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MAXIMA OF ASYMPTOTICALLY GAUSSIAN RANDOM FIELDS
AND MODERATE DEVIATION APPROXIMATIONS TO BOUNDARY

CROSSING PROBABILITIES OF
SUMS OF RANDOM VARIABLES WITH

MULTIDIMENSIONAL INDICES
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National University of Singapore and Stanford University

Several classical results on boundary crossing probabilities of Brownian
motion and random walks are extended to asymptotically Gaussian random
fields, which include sums of i.i.d. random variables with multidimensional
indices, multivariate empirical processes, and scan statistics in change-point
and signal detection as special cases. Some key ingredients in these exten-
sions are moderate deviation approximations to marginal tail probabilities
and weak convergence of the conditional distributions of certain “clumps”
around high-level crossings. We also discuss how these results are related to
the Poisson clumping heuristic and tube formulas of Gaussian random fields,
and describe their applications to laws of the iterated logarithm in the form
of the Kolmogorov–Erdős–Feller integral tests.

1. Introduction. The goal of this paper is to extend a number of classi-
cal results on boundary crossing probabilities of Brownian motion and random
walks to much more general stochastic processes involving multidimensional in-
dices (i.e., random fields). These extensions were motivated by applications to
signal detection and change-point problems; see Example 2.2 and the last two
paragraphs of Section 4. Other applications include the laws of the iterated loga-
rithm for sums of i.i.d. random variables with multidimensional indices (see Sec-
tion 3), Kolmogorov–Smirnov statistics of multivariate distributions and sums of
linear processes with long-range dependence (see Section 4). To begin with, let
{W(t) : t ≥ 0} be Brownian motion and let Tc = inf{t ≥ 0 :W(t) ≥ bc(t)} be the
first time when Brownian motion crosses a positive continuously differentiable
boundary bc. Strassen [34], Jennen and Lerche [22], Wichura [37] and others have
shown that Tc has a density function pc and that under certain additional conditions
on bc, pc has the “tangent approximation”

pc(t)
.= t−3/2ac(t)ϕ

(
bc(t)/

√
t
)
,(1.1)
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where ϕ(x) = (2π)−1/2e−x2/2 is the standard normal density function and ac(t) =
bc(t) − tb′

c(t). Note that in the case of a linear boundary bc(t) = a + βt (with
a > 0 and β > 0), the well-known Bachelier–Lévy formula yields pc(t) =
t−3/2aϕ(bc(t)/

√
t ), so (1.1) simply replaces α by the intercept αc(t) of the tan-

gent line passing through (t, bc(t)), and is therefore called a “tangent approxima-
tion.” For concave boundaries bc(t) = b(t) that become infinite as t → ∞, one
typically has b′(t) = o(b(t)/t), so one can replace ac(t) in (1.1) by b(t). There
is a close connection between this approximation to pc(t) and the Kolmogorov–
Erdős–Feller test, which yields for nondecreasing b(t)/

√
t the 0–1 dichotomy

P {W(t) < b(t) for all large t} = 1 (or 0) if I(b) < ∞ (or = ∞),(1.2)

where I(b) = ∫ ∞
1 t−3/2b(t)ϕ(b(t)/

√
t ) dt < ∞. Similarly, if Sn = X1 + · · · + Xn

with EX1 = 0, EX2
1 = 1 and E|X1|3 < ∞, then for all n ≥ 1,

P {Sn < b(n) for all large n} = 1 (or 0) if I(b) < ∞ (or = ∞).(1.3)

If we think of the random walk {Sn,n ≥ nc} in (1.3) as an “asymptotic” Brown-
ian motion as nc → ∞, then (1.3) can be regarded as the generalization of (1.2)
to processes that behave like Brownian motion. This suggests that if (1.1) and
(1.2) can be extended to more general Gaussian processes, then they may even
be expected to hold much more generally for processes that are “asymptotically
Gaussian.” In view of the functional central limit theorem for sums of weakly
dependent or long-memory random variables, the scope of applications of such re-
sults would be very broad. Unfortunately, functional central limit theorems, which
are about the “central” part of the limiting Gaussian distributions, are not the right
tools to handle the “rare” events in the high-level crossings as in (1.1) and (1.3).

To extend (1.1) and (1.2) to much more general processes, our approach uses
(i) moderate deviation approximations to marginal tail probabilities and (ii) weak
convergence (to a limiting Gaussian process) of a certain conditional process given
that the process attains a high level near the boundary at time t . Another key idea
of our extension is to relax the requirement that the left-hand side of (1.1) be a
first exit density. Instead we regard it as a “local” exit density at time t so that
the probability that the process ever crosses the boundary within time interval D

is asymptotically equal to the integral of the right-hand side of (1.1) over D. Not
only does this avoid the technical assumptions that need to be imposed to ensure
that the first exit time Tc indeed has a density with respect to Lebesgue measure,
but it also dispenses with the notion of having a well-ordered set D so that the
“first” time of exit can be defined. This enables us to extend our approach to ran-
dom fields (with multidimensional time that is not well ordered). Section 2 gives
basic assumptions for these “asymptotically Gaussian” random fields and states
the main theorems that provide generalizations of (1.1) and (1.3). Applying these
theorems to Gaussian random fields yields new results in Theorem 2.1 for the max-
ima of Gaussian random fields. Section 5 gives the proofs. Connections to Aldous’
[4] Poisson clumping heuristic and the Hotelling–Weyl tube formulas are also dis-
cussed in Section 2.



82 H. P. CHAN AND T. L. LAI

2. Basic results and discussion. We begin with some notation that will be
used throughout the paper. Let ψ(c) = (2πc2)−1/2 exp(−c2/2). For vectors t, u ∈
Rd , the relation t ≤ u means ti ≤ ui for all i and t < u means ti < ui for all i.
Also �·	 will be used to denote the greatest integer function, ‖ · ‖ the (Euclidean)
norm of a vector, | · | the determinant of a square matrix and v(·) the d-dimensional
volume (or content) of a Jordan measurable set. For ζ > 0, let

It,ζ =
d∏

i=1

[ti , ti + ζ ).

For D ⊂ Rd and δ > 0, define [D]δ = {t + u : t ∈ D,‖u‖ < δ}. We shall also
use ∇ and ∇2 to denote the gradient vector and Hessian matrix, respectively,
of a function. Let Sd−1 denote the (d − 1)-dimensional unit sphere, and let Z+
(R+) denote the set of positive integers (real numbers). Let 0 < α ≤ 2 and let
{Wt(u) :u ∈ [0,∞)d} be a continuous Gaussian random field (whose continuity
follows from Theorem 2.1 of [25]) such that

Wt(0) = 0,

E[Wt(u)] = −‖u‖αrt (u/‖u‖)/2,
(2.1)

Cov
(
Wt(u),Wt(v)

) = [‖u‖αrt (u/‖u‖) + ‖v‖αrt (v/‖v‖)
− ‖u − v‖αrt

(
(u − v)/‖u − v‖)]

/2,

where rt : Sd−1 → R+ is a continuous function satisfying

sup
v∈Sd−1

|rt (v) − ru(v)| → 0 as u → t.(2.2)

Of particular importance in the subsequent development are

HK(t) =
∫ ∞

0
eyP

{
sup

0≤ui≤K ∀ i

Wt (u) > y

}
dy,

(2.3)
H(t) = lim

K→∞K−dHK(t),

which are shown to be well defined in Theorems 2.4 and 2.5.
Let X be a stationary, isotropic Gaussian random field such that EX(0) = 0,

EX2(0) = 1 and

E[X(0)X(u)] = 1 − (
1 + o(1)

)‖u‖αL(‖u‖) as u → 0,(2.4)

for some 0 < α ≤ 2 and slowly varying function L. Let

�c = min{x > 0 :xαL(x) = (2c2)−1}.(2.5)

For example, if L(x) ≡ 1, then �c = (2c2)−1/α . Let D be a bounded, Jordan mea-
surable set such that [D]δ lies in the domain of X for some δ > 0. Then by Theo-
rem 2.1 of [31],

P

{
sup
t∈D

X(t) > c

}
∼ ψ(c)�−d

c v(D)H,(2.6)
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where H = limK→∞ K−d
∫ ∞

0 eyP {sup0≤ui≤K ∀ i W0(u) > y}dy is a positive, fi-
nite constant and W0 is the Gaussian random field defined in (2.1) with r0(u) ≡ 1.
Our goal is to extend (2.6) first to more general Gaussian random fields satisfying

E[X(t)X(t + u)] = 1 − (
1 + o(1)

)‖u‖αL(‖u‖)rt (u/‖u‖) as u → 0,(2.7)

uniformly over t ∈ [D]δ . We then extend (2.6) to non-Gaussian random fields that
are asymptotically Gaussian in a moderate deviation sense.

2.1. Gaussian random fields. Let X be a Gaussian random field such that
EX(t) = 0, EX2(t) = 1 for all t . Let D be such that [D]δ is a subset of the do-
main of X for some δ > 0. The following theorem, whose proof is given in Sec-
tion 5, generalizes (2.6) far beyond the stationary isotropic framework considered
by Qualls and Watanabe [31] under (2.4).

THEOREM 2.1. Suppose the Gaussian random field X satisfies condi-
tion (2.7), in which 0 < α ≤ 2 and rt : Sd−1 → R+ is a continuous function such
that the convergence in (2.2) is uniform in t ∈ [D]δ and supt∈[D]δ,v∈Sd−1 rt (v) < ∞.
Then, with H(t) defined by (2.3),

P

{
sup

u∈It,	c�c

X(u) > c

}
∼ 	d

cψ(c)H(t)(2.8)

uniformly over t ∈ D, as c → ∞ and 	c → ∞ with 	c = o(�−1
c ). Moreover, if D is

bounded and Jordan measurable, then as c → ∞,

P

{
sup
t∈D

X(t) > c

}
∼ ψ(c)�−d

c

∫
D

H(t) dt.(2.9)

The following special case of Theorem 2.1, with d = 2, demonstrates the use-
fulness of including the function rt on Sd−1 in (2.2) when (2.1) is extended to
nonstationary Gaussian random fields. It will be discussed further in Example 2.10
and at the end of Section 4.

EXAMPLE 2.2. Let X(t1, t2) = (t2 − t1)
−1/2[W(t2) − W(t1)], where W(·) is

Brownian motion, and D = {(t1, t2) : 0 ≤ t1 < t2 ≤ a, a1 ≤ t2 − t1 ≤ a2} with 0 <

a1 < a2 < a. Then

E[X(t)X(t + u)] = 1 − (
1 + o(1)

) |u1| + |u2|
2(t2 − t1)

,

as u → 0. Hence (2.7) is satisfied with α = 1, L(‖u‖) ≡ 1 and rt (u) = (|u1| +
|u2|)/[2(t2 − t1)]. Therefore �c = (2c2)−1 in view of (2.5), and H(t) = 2−4(t2 −
t1)

−2 by Lemma 2.3 below. Application of Theorem 2.1 then yields that as c → ∞,

P {(t2 − t1)
−1/2[W(t2) − W(t1)] > c
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for some 0 ≤ t1 < t2 ≤ a, a1 ≤ t2 − t1 ≤ a2}
∼ ψ(c)(2c2)2

∫
D

2−4(t2 − t1)
−2 dt1 dt2(2.10)

= ψ(c)(c4/4)

∫ a2

a1

∫ a−s

0
s−2 dt1 ds

= ψ(c)(c4/4)[a(a−1
1 − a−1

2 ) − log(a2/a1)].

LEMMA 2.3. Let {Wt(u) :u ∈ [0,∞)d} be a continuous Gaussian random
field such that for some positive functions β1, . . . , βd ,

E[Wt(u)] = −
d∑

i=1

βi(t)ui/2

and

Cov[Wt(u),Wt(v)] =
d∑

i=1

βi(t)(ui + vi − |ui − vi |)/2 =
d∑

i=1

βi(t)min(ui, vi).

Then H(t) = 2−d ∏d
i=1 βi(t).

PROOF. For u ≥ 0, Wt(u) = ∑d
i=1 Bi,t (ui), where {Bi,t }1≤i≤d are indepen-

dent Gaussian processes with independent increments, E[Bi,t (ui)] = −βi(t)ui/2

and Var(Bi,t (ui)) = βi(t)ui , so Bi,t (ui)
L= W(βi(t)ui) − βi(t)ui/2. As K → ∞,

HK(t) =
∫ ∞

0
eyP

{
d∑

i=1

sup
0≤ui≤K

Bi,t (ui) > y

}
dy

=
∫ ∞

0
(ey − 1)P

{
d∑

i=1

sup
0≤ui≤K

Bi,t (ui) ∈ dy

}

∼ E

{
exp

[
d∑

i=1

sup
0≤ui≤K

Bi,t (ui)

]}

=
d∏

i=1

E

{
exp

(
sup

0≤ui≤K

[W(βi(t)ui) − βi(t)ui/2]
)}

,

so HK(t) ∼ ∏d
i=1[βi(t)K/2]; see [18], (1.8.11) for the last asymptotic relation.

�

2.2. Asymptotically Gaussian random fields. Theorem 2.1 is derived in Sec-
tion 5 as a special case of a more general result on asymptotically Gaussian random
fields satisfying conditions (C) and (A1)–(A5) below. Specifically, for c > 0, let Xc
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be random fields such that EXc(t) = 0, EX2
c (t) = 1 for all c and t . Let D be such

that [D]δ is a subset of the domain of Xc for some δ > 0 and all c large enough.
Define ρc(t, u) = E[Xc(t)Xc(u)]. In analogy with (2.7), assume that there exist
0 < α ≤ 2 and a slowly varying function L such that as u → 0,

ρc(t, t + u) = 1 − (
1 + o(1)

)‖u‖αL(‖u‖)rt (u/‖u‖)(C)

uniformly over t ∈ [D]δ and compact sets of u/�c > 0. Moreover, assume that the
following conditions also hold uniformly over t ∈ [D]δ , as c → ∞:

P {Xc(t) > c − y/c} ∼ ψ(c − y/c)(A1)

uniformly over positive, bounded values of y. The convergence in (2.2) is assumed
to be uniform in t ∈ [D]δ , with supt∈[D]δ,v∈Sd−1 rt (v) < ∞. Moreover, for any
a > 0 and positive integers m, as c → ∞,

{c[Xc(t + ak�c) − Xc(t)] : 0 ≤ ki < m}|Xc(t) = c − y/c
(A2)

⇒ {Wt(ak) : 0 ≤ ki < m}
uniformly over positive, bounded values of y, where we use “|Xc(t) = c − y/c”
to denote that the distribution is conditional on Xc(t) = c − y/c. In addition, there
exists a positive function h such that limy→∞ h(y) = 0 and

P {Xc(t + u�c) > c − γ /c,Xc(t) ≤ c − y/c} ≤ h(y)ψ(c)(A3)

for all u ≥ 0 and γ > 0, and there exist nonincreasing functions Na on R+ and
positive constants γa such that γa → 0 and Na(γa) + ∫ ∞

1 ωsNa(γa + ω)dω =
o(ad) as a → 0, and

P

{
sup

0≤u≤a

Xc(t + u�c) > c,Xc(t) ≤ c − γ /c

}
≤ Na(γ )ψ(c),(A4)

for all γa ≤ γ ≤ c and s > 0.
Whereas (A1) refers to the marginal distribution of Xc(t), saying that {Xc(t) >

c − y/c} has probability like that of a standard normal, the joint distribution of
Xc(·) is assumed in (A2) to be asymptotically normal in the sense of weak con-
vergence for local increments conditioned on Xc(t) = c − y/c. Note that the same
α,L(·) and rt (·) appear in (C) and the mean and covariance functions (2.1) of
the Gaussian field Wt(·) in (A2). In fact, if Xc = X is a Gaussian field satisfy-
ing condition (C), then (A2) holds; see the proof of Theorem 2.1 in Section 5.
Assumptions (A3) and (A4) are mild technical conditions under which the proba-
bility of supu∈It,K�c

Xc(u) exceeding c can be computed via (A1) and (A2) after

the cube It,K�c = ∏d
i=1[ti , ti + K�c) is discretized by the grid points t + ka�c

(0 ≤ ki < m) with a = K/m, leading to the following.
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THEOREM 2.4. Let K > 0. Assume (C) and (A1)–(A4). Then as c → ∞,

P

{
sup

u∈It,K�c

Xc(u) > c

}
∼ ψ(c)[1 + HK(t)]

uniformly over t ∈ [D]δ , where HK(t) is defined in (2.3) and is finite and uniformly
continuous in t ∈ [D]δ .

To derive an analogue of (2.6) for P {supt∈D Xc(t) > c} in which Xc satis-
fies (C) and (A1)–(A4), we can sum the asymptotic formula in Theorem 2.4 over
t ∈ (K�cZ)d ∩ D if the joint occurence of two events (associated with two such
cubes) is negligible in comparison with the probability associated with a single
cube. The following simple condition ensures this: There exists a nonincreasing
function f : [0,∞) → R+ such that f (‖r‖) = O(e−‖r‖p

) for some p > 0 and for
all γ > 0 and c sufficiently large,

P {Xc(t) > c − γ /c,Xc(t + u�c) > c − γ /c} ≤ ψ(c − γ /c)f (‖u‖)(A5)

uniformly in t and t + u�c belonging to [D]δ .

THEOREM 2.5. Assume (C) and (A1)–(A5). Then as c → ∞ and 	c → ∞
such that 	c = o(�−1

c ),

P

{
sup

u∈It,	c�c

Xc(u) > c

}
∼ 	d

cψ(c)H(t),(2.11)

P

{
sup

u∈It,	c�c

Xc(u) > c, sup
v∈B\It,	c�c

Xc(v) > c

}
= o(	d

cψ(c)),(2.12)

uniformly over t ∈ D and over subsets B of [D]δ with bounded volume, where
H(t) is defined in (2.3) and is uniformly continuous and bounded below on D.

Dividing (2.11) by (	c�c)
d , which is the volume of It,	c�c , yields an asymp-

totic boundary crossing “density” �−d
c ψ(c)H(t) of Xc at t . By integrating this

“density” over D, or more precisely, by summing (2.11) over the “tiles” It,	c�c of
D and applying (2.12) together with the fact that D is bounded and Jordan measur-
able, we obtain the following generalization of the Qualls–Watanabe result (2.6)
on stationary isotropic Gaussian random fields.

COROLLARY 2.6. Assume (C) and (A1)–(A5). Let D be a bounded, Jordan
measurable set. Then

P

{
sup
t∈D

Xc(t) > c

}
∼ ψ(c)�−d

c

∫
D

H(t) dt as c → ∞.(2.13)
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We can extend Corollary 2.6 to sets Dc that grow with c. The assumption that
D be Jordan measurable [i.e., for any ε > 0, the boundary ∂D of D can be cov-
ered by rectangles U1,U2, . . . such that

∑∞
i=1 v(Ui) < ε] and bounded in Corollary

2.6 is used to show that
∑

t∈(ζZ)d ,It,ζ ∩∂D �=∅
v(It,ζ ) → 0 as ζ → 0. When working

with sets Dc that need not be bounded, we need to impose a more direct assump-
tion (2.14) on the contribution of ∂Dc to the Riemann sum. Moreover, by condi-
tion (C) or (A1)–(A5), we now mean that it holds uniformly over t belonging to
[Dc]δ .

COROLLARY 2.7. Assume (C), (A1)–(A5) and that

sup
t,u∈Dc

‖u − t‖ = O(cκ) and ζ d
c

∑
t∈(ζcZ)d ,It,ζc∩∂Dc �=∅

H(t) = o(v(Dc))(2.14)

for some κ > 0 and positive ζc with ζc → 0 and �c = o(ζc). Then as c → ∞,

P

{
sup
t∈Dc

Xc(t) > c

}
∼ ψ(c)�−d

c

∫
Dc

H(t) dt.(2.15)

2.3. Boundary crossing probabilities. To extend the conclusion of Corol-
lary 2.7 to the boundary crossing probability P {Xc(t) > bc(t) for some t ∈ Dc},
we proceed similarly by using the probabilities pc(t) = P {Xc(s) > bc(s) for some
s ∈ It,ζc} as building blocks, where ζc → 0 is so chosen that

sup
t∈[Dc]δ

�bc(t) = o(ζc)

(
hence inf

t∈[Dc]δ
bc(t) → ∞

)
as c → ∞.(2.16)

Whereas (A1)–(A5) are related to the time-invariant boundary c to be crossed
by Xc(·), we can formulate similar assumptions when c is replaced by a time-
varying boundary bc(·). Let

b c = inf
u∈[Dc]δ

bc(u), bc = sup
u∈[Dc]δ

bc(u).(2.17)

Analogous to (A1)–(A5), assume that the following conditions hold, as c → ∞,
uniformly in t ∈ [Dc]δ and b c/2 ≤ z ≤ bc:

P {Xc(t) > z} ∼ ψ(z),(B1)

{z[Xc(t + ak�z) − Xc(t)] : 0 ≤ ki < m}|Xc(t) = z − γ /z
(B2)

⇒ {Wt(ak) : 0 ≤ ki < m},
for any a > 0 and positive integers m, the convergence being uniform over positive,
bounded values of γ ; moreover, the convergence in (2.2) is assumed to be uniform
in t ∈ [Dc]δ , with supt∈[Dc]δ,v∈Sd−1 rt (v) < ∞. In addition, there exists a positive
function h such that limy→∞ h(y) = 0 and

P {Xc(t + u�z) > z − γ /z,Xc(t) ≤ z − y/z} ≤ h(y)ψ(z)(B3)
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for all u ≥ 0 and γ > 0, and there exist nonincreasing functions Na on R+ and
positive constants γa such that γa → 0 and Na(γa) + ∫ ∞

1 ωsNa(γa + ω)dω =
o(ad) as a → 0, and

P

{
sup

0≤u≤a

Xc(t + u�z) > z,Xc(t) ≤ z − γ /z

}
≤ Na(γ )ψ(z),(B4)

for all γa ≤ γ ≤ z and s > 0. Moreover, there exists a nonincreasing function
f : [0,∞) → R+, with f (‖r‖) = O(e−‖r‖p

) for some p > 0, such that for γ > 0
and c sufficiently large

P {Xc(t) > z − γ /z,Xc(t + u�z) > z − γ /z} ≤ ψ(z − γ /z)f (‖u‖)(B5)

uniformly in t and t + u�z belonging to [Dc]δ .

THEOREM 2.8. Assume (C) and (B1)–(B5). Suppose that (2.14) and (2.16)
hold for some κ > 0 and ζc → 0 and that

sup
t∈[Dc]2ζc

[b2
c(t) − b2

c(t)] = o(1)

(2.18)
where bc(t) = sup

u∈It,ζc

bc(u), b c(t) = inf
u∈It,ζc

bc(u).

Then P {Xc(t) > bc(t) for some t ∈ Dc} ∼ ∫
Dc

ψ(bc(t))�
−d
bc(t)

H(t) dt as c → ∞.

The next corollary specializes Theorem 2.8 to the case in which bc(t) = cb(t)

for some positive function b possessing continuous second derivatives on [D]δ ,
where D is a compact Jordan measurable set. Let bD = inft∈D b(t) and assume
that M = {t ∈ D :b(t) = bD} is a q-dimensional manifold (with boundary) such
that vq(M ∩ ∂D) = 0, in which vq denotes the q-dimensional volume element of
the manifold. Let T M⊥(t) denote the normal space of the manifold M at t . Letting
{e1(t), . . . , ed−q(t)} be an orthonormal basis of T M⊥(t), define the d × (d − q)

matrix A(t) = (e1(t) · · · ed−q(t)) and assume that ∇2⊥b(t) := A′(t)∇2b(t)A(t) is a
positive definite q × q matrix for all t ∈ M.

COROLLARY 2.9. Suppose (C) and (B1)–(B5) are satisfied with α < 2 and
Dc = D, a compact Jordan measurable set. Then as c → ∞,

P {Xc(t) > cb(t) for some t ∈ D}
(2.19)

∼ ψ(cbD)b
2d/α
D �−d

c (2π/c2bD)(d−q)/2
∫
M

|∇2⊥b(t)|−1/2H(t)vq(dt).

EXAMPLE 2.10. Let X(t1, t2) = (t2 − t1)
−1/2[W(t2) − W(t1)] and Xc = X

as in Example 2.2, where W(·) is Brownian motion, and let bc(t1, t2) = [c2 +
2 log(t2 − t1)

−β]1/2 for some β > 1. Let D = {(t1, t2) : 0 ≤ t1 < t2 ≤ a, a1 ≤
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t2 − t1 ≤ a2} where 0 < a1 < a2 ≤ a. Arguments similar to those used to prove
Theorem 2.1 in Section 5 can be used to show that (B1)–(B5) hold uniformly in
t ∈ [D]δ and b c/2 ≤ z ≤ bc. Therefore by Lemma 2.3 and Theorem 2.8,

P {(t2 − t1)
−1/2[W(t2) − W(t1)] > [c2 + 2 log(t2 − t1)

−β]1/2

for some 0 ≤ t1 < t2 ≤ a, a1 ≤ t2 − t1 ≤ a2}
∼ ψ(c)(2c2)2

∫
D

2−4eβ log(t2−t1)(t2 − t1)
−2 dt1 dt2

= c4ψ(c)

4

∫ a2

a1

∫ a−s

0
s−2+β dt1 ds

= c4ψ(c)

4

(
a(a

β−1
2 − a

β−1
1 )

β − 1
− (a

β
2 − a

β
1 )

β

)
.

2.4. Discussion and related literature. Our formulation of “asymptotically
Gaussian” random fields bears some resemblance to Aldous’s [4] Poisson clump-
ing heuristic, which involves i.i.d. clumps of high-level excursions of a stochas-
tic process X(t), with the stochastic structure of the clump determined by the
conditional limiting process [like that in (A2)] of normalized local increments.
Whereas the Poisson clumping heuristic only suggests an asymptotic approxima-
tion P {supt∈D Xc(t) ≤ c} of the form e−pc with pc → 0, our approach actually
gives a rigorous derivation of an asymptotic formula for pc. Instead of a sin-
gle stochastic process X(t), our formulation involves a family of random fields
Xc(t) with EXc(t) = 0 and Var(Xc(t)) = 1. It consists of two basic components:
(i) a normal approximation to the probability of Xc(t) exceeding some high level
(depending on c) in (A1) or (B1), and (ii) the weak convergence of the finite-
dimensional distributions of the local increments conditioned on Xc(t) = c − y/c

in (A2) [or (B2)]. The covariance structure of the local increments given by condi-
tion (C) and the closely related mean and covariance functions (2.1) of the limiting
Gaussian random field in (A2) [or (B2)] provide the key ingredients in the asymp-
totic formulas in Corollaries 2.6, 2.7 and Theorem 2.8. Theorem 2.1 and its proof
show that these asymptotic formulas are the same as in the special case Xc = X,
a zero-mean Gaussian random field satisfying condition (C). These asymptotic
formulas are derived by adding up corresponding results for small cubes in (2.11),
making use of (2.12) to justify the additivity.

Conditions of the type (A2) were introduced by Berman ([6], Theorem 5.1) for
asymptotic approximations (as c → ∞) to the probability P {sup0≤t≤T X(t) > c}
of a stationary process X(t) (with d = 1) such that X(0) belongs to the domain of
attraction of an extreme value distribution; see [6], Theorem 14.1 and [3], Theo-
rem 1. We consider here general d , extend X(t) to Xc(t) and remove the stationary
assumption, but restrict the limiting distribution in (A2) to be Gaussian and the
marginal probabilities P {Xc(t) > c − y/c} to be asymptotically normal. It will be
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shown in Sections 3 and 4 that extending a single stationary process X(t) to a fam-
ily of possibly nonstationary random fields Xc(t) and generalizing the threshold c

to a moving boundary bc(t) greatly broaden the scope of applications. Some of the
difficulties in proving these extensions to the nonstationary setting are explained
in Remark 5.1.

Corollary 2.9 and its proof in Section 5 reveal similarities and differences be-
tween our approach and the tube formulas of Hotelling [21] and Weyl [36] whose
applications to the maxima of Gaussian random fields are reviewed in Section 6
of [1]. As in [8], the use of the tubular neighborhood Uξc of the extremal mani-
fold M in the proof of Corollary 2.9 is related to Laplace’s method for asymptotic
evaluation of the integral

∫
Dc

ψ(bc(t))�
−d
bc(t)

H(t) dt , in which the integrand can
be regarded as an “asymptotic density” of crossing the boundary bc by Xc at t

(see the paragraph following Theorem 2.5). Differential geometric considerations
arise naturally in applying Laplace’s method to integrate the asymptotic boundary
crossing density, and clearly also in the Euler characteristic and tube formulas of
excursion sets in [1].

3. Sums of i.i.d. random variables with multidimensional indices and as-
sociated Kolmogorov–Erdős–Feller test. Let Yk,k ∈ Zd+, be i.i.d. random vari-
ables with

EYk = 0, EY 2
k = 1, E|Yk|3 < ∞.(3.1)

Let Sn = ∑
k≤n Yk, where k ≤ n denotes that ki ≤ ni for 1 ≤ i ≤ d , as

in Section 2. Let |n| = ∏n
i=1 ni , log n = (logn1, . . . , lognd) and exp(t) =

(exp(t1), . . . , exp(td)). Define X(log n) = |n|−1/2Sn and extend the domain of X

to [0,∞)d by defining X(t) = X(log n) when logni ≤ ti < log(ni + 1) for all i.
Let Xc = X, ρc = ρ and let Dc be a Jordan measurable subset of {t :

∑
i ti ≥ c3}.

If t = log n and t + u = log m for some m,n ∈ Zd+, then

1 − ρ(t, t + u) = 1 − Cov(|n|−1/2Sn, |m|−1/2Sm)
(3.2)

= 1 − exp

(
−∑

i

|ui |/2

)
∼ ∑

i

|ui |/2

as u → 0. From (3.2), it follows that (C) holds with α = 1, L(x) ≡ 1, rt (u) =∑
i |ui |/2, and therefore �c = (2c2)−1 by (2.5). Moreover, by the Berry–Esseen

theorem (cf. [15], Theorem 16.4.1), for log n ≤ t ≤ log(n + 1),∣∣∣∣P {X(t) > c − y/c} −
∫ ∞
c−y/c

(2π)−1/2e−z2/2 dz

∣∣∣∣ = O(|n|−1/2)(3.3)

uniformly over c and y. Since log |n|/c2 → ∞ uniformly over t ∈ [Dc]δ , it fol-
lows from (3.3) that (A1) holds. Moreover, as will be shown in Lemma 3.6,
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(A3) and (A4) are satisfied uniformly over [Dc]δ . If we assume in addition that
for some ε > 0 and κ > 0,

sup
t,u∈[Dc]δ

‖u − t‖ = O(cκ) and [Dc]δ ⊂ Gε :=
{

t : ti
/∑

j

tj ≥ ε for all i

}
,(3.4)

then Lemmas 3.5 and 3.7 show that (A2) and (A5) also hold. Therefore X(t),
t ∈ Dc, is asymptotically Gaussian, and we shall apply Lemma 2.3 and Corol-
lary 2.7 at the end of this section to prove the following two theorems.

THEOREM 3.1. (i) Assume that for some positive ζc → 0 with �c = o(ζc),

ζ d
c

∣∣{t ∈ (ζcZ)d : It,ζc ∩ ∂Dc �= ∅

}∣∣ = o(v(Dc))(3.5)

as c → ∞. Then P {supt∈Dc
X(t) > c} = O(v(Dc)c

2dψ(c)).
(ii) If (3.4) also holds, then

P

{
sup
t∈Dc

X(t) > c

}
∼ 2−dv(Dc)c

2dψ(c).(3.6)

Theorem 3.1(i) enables us to extend the Kolmogorov–Erdős–Feller test (1.3) to
the case of multidimensional time. Let β : Zd+ → (0,∞) be nondecreasing in the
sense that β(m) ≤ β(n) for all m ≤ n. We say that β is an upper (lower) class
function if

sup{|n| : |n|−1/2Sn > β(n)} < (=)∞ a.s.(3.7)

For ε ≥ 0, let Fε = {n ∈ Zd+ : logni/ log |n| ≥ ε for all i}; in particular F0 = Zd+.
Define

Jε = ∑
n∈Fε

|n|−1β2d−1(n)e−β2(n)/2.(3.8)

THEOREM 3.2. If J0 < ∞, then β is an upper class function. Conversely, if
Jε = ∞ for some ε > 0, then β is a lower class function.

EXAMPLE 3.3. In the case d = 1, since xe−x2/2 is decreasing in x ≥ 1, it
follows that

∫ ∞
1 t−3/2b(t)e−b2(t)/2t dt < ∞ iff

∑∞
1 n−1β(n)e−β2(n) < ∞, where

β(n) = b(n)/
√

n is nondecreasing. Therefore the integral test (1.3) is equivalent to
Theorem 3.2, noting that Jε = J0 for all 0 ≤ ε ≤ 1 in the case d = 1. Next consider
d = 2 and let β be a positive function on Z2+ such that∑

n1=1,n2≥1

n−1
2 β3(n)e−β2(n)/2 = ∞,

∑
n

[
n−1

2 β(n)1{n1=1} + |n|−1β3(n)1{n1≥2}
]
e−β2(n)/2 < ∞.
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Then sup{|n| : |n|−1/2Sn > β(n), n1 ≥ 2} < ∞ a.s. and sup{n2 :n−1/2
2 Sn > β(n),

n1 = 1} < ∞ a.s., by the first part of Theorem 3.2. On the other hand, J0 = ∞
although Jε < ∞ for every ε > 0. This shows the importance of using Jε instead
of J0 for the lower class result in Theorem 3.2.

Let β(n) = {(2 + δ) d log log |n|}1/2 for |n| ≥ e and δ ≥ 0. Then by the inequal-
ity d−1 ∑d

i=1 logni ≥ (
∏d

i=1 logni)
1/d between arithmetic and geometric means,

there exist C,C′ > 0 such that

J0 ≤ C
∑

n∈Zd+

(log log |n|)d−1/2/
{|n|(log |n|)d(1+δ/2)}

≤ C′
d∏

i=1

∑
ni∈Z+

n−1
i (logni)

−(1+δ/3),

so J0 < ∞ if δ > 0. Take 0 < ε < d−1 and note that the number of k’s such that∑
i ki = m and ek ∈ Fε (so that ki ≥ εm) is (B + o(1))md−1 for some B > 0.

Since
∏d

i=1
∑

eki−1≤ni<eki n−1
i ∼ 1 as min ki → ∞, it follows that if δ = 0, then

there exists B ′ > 0 such that

Jε ≥ ∑
n∈Fε,n≥n0

|n|−1(log |n|)−d ≥ B ′ ∑
m≥m0

m−1 = ∞.

Hence by Theorem 3.2, β(n) belongs to the upper class if δ > 0 and to the lower
class if δ = 0, yielding the following.

COROLLARY 3.4. lim sup|n|→∞ Sn/(2d|n| log log |n|)1/2 = 1 a.s.

In the case d = 2, Zimmerman [38] proved an analogue of Corollary 3.4 for
the Brownian sheet, which is a zero-mean Gaussian random field with indepen-
dent increments and variance function |t|, like that of Sn. His result was subse-
quently strengthened by Orey and Pruitt ([26], Theorem 2.2) who proved that for
the d-dimensional Brownian sheet W(t), P {W(t)/|t| ≤ f (|t|) for all large |t|} = 1
(or 0) if ∫ ∞

1
ξ−1(log ξ)d−1(log log ξ)d−1/2e−f 2(ξ)/2 dξ < (or = )∞.(3.9)

Actually their result considers t → 0 rather than |t| → ∞. However, as
|t|W(1/t1, . . . ,1/td) is also a Brownian sheet, one can extend their integral test
to the preceding statement. Because continuous Gaussian processes (instead of
discrete-time sample sums) are involved, the tail distribution of the maximum over
a domain Dc does not require condition (3.4); see (2.6) in this connection. Hence
unlike (3.8), the integral test (3.9) does not involve Fε . Instead of the series (3.8),
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we can rewrite it as an integral when Fε is not involved, expressing the conver-
gence criterion in Theorem 3.2 (taking ε = 0) as the integral test∫ ∞

1
· · ·

∫ ∞
1

(t1 · · · td)−1β2d−1(t1, . . . , td)

(3.10)
× e−β2(t1,...,td )/2 dt1 · · · dtd < (or = )∞.

Note that (3.10) considers more general functions β(t) than those of the form
f (|t|) considered by Orey and Pruitt [26]. In the case β(t) = f (|t|), assuming
without loss of generality that c0 ≤ f (ξ)/(log log ξ)1/2 ≤ c1 for some 0 < c0 < c1
(see the proof of Theorem 3.2), the change of variables ξ = t1 · · · td in (3.10) shows
that (3.9) and (3.10) are indeed equivalent.

Strong approximations of Sn have been developed by Rio [32] who has shown
that if Yk, k ∈ Zd+, are i.i.d. with EYk = 0, EY 2

k = 1 and E|Yk|r < ∞ for some
r > 2, then redefining the random variables on a new probability space yields

sup
0≤n≤ν1

|Sn − W(n)| = O
(
ν(d−1)/2(logν)1/2 + νd/r) a.s.(3.11)

Note that (3.11) bounds the approximation error Sn − W(n) by(
max

1≤i≤d
ni

)(d−1)/2(
log max

1≤i≤d
ni

)1/2

+
(

max
1≤i≤d

ni

)d/r

,

instead of by some sufficiently small power of |n| = ∏d
i=1 ni . Therefore Rio’s

strong approximation (3.11) cannot be combined with the Orey–Pruitt integral test
(3.9) for W(t) to yield a corresponding integral test for Sn. Example 3.3 shows
that the integral test (3.9) for W(t) actually does not hold for Sn which requires a
more subtle criterion for a lower class of functions.

The proof of Theorem 3.1 uses the following three lemmas which show that
(A2)–(A5) hold under (3.4).

LEMMA 3.5. Assume (3.4). Let u,v ≥ 0. Then as c → ∞,

E{c[X(t + u�c) − X(t)]|X(t) = c − y/c}
(3.12)

→ −
d∑

i=1

ui/4,

Cov{c[X(t + u�c) − X(t)], c[X(t + v�c) − X(t)]|X(t) = c − y/c}
(3.13)

→
d∑

i=1

min(ui, vi)/2,

uniformly over bounded values of y and t ∈ [Dc]δ . Hence (A2) holds.
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PROOF. For exp(t) ∈ Zd+ and exp(t + u�c) ∈ Zd+, define

Zt(u) = ∑
{k : k≤exp(t+u�c)}\{k : k≤exp(t)}

Yk

(3.14)

= X(t + u�c) exp

{∑
i

(ti + ui�c)/2

}
− X(t) exp

(∑
i

ti/2

)
.

Conditioned on X(t) = c − y/c,

c{X(t + u�c) − X(t)}

= cZt(u) exp

{
−∑

i

(ti + ui�c)/2

}
(3.15)

− c(c − y/c)

{
1 − exp

(
−�c

∑
i

ui/2

)}

= cZt(u) exp

(
−∑

i

ti/2 − �c

∑
i

ui/2

)
− ∑

i

ui/4 + o(1).

Since Zt(u) is independent of X(t), (3.12) follows from (3.4) and (3.15). To see
this, suppose logni ≤ ti + u�c < log(ni + 1) and logmi ≤ ti < log(mi + 1) for
1 ≤ i ≤ d . By (3.4), ti ≥ ε

∑
j tj ≥ εc3/2 for t ∈ [Dc]δ and all large c. This implies

that log(mi + 1) − logmi = log(1 + m−1
i ) ≤ log(1 + e−εc3/2) = o(�c) and that

log(ni + 1) − logni = o(�c), so by (3.14) and (3.15),

E{c[X(t + u�c) − X(t)]|X(t) = c − y/c}

= −
d∑

i=1

(logni − logmi)/4�c + o(1) → −
d∑

i=1

ui/4.

Similarly, for u,v ≥ 0,

Cov
(
Zt(u),Zt(v)

) ∼
d∏

i=1

{
exp

(
ti + min(ui, vi)�c

) − exp(ti)
}

(3.16)

∼
{∑

i

min(ui, vi)�c

}
exp

(∑
i

ti

)
and (3.13) follows from (3.4), (3.15), (3.16) since Zt(v) is also independent of
X(t). �

LEMMA 3.6. (i) P {maxk≤n Sk ≥ λ} ≤ 2dP {Sn ≥ λ − d(2|n|)1/2}.
(ii) There exists a positive function h, with limy→∞ h(y) = 0, satisfying (A3).

(iii) There exist nonincreasing functions Na on R+ and positive constants γa

such that γa → 0, Na(γa) + ∫ ∞
1 ysNa(γa + y)dy = o(ad) for all s > 0, as a → 0,
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and (A4) holds.

PROOF. For (i), see [17], Lemma 2.3. To prove (ii), let u ≥ 0, ω > 0, γ > 0.
By (3.15),

c[X(t + u�c) − X(t)] ≤ (
1 + o(1)

)
cZt(u) exp

(
−∑

i

ti/2

)
.(3.17)

Since |{k : k ≤ exp(t+u�c)}|− |{k : k ≤ exp(t)}| ∼ (
∑

i ui/2c2) exp(
∑

i ti), it fol-
lows by the independence of Zt(u) and X(t) and the Berry–Esseen theorem that
for large c,

P {c[X(t + u�c) − X(t)] > y′ − γ |X(t) = c − y′/c}

≤ P

{
Zt(u) > [(y′ − γ )/2c] exp

(∑
i

ti/2

)}
(3.18)

≤ ψ
(
B(y′ − γ )

) + O

(
c exp

(
−∑

i

ti/2

))
for some B > 0, uniformly over γ ≤ y′ ≤ ωc. In view of (A1), we can choose
ξc → 0 such that P {X(t) > c − y′/c} = (1 + O(ξ2

c ))ψ(c − y′/c) uniformly over
γ ≤ y′ ≤ ωc. Let yj = y + jξc, j = 0,1, . . . . Then by (3.18),

P {X(t + u�c) ≥ c − γ /c, c − ω ≤ X(t) < c − y/c}
≤ ∑

0≤j≤(ωc−y)/ξc

∫ yj+1

yj

P {X(t + u�c) > c − γ /c|X(t) = c − y′/c}

× P {X(t) ∈ c − dy′/c}

≤ ∑
0≤j≤(ωc−y)/ξc

[
ψ

(
B(yj − γ )

) + O

(
c exp

{
−∑

j

tj /2

})]

× [P {X(t) > c − yj+1/c} − P {X(t) > c − yj/c}](3.19)

≤ (
1 + o(1)

) ∑
0≤j≤(ωc−y)/ξc

[
ψ

(
B(yj − γ )

)

+ O

(
c exp

{
−∑

i

ti/2

})]
ξce

yj ψ(c)

≤ ψ(c)

[(
1 + o(1)

)
×

∫ ωc

y
ey′

ψ
(
B(y′ − γ )

)
dy′ + O

(
c exp

{
ωc − ∑

i

ti/2

})]
.
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Since
∑

i ti ≥ c3, c exp(ωc − ∑
i ti/2) = o(1). Moreover,

∫ ∞
y ey′

ψ(B(y′ −
γ )) dy′ → 0 as y → ∞. From (3.17) and (3.18), it follows that for large c,

P {[X(t + u�c) − X(t)] > ω} ≤ P

{
Zt(u) > (ω/2) exp

(∑
i

ti/2

)}

≤ ψ(Bcω) + O

(
c exp

(
−∑

i

ti/2

))
(3.20)

= o(ψ(c))

if we choose ω > B−1. Hence (ii) follows from (3.19) and (3.20).
To prove (iii), note that {k : k ≤ exp(t + a1�c)} \ {k : k ≤ exp(t)} =⋃
J⊂{1,...,d},J �=∅

AJ , where AJ = {k : exp(ti) < ki ≤ exp(ti + a�c) for i ∈ J and
ki ≤ exp(ti) for i /∈ J }. By (i),

P

{
sup

0≤u≤a1
Zt(u) > z

}

≤ ∑
J⊂{1,...,d},J �=∅

P

{
sup

k∈AJ

∑
m≤k,m∈AJ

Ym > z2−d

}
(3.21)

≤ 2d
∑

J⊂{1,...,d},J �=∅

P

{ ∑
m∈AJ

Ym > z2−d − d(2|AJ |)1/2

}
.

Since |AJ | ∼ (a�c)
|J | exp(

∑
i ti), it follows by (3.17), (3.21) and the Berry–

Esseen theorem [using the same steps as in (3.18)] that for large c,

P

{
sup

0≤u≤a1
c[X(t + u�c) − X(t)] > y′|X(t) = c − y′/c

}

≤ P

{
sup

0≤u≤a1
Zt(u) > (y′/2c) exp

(∑
i

ti/2

)}
(3.22)

≤ 4dψ(B ′y′/a1/2 − 21/2d) + O

(
cd exp

(
−∑

i

ti/2

))
for some B ′ > 0, uniformly over γ ≤ y ≤ ωc, and therefore

P

{
c − ω ≤ X(t) < c − γ /c, sup

0≤u≤a1
X(t + u�c) > c

}

≤ ψ(c)

[
4d

∫ ωc

γ
ey′

ψ(B ′y′/a1/2 − 21/2d)dy′(3.23)

+ O

(
cd exp

(
ωc − ∑

i

ti/2

))]
.
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Since
∑

i ti ≥ c3, O(cd exp{ωc − ∑
i ti/2}) = o(1). By (3.17), (3.21), (3.22)

and (i),

P

{
sup

0≤u≤a1
[X(t + u�c) − X(t)] > ω

}

≤ P

{
sup

0≤u≤a1
Zt(u) > (ω/2) exp

(∑
i

ti/2

)}
(3.24)

≤ 4dψ(B ′cω/a1/2 − 21/2d) + O

(
cd exp

(
−∑

i

ti/2

))

for all large c. Let γa = a1/3 and take ω > a1/2/B ′ so that ψ(B ′cω/a1/2 −
d21/2) = o(ψ(c)). Recalling that

∑
i ti ≥ c3, it follows from (3.23) and (3.24) that

for all large c and γa ≤ γ ≤ c,

P

{
sup

0≤u≤a1
X(t + u�c) > c,X(t) ≤ c − γ /c

}

≤ ψ(c)

∫ ∞
γ

5dey′
ψ(B ′y′/a1/2 − 21/2d)dy′ = ψ(c)Na(γ ),

with Na(γa) + ∫ ∞
1 ysNa(γa + y)dy = o(ap) for all s > 0 and p > 0. �

LEMMA 3.7. Assume (3.4). For γ > 0, there exist positive constants B1,B2
and η such that

P {X(t) > c − γ /c,X(t + u�c) > c − γ /c}
(3.25)

≤ B1 exp(−B2‖u‖η)ψ(c − γ /c)

uniformly over t, t + u�c ∈ [Dc]δ . Hence (A5) holds.

PROOF. For exp(t) ∈ Zd+ and exp(t + u�c) ∈ Zd+,

P {X(t) > c − γ /c,X(t + u�c) > c − γ /c}
(3.26)

≤ P {X(t) + X(t + u�c) > 2(c − γ /c)},
in which X(t) + X(t + u�c) is a sum of

∏d
i=1 max(eti , eti+ui�c) random vari-

ables, each of the form (exp(−∑
i ti/2)1{k≤exp(t)} + exp{−∑

i (ti + ui�c)/2} ×
1{k≤exp(t+u�c)})Yk. Since

∑
i ti ≥ c3, X(t) + X(t + u�c) is a sum of at least

exp(c3) i.i.d. random variables. Using this and Var(X(t) + X(t + u�c)) = 2(1 +
ρ(t, t + u�c)), we then obtain by the Berry–Esseen theorem that

P {X(t) + X(t + u�c) > 2(c − γ /c)}
(3.27)

≤ ψ

((
2(c − γ /c)2

1 + ρ(t, t + u�c)

)1/2)
+ O

(
exp(−c3/2)

)
.
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By (3.2), there exists ζ > 0 such that 1 − ρ(t, t + u�c) ≥ �c

∑
i |ui |/4 if

�c

∑
i |ui | ≤ ζ . Moreover, 1−ρ(t, t+v) = 1−exp(−∑

i |vi |/2) ≥ ξ := 1−e−ζ/2

if
∑

i |vi | ≥ ζ . Since

ψ

((
2(c − γ /c)2

1 + ρ(t, t + u�c)

)1/2)

≤ ψ(c − γ /c)

(
1 + ρ(t, t + u�c)

2

)1/2

× exp
[−(c − γ /c)2(1 − ρ(t, t + u�c))

2(1 + ρ(t, t + u�c))

]

≤ ψ(c − γ /c) exp
[−(c − γ /c)2(1 − ρ(t, t + u�c))

4

]
,

it follows from (3.26) and (3.27) that for all large c,

P {X(t) > c − γ /c,X(t + u�c) > c − γ /c}
≤ ψ(c − γ /c)(3.28)

×
[

exp

(
−∑

i

|ui |/33

)
1{�c

∑
i |ui |≤ζ } + e−c2ξ/51{�c

∑
i |ui |>ζ }

]
.

Since t and t + u�c belong to [Dc]δ and since supt,v∈[Dc]δ ‖v − t‖ = O(cκ)

by (3.4), it follows that
∑

i |ui | ≤ √
d‖u‖ = O(cκ+2). Hence (3.25) with η <

min{1,2/(κ + 2)} follows from (3.28). �

PROOF OF THEOREM 3.1. We have already shown that conditions (C), (A1),
(A3) and (A4) are satisfied and that (A2) and (A5) also hold under (3.4). Let �t =
{t + k�c ∈ It,ζc : k ∈ Zd}. Note that ζc/�c → ∞ and that

P

{
sup

u∈It,ζc

X(u) > c

}

≤ ∑
u∈�t

[
P {X(u) > c − 1/c}

(3.29)

+ P

{
X(t) ≤ c − 1/c, sup

0≤v≤1
X(u + v�c) > c

}]

= O
(
(ζc/�c)

dψ(c)
)
,

by (3.3) and (A4). By adding up (3.29) over {t ∈ (ζcZ)d : It,ζc ∩ Dc �= ∅}, it fol-
lows from (3.5) that P {supt∈Dc

X(t) > c} = O(v(Dc)�
−d
c ψ(c)). By (3.2) and

Lemma 2.3, H(t) ≡ 4−d . If (3.4) also holds, then (A1)–(A5) all hold and Corol-
lary 2.7 can be applied to give (3.6). �
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LEMMA 3.8. Let β : Z+ → (0,∞) be nondecreasing and such that β(n) ≤
{3d log log |n|}1/2. Define Jε by (3.8) and let c(t) = β(�exp(t)	) for t ∈ Rd+, c(0) =
β(1).

(i) If J0 < ∞, then
∑

k≥0 c2d−1(k)e−c2(k)/2 < ∞.
(ii) Let w1 = 2 and wj+1 = wj + logwj for j ≥ 1. Then wj ∼ j log j as

j → ∞. For k ∈ Zd+, define the rectangle I (k) = ∏d
i=1[wki

,wki+1) and let wk =
(wk1, . . . ,wkd

). Assume furthermore that β(n) ≥ {d log log |n|}1/2 and Jε′ = ∞ for
some ε′ > 0. Then for every 0 < ε < ε′,∑

k≥3 : I (k)⊂Gε

v
(
I (k))c2d−1(wk)e−c2(wk)/2 = ∞,(3.30)

where Gε is given in (3.4) and v(·) denotes volume of the rectangle.

PROOF. Note that x2d−1e−x2/2 is decreasing for x ≥ x0. Since β is nonde-
creasing and there are only finitely many n’s with β(n) < x0 in parts (i) and (ii)
of the lemma, we can assume without loss of generality that β2d−1(n)e−β2(n)/2 is
decreasing in n. Therefore

J0 ≥ ∑
k≥0

{ ∑
n : eki ≤ni<eki+1

|n|−1

}
c2d−1(k + 1)e−c2(k+1)/2

≥ ∑
k≥1

(1 − 2e−1)dc2d−1(k)e−c2(k)/2,

noting that |n|−1 >
∏d

i=1 e−(ki+1) if eki ≤ ni < eki+1 for all i and that {n : eki ≤
ni < eki+1 for all i} has at least

∏d
i=1(e

ki+1 −eki −1) elements. A similar argument
also shows that for any {i1, . . . , ij } ⊂ {1, . . . , d},

∑
k:ki1=···=kij

=0,ki≥1 for i /∈{i1,...,ij }
c2d−1(k)e−c2(k)/2 < ∞.

To prove (ii), first consider the case d = 1 for which Jε = J0. Here (3.30) fol-
lows from J0 = ∞,

∑
n≥e2

n−1β(n)e−β2(n)/2 ≤
∞∑

k=2

c(wk)e
−c2(wk)/2

{ ∑
exp(wk)≤n<exp(wk+1)

n−1

}
,(3.31)

and
∑

exp(wk)≤n<exp(wk+1)
n−1 ≤ wk+1 − wk + 1 = v(I (k)) + 1.
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We next consider the case d > 1. Since there are finitely many n’s belonging
to Zd+ such that log n ∈ Gε′ \ (

⋃
k : min ki≥3,I (k)⊂Gε

I (k)), there exists C > 0 such
that

J ′
ε = ∑

log n∈Gε′
|n|−1β2d−1(n)e−β2(n)/2

= C + ∑
k≥3 : I (k)⊂Gε

{ ∑
log n∈I (k)

|n|−1β2d−1(n)e−β2(n)/2

}
,

which we can bound as in (3.31) to obtain (3.30) if Jε′ = ∞, noting that

∑
log n∈I (k)

|n|−1 ≤
d∏

i=1

( ∑
exp(wki

)≤ni<exp(wki+1)

n−1
i

)
≤

d∏
i=1

(
wki+1 − wki

+ 1
)
,

and that
∏d

i=1(wki+1 − wki
+ 1) ∼ v(I (k)) as min1≤i≤d ki → ∞. �

PROOF OF THEOREM 3.2. Suppose the theorem holds under the addi-
tional assumption β(n) ≤ {3d log log |n|}1/2. To show that it also holds with-
out this additional assumption, define β̂(n) = min{β(n), (3d log log |n|)1/2} for
an arbitrary function β : Zd+ → (0,∞). If J0(β) < ∞, then J0(β̂) ≤ J0(β) +
J0({3d log log |n|}1/2) < ∞ and hence

sup{|n| :Sn/|n|1/2 > β(n)} ≤ sup{|n| :Sn/|n|1/2 > β̂(n)} < ∞ a.s.

If Jλ(β) = ∞, then Jλ(β̂) = ∞, so sup{|n| :Sn/|n|1/2 > β̂(n)} = ∞ a.s. Since
sup{|n| :Sn/|n|1/2 > (3d log log |n|)1/2} < ∞ a.s., it then follows that sup{|n| :
Sn/|n|1/2 > β(n)} = ∞ a.s.

Define c(t) as in Lemma 3.8. In view of the preceding paragraph, we shall
assume that c(t) ≤ {3d log(

∑
i ti)}1/2 [and hence

∑
i ti ≥ c3(t) for large t] and

there is no loss of generality. We can apply Theorem 3.1 to Dc = Ik,1 [noting that
(3.5) clearly holds for such cubes with unit width] and combine the result with
Lemma 3.8(i) to conclude that if J0 < ∞, then

∑
k≥0

P

{
sup

t∈Ik,1

X(t) > c(k)

}
= O

(∑
k≥0

c2d−1(k)e−c2(k)/2

)
< ∞,

and therefore
∑

k≥0 P {|n|−1/2Sn > β(n) for some n with log n ∈ Ik,1} < ∞.
Hence by the Borel–Cantelli lemma, β is an upper class function if J0 < ∞.

Suppose Jλ = ∞ for some λ > 0. Take 0 < ε < λ. To prove that β is a
lower class function, we can assume that β(n) ≥ {d log log |n|}1/2, using an ar-
gument similar to that at the beginning of the proof to show that the assump-
tion leads to no loss of generality. For notational simplicity, we focus on the
case d = 2, as extension of the proof to d > 2 is straightforward and the case
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d = 1 does not involve multivariate considerations. Define the rectangles I (k) as
in Lemma 3.8(ii) and partition the set {k ≥ 3 : I (k) ⊂ Gε} of bivariate vectors
k = (k1, k2) into four disjoint sets A1, . . . ,A4 so that k1 is odd in A1 ∪ A2
(and even in A3 ∪ A4) while k2 is odd in A1 ∪ A3 (and even in A2 ∪ A4).
Since the number of k’s belonging to Gλ \ (

⋃
k≥3 : I (k)⊂Gε

I (k)) is finite and since
v(I (k)) = (wk1+1 − wk1)(wk2+1 − wk2) ∼ v(I (k−1)) as min(k1, k2) → ∞, it fol-

lows from Lemma 3.8(ii) that
∑4

j=1
∑

k∈Aj
v(I (k−1))c2d−1(wk)e−c2(wk)/2 = ∞,

and therefore there exists j such that∑
k∈Aj

v
(
I (k−1))c2d−1(wk)e−c2(wk)/2 = ∞.(3.32)

Since β(n) ≥ {d log log |n|}1/2, c(wk) = β(�ewk	) ≥ (d + o(1))1/2(log |wk|)1/2;
on the other hand, wki

− wki−1 = logwki−1, showing that (3.4) holds with Dc =
I (k−1), κ = 2 and c = c(wk) + 2/c(wk). Clearly, Dc = I (k−1) also satisfies (3.5),
so Theorem 3.1(ii) can be applied to conclude that∑

k∈Aj

P

{
sup

t∈I (k−1)

X(t) > c(wk) + 2/c(wk)

}

∼ e−2
∑

k∈Aj

v
(
I (k−1))c2d−1(wk)e−c2(wk)/2/

(
4
√

2π
) = ∞,

in view of (3.32). This implies that∑
k∈Aj

P
{
Sn/|n|1/2 > β(n) + 2/c(wk) for some n with log n ∈ I (k−1)}

(3.33)

= ∞.

Write n′ < m ≤ n to denote n′
i < mi ≤ ni for all i. For log n ∈ I (k−1), define

S
(k)
n = ∑

�exp(wk−2)	<m≤n Ym. We shall show that∑
k∈Aj

P

{
sup

log n∈I (k−1)

∣∣Sn − S(k)
n

∣∣/|n|1/2 > 1/c(wk)

}
< ∞.(3.34)

From (3.33) and (3.34), it follows that
∑

k∈Aj
P (Fk) = ∞, where

Fk = {
S(k)

n /|n|1/2 > β(n) + 1/c(wk) for some n with log n ∈ I (k−1)}.
Since the Fk are independent events, P {Fk i.o.} = 1 by the converse of the Borel–
Cantelli lemma. Applying the Borel–Cantelli lemma to (3.34) and combining it
with P {Fk i.o.} = 1 then show that P {Sn/|n|1/2 > β(n) i.o.} = 1. To prove (3.34),
let v = �exp(wk−2)	 and note that

Sn − S(k)
n = ∑

m1≤n1,m2≤v2

Ym + ∑
m1≤v1,m2≤n2

Ym − ∑
m≤v

Ym.
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We shall show that∑
k∈Aj

P

{
sup

log n∈I (k−1)

∣∣∣∣∣ ∑
m1≤n1,m2≤v2

Ym

∣∣∣∣∣/|n|1/2 > 1/(3c(wk))

}
< ∞.(3.35)

Observe that
∑

m1≤n1,m2≤v2
Ym/|n|1/2 = X(logn1,wk2−2)(v2/n2)

1/2 and v2/n2 ≤
exp(wk2−2 − wk2−1) = w−1

k2−2, and that for large k ∈ Aj , w
1/2
k2−2/(3c(wk)) >

(3d log |wk|)1/2. Therefore

P

{
sup

log n∈I (k−1)

∣∣∣∣∣ ∑
m1≤n1,m2≤v2

Ym

∣∣∣∣∣/|n|1/2 > 1/(3c(wk))

}

≤ P

{
sup

wk−2<t≤wk

|X(t)| > (3d log |wk|)1/2
}

= O
(
(k1 + k2)

−λ)
for some λ > 2, by Theorem 3.1(i). Since I (k−1) ⊂ Gε , this proves (3.35). �

4. Other applications. Section 2 provides a set of general conditions under
which the asymptotic boundary crossing density approximation in Theorem 2.8 is
shown to be valid. Given a specific application, one needs only to verify that these
assumptions are satisfied. In particular, such verification has been carried out for
sums of i.i.d. random variables with multidimensional indices in Section 3, and we
begin this section by carrying out similar verification of (C) and (B1)–(B5) for mul-
tivariate empirical processes. Let Y1, Y2, . . . be i.i.d. d-dimensional random vectors
with common distribution function F , and let Fn(t) = n−1 ∑n

i=1 1{Yi≤t}, t ∈ Rd , be
the empirical distribution function of Y1, . . . , Yn. Let Zn(t) = √

n{Fn(t) − F(t)}
be the multivariate empirical process. The limiting distribution of Zn is that of a
Gaussian sheet Z0, for which Adler and Brown [2] proved that

Kd,F c2(d−1)e−2c2 ≤ P

{
sup

t
Z0(t) > c

}
≤ Kdc2(d−1)e−2c2

,(4.1)

where Kd is a constant depending only on d and Kd,F is a constant depending on
both d and the distribution F . For the case d = 2 with independent components
Yi,1 and Yi,2 of Yi , Z0 is a pinned Brownian sheet, for which Hogan and Siegmund
[20] sharpened (4.1) into

P

{
sup

t
Z0(t) > c

}
∼ (4 log 2)c2e−2c2

as c → ∞.(4.2)

In Section 5, we apply Corollary 2.9 to prove that if the sample size nc increases
to ∞ with c such that c = o(n

1/6
c ), then we can replace Z0(t) in (4.2) by Znc(t)

and also extend the result to general d and general distribution F such that

F is continuously differentiable and ∂F/∂ti > 0 for 1 ≤ i ≤ d .(4.3)



MAXIMA OF RANDOM FIELDS 103

In view of (4.3), we can apply a change of variables t → F(t) and assume that
F is a distribution function on the bounded Jordan measurable set [0,1]d , agreeing
with the assumptions in Corollary 2.9, whose notation (such as vq ) we use in the
following theorem.

THEOREM 4.1. Let M = {t :F(t) = 1
2} and assume that (4.3) holds and c =

o(n
1/6
c ). Then as c → ∞,

P

{
sup

t
Znc(t) > c

}
(4.4)

∼ (8c2)d−1e−2c2
∫
M

‖∇F(t)‖−1
d∏

i=1

∂F

∂ti
(t)vd−1(dt),

P

{
sup

t
|Znc(t)| > c

}
(4.5)

∼ 2(8c2)d−1e−2c2
∫
M

‖∇F(t)‖−1
d∏

i=1

∂F

∂ti
(t)vd−1(dt).

COROLLARY 4.2. (i) For d = 1 and continuous distribution function F ,
P {supt Znc(t) > c} ∼ e−2c2

as c → ∞.
(ii) For d = 2, if F(t1, t2) = F1(t1)F2(t2) with continuous univariate distribu-

tion functions F1 and F2, then P {supt Znc(t) > c} ∼ (4 log 2)c2e−2c2
as c → ∞.

PROOF. (i) We can assume without loss of generality that Yi is uniform on
(0,1). In this case M = {1

2 } and the integral in (4.4) is 1.
(ii) Without loss of generality, assume that F1(t1) = t1 and F2(t2) = t2, 0 <

t1, t2 < 1. In this case M = {(u1, u2) :u1u2 = 1
2 , 0 < u1, u2 < 1} and the integral

in (4.4) becomes∫
M

u1u2

(u2
1 + u2

2)
1/2

v1(du) =
∫ 1

1/2

1/2

[u2
1 + (1/(2u1))2]1/2

(
1 + 1

4u4
1

)1/2

du1

=
∫ 1

1/2

1

2u1
du1 = 1

2
log 2,

completing the proof for the case d = 2. �

For d = 1, Smirnov [33] has shown that P {supt Z
0(t) > c} = e−2c2

for all c > 0
and Corollary 4.2(i) yields a corresponding asymptotic formula for Znc , which was
used by Chung [12] to prove an upper-lower class theorem for the Kolmogorov–
Smirnov statistic. Note that (4.5) says that for some constant κd , P {supt |Zn(t)| >
λn} ∼ κdλ

2(d−1)
n e−2λ2

n if λn → ∞ and λn = o(n1/6). Since n{Fn(t) − F(t)} is
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a partial sum of the empirical processes 1{Yi≤t} − F(t), we can apply (4.5) and
follow Chung’s arguments to prove the following.

COROLLARY 4.3. Let λn be a nondecreasing sequence such that λn → ∞
and let F be a distribution function on Rd satisfying (4.3). Then P {supt |Zn(t)| >
λn i.o.} = 0 (or 1) if

∑∞
n=1 n−1λ2d

n e−2λ2
n < ∞ (or = ∞).

An important difference between our proof of the upper-lower class result in
Corollary 4.3 and that of Adler and Brown [2] is that they first develop their results
for the limiting Kiefer processes and then use the strong approximation theorem
of Dudley and Philipp [14] whereas our approach works directly for the empirical
process (and of course also for the limiting Kiefer process). The strong approxima-
tion approach involves embedding the given process in Brownian motion for which
the integral test can be readily shown to hold by using, for example, the tangent
approximation (1.1) to the boundary-crossing probability. For partial sums of sta-
tionary sequences having long-range dependence, the limiting process is no longer
Brownian motion and strong approximation along the lines of Komlós, Major and
Tusnády [23], Philipp and Stout [27] and Berkes and Philipp [5] is no longer ap-
plicable unless one imposes very restrictive assumptions that are described in the
next paragraph. However, the theory in Section 2 can still be applied.

In particular, as in [13] and [19], consider partial sums Sn := ∑n
1 Yi of linear

processes Yi := ∑∞
j=−∞ τi−j εj where εj are i.i.d. random variables with mean 0,

variance 1, Eet |ε1| < ∞ for some t > 0 and {τk}∞k=−∞ satisfies
∑∞−∞ τ 2

k < ∞. The
sequence Yi is said to have long-range dependence if E(Y1Yn+1) ∼ nα−2L(n) for
some 1 < α < 2 and slowly varying L so that

σ 2(n) := Var(Sn) ∼ 2{α(α − 1)}−1nαL(n).(4.6)

Defining Zn(·) by linear interpolation with Zn(t) = Sk/σ(n) for t = σ 2(k)/σ 2(n),
Davydov [13] has shown that Zn converges weakly to a zero-mean Gaussian
process (with correlated increments) whose covariance function is the same as
that in (2.1) with d = 1 and rt ≡ 1. Although strong approximation theorems are
not available for such Sn, Chan and Lai [9] have been able to derive integral tests
of the type (1.3) for upper-lower class boundaries of Sn in the long-range depen-
dent case by showing that assumptions (C) and (A1)–(A5) of Corollary 2.7 are
satisfied by Xc(t)(= X(t)) = S�et	/σ(�et	) and Dc = [tc, t∗c ] with c = o(etc/6),
(t∗c − tc)/c

2/α → ∞ but t∗c − tc = O(cκ) for some κ > 0. Hence application of
Corollary 2.7 yields an analog of Theorem 4.1 and therefore also the law of the it-
erated logarithm (LIL) for partial sums of long-range dependent linear processes;
see [9]. Wang, Lin and Gulati [35] recently derived the LIL by using a strong ap-
proximation approach that requires τk to have the special form τk ∼ k−βL(k) as
k → ∞ for some 1

2 < β < 1 and τk = 0 for k < 0.
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Example 2.2 provides a prototypical example in change-point and signal detec-
tion problems, and Theorems 2.4, 2.5, 2.8 and their corollaries can again be applied
to a variety of generalizations of Example 2.2 for these applications. Suppose we
replace the Brownian motion W(t) by a Gaussian field X(t) and t2 − t1 is replaced
by Var(X(t2) − X(t1)); see [1] and [7]. Again conditions (C) and (A1)–(A5) can
be shown to hold for these applications and also for their discrete-time analogues
(like Sn in Section 3); see [10].

Suppose we replace the Brownian motion W(t) in Example 2.2 by a sample
sum process S�nct	, where Sn = Y1 + · · · + Yn and the Yi are i.i.d. with mean 0,
variance 1 and Eet |Y1| < ∞ for some t > 0. Then instead of X, we now have a
random field Xc defined on D such that

Xc(m/nc, n/nc) = (Sn − Sm)/(n − m)1/2

for m < n ≤ anc with a1nc ≤ n − m ≤ a2nc.

The stopping time Tc = inf{n : maxn−a2nc≤m≤n−a1nc(Sn − Sm)/(n − m)1/2 > c}
has important applications in sequential change-point detection. Assuming that
nc/c

6 → ∞ as c → ∞ and making use of moderate deviations theory, Chan and
Lai [11] have shown that Xc satisfies conditions (C) and (A1)–(A5). Therefore,
analogous to (2.10),

P {Tc ≤ anc} ∼ ψ(c)(c4/4)[a(a−1
1 − a−1

2 ) − log(a2/a1)].(4.7)

This result provides an important tool for the choice of the threshold c and win-
dow sizes of the detection rule Tc to ensure a prescribed false detection rate; see
[24] and [11] where the asymptotic optimality (in the sense of quickest detection
delay) and extensions (to multivariate Yi and Markovian Yi ) of Tc are also given.

5. Proofs of Theorems 2.1, 2.4, 2.5, 2.8, 4.1 and their corollaries. To study
the asymptotic distribution (as t → ∞) of sup0≤s≤t X(s) of a stationary Gaussian
process with EX(s) = 0, Pickands [28] introduced a method, which has under-
gone subsequent refinements and is now commonly known as the method of dou-
ble sums (cf. Chapter 2 of [29], [30, 31]), to derive the asymptotic behavior of
P {sup0≤s≤1 X(s) > c} as c → ∞. In this section, we modify the double sum
method for non-Gaussian fields, to which powerful tools like Slepian’s inequal-
ity and Fernique’s theorem for the Gaussian case (cf. [29]) are no longer applica-
ble. In particular, unlike the traditional double sum

∑∑
i �=j P {supu∈I (i) X(u) >

c, supv∈I (j) X(v) > c} that is shown to be negligible relative to the single sum∑
i P {supu∈I (i) X(u) > c} for stationary isotropic Gaussian fields (cf. [28, 29]),

note that (2.12) involves P {supu∈I (i) Xc(u) > c, supv∈B\I (i) Xc(v) > c} instead.
The proof of Corollary 2.6 (or 2.7) involves covering D (or Dc) by cubes

of the form It,K�c and using a discrete approximation At(= At(a,m, c)) :=
{t + ka�c : 0 ≤ ki < m,k ∈ Zd} of It,K�c , where a = K/m. To distinguish
from the scalar K = ma, we shall use k to denote the elements of Zd . Since
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P {supv∈Iu,a�c
Xc(v) > c,Xc(u) ≤ c − γ /c} ≤ Na(γ )ψ(c) by (A4), approximat-

ing the tail probability of supu∈It,K�c
Xc(u) by that of supu∈At

Xc(u) has the error
bounds

0 ≤
[
P

{
sup

u∈It,K�c

Xc(u) > c

}
− P

{
sup
u∈At

Xc(u) > c

}]/
ψ(c)

≤
[
P

{
c − γ /c < sup

u∈At

Xc(u) ≤ c

}
(5.1)

+ ∑
u∈At

P

{
sup

v∈Iu,a�c

Xc(v) > c,Xc(u) ≤ c − γ /c

}]/
ψ(c)

≤ P

{
c − γ /c < sup

u∈At

Xc(u) ≤ c

}/
ψ(c) + (K/a)dNa(γ ),

uniformly for t ∈ [D]δ and γa ≤ γ ≤ c. The proof of Theorem 2.4 makes use
of (5.1) and Lemma 5.1. Theorem 2.5 is introduced to provide a building block to
handle nonstationary random fields (or nonconstant boundaries) in Corollary 2.6
(or Theorem 2.8), which can be proved by much easier arguments in the case of
stationary random fields; see Remark 5.1.

LEMMA 5.1. Under (C) and (A1)–(A3),

HK,a(t) :=
∫ ∞

0
eyP

{
sup

0≤ki<m

Wt(ak) > y

}
dy

is uniformly continuous in t ∈ [D]δ and supt∈[D]δ HK,a(t) < ∞. Moreover, for
γ ≥ 0, as c → ∞,

P

{
sup
u∈At

Xc(u) > c − γ /c

}
(5.2)

∼ ψ(c − γ /c)[1 + HK,a(t)] uniformly for t ∈ [D]δ.

PROOF. Let ε > 0. By (A3), there exists y∗ > γ such that h(y∗) < ε/md and

0 ≤ P

{
sup
u∈At

Xc(u) > c − γ /c

}

− P

{
sup
u∈At

Xc(u) > c, c − y∗/c < Xc(t) ≤ c − γ /c

}
(5.3)

= P

{
sup
u∈At

Xc(u) > c,Xc(t) ≤ c − y∗/c
}

≤ mdh(y∗)ψ(c) < εψ(c),
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since |At | = md . By (A1), there exists ξc → 0 such that

|P {Xc(t) > c − y/c}/ψ(c − y/c) − 1| = O(ξ2
c )(5.4)

uniformly for γ ≤ y ≤ y∗; we can also assume that ξ−1
c (y∗ − γ ) ∈ Z. Since eξc =

1 + ξc + O(ξ2
c ) and ψ(c − y/c) ∼ eyψ(c), (5.4) implies that

P {c − (y + ξc)/c < Xc(t) ≤ c − y/c}
(5.5)

= (
1 + O(ξ2

c )
)
ey+ξcψ(c) − (

1 + O(ξ2
c )

)
eyψ(c) ∼ ξce

yψ(c).

By (A2), uniformly for t ∈ [D]δ and γ ≤ y ≤ y∗,

P

{
sup
u∈At

Xc(u) > c, c − (y + ξc)/c < Xc(t) ≤ c − y/c

}
(5.6)

∼ P

{
sup

0≤ki<m

Wt(ak) > y

}
P {c − (y + ξc)/c < Xc(t) ≤ c − y/c}.

Applying (5.5) to (5.6) and summing (5.6) over y = jξc + γ for j = 0,1, . . . ,

ξ−1
c (y∗ − γ ) − 1, we obtain (5.2) from (5.3) with arbitrarily small ε. Since∫ ∞
0 eyP {Wt(ak) > y}dy < ∞ for all k and At is a finite set, HK,a(t) is finite and

its uniform continuity follows from (2.1) and (2.2), with the convergence in (2.2)
being uniform in t ∈ [D]δ [see the sentence describing assumption (A2)]. Re-
call in this connection that supt∈[D]δ,v∈Sd−1 rt (v) < ∞, yielding the finiteness of
supt∈[D]δ HK,a(t). �

PROOF OF THEOREM 2.4. Let a > 0. By (A4), (5.1) and (5.2), we have for
all large c,

0 ≤
[
P

{
sup

u∈It,K�c

Xc(u) > c

}
− P

{
sup
u∈At

Xc(u) > c

}]/
ψ(c)

(5.7)
≤ 2(eγa − 1)[1 + HK,a(t)] + (K/a)dNa(γa).

By (A4), for any ε > 0, we can choose a∗ small enough such that Na(γa)/a
d <

ε/Kd and 2(eγa − 1) < ε for all 0 < a ≤ a∗. Therefore, by (5.2) and (5.7),

(1 − ε)
(
1 + HK,a(t)

)
≤ P

{
sup

u∈It,K�c

Xc(u) > c

}/
ψ(c)(5.8)

≤ (1 + 2ε)
(
1 + HK,a(t)

) + ε,

for all large c and all t ∈ [D]δ and 0 < a ≤ a∗. We shall restrict a and a∗ to
{2−j : j = 1,2, . . .} so that the integrand of HK,a(t) is monotone in a and increases
to the integrand of HK(t) as a ↓ 0. Hence by the monotone convergence theorem,
HK,a(t) → HK(t) as a → 0. Therefore

1 + HK,a(t) ≤ 1 + HK(t) ≤ (1 + ε)
(
1 + HK,a∗(t)

) + ε,(5.9)
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for all t ∈ [D]δ and 0 < a ≤ a∗ (with a, a∗ ∈ {2−j : j = 1,2, . . .}). We shall use
(5.8) and (5.9) in conjunction with Lemma 5.1 to derive the desired conclusions of
the theorem.

First note that M := 1 + supt∈[D]δ HK(t) < ∞ in view of (5.9) and Lemma 5.1
and therefore

|HK(t) − HK,a∗(t)| ≤ (M + 1)ε for all t ∈ [D]δ,(5.10)

by (5.9) with a = a∗. Because HK,a∗ is uniformly continuous by Lemma 5.1,

|HK,a∗(t) − HK,a∗(u)| ≤ ε if ‖t − u‖ < δ∗, t, u ∈ [D]δ,(5.11)

for some δ∗ > 0. Since |HK(t) − HK(u)| ≤ |HK(t) − HK,a∗(t)| + |HK(u) −
HK,a∗(u)|+|HK,a∗(t)−HK,a∗(u)|, it follows from (5.10) and (5.11) that |HK(t)−
HK(u)| ≤ 2(M + 1)ε + ε if ‖t − u‖ < δ∗. As ε is arbitrary, this shows that HK is
uniformly continuous. Combining (5.8) with (5.10) and the definition of M yields
that for all large c and t ∈ [D]δ ,

−ε − εM − ε2(M + 1) ≤ (ψ(c))−1P

{
sup

u∈It,K�c

Xc(u) > c

}
− (

1 + HK(t)
)

≤ ε + 2εM + 2ε2(M + 1).

Since ε is arbitrary, this proves Theorem 2.4. �

LEMMA 5.2. Under (C) and (A1)–(A4), supt∈[D]δ,K≥1 K−dHK(t) < ∞ and
{K−dHK :K ≥ 1} is uniformly equicontinuous on [D]δ , that is,
supK≥1,t,s∈[D]δ,‖t−s‖≤ε |K−dHK(t) − K−dHK(s)| → 0 as ε → 0.

PROOF. Without loss of generality we can restrict K to be integers. Take any
positive integer a−1. Note that the integrand of HK,a(t) involves the set {ak : 0 ≤
ki < K/a}, which can be partitioned into Kd disjoint subsets Lj such that |Lj | =
a−1. We can therefore use the arguments at the end of the proof of Lemma 5.1 to
bound

K−d
Kd∑
j=1

∣∣∣∣P{
sup

k∈Lj

Wt(ak) > y

}
− P

{
sup

k∈Lj

Ws(ak) > y

}∣∣∣∣
and thereby establish the uniform equicontinuity and boundedness of {K−dHK,a :
K ≥ 1} on [D]δ . Moreover, by partitioning the cube [0,K)d similarly into Kd

unit cubes, it can be shown that supK≥1,t∈[D]δ |K−dHK(t)−K−dHK,a(t)| → 0 as
a → 0. Hence we can proceed as in (5.10) and (5.11) but with HK,a and HK re-
placed by K−dHK,a and K−dHK to prove the uniform equicontinuity and bound-
edness of {K−dHK :K ≥ 1}. �
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LEMMA 5.3. Under (C) and (A1)–(A5), there exist constants sK → 0 as
K → ∞ such that

P

{
sup

u∈It,K�c

Xc(u) > c, sup
v∈B\It,K�c

Xc(v) > c

}
≤ sKKdψ(c)(5.12)

for c large enough, uniformly over t ∈ [D]δ and over subsets B of [D]δ with
bounded volume.

PROOF. Let a > 0 and 0 < q < p. Then

Ga := ∑
w∈(aZ)d

exp(‖w‖q)f (‖w‖) < ∞.

Let m,n be positive integers that are large enough such that∑
w∈(aZ)d ,‖w‖≥na

exp(‖w‖q)f (‖w‖) < εad/8

and

[1 − (1 − 2n/m)d ] < εad/8Ga.

Let K = ma, F1,t = {t + ka�c :n ≤ ki < m − n,k ∈ Zd}, F2,t = At \ F1,t ,

Bt = {t + ak�c ∈ B \ It,K�c : k ∈ Zd}, guv = min{c − γa, (‖v − u‖/�c)
q}. Then

by (A5),

P {Xc(u) > c − (γa + gu,v,c)/c,Xc(v) > c − (γa + gu,v,c)/c}
≤ ψ

(
c − (γa + guv)/c

)
f (‖u − v‖/�c)(5.13)

≤ 2eguvψ(c − γa/c)f (‖u − v‖/�c),

for all large c and small a. For u ∈ F1,t and v ∈ Bt , ‖u − v‖/�c ≥ na and guv ≤
(‖u − v‖/�c)

q . Noting that |F1,t | ≤ md , |F2,t | ≤ md − (m − 2n)d = md [1 − (1 −
2n/m)d ], and that

∑
u∈At

= ∑2
j=1

∑
u∈Fj,t

, we obtain from (5.13) that for all large
c and small a,∑

u∈At

∑
v∈Bt

P {Xc(u) > c − (γa + guv)/c,Xc(v) > c − (γa + guv)/c}

≤ ψ(c − γa/c)m
d

(5.14)

×
{ ∑

w∈(aZ)d ,‖w‖≥na

exp(‖w‖q)f (‖w‖) + [1 − (1 − 2n/m)d ]Ga

}

< (εKd/2)ψ(c − γa/c).
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Define λw = minu∈At guw if w ∈ Bt , and λw = 0 if w ∈ At . Then

P

{
sup

u∈It,K�c

Xc(u) > c, sup
v∈B\It,K�c

Xc(v) > c

}
≤ ∑

u∈At

∑
v∈Bt

P {Xc(u) > c − (γa + guv)/c,Xc(v) > c − (γa + guv)/c}(5.15)

+ ∑
w∈At∪Bt

P

{
sup

z∈Iw,a�c

Xc(z) > c,Xc(w) ≤ c − (γa + λw)/c

}
.

On the right-hand side of (5.15), the first sum can be bounded by (5.14) and the
second sum by∑

u∈At

P

{
sup

z∈Iu,a�c

Xc(z) > c,Xc(u) ≤ c − γa/c

}

+ ∑
v∈Bt

P

{
sup

z∈Iv,a�c

Xc(z) > c,Xc(v) ≤ c − (γa + λv)/c

}
(5.16)

≤ (K/a)dNa(γa)ψ(c) + ∑
v∈Bt

Na(γa + λv)ψ(c),

in view of (A4) and that |At | = md = (K/a)d . To bound the last sum
∑

u∈Bt

in (5.16), first consider the case d = 1. Since λv ≥ min{(ak)q, c − γa} if ak�c ≤
infu∈At |v − u| < a(k + 1)�c, and since Na is nonincreasing, it follows that∑

v∈Bt

Na(γa + λv)ψ(c)

≤ 2

{ ∞∑
k=1

Na

(
γa + (ak)q

) + Na(c)v(B)/(a�c)

}
(5.17)

≤ 2
{
a−1

∫ ∞
0

Na(γa + yq) dy + v(B)Na(c)/(a�c)

}
.

Integration by parts shows that the integral in (5.17) approaches 0 as a → 0, since
Na(γa) + ∫ ∞

1 wsNa(γa + w)dw = o(a) for s > (q−1 − 1)+. Moreover, in view
of (2.5), Na(c)/�c = O(

∫ c−γa

c/2−γa
wsNa(γa +w)dw) = o(a) as a → 0 and c → ∞,

for s > 2/α. Therefore,
∑

v∈Bt
Na(γa + λv) ≤ ε/4 for all large c and small a. In

general, for d > 1,∑
v∈Bt

Na(γa + λv)

≤ 2

{
d

∞∑
j=1

(a−1K + 2j)d−1Na

(
γa + (aj)q

) + Na(c)v(B)/(a�c)
d

}
(5.18)

≤ εKd−1/4 for all large c and small a,
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as can be shown by arguments similar to those in the case d = 1. Combining (5.15)
with (5.14) and (5.16)–(5.18) yields the desired conclusion. �

PROOF OF THEOREM 2.5. Let 1 > ε > 0. There exists K∗ such that sK ≤ ε/3
for all K ≥ K∗. For fixed t ∈ D and K ≥ K∗, define

� = {
u ∈ (K�cZ)d : Iu,K�c ⊂ It,	c�c

}
,

(5.19)
� = {

u ∈ (K�cZ)d : Iu,K�c ∩ It,	c�c �= ∅

}
, Ju = Iu,K�c .

Covering It,	c�c by cubes of length K�c and letting B be a subset of [D]δ con-
taining It,	c�c and such that v(B) ≤ v0, we have∑

u∈�

[
P

{
sup
v∈Ju

Xc(v) > c

}
− P

{
sup
v∈Ju

Xc(v) > c, sup
w∈B\Ju

Xc(w) > c

}]
(5.20)

≤ P

{
sup

v∈It,	c�c

Xc(v) > c

}
≤ ∑

u∈�

P

{
sup
v∈Ju

Xc(v) > c

}
.

By Theorem 2.4 and Lemma 5.3, as c → ∞,(
1 + o(1)

)
ψ(c)

∑
u∈�

[HK(u) − sKKd ]
(5.21)

≤ P

{
sup

v∈It,	c�c

Xc(v) > c

}
≤ (

1 + o(1)
)
ψ(c)

∑
u∈�

HK(u),

uniformly in t ∈ D. In view of 	c�c → 0 and the uniform equicontinuity in
Lemma 5.2, we can choose c∗ large enough so that |K−dHK(u) − K−dHK(t)| ≤
ε/3 for all c ≥ c∗,

√
	c ≥ K ≥ K∗, t ∈ D and u ∈ � (= �(t;K�c, 	c�c)). Putting

this and the bound sK ≤ ε/3 in (5.21) and dividing (5.21) by 	d
cψ(c), we obtain

for all c ≥ c∗,
√

	c ≥ K ≥ K∗ and t ∈ D,

(1 − ε){K−dHK(t) − 2ε/3} ≤ P

{
sup

v∈It,	c�c

Xc(v) > c

}/
(	d

cψ(c))

(5.22)
≤ (1 + ε){K−dHK(t) + ε/3},

since |�| ∼ |�| ∼ (	c/K)d . By Lemma 5.2, M := supt∈[D]δ,K≥1 K−dHK(t) < ∞.
Therefore, it follows from (5.22) that

sup
t∈D

∣∣∣∣P{
sup

v∈It,	c�c

Xc(v) > c

}/
(	d

cψ(c)) − K−dHK(t)

∣∣∣∣ ≤ εM + 2ε/3,(5.23)

for all c ≥ c∗ and
√

	c ≥ K ≥ K∗. Letting c → ∞ in (5.23) yields

sup
t∈D

|K−dHK(t) − K̃−dH
K̃

(t)| ≤ 2εM + 4ε/3,
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if K ≥ K∗ and K̃ ≥ K∗, establishing that {K−dHK} is uniformly Cauchy. Hence
K−dHK(t) converges uniformly in t ∈ D to H(t), which is also bounded by M .
We can therefore proceed as in the second paragraph of the proof of Theorem 2.4
to show that H(t) is uniformly continuous in t ∈ D. Moreover, taking K large
enough such that supt∈D |K−dHK(t) − H(t)| ≤ ε/3, it follows from (5.23) that

sup
t∈D

∣∣∣∣P{
sup

v∈It,	c�c

Xc(v) > c

}/
(	d

cψ(c)) − H(t)

∣∣∣∣ ≤ ε(M + 1)

for all c ≥ c∗, proving (2.11).
We next show that inft∈D H(t) > 0. For the function f in (A5), we can choose

a > 0 large enough so that
∑

k�=0 f (ak) ≤ 1/2. Let K = ma and define At =
At(a,m, c) as in the paragraph preceding Lemma 5.1 so that |At | = md . Then by
(A1) and (A5), as c → ∞,

P

{
sup
u∈At

Xc(u) > c

}

≥ ∑
u∈At

[
P {Xc(u) > c} − ∑

v∈At ,v �=u

P {Xc(u) > c,Xc(v) > c}
]

(5.24)
≥ ∑

u∈At

(
1 + o(1)

)
ψ(c)/2

= (
1 + o(1)

)
mdψ(c)/2,

uniformly in t ∈ D and m ≥ 2. Combining (5.24) with Theorem 2.4 yields

1 + Hma(t) = lim
c→∞(ψ(c))−1P

{
sup

u∈It,ma�c

Xc(u) > c

}

≥ lim sup
c→∞

(ψ(c))−1P

{
sup
u∈At

Xc(u) > c

}
≥ md/2

for all m ≥ 2 and t ∈ D. Since limK→∞ K−dHK(t) = H(t), it then follows that
H(t) ≥ a−d/2 for all t ∈ D. Finally, to prove (2.12), apply (5.12) to obtain that for
all t ∈ D and large c,

P

{
sup

u∈It,	c�c

Xc(u) > c, sup
v∈B\It,	c�c

Xc(v) > c

}

≤ ∑
u∈�

P

{
sup
v∈Ju

Xc(v) > c, sup
v∈B\Ju

Xc(v) > c

}

≤ |�|sKKdψ(c).

Since sK → 0 as K → ∞ and |�| ∼ (	c/K)d as 	c/K → ∞, (2.12) follows. �
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PROOF OF COROLLARY 2.6. A basic idea of the proof is to cover the
bounded, Jordan measurable set D by cubes of length 	c�c, with 	c → ∞ such
that 	c�c → 0. Define �, � and Ju as in (5.19) but with (K�cZ)d replaced by
(	c�cZ)d , Iu,K�c by Iu,	c�c , and It,	c�c by D. Then (5.20) still holds with these
new definitions of �, � and Ju and also with B replaced by the bounded set [D]δ .
Labeling it as (5.20′), the upper and lower bounds in (5.20′) are both asymptoti-
cally equivalent to (	c�c)

−d	d
cψ(c)

∫
D H(t) dt by Theorem 2.5, since 	c�c → 0

and H(t) is continuous. �

REMARK 5.1. Corollary 2.6 can be proved by easier arguments, to be
sketched below, when Xc(t) = X(t) is stationary. Let

�J = {t ∈ D : t ∈ (J�c)
d},

F =
{

sup
u∈D

X(u) > c

}
,

Ft =
{

sup
u∈At (a,K/a,c)

X(u) > c − γ /c

}
,

F̃t =
{

sup
u∈At (ã,K̃/ã,c)

X(u) > c − γ /c

}
.

Then ∣∣∣∣∣ ∑
t∈�K

P (Ft ) − ∑
t∈�

K̃

P (F̃t )

∣∣∣∣∣
(5.25)

≤
∣∣∣∣∣ ∑
t∈�K

P (Ft ) − P(F)

∣∣∣∣∣ +
∣∣∣∣∣ ∑
t∈�

K̃

P (F̃t ) − P(F)

∣∣∣∣∣.
It can be shown by arguments similar to those in the proof of Lemmas 2.3 and 2.4
of [31] that lim supc→∞ |∑t∈�K

P (Ft ) − P(F)|/{ψ(c)�−d
c } → 0 as K → ∞,

a → 0 and γ → 0. Moreover, by Lemma 5.1 and stationarity,∑
t∈�K

P (Ft ) ∼ v(D)(K�c)
−dψ(c − γ /c)(1 + HK,a),(5.26)

and a similar relation also holds for
∑

t∈�
K̃

P (F̃t ). Hence by (5.25),

|K−dHK,a − K̃−dH
K̃,ã

| → 0 as K,K̃ → ∞, a, ã → 0,(5.27)

which implies that limK→∞,a→0 K−dHK,a exists by the Cauchy convergence
property, yielding H as the limit. For nonstationary random fields, we do not
have the simple relation (5.26) and cannot show the existence of the limit of
K−dHK,a(t) via Cauchy convergence as in (5.27). This is why more complicated
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arguments are needed in the proofs of Lemma 5.3 and Theorem 2.5, from which
Corollary 2.6 follows. Concerning the proofs of Theorems 2.4 and 2.5, since HK,a

and H are defined by the Gaussian processes Wt rather than the process Xc sat-
isfying (A1)–(A5), one may wonder why these assumptions have been involved
in their proofs (and also that of Lemma 5.1) to establish continuity and bound-
edness properties of HK,a and H . It turns out that for a Gaussian random field
Xc = X whose covariance function satisfies condition (C), assumptions (A1)–(A5)
also hold with Wt being the limiting process in (A2); see the following proof of
Theorem 2.1 which generalizes the Qualls–Watanabe result (2.6) to nonstationary
Gaussian fields.

PROOF OF COROLLARY 2.7. Here we modify (5.19) into

�c = {
u ∈ (ζcZ)d : Iu,ζc ⊂ Dc

}
,

�c = {
u ∈ (ζcZ)d : Iu,ζc ∩ Dc = ∅

}
,(5.28)

Ju = Iu,ζc ,

and replace B in (5.20) by [Dc]δ so that we have here a corresponding version
of (5.20), labeled as (5.20*). Apply (2.12) with 	c = ζc/�c together with (2.14)
and (5.20*) to derive (2.15). �

PROOF OF THEOREM 2.8. It follows from (2.11) and (2.16) that

P
{
Xc(u) > bc(u) for some u ∈ It,ζc

} ∼ (
ζc/�bc(t)

)d
ψ(bc(t))H(t).(5.29)

From (2.12) with the boundary c replaced by b c(t) and with 	c = ζc/�c, it follows
that

P
{
Xc(u) > bc(u),Xc(v) > max

(
bc(v), b c(t)

)
for some u ∈ It,ζc , v ∈ B \ It,ζc

}
(5.30)

≤ P

{
sup

u∈It,ζc

Xc(u) > bc(t), sup
v∈B\It,ζc

Xc(v) > bc(t)

}
= o

((
ζc/�bc(t)

)d
ψ(bc(t))

)
uniformly over t ∈ Dc and over subsets B of [D]δ with bounded volume. Then∑

u∈�c

[
P {Xc(w) > bc(w) for some w ∈ Ju}

− ∑
v∈�c,v �=u

P
{
Xc(w) > bc(w),Xc(z) > max

(
bc(z), b c(u)

)
for some w ∈ Ju, z ∈ Jv

}]
(5.31)
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≤ P {Xc(u) > bc(u) for some u ∈ Dc}
≤ ∑

u∈�c

P {Xc(w) > bc(w) for some w ∈ Ju},

in which �c and �c are defined by (5.28). By (5.29) and (5.30), the lower and
upper bounds in (5.31) are asymptotically equal. Since ζc → 0, the desired con-
clusion then follows. �

PROOF OF COROLLARY 2.9. Since α < 2, there exists ε > 0 such that �c =
o(c−(1+ε)). We can therefore choose ζc → 0 and ξc → 0 such that

ζc/�c → ∞, ξc ≥ c−1 log c, ζcξc = o(c−2),(5.32)

so ζc = o(ξc). Consider the tubular neighborhood Uξc of M. For sufficiently
small ξ , the elements of Uξ can be uniquely represented in the form x + y with
x ∈ M, y ∈ T M⊥(y) and ‖y‖ < ξ . Since ∇b(t) = 0 for all t belonging to the
compact set M, there exists B > 0 such that ‖∇b(u)‖ ≤ Bξc for all u ∈ [Uξc ]2ζc .
Combining this with (5.32) yields

sup
u∈It,ζc

b(u) − inf
u∈It,ζc

b(u) = O(ζcξc) = o(c−2)

(5.33)
uniformly over t ∈ [Uξc ]2ζc .

Recalling that bc(u) = cb(u) and applying the identity y2 − x2 = (y − x)(y + x),

we can conclude from (5.33) that supt∈[Uξc ]2ζc
[b2

c(t) − b2
c(t)] = o(1).

Let y ∈ M and z ∈ T M⊥(y). Then b(y + z) = bD + z′∇2b(y)z/2 + O(‖z‖3).
Applying Theorem 2.8 to Dc = Uξc yields

P {Xc(t) > cb(t) for some t ∈ Uξc}

∼ �−d
c

∫
Uξc

ψ(cb(t))(b(t))2d/αH(t) dt

(5.34)
∼ �−d

c ψ(cbD)b
2d/α
D

×
∫
M

H(y)

∫
z∈T M⊥(y),‖z‖≤ξc

exp
(−c2bDz′∇2b(y)z/2

)
dzvq(dy).

Since ∇2⊥b(y) is positive definite, infu∈D\Uξc
b(u) ≥ bD + B ′ξ2

c for some B ′ > 0.
Hence by Theorem 2.8,

P {Xc(t) > cb(t) for some t ∈ D \ Uξc}
≤ P

{
sup

t∈D\Uξc

Xc(t) > c(bD + B ′ξ2
c )

}
(5.35)

= o
(
�−d

c ψ(cbD)
)
,
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in view of (5.32). Combining (5.34) with (5.35) and evaluating the inner integral
in (5.34) give (2.19). �

PROOF OF THEOREM 2.1. We shall show that (A1)–(A5) hold for the
Gaussian random field X satisfying (2.7), which is the same as condition (C) in
the present case Xc = X, and hence Theorem 2.1 follows from Theorem 2.5 and
Corollary 2.6. In particular, (A1) follows from the well-known asymptotic tail be-
havior of a normal distribution. Let ρ(t, u) = E[X(t)X(u)]. Since the conditional
distribution of X(t + u�c) given X(t) is normal with mean ρ(t, t + u�c)X(t), it
follows from (2.7) that as c → ∞,

E{c[X(t + u�c) − X(t)]|X(t) = c − y/c}
= −c[1 − ρ(t, t + u�c)](c − y/c)(5.36)

→ −‖u‖αrt (u/‖u‖)/2,

Cov{c[X(t + u�c) − X(t)], c[X(t + v�c) − X(t)]|X(t) = c − y/c}
= c2[ρ(t + u�c, t + v�c) − ρ(t, t + v�c)ρ(t, t + u�c)]

(5.37)
→ [−‖v − u‖αrt

(
(v − u)/‖v − u‖)

+ ‖v‖αrt (v/‖v‖) + ‖u‖αrt (u/‖u‖)]/2.

Since {c[X(t + ak�c) − X(t)] : 0 ≤ ki < m} is multivariate normal, (A2) then fol-
lows. Let γ > 0. Since ψ(c − z/c) ∼ ezψ(c) for all z ≥ 0 and there exist constants
B,B ′ > 0 such that P {Wt(u) > z − γ } ≤ B exp(−B ′z2), it follows from (5.36)
and (5.37) that as c → ∞,

P {X(t + u�c) > c − γ /c,X(t) < c − y/c}
≤ (

1 + o(1)
)
ψ(c)

∫ ∞
y

ezP {Wt(u) > z − γ }dz

≤ ψ(c)h(y),

where h(y) → 0 as y → ∞, establishing (A3). To show that (A5) holds, note that

P {X(t) > c,X(t + u�c) > c}
≤ P {X(t) + X(t + u�c) > 2c}

∼ ψ

([
2c2

1 + ρ(t, t + u�c)

]1/2)

= ψ(c)

(
1 + ρ(t, t + u�c)

2

)1/2

exp
[
− c2

1 + ρ(t, t + u�c)
+ c2

2

]

≤ ψ(c) exp
[
−c2

2

(
1 − ρ(t, t + u�c)

2

)]
.
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By (2.7), there exists η > 0 such that c2[1 − ρ(t, t + u�c)] ≥ η‖u‖αL(‖u‖) for
all t, t + u�c ∈ [D]δ . It then follows from (5.37) that (A5) holds with f (u) =
Bλ exp(−uλ) with 0 < λ < α, for some Bλ > 0.

To prove (A4), we use a technique of Fernique [16]. Let a > 0, 0 < ζ < α,
1 ≤ ξ < 2ζ/2, κ = ∑∞

r=0 ξ−r and wr = ξ−r/2κ . Define

Br = {t + k2−ra�c : 0 ≤ ki < 2r , ki ∈ Z},
F =

{
sup

u∈It,a�c

X(u) > c

}
,

(5.38)
E−1 = {X(t) ≤ c − γ /c},
Er =

{
sup
v∈Br

X(v) ≤ c − γ (1 − w0 − · · · − wr)/c

}
for r ≥ 0,

recalling that
∑∞

r=0 wr = 1
2 . Note that Br ⊂ Br+1 ⊂ It,a�c and that by the conti-

nuity of X, P(F ∩ E−1) ≤ ∑∞
r=0 P(Er−1 ∩ Ec

r ). Moreover,

P(Er−1 ∩ Ec
r )

≤ 2r+d sup
v∈It,a�′

c

ε∈{0,1}d\{0}

P {X(v) ≤ c − γ (1 − w0 − · · · − wr−1)/c,(5.39)

X(v + ε2−ra�c) > c − γ (1 − w0 − · · · − wr)/c}.
Given X(v) = c − y/c, the conditional distribution of c[X(v + ε2−ra�c)−X(v)]
is normal with mean −c(c−y/c)[1−ρ(v, v+ε2−ra�c)] < 0 and variance c2[1−
ρ2(v, v + ε2−ra�c)], which is bounded by B(a2−r )ζ for some B > 0, in view
of (2.7). Hence

P

{
sup

ε∈{0,1}d
c[X(v + ε2−ra�c) − X(v)] > wry|X(v) = c − y/c

}
(5.40)

≤ 2d exp[−C(wry)2/(a2−r )ζ ]
for some C > 0. Similarly, X(v + ε2−r )−X(v) has mean 0 and variance bounded
by B ′(a2−r )ζ /c2 for some B ′ > 0 in view of (2.7). Hence by choosing C small
enough,

P

{
sup

ε∈{0,1}d
c[X(v + ε2−ra�c) − X(v)] > βwr

}
(5.41)

≤ 2d exp[−C(wrβ)2c2/(a2−r )ζ ].
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Let η := 2ζ /ξ2 > 1. Combining (5.39)–(5.41) with P {X(v) ∈ c − dy/c} ∼
ψ(c)ey dy then yields

P(F ∩ E−1)

≤ (
1 + o(1)

)
ψ(c)

∞∑
r=0

2−r
∫ ∞
γ /2

exp[y − Cηry2/(4aζ κ2) + C′r]dy(5.42)

+
∞∑

r=0

2−r exp[−Cηrβ2c2/(4aζ κ2) + C′r]

for some C′ > 0. Let γa = aζ/3 and take β2 > (2aζ κ2)/C + λ with λ > 0. Then
for all large c and γa ≤ γ ≤ c, (5.42) is bounded above by ψ(c)Na(γ ), where

Na(γ ) = 2
∞∑

r=0

2−r

{∫ ∞
γ /2

exp[y − Cηry2/(4aζ κ2) + C′r]dy

+ exp[−Cηrλγ 2/(4aζ κ2) + C′r]
}

satisfies Na(γa) + ∫ ∞
1 ysNa(γa + y)dy = o(ap) for all s > 0 and p > 0. �

PROOF OF THEOREM 4.1. Take δ > 0 and let D = {t : 2δ ≤ ti ≤ 1 − 2δ for
all i},

τ(t) = {
F(t)

(
1 − F(t)

)}1/2
, τ ∗ = inf

t∈[D]δ
τ (t),

(5.43)
Xc(t) = Znc(t)/τ (t), bc(t) = c/τ(t).

Note that Xc(t) has mean 0 and unit variance. We now show that conditions (C)
and (B1)–(B5) with Dc = D hold for Xc(t). In view of F(t + u) = F(t) +
u′∇F(t) + o(‖u‖) and a similar Taylor expansion for τ(t + u),

ρc(t, t + u) = F(t)
(
1 − F(t + u)

)
/{τ(t)τ (t + u)}

= 1 − (
1 + o(1)

)
u′∇F(t)/

{
2F(t)

(
1 − F(t)

)}
as u → 0. Hence (C) is satisfied with L(‖u‖) ≡ 1, α = 1, rt (u) = u′∇F(t)/

{2F(t)(1 − F(t))} and �c = (2c2)−1. Since c = o(n
1/6
c ) and

√
ncZnc(t) is a

sum of i.i.d. bounded random variables, (B1) holds by moderate deviations theory
(cf. [15], Theorem 16.7.1). Moreover, conditioned on Fnc(t) = x, Fnc(t + u�z) =
x + W/nc, where W is a Binomial(n,p) random variable with n = nc − x and
p = {F(t + u�z) − F(t)}/(1 − F(t)). Making use of this and the functional cen-
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tral limit theorem, it can be shown that (B2) holds and

E{z[Xc(t + u�z) − Xc(t)]|Xc(t) = z − y/z}
(5.44)

→ −u′∇F(t)/
{
4F(t)

(
1 − F(t)

)}
,

Cov
(
z[Xc(t + u�z) − Xc(t)], z[Xc(t + v�z) − Xc(t)]|Xc(t) = z − y/z

)
(5.45)

→
d∑

i=1

min(ui, vi)
∂F

∂ti
(t)/

{
2F(t)

(
1 − F(t)

)}
,

uniformly over bounded, nonnegative values of y and over t ∈ [D]δ and c/2 ≤ z ≤
c/τ ∗. Note that (5.44) and (5.45), which are analogous to (3.12) and (3.13), give
the mean and covariance functions of the limiting Gaussian process Wt(u) in (B2)
and are in agreement with the α and rt of condition (C). The proof of (B3) and (B5)
uses ideas similar to those in the proofs of Lemma 3.6(ii) and Lemma 3.7, together
with large deviation (instead of Berry–Esseen) bounds for sums of i.i.d. bounded
random variables.

To prove (B4), we modify the preceding proof of (A4) in Theorem 2.1 as fol-
lows. Let a > 0, 1 < ξ <

√
2, κ = ∑∞

r=0 ξ−r , wr = ξ−r/2κ and c/2 ≤ z ≤ c/τ ∗.

Pick rz such that θ ≤ 2rzzn
−1/2
c < 2θ , in which θ will be specified below. For

u ∈ Iv−a2−rz�z,a2−rz�z
,

Znc(v) ≥ Znc(u) − n1/2
c [F(v) − F(v − a2−rz�z)]

(5.46)
≥ Znc(u) − ωz−1,

where ω > 0 can be made arbitrarily small by choosing θ large since n
1/2
c 2−rz lies

between θ−1z and θ−1z/2. Making use of (5.46), we can choose θ large enough
such that{

sup
u∈I

v−a2−rz�z,a2−rz�z

z[Xc(u) − Xc(v)] > γ/2
}

∩ {Xc(v) ≤ z − γ /(2z)}
(5.47)

= ∅.

For fixed z and r ≥ 0, define F,E−1,Br and Er (r ≥ 0) by (5.38) in which
c is replaced by z and X(·) by Xc(·). Then P(F ∩ E−1) ≤ P(F ∩ Erz) +∑rz

r=0 P(Er−1 ∩ Ec
r ). We can then proceed as in the preceding proof of Theo-

rem 2.1, using bounds for binomial (instead of normal) tail probabilities.
Verification of (C) and (B1)–(B5) enables us to apply Corollary 2.9 af-

ter introducing the change of variables t → F(t) so that F is a distribution
function on [0,1]d (see the paragraph preceding Theorem 4.1). By (5.44),
(5.45) and Lemma 2.3, H(t) = {∏d

i=1(∂F/∂ti)(t)}/{4F(t)(1 − F(t))}d . More-
over, inft∈D 1/{F(t)(1 − F(t))}1/2(= bD) = 2 when δ is sufficiently small, and
|∇2⊥b(t)| = ‖∇F(t)‖2{F(t)(1 − F(t))}−3/2 and F(t) = 1/2 for all t ∈ M. Hence,



120 H. P. CHAN AND T. L. LAI

applying Corollary 2.9 to D and then letting δ → 0, we obtain (4.4). Since the
probability of joint occurrence of {supt Znc(t) > c} and {inft Znc(t) < −c} is neg-
ligible compared to (4.4), (4.5) follows from (4.4). �
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