four disjoint subintervals of equal
length. All these subintervals are taken open on the left and closed on the right.
By taking cartesian products, form 16 disjoint sets Ai , i = 1, . . . ,16, whose union
is A.

Now we use Corollary 5.6 to scale time and space: we find that(
Z(4t,2x,2y), (t, x, y) ∈ R3) D= (

21/2Z(t, x, y), (t, x, y) ∈ R3)
,

where the equality is in distribution. Since Z(t, x, y) is a vector with two coordi-
nates, each of which lies in R4, the range of Z(t, x, y) lies in R8. Therefore,

E[m(Z(A))] = (21/2)8E[m(Z(Ai))] = 16E[m(Z(Ai))].
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A standard inclusion–exclusion argument implies

E[m(Z(A))] ≤
16∑
i=1

E[m(Z(Ai))] − ∑
1≤i<j≤16

E
[
m

(
Z(Ai) ∩ Z(Aj )

)]
.

Therefore, for each pair i < j ,

E
[
m

(
Z(Ai) ∩ Z(Aj )

)] = 0.

Next, relabelling if necessary, choose A1,A2 such that the points in A1,A2 have
the same x, y coordinates, but the t coordinates lie in adjacent time intervals. Let
t0 be the common boundary point of these two time intervals. Let H be the σ -field
generated by the values of Ut(·), Ũt (·) for t = t0. Note that H is also generated by
the values of Z(t, x, y) for t = t0. By the Markov property in time of Z(·, ·, ·), the
random variables Z(A1) and Z(A2) are conditionally independent given H , and
by the time-reversal property of Ut(·) and Ũt (·) given in Corollary 5.6, their con-
ditional distributions given H coincide. Therefore, using versions of conditional
expectations that are jointly measurable in (z,ω) ([15], Lemma 3), we obtain

0 = E
[
m

(
Z(A1) ∩ Z(A2)

)]
=

∫
R4

E
[
1{z∈Z(A1)}1{z∈Z(A2)}

]
dz

= E

(∫
R4

E
[
1{z∈Z(A1)}1{z∈Z(A2)}|H

]
dz

)

= E

(∫
R4

E
[
1z∈Z(A1)}|H

]
E

[
1{z∈Z(A2)}|H

]
dz

)

= E

(∫
R4

E
[
1{z∈Z(A1)}|H

]2
dz

)
.

This implies that E[1{z∈Z(A1)}|H ] = 0 for almost every z, a.s. Therefore,

E[m(Z(A))] = 16E[m(Z(A1))] = 16E

[∫
R4

E
[
1{z∈Z(A1)}|H

]
dz

]
= 0

and, hence, m(Z(A)) = 0 a.s. This proves (5.4) and completes the proof of Case I
(d ≥ 4).

Case II: d = 3. Since this proof is similar to the previous case, we only outline
the main points. We must show that with probability 1, there do not exist t ≥ 0
and x1 < · · · < x4 with Ut(xi) = 0 for i = 1, . . . ,4. As in the previous proof, we
assume that t, x1, . . . , x4 lie in a bounded set A, namely

A := {(t, x1, . . . , x4) : t ∈ (1,2], xi ∈ (ai, bi], i = 1, . . . ,4},
where a1 < b1 < a2 < · · · < b4. Let

Z0(t, x1, . . . , x4) = (
Ut(x1), . . . ,Ut (x4)

)
.
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We must show that with probability 1, there does not exist (t, x1, . . . , x4) ∈ A with
Z0(t, x1, . . . , x4) = 0.

Let U
(i)
t (x) : i = 1, . . . ,4 be independent copies of U and let

Zt(x1, . . . , x4) := (
U

(1)
t (x1), . . . ,U

(4)
t (x4)

)
.

By Proposition 5.4, it is enough to show that with probability 1, there exists no
(t, x1, . . . , x4) ∈ A with Zt(x1, . . . , x4) = 0.

Once again, Proposition 5.3 implies that we need only show

E[m(Z(A))] = 0,

where we have used the same notation as in the previous case. Now we divide each
interval (ai, bi] into two equally long subintervals and divide (1,2] into four subin-
tervals of equal length. The products of these intervals give us 64 “rectangles” Ai .
Once again, scaling implies that for each value of i,

E[m(Z(A))] = (21/2)12E[m(Z(Ai))]
= 64E[m(Z(Ai))].

Since 64 is also the number of rectangles, we may argue as before, to conclude
that for i < j ,

E
[
m

(
Z(Ai) ∩ Z(Ai)

)] = 0.

Then we can use the same conditional independence argument as before to con-
clude that E[m(Z(Ai))] = 0 and, hence, E[m(Z(A))] = 0.

This completes the proof of Case II (d = 3), and Lemma 5.5 is proved. �

All statements in Theorem 2.4 have now been proved.

6. Proof of Theorem 2.2. For the proof of Theorem 2.2, we need a different
approach. We introduce infinite-dimensional capacities related to the processes u

and U of Section 2, and we prove that the former is always greater than or equal
to the latter. Since sets of positive capacity are hit with positive probability by the
associated Markov process, we use the results of Theorems 2.3 and 2.4 on U and
we transfer them to u.

PROOF OF THEOREM 2.2. Let d ∈ N and denote by (Vt (x) : t ≥ 0, x ∈ [0,1])
the Rd -valued continuous process that is the solution of


∂V

∂t
= 1

2

∂2V

∂x2 + ∂2Wd

∂t ∂x
,

Vt (0) = Vt(1) = 0, t ≥ 0,

V0 = V ∈ (C+)d .

(6.1)
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Let A := [ε, T ] × [ε,1 − ε]. We claim that the laws of (Vt (x) : (t, x) ∈ A) and
(Ut (x) : (t, x) ∈ A) are mutually absolutely continuous, where U is the stationary
pinned string (2.4). Indeed, let ψ : [0,∞] × R �→ [0,1] be a C∞ function with
compact support inside (0,∞) × (0,1) such that ψ ≡ 1 on A. For x /∈ [0,1], set
Vt(x) = 0 and define

Zt(x) := Ut(x) + ψt(x)
(
Vt(x) − Ut(x)

)
, (t, x) ∈ [0,∞) × R.

Then Z ≡ V on A and

Zt(x) − Ut(x)

= ψt(x)

∫ t

0

∫
R

[
1{y∈(0,1)}gt−s(x, y) − Gt−s(x − y)

]
W(ds, dy)

+ ψt(x)

∫
R

[
1{y∈(0,1)}gt (x, y)V0(y) − Gt(x − y)U0(y)

]
dy.

Using the explicit form of gt−s(x, y) (see, e.g., [16]), we notice that the singularity
in g cancels with G and, therefore, Z −U is a C∞ Gaussian process with compact
support in (0,∞) × (0,1). It follows that Z0(·) ≡ U0(·),

∂Zt

∂t
= 1

2

∂2Zt

∂x2 + h + ∂2Wd

∂t ∂x
, h :=

(
∂

∂t
− 1

2

∂2

∂x2

)
(Z − U),

and (ht (x), t ≥ 0, x ∈ R) is again a continuous Gaussian process, adapted in time
to the filtration of W , supported on [0, T ] × [0,1], with variance bounded over
[0, T ] × [0,1]. By Lemmas 1 and 2 of [10], the laws of Z and U over [0, T ] × R

are mutually absolutely continuous. Since Z ≡ V on A, the claim is proven.
For δ > 3, let u(δ) denote the solution of (2.1) and let u(3) denote the solution

of (2.2). We now recall that the following properties were proved in [18] (see, in
particular, Theorems 3 and 5 there):

• For all δ ≥ 3, (u
(δ)
t : ū ∈ C+, t ≥ 0) is the diffusion associated with the symmet-

ric Dirichlet form with state space C+, defined by

W 1,2(πδ) � ϕ,ψ �→ Dδ(ϕ,ψ) := 1
2

∫
K

〈∇ϕ,∇ψ〉dπδ,

where K = {ū ∈ L2(0,1) : ū ≥ 0}, ∇ denotes the Fréchet differential in the
Hilbert space H := L2(0,1) and πδ is the law of the Bessel bridge X.

• For all d ∈ N, V �→ V is the diffusion associated with the Dirichlet form
(�d,W 1,2(µd)) on (C+)d , defined by

W 1,2(µd) � F,G �→ �d(F,G) := 1
2

∫
Hd

〈∇F,∇G〉Hd dµd,

where µd is the law of a Brownian bridge of dimension d between 0 and 0 over
[0,1], and ∇ denotes the gradient in Hd := L2(0,1;Rd).
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• For d ∈ N, d ≥ 3, define � : (C+)d �→ C+ by �(y)(τ ) := |y(τ)|, τ ∈ [0,1].
Then Dd is the image of �d under the map �, that is, πd is the image of µd

under � and

W 1,2(πd) = {ϕ ∈ L2(πd) :ϕ ◦ � ∈ W 1,2(µd)},(6.2)

Dd(ϕ,ψ) = �d(ϕ ◦ �,ψ ◦ �) ∀ϕ,ψ ∈ W 1,2(πd).(6.3)

Formula (6.3) is based on a simple fact, namely that for any ϕ ∈ W 1,2(πd),

ϕ ◦ � ∈ W 1,2(µd) and ∇(ϕ ◦ �)(y) = y

|y|∇ϕ(|y|)

for µd -a.e. y, which implies that

〈∇(ϕ ◦ �),∇(ψ ◦ �)〉Hd = 〈∇ϕ,∇ψ〉H ◦ �, µd -a.s.,

since, for all τ ∈ [0,1], y(τ)/|y(τ)| ∈ Rd has Euclidean norm 1. Formula (6.2) is
a deeper result, which however we do not need here.

Recall that the D-capacity of a subset of C+ is defined as follows. We set D1 :=
D + 〈·, ·〉L2(πδ)

. For A ⊆ C+ open, let

CapD(A) := inf{D1(ϕ,ϕ) :ϕ ∈ W 1,2(πδ), ϕ ≥ 1, πδ-a.e. on A}.
For any E ⊆ C+, let

CapD(E) := inf{CapD(A) :E ⊆ A ⊆ C+,A open}.
The �d -capacity of subsets of (C+)d is defined analogously. Then, by (6.3), for
all E ⊆ C+ and d ∈ N, d ≥ 3,

CapDd (E) ≥ Cap�d (�
−1(E)).(6.4)

It is now a classical result of potential theory that a set with positive capacity is
hit by the associated Markov process with positive probability, and vice versa. For
a proof of this statement in infinite-dimensional settings, see Theorems III.2.11(ii)
and IV.5.29(i) in [3].

We set

E3 := {ū ∈ C+ :∃0 < x1 < x2 < x3 < 1, ū(xi) = 0, i = 1,2,3}.
For d = 3, by part 2 of Theorem 2.4, V hits the set �−1(E3) with positive prob-
ability, since by the absolute continuity result proven above, the hitting properties
of V and U over [ε, T ] × [ε,1 − ε] are the same. Therefore, by (6.4), for δ = 3,
u(3) hits E3 with positive probability.
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Setting

E1 := {ū ∈ C+ :∃0 < x < 1, ū(x) = 0}
for d = 5, V hits �−1(E1) with positive probability by Theorem 2.3, so that, for
δ = 5 and, by monotonicity, for all δ ∈ [3,5], u(δ) hits E1 with positive probability.

�
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