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CORRECTION

IMPROPER REGULAR CONDITIONAL
DISTRIBUTIONS

BY TEDDY SEIDENFELD, MARK J. SCHERVISH AND JOSEPH B. KADANE

Carnegie Mellon University

A strict inequality appears in Definition 6 where a weak inequality is needed.
We reproduce Definition 6 here.

DEFINITION 6. Fix ω and consider those A such that ω ∈ A ∈ A. If for some
ω ∈ A ∈ A, P(A|A)(ω) = 0, say that P(·|A) is maximally improper at ω. Oth-
erwise, if for each ω ∈ A ∈ A, 1 ≥ P(A|A)(ω) > 0, say that the rcd is modestly
proper at ω.

At the bottom of page 1614, we are not precise in the definition of a Borel space.
The condition should have read that there is a one-to-one measurable function with
measurable inverse between (�,B) and (E,E), where E is a Borel subset of the
reals and E is the Borel σ -field of subsets of E. After the remaining corrections
below, our use of the term “Borel space” conforms with this definition.

Some conditions were left out of Theorem 4 and Lemma 3. The proof of
Lemma 3 also had some errors that made it almost impossible to follow. Finally,
the proof of Theorem 4 was said to be straightforward from Theorem 3. We in-
clude here the restatements of both results with the missing conditions, the revised
proof of Lemma 3, and a proof of Lemma 4. The only application of Lemma 4
given in the original paper is to the proof of Corollary 2. The additional conditions
given here are satisfied in that case.

THEOREM 4. Assume that A is an atomic sub-σ -field of B. Let (�,D) be a
Borel space, with a probability measure µ. For each θ ∈ �, let Pθ be a probability
on B such that for every B ∈ B, Pθ(B) is a D-measurable function of θ . Let
P(·) be defined on B by P(·) = ∫

� Pθ(·) dµ(θ). Assume that, for µ-almost all θ ,
Pθ(·|A) is a maximally improper rcd for Pθ and that it is A ⊗ D-measurable as a
function of (ω, θ). Also, assume that the set

B∗ = {(ω, θ) :Pθ(·|A) is maximally improper at ω},
is in A ⊗ D . Then there is a maximally improper version of P(·|A).
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LEMMA 3. Let (�,D) be a Borel space, with a probability measure µ. For
each θ ∈ �, let Pθ be a probability on B such that for every B ∈ B, Pθ(B)

is a D-measurable function of θ . Define the probability P on B by P(B) =∫
� Pθ(B)dµ(θ). Let A be a sub-σ -field of B. Also, let Pθ(·|A) denote an rcd

for each Pθ that is A ⊗ D-measurable as a function of (ω, θ). Then, for each ω

there exists a probability νω on D such that for all B ∈ B
∫
�

Pθ(B|A)(ω)dνω(θ)(1)

is a version of P(B|A). Also, these versions form an rcd.

PROOF. Let E be the product σ -field B ⊗ D . For each E ∈ E , define

Eθ = {ω : (ω, θ) ∈ E},
Eω = {θ : (ω, θ) ∈ E},

the θ - and ω-sections of E. Standard arguments like those of Billingsley ([1], Sec-
tion 18) allow us to conclude that Eθ ∈ B for all θ , and Pθ(Eθ) is a D-measurable
function of θ . Define

Q(E) =
∫
�

Pθ(Eθ) dµ(θ),

which is easily seen to be a probability on E . Let π1(ω, θ) = ω and π2(ω, θ) = θ be
the coordinate projections, which are E -measurable. Let A′ = π−1

1 (A) and D ′ =
π−1

2 (D), which are sub-σ -fields of E . Every A′-measurable function must be an
A-measurable function of π1. Because (�,D) is a Borel space, there exists an
rcd for π2 given A′ relative to Q, Q(·|A′). We will denote Q(π−1

2 (D)|A′)(ω, θ)

by νω(D). In similar fashion to the arguments earlier in the proof, νω(Eω) is
A-measurable as a function of ω for all E ∈ E . Define

Q0(E) =
∫

νω(Eω)dP (ω).

For each A ∈ A and D ∈ D , we have

Q0(A × D) =
∫

IAνω(D)dP (ω) = Q(A × D).

It follows that Q0 = Q on all of A ⊗ D .
For each ω, (1) is a probability. We need to show that it is A-measurable as

a function of ω. We have assumed that Pθ(·|A)(ω) is A ⊗ D measurable, so
we can approximate it from below by a sequence {φn}∞n=1 of nonnegative sim-
ple functions. In similar fashion to the argument at the beginning of this proof,
νω(Eω) is A-measurable for all E ∈ A ⊗ D . It follows that

∫
φn(ω, θ) dνω(θ) is

A-measurable for each n, and (1) is a limit of A-measurable functions.
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To complete the proof, we show that, for each A ∈ A and B ∈ B, the integral
of (1) over A equals P(A ∩ B):∫

A

∫
�

Pθ(B|A)(ω)dνω(θ) dP (ω) =
∫

IA(ω)Pθ (B|A)(ω)dQ0(ω, θ)

=
∫

IA(ω)Pθ (B|A)(ω)dQ(ω, θ)

=
∫ ∫

IA(ω)Pθ (B|A)(ω)dPθ(ω)dµ(θ)

=
∫

Pθ(A ∩ B)dµ(θ) = P(A ∩ B),

where the first equality is from the definition of Q0, the second follows from the
fact that Q0 = Q on A ⊗ D , the third is from the definition of Q, the fourth is
from the definition of Pθ(·|A) and the last is the meaning of Pθ . �

PROOF OF THEOREM 4. Because A is atomic, Pθ(·|A) is maximally im-
proper at ω if and only if Pθ(a(ω)|A)(ω) = 0, where a(ω) is the A-atom con-
taining ω. Hence, we can rewrite the set B∗ as

B∗ = {(ω, θ) :Pθ(a(ω)|A)(ω) = 0},
whose θ -sections satisfy

B∗
θ = {ω :Pθ(a(ω)|A)(ω) = 0} ∈ B.

For each θ such that Pθ(·|A) is maximally improper, B∗
θ has inner Pθ measure 1.

Hence Pθ(B
∗
θ ) = 1, a.e. [µ]. By standard arguments, Pθ(B

∗
θ ) is D-measurable,

and it follows that

Q(B∗) =
∫
�

Pθ(B
∗
θ ) dµ(θ) = 1,

where Q was constructed in the proof of Lemma 3.
Similarly, the ω-sections of B∗ satisfy

B∗ω = {θ :Pθ(a(ω)|A)(ω) = 0} ∈ D .

For each ω, let νω be the measure from Lemma 3. Then νω(B∗ω) is D-measurable.
Since B∗ ∈ A ⊗ D , we have

1 = Q(B∗) = Q0(B
∗) =

∫
�

νω(B∗ω)dP (ω),

where Q0 was constructed in the proof of Lemma 3. So, there is a set C ∈ B with
P(C) = 1 and for all ω ∈ C, νω(B∗ω) = 1. It follows that, for each ω ∈ C, there is a
set E(ω) ∈ D with νω(E(ω)) = 1 such that Pθ(a(ω)|A)(ω) = 0 for all θ ∈ E(ω).
Let P(·|A) be the version guaranteed by Lemma 3. Then, for each ω ∈ C,

P(a(ω)|A)(ω) =
∫
�

Pθ(a(ω)|A)(ω)dνω(θ) = 0.

This means that P(·|A) is maximally improper. �
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