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PROBABILITIES OF RANDOMLY CENTERED SMALL BALLS
AND QUANTIZATION IN BANACH SPACES

BY S. DEREICH1 AND M. A. L IFSHITS2

Technische Universität Berlin and St. Petersburg State University

We investigate the Gaussian small ball probabilities with random centers,
find their deterministic a.s.-equivalents and establish a relation to infinite-
dimensional high-resolution quantization.

1. Introduction. Consider a centered Gaussian vectorX in a separable
Banach space(E,‖ · ‖) with law µ and reproducing kernel Hilbert space (RKHS)
(H, | · |µ). We letB andBµ denote the closed unit balls inE andH , respectively.
We also use the following notation for shifted balls:B(x, ε) := x + εB. The small
ball function (SBF)ϕ is defined by

ϕ(ε) := − logµ
(
B(0, ε)

)
, ε > 0.

The properties of SBF have been extensively investigated during the last decade;
see, for example, [11] and [13]. See also works [6] and [8] on further deep
applications of SBF. A complete bibliography on the topic can be found on the
website http://www.proba.jussieu.fr/pageperso/smalldev.

Our aim is to study the concentration properties of the r.v.

�ε(ω) := − logµ
(
B

(
X(ω), ε

))
, ε > 0,

the random small ball function(RSBF), whenε is small. We will see that some
typical features of the SBF are true as well for the RSBF but the exact asymptotics
of the two functions do not coincide.

Beyond structural properties of Gaussian measures, the research is motivated by
a close link to so-called random strategies in quantization problems, that we briefly
recall now. LetE be a space of objects (images, pictures, speech records, etc.) we
want to code via a finite codebook. In particular, one can take a finite subset ofE,
say,(yi)i≤n, as a codebook. In the spirit of Bayesian approach, assume that the
subject of codingX ∈ E is random and its distribution (prior measureµ) is known.
Then we can evaluate the quality of a codebook (quantization error) by

d(s) = E

[
min

i=1,...,n
‖X − yi‖s

]1/s

.
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In general it is not feasible to find optimal codebooks under a given constraint on
the sizen of the codebook. Therefore, recent research focused on the finding of
asymptotically good codebooks or on the determination of the (weak or strong)
asymptotics of the (theoretically) best achievable coding quality whenn tends to
infinity, the so-calledhigh-resolution quantization problem. It was shown in [5]
that these weak asymptotics are in many cases of the same order as the inverse
of the small ball function. If the underlying space is a Hilbert space and under
a polynomial decay assumption on the eigenvalues of the covariance operator,
Luschgy and Pagès [15] proved equivalence of the strong asymptotics to the
Shannon distortion rate function. Now using an explicit formula for the distortion
rate function based on the eigenvalues, the problem can often be solved explicitly.

In the general high-resolution case, a reasonable codebook can be created by
taking independentµ-distributed variables{Yi} (assuming also their independence
of X). We are thus led to consider the approximation quantities

D(r, s) = E

[
min

i=1,...,�er� ‖X − Yi‖s

]1/s

.

The asymptotics ofD(r, s), r → ∞, were related to the (standard) small ball
function in [5]. Some first properties of the random small ball function and its
close relationship to the asymptotics ofD(·, s) have been derived in [4]. Whenever
the underlying spaceE is a separable Hilbert space, the RSBF is almost surely
equivalent to an invertible deterministic functionϕ∗ :R+ → R+. Moreover, one
has

D(r, s) ∼ ϕ−1∗ (r), r → ∞,

for arbitrarys > 0 under certain assumptions on the eigenvalues of the underlying
covariance operator. Here and elsewhere we writef ∼ g iff lim f

g
= 1, while

f � g stands for lim supf
g

≤ 1. Finally,f ≈ g means

0< lim inf
f

g
≤ lim sup

f

g
< ∞.

In this article we extend all mentioned results to the Banach space setting. Since
the proofs in [4] made strong use of the Hilbertian structure, the new techniques
used here differ significantly from those used previously.

The article is arranged as follows. First we prove an almost sure upper bound
for �ε based on the SBF. In Section 3 we find a.s.-equivalence of the RSBF and its
median under weak regularity conditions. Some alternative gauge functions for the
RSBF are considered in Section 4. In Section 5 a link between the approximation
quantity D and the RSBF is established. Finally, in Section 6 the existence of
polynomial equivalents for the RSBF is shown in some important particular cases.
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2. General properties of RSBF.

THEOREM 2.1. One has

�ε � 2ϕ(ε/2) asε ↓ 0, a.s.

PROOF. For n ∈ N, denotecn = n and εn = ϕ−1(n3). Let � andϒ denote
the distribution function and the tail of the standard normal law. Consider the sets
(enlarged balls, in Talagrand’s terminology, see [17])

An = εnB + (
cn + ϒ−1(µ(

B(0, εn)
)))

Bµ.

Then, by the isoperimetric inequality (see, e.g., [12], Chapter 11):

µ(An) ≥ �
[
cn + ϒ−1(µ(

B(0, εn)
)) + �−1(µ(

B(0, εn)
))] = �(cn).

The tail probabilities of standard normal random variables satisfy

ϒ(y) ≤ 1
2e−y2/2, y ≥ 0.(2.1)

Therefore, ∑
n∈N

µ(Ac
n) ≤ ∑

n∈N

ϒ(cn) < ∞.

By the Borel–Cantelli lemma, almost surely all but finitely many events{X ∈ An},
n ∈ N, occur.

On the other hand, for everyx ∈ An there existsh ∈ H such that|h|µ ≤
cn + ϒ−1(µ(B(0, εn))) and ‖x − h‖ ≤ εn; thus, using Borell’s shift inequality
(see, e.g., [12], page 150), one has

µ
(
B(x,2εn)

) ≥ µ
(
B(h, εn)

) ≥ exp
{
−|h|2µ

2
− ϕ(εn)

}

(2.2)

≥ exp
{
−1

2

[
cn + ϒ−1(µ(

B(0, εn)
))]2 − ϕ(εn)

}
.

Using the elementary consequence of (2.1)

ϒ−1(u) ≤ √−2 logu, u ∈ (0,1/2],(2.3)

we arrive at

− logµ
(
B(x,2εn)

) ≤ 1

2

[
cn + ϒ−1(µ(

B(0, εn)
))]2 + ϕ(εn)

≤ 1

2

[
cn + √

2ϕ(εn)
]2 + ϕ(εn)

= c2
n

2
+ cn

√
2ϕ(εn) + 2ϕ(εn).
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Note thatc2
n = o(ϕ(εn)) asn → ∞ and, therefore,

sup
x∈An

− logµ
(
B(x,2εn)

)
� 2ϕ(εn), n → ∞.

Since limn→∞ ϕ(εn+1)/ϕ(εn) = 1 and the small ball probabilities are monotone,
our theorem is proved.�

REMARK 2.2. The previous theorem and Anderson’s inequality (see,
e.g., [12], page 135) imply that the random small ball function�ε is asymptoti-
cally enclosed between two deterministic functions, that is,

ϕ(ε) ≤ �ε � 2ϕ(ε/2), ε ↓ 0, a.s.(2.4)

Suppose now that there existsν < ∞ such that

ϕ(ε) ≤ νϕ(2ε)(2.5)

for sufficiently smallε > 0. Then the RSBF function is of the same order as the
small ball function and we have

ϕ(ε) ≤ �ε � 2νϕ(ε), ε ↓ 0, a.s.

A better asymptotic lower bound will be presented in Corollary 4.4 below.

REMARK 2.3. One can find alternative estimates for probabilities of enlarged
balls εB + rBµ in [17]. These estimates proved to be more efficient than the
isoperimetric inequality in the work concerning Strassen’s functional law of the
iterated logarithm, where they yield the correct convergence rate. Surprisingly,
in the range of parametersε, r considered in our work, the estimates from [17]
provide worse results than the isoperimetric inequality.

3. Equivalence to a deterministic function. The main objective of this
section is to prove concentration inequalities for the random variables�ε asε ↓ 0.
In the main theorem, we will find equivalence of random small ball probabilities
to a deterministic function under weak assumptions.

It is well known that concentration phenomena occur forH -Lipschitz func-
tionals. We will show, by using a result of Kuelbs and Li [6], that the function
logµ(B(·, ε)) is H -Lipschitz on a set of probability “almost 1,” and the corre-
sponding Lipschitz constant will be controlled.

3.1. Large set of good points.Let us fix ε > 0 and chooseM = M(ε) =
3
√

ϕ(ε). Introduce again an enlarged ball

Vε := εB + MBµ.
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Let us start by showing thatVε is large enough. Indeed, by the isoperimetric
inequality and (2.3):

µ(V c
ε ) ≤ ϒ

(
�−1(µ(εB)) + M

)
= ϒ

(−ϒ−1(µ(εB)) + M
)

≤ ϒ
(−√−2 logµ(εB) + M

)
(3.1)

= ϒ
(−√

2ϕ(ε) + M
)

≤ exp
(−ϕ(ε)

)
.

We also observe that the small ball probabilities are uniformly bounded from
below onVε. Indeed, for eachx ∈ Vε, there existsh ∈ MBµ ∩ B(x, ε). Hence,
B(x,2ε) ⊃ B(h, ε), and we obtain, similarly to (2.2),

logµ
(
B(x,2ε)

) ≥ logµ
(
B(h, ε)

)
≥ log

(
exp(−|h|2µ/2)µ

(
B(0, ε)

))
(3.2)

≥ −M2/2− ϕ(ε) = −5.5ϕ(ε).

3.2. Estimate of the Lipschitz constant.In this section, we consider the
H -Lipschitz property of the function�(·) := logµ(B(·,2ε)) onVε.

PROPOSITION3.1. Let ε > 0 be so small that

ϕ(2ε) ≥ − log�(−3).

Leth ∈ H andx, x + h ∈ Vε. Then

|�(x + h) − �(x)| ≤ 8
√

ϕ(ε)|h|µ.(3.3)

PROOF. SinceVε is convex, without loss of generality we may and do assume
that|h|µ ≤ 1. SinceB(x +h,2ε) = B(x,2ε)+h, we can use the estimate from [7]
which states that for an arbitrary Gaussian measureµ, a measurable setA and an
elementh of the RKHSH , one has

�
(
�−1(µ(A)) − |h|µ) ≤ µ(A + h) ≤ �

(
�−1(µ(A)) + |h|µ)

.(3.4)

Thus,

µ
(
B(x + h,2ε)

) ≤ �(θ + |h|µ),

whereθ = �−1(µ(B(x,2ε))), and we obtain


 := �(x + h) − �(x)

= logµ
(
B(x + h,2ε)

) − logµ
(
B(x,2ε)

)
(3.5)

≤ log�(θ + |h|µ) − log�(θ).
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Under our assumptions it is true that

µ
(
B(0,2ε)

) = exp
(−ϕ(2ε)

) ≤ �(−3).

Therefore,

�(θ) = µ
(
B(x,2ε)

) ≤ µ
(
B(0,2ε)

) ≤ �(−3),

which shows thatθ ≤ −3. It follows from |h|µ ≤ 1 thatθ ≤ θ + |h|µ ≤ −2. Using
the elementary inequality

0≤ (log�)′(r) ≤ 2|r|, r ≤ −2,

we obtain

log�(θ + |h|µ) − log�(θ) ≤ 2
∫ θ+|h|µ
θ

|r|dr = 2|θ ||h|µ − |h|2µ ≤ 2|θ ||h|µ.

Now note that due to (3.2)

�(θ) = µ
(
B(x,2ε)

) ≥ exp
(−5.5ϕ(ε)

)

and, hence by (2.3),

|θ | = ϒ−1(µ(
B(x, ε)

)) ≤ √
11ϕ(ε).

Altogether, we obtain


 ≤ 8
√

ϕ(ε)|h|µ.

To derive the converse bound, we use that the situation is symmetric. Namely,
takex̃ = x + h andh̃ = −h. Then we havẽx, x̃ + h̃ ∈ Vε and the arguments from
above imply that

−
 = �(x) − �(x + h) = �(x̃ + h̃) − �(x̃)

≤ 8
√

ϕ(ε)|h|µ. �

3.3. Concentration and convergence.We are now in a position to prove our
main result on the deterministic equivalent for the RSBF.

THEOREM 3.2. Assume that for allε > 0 small enough it is true that

ϕ(ε) ≤ νϕ(2ε)(3.6)

for someν < ∞. Letmε be a median of�ε. Then

lim
ε↓0

�ε

mε

= 1 almost surely.
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PROOF. Definerε from the equation

�(rε) = 1
2 + µ(V c

ε ).

It follows from (3.1) that limε↓0 rε = 0. By (3.3) and the concentration principle
for H -Lipschitz functionals (see, e.g., [9], page 210) we have, for anyr > rε that,

P
(|�2ε − m2ε| ≥ 8

√
ϕ(ε)r

) ≤ µ(V c
ε ) + exp

(−(r − rε)
2/2

)
.

Let us fixδ > 0 and let

r = δϕ(2ε)

8
√

ϕ(ε)
.

Then using (3.1), we obtain that

P
(|�2ε − m2ε| ≥ δϕ(2ε)

) ≤ exp
(−ϕ(ε)

) + exp
(
−δ2ϕ(2ε)2(1+ o(1))

2 · 82ϕ(ε)

)
.

Due to (3.6), it holds forε > 0 sufficiently small

P
(|�2ε − m2ε| ≥ δϕ(2ε)

) ≤ exp
(−ϕ(ε)

) + exp
(
−δ2ϕ(2ε)

3 · 82ν

)

≤ 2exp
(
−min

{
1; δ2

3 · 82ν

}
ϕ(2ε)

)

=: 2exp{−ν1ϕ(2ε)}.
By switching from 2ε to ε, we get

P
(|�ε − mε| ≥ δϕ(ε)

) ≤ 2exp{−ν1ϕ(ε)}.(3.7)

Next recall that due to Remark 2.2,�ε is asymptotically a.s. enclosed by the two
functionsϕ(ε) and 2νϕ(ε). Hence, it holds forε > 0 sufficiently small

ϕ(ε) ≤ mε ≤ 3νϕ(ε).(3.8)

Now consider forn ∈ N the setTn := {ε > 0 :n ≤ mε < n + 1}. For sufficiently
largen ∈ N andε ∈ Tn we have, by using (3.7) and (3.8),

P
(
�ε > (1+ δ)(n + 1)

) ≤ P
(
�ε > (1+ δ)mε

)
≤ P(�ε − mε > δmε)

≤ 2exp{−ν1ϕ(ε)}
≤ 2exp

{
− ν1

3ν
mε

}

≤ 2exp
{
− ν1

3ν
n

}
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so that

P

(
sup
Tn

�ε > (1+ δ)(n + 1)

)
≤ 2exp

{
− ν1

3ν
n

}
.

By the Borel–Cantelli lemma we eventually have, for all largen and allε ∈ Tn,

�ε ≤ (1+ δ)(n + 1) ≤ (1+ δ)
n + 1

n
mε,

and, sinceδ > 0 can be chosen arbitrarily small, it follows that

lim sup
ε↓0

�ε

mε

≤ 1 a.s.

The inverse bound can be obtained in the same way.�

In the case where Theorem 3.2 is not applicable, we still can show:

PROPOSITION 3.3. For any continuous functionψ :R+ → R+ such that
limε↓0 ψ(ε) = ∞, there exist constantscψ,Cψ ∈ [0,∞] such that

lim inf
ε↓0

�ε

ψ(ε)
= cψ

and

lim sup
ε↓0

�ε

ψ(ε)
= Cψ

almost surely.

PROOF. Let E∗ denote the topological dual ofE and Cµ :E∗ → E the
covariance operator ofµ. Let x ∈ E and h = Cµ(z) for some z ∈ E∗. The
Cameron–Martin formula (see, e.g., [12], page 107) gives

µ
(
B(x − h, ε)

) =
∫
B(x,ε)

exp
{
z(y) − 1

2‖z‖2
L2(µ)

}
dµ(y).

Sincez :E → R is a continuous function, it holds

µ
(
B(x − h, ε)

) ∼ exp
{
z(x) − 1

2‖z‖2
L2(µ)

}
µ

(
B(x, ε)

)
asε ↓ 0. In particular,

− logµ
(
B(x − h, ε)

) ∼ − logµ
(
B(x, ε)

)
, ε ↓ 0.

Therefore, for anys ≥ 0, the set

As =
{
x ∈ E : lim inf

ε↓0

− logµ(B(x, ε))

ψ(ε)
≤ s

}

is invariant under an arbitrary shifth ∈ Cµ(E∗). Sinceψ is continuous, the set
As is measurable. Moreover, by the zero–one law for Gaussian measures (see [1],
Theorem 2.5.2), the setAs hasµ-measure 0 or 1. The first assertion follows. The
second one may be proved analogously.�
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4. Gauge functions. In this section we suppose that the regularity condi-
tion (3.6) applies. By Theorem 3.2 one has

�ε ∼ ϕ∗(ε) asε ↓ 0, a.s.(4.1)

for ϕ∗(ε), ε > 0, equal to the medianmε of �ε. In the sequel, we study alternative
representations forϕ∗. We will need the following lemma.

LEMMA 4.1. Let Z denote a standard normal r.v. For any p ≥ 1 and ε > 0
with µ(εB) ≤ 1/2, one has

‖�2ε‖Lp(P) ≤ ϕ(ε) + 1
2

(√
2ϕ(ε) + ‖Z‖L2p(P)

)2
.

PROOF. The proof is similar to that of Theorem 2.1. We fixε > 0 with
µ(εB) ≤ 1/2 and let

At = εB + (
t + ϒ−1(µ(εB))

)
Bµ, t ≥ 0.

By the isoperimetric inequality one has

µ(At) ≥ �[t + ϒ−1(µ(εB)) + �−1(µ(εB))] = �(t)(4.2)

for any t ≥ 0. As in the proof of Theorem 2.1, we obtain forx ∈ At ,

µ
(
B(x,2ε)

) ≥ exp
{−1

2[t + ϒ−1(µ(εB))]2 − ϕ(ε)
}

and inequality (2.3) yields

− logµ
(
B(x,2ε)

) ≤ 1
2[t + ϒ−1(µ(εB))]2 + ϕ(ε)

≤ 1
2

[
t + √

2ϕ(ε)
]2 + ϕ(ε).

Combining this estimate with (4.2) gives

P
(
�2ε > 1

2

[
t + √

2ϕ(ε)
]2 + ϕ(ε)

) ≤ ϒ(t)

for all t ≥ 0. Hence, withZ+ = Z ∨ 0 it follows that

‖�2ε‖Lp(P) ≤ E
[(1

2

[
Z+ + √

2ϕ(ε)
]2 + ϕ(ε)

)p]1/p
.

Applying the triangle inequality twice yields

‖�2ε‖Lp(P) ≤ 1
2E

[(
Z+ + √

2ϕ(ε)
)2p]1/p + ϕ(ε)

≤ 1
2

(
E[(Z+)2p]1/2p + √

2ϕ(ε)
)2 + ϕ(ε)

and the assertion follows.�

THEOREM 4.2. For ϕ∗ satisfying(4.1),we have

lim
ε↓0

�ε

ϕ∗(ε)
= 1

in Lp(P) for anyp ≥ 1. In particular,

ϕ∗(ε) ∼ ‖�ε‖Lp(P) asε ↓ 0.
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PROOF. Fix η ∈ (0,1) and let

T (ε) =
{
x ∈ E :

∣∣∣∣− logµ(B(x, ε))

ϕ∗(ε)
− 1

∣∣∣∣ ≤ η

}
.

Recall thatX = X(ω) denotes theµ-distributed center of the random ball. One has∥∥∥∥ �ε

ϕ∗(ε)
− 1

∥∥∥∥
Lp(P)

≤
∥∥∥∥1T (ε)(X)

(
�ε

ϕ∗(ε)
− 1

)∥∥∥∥
Lp(P)

+
∥∥∥∥1T (ε)c (X)

(
�ε

ϕ∗(ε)
− 1

)∥∥∥∥
Lp(P)

≤
∥∥∥∥1T (ε)(X)

(
�ε

ϕ∗(ε)
− 1

)∥∥∥∥
Lp(P)

+
∥∥∥∥1T (ε)c (X)

�ε

ϕ∗(ε)

∥∥∥∥
Lp(P)

+ ∥∥1T (ε)c (X)
∥∥
Lp(P)

=: I1(ε) + I2(ε) + I3(ε).

Clearly,I1(ε) ≤ η. Using the Cauchy–Schwarz inequality, we estimate the second
term by

I2(ε) = 1

ϕ∗(ε)
∥∥1T (ε)c (X)�ε

∥∥
Lp(P)

≤ 1

ϕ∗(ε)
µ

(
T (ε)c

)1/2p‖�ε‖L2p(P).

By (3.6) and the previous lemma,‖�ε‖L2p(P) � 2ϕ(ε/2) � 2νϕ(ε) as ε ↓ 0.
Due to Anderson’s inequality, one hasϕ∗(ε) � ϕ(ε) (ε ↓ 0). On the other hand,
limε↓0 µ(T (ε)c) = 0 by assumption (4.1). Hence,

lim
ε↓0

I2(ε) = 0.

Furthermore, limε↓0 I3(ε) = 0. Putting all three estimates together gives∥∥∥∥ �ε

ϕ∗(ε)
− 1

∥∥∥∥
Lp(P)

� η, ε ↓ 0.

Sinceη ∈ (0,1) was arbitrary, the proof is complete.�

REMARK 4.3. As a consequence of the above theorem one can replace the
medianmε by E[�ε] in Theorem 3.2. By the well-known fact that small ball
functions are convex, it is easy to deduce that the functionR+ → R+, ε �→ E[�ε]
is convex, one-to-one and onto.

COROLLARY 4.4. It is true that

ϕ
(
ε/

√
2

)
� ϕ∗(ε) � 2ϕ(ε/2), ε ↓ 0.
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PROOF. The asymptotic upper bound follows from Theorem 2.1. It remains to
prove the lower bound. Due to the previous remark we can prove the statement for
ϕ∗(ε) = E[�ε]. Denote byX̃ aµ-distributed r.v. that is independent ofX. One has
for ε > 0,

−E[�ε] = E
[
logµ

(
B(X,ε)

)]
= E[logP(‖X − X̃‖ ≤ ε|X)]
≤ logE[P(‖X − X̃‖ ≤ ε|X)]
= logP(‖X − X̃‖ ≤ ε),

where the inequality follows from Jensen’s inequality. Note thatX − X̃ and
√

2X

are both centered Gaussian vectors with the same covariance operator. Therefore,
L(

√
2X) = L(X − X̃), which shows that

E[�ε] ≥ − logµ
(
B

(
0, ε/

√
2

)) = ϕ
(
ε/

√
2

)
. �

REMARK 4.5. If there exists̃ν > 1 such that

ϕ(ε) ≥ ν̃ϕ
(√

2ε
)

for all sufficiently smallε > 0, then the strong asymptotics ofϕ andϕ∗ differ.

5. Equivalence of random small ball probabilities and random quantiza-
tion. In this section, we relate the asymptotics ofD(·, s) to the RSBF. Recall
that

D(r, s) = E

[
min

i=1,...,�er� ‖X − Yi‖s

]1/s

,

where{Yi}i∈N is a sequence of independent (ofX as well)µ-distributed r.v.’s inE.
In terms of information theory, Theorem 3.2 can be interpreted as theasymptotic
equipartition property(AEP) corresponding to the random quantization problem.
For more details on AEPs and their connections to coding theory we refer the
reader to [2].

In the sequel, we assume the existence of a convex functionϕ∗ :R+ → R+ that
is one-to-one, onto and satisfies

ϕ∗(ε) ∼ − logµ
(
B(X,ε)

)
asε ↓ 0, in probability.(5.1)

By the preceding considerationsϕ∗(ε) := E[�ε] is an appropriate choice if (3.6)
applies.

THEOREM 5.1. If there exists̃ν > 1 such that for allε > 0 sufficiently small

ϕ(ε) ≥ ν̃ϕ(2ε),(5.2)

then

D(r, s) ∼ ϕ−1∗ (r), r → ∞.



1408 S. DEREICH AND M. A. LIFSHITS

We will need a couple of elementary results:

LEMMA 5.2. Letf :R+ → R+ be a decreasing convex function satisfying

f (2r) ≥ νf (r)

for all r sufficiently large. Then, for any function
 :R+ → R, with 
(r) = o(r)

(r → ∞), one has

f (r + 
r) ∼ f (r) asr → ∞.(5.3)

PROOF. Convexity yields that for allδ, r > 0 it is true that

f
(
(1+ δ)r

) ≥
(

1− 2δ

ν

)
f (r).

The further necessary estimates are trivial.�

LEMMA 5.3. Assumption(5.2) implies that there exists a constantν1 such
that

ϕ−1∗ (2r) ≥ ν1ϕ
−1∗ (r) and ϕ−1(2r) ≥ ν1ϕ

−1(r)(5.4)

for sufficiently larger ≥ 0.

PROOF. Choose κ ∈ N such that 6/ν̃κ < 1. By assumption (5.1) and
Theorem 2.1, one has forε > 0 sufficiently small

ϕ∗(ε) ≤ 3ϕ(ε/2) ≤ 3

ν̃κ
ϕ(ε/2κ+1) ≤ 1

2
ϕ∗(ε/2κ+1).(5.5)

Consequently,

ϕ−1∗
(
2ϕ∗(ε)

) ≥ ε

2κ+1 .

Choosingε = ϕ−1∗ (r) and assuming thatr is sufficiently large, we obtain

ϕ−1∗ (2r) ≥ 1

2κ+1ϕ−1∗ (r).

In a similar way, the equation

ϕ(ε) ≤ 1

ν̃κ
ϕ(ε/2κ) ≤ 1

2
ϕ(ε/2κ+1)

can be used to derive the second assertion of the lemma.�

PROPOSITION 5.4. Let κ ∈ (0,1) and δ := 1
4 min{1, ν1κ}, where ν1 satis-

fies(5.4).For r ≥ 0 define the sets

X1(r) = {
x ∈ E :− logµ

(
B

(
x, (1+ κ)ϕ−1∗ (r)

)) ≤ (1− δ)r
}
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and

X2(r) = {
x ∈ E :− logµ

(
B

(
x, (1− κ)ϕ−1∗ (r)

)) ≥ (1+ δ)r
}
.

Then

lim
r→∞µ

(
X1(r)

) = lim
r→∞µ

(
X2(r)

) = 1.

PROOF. Making use of the convexity ofϕ−1∗ and equation (5.4), one has

ϕ−1∗ (r − 2δr) − ϕ−1∗ (r) ≤ 2δr

r/2

(
ϕ−1∗ (r/2) − ϕ−1∗ (r)

) ≤ 4δ

ν1
ϕ−1∗ (r)

for r large. Therefore, there existsr0 ≥ 0 such that

ϕ−1∗ (r − 2δr) ≤ (1+ κ)ϕ−1∗ (r)

for all r ≥ r0. Consequently, the setX1(r) satisfies forr ≥ r0

X1(r) ⊃
{
x ∈ E :− logµ

(
B

(
x,ϕ−1∗

(
(1− 2δ)r

))) ≤ 1− δ

1− 2δ
(1− 2δ)r

}
.

Since ϕ−1∗ ((1 − 2δ)r) converges to 0 and(1 − δ)/(1 − 2δ) > 1, it holds by
assumption (5.1) that

lim
r→∞µ

(
X1(r)

) = 1.

The proof of the second assertion is similar: one has forr ≥ r0

ϕ−1∗ (r) − ϕ−1∗ (r + 2δr) ≤ ϕ−1∗ (r − 2δr) − ϕ−1∗ (r) ≤ κϕ−1∗ (r),

where the first inequality is a consequence of the convexity ofϕ−1∗ . Hence,
ϕ−1∗ (r + 2δr) ≥ (1− κ)ϕ−1∗ (r) for r ≥ r0 and it follows

X2(r) ⊃
{
x ∈ E :− logµ

(
B

(
x,ϕ−1∗ (r + 2δr)

)) ≥ 1+ δ

1+ 2δ
(1+ 2δ)r

}
.

Finally, assumption (5.1) yields

lim
r→∞µ

(
X2(r)

) = 1. �

PROPOSITION5.5. Letκ ∈ (0,1). For r ≥ 0 consider

Z(r) := min
i=1,...,�er� ‖X − Yi‖

and the event

T (r) := {Z(r) ∈ [(1− κ)ϕ−1∗ (r), (1+ κ)ϕ−1∗ (r)]}.
Under the assumptions of Theorem5.1one has

lim
r→∞ P(T (r)) = 1.
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PROOF. Recall thatϕ−1∗ is convex. In view of Lemma 5.2, it suffices to
considerr ∈ I := {logj : j ∈ N}, that is, the valuesr for which er is an integer.
By Proposition 5.4, one has

lim
r→∞µ

(
X1(r) ∩ X2(r)

) = 1

with X1(r) andX2(r) as in the proposition. Moreover, forr ∈ I andX ∈ X1(r),
one has

P
(
Z(r) > (1+ κ)ϕ−1∗ (r)|X) = (

1− µ
(
B

(
X, (1+ κ)r

)))er

≤ (1− e−r+δr )e
r =

(
1− eδr

er

)er

≤ exp{−eδr} → 0, r → ∞.

On the other hand, forX ∈ X2(r), r ∈ I , it holds

P
(
Z(r) > (1− κ)ϕ−1∗ (r)|X) = (

1− µ
(
B

(
X, (1− κ)r

)))er

≥ (1− e−r−δr )e
r =

(
1− e−δr

er

)er

→ 1

asr → ∞. Hence, the eventsT (r), r ≥ 0, satisfy limr→∞ P(T (r)) = 1. �

For the proof of Theorem 5.1, we use a consequence of Theorem 2.1 of [5] (see
also [3], Theorem 3.1.2).

THEOREM 5.6. Suppose there existsν1 > 0 such that

ϕ−1(2r) ≥ ν1ϕ
−1(r)

for all sufficiently larger ≥ 0. Then one has for arbitrarys > 0

D(r, s) � 2ϕ−1(r/2)

asr → ∞.

PROOF OFTHEOREM 5.1. Fixs > 0. First we prove

D(r, s) � ϕ−1∗ (r), r → ∞.

Fix κ ∈ (0,1) and letT (r) andZ(r) be as in the previous proposition. Now

E[Z(r)s] ≤ E
[
1T (r)(1+ κ)sϕ−1∗ (r)s

] + E
[
1T (r)cZ(r)s

] =: I1(r) + I2(r).

One hasI1(r) ≤ (1+κ)sϕ−1∗ (r)s . Moreover, the Cauchy–Schwarz inequality gives

I2(r) ≤ P
(
T (r)c

)1/2
E[Z(r)2s]1/2.
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As a consequence of Lemma 5.3 and assumption (5.2), there exists a constant
ν1 > 0 such that

ϕ−1(2r) ≥ ν1ϕ
−1(r)

for larger ≥ 0. Thus, Theorem 5.6 is applicable and

E[Z(r)2s]1/2 � 2sϕ−1(r/2)s ≤ 2s

νs
1
ϕ−1(r)s

asr → ∞. By the previous proposition, limr→∞ P(T (r)c) = 0. Consequently,

I2(r) = o
(
ϕ−1∗ (r)s

)
, r → ∞

and

E[Z(r)s]1/s � (1+ κ)ϕ−1∗ (r), r → ∞.

Sinceκ ∈ (0,1) was chosen arbitrarily, it follows that

D(r, s) = E[Z(r)s]1/s � ϕ−1∗ (r), r → ∞.

The converse inequality is obvious, since for fixedκ ∈ (0,1) andT (r) as above
one has

E[Z(r)s]1/s ≥ E
[
1T (r)Z(r)s

]1/s ≥ P(T (r))1/s(1− κ)ϕ−1∗ (r)

� (1− κ)ϕ−1∗ (r), r → ∞. �

6. Polynomial equivalents for the RSBF. In the sequelµ denotes Wiener
measure on the canonical Wiener spaceC[0,∞) := C([0,∞),R

d) for some
fixed d ∈ N. Moreover,X = W denotes aC[0,∞)-valued random variable that
is a Wiener process under the standard measureP. We will sometimes use the
alternative measuresPx andP

x,t (x ∈ R
d , t ≥ 0). Under these measuresW is a

Wiener process starting inx at time 0 or at timet , respectively. The corresponding
expectations are denoted byE

x andE
x,t .

Recall that for many underlying Banach spaces (e.g.,Lp[0,1]) the limit

lim
ε↓0

εγ ϕ(ε)

exists and is finite for the right logarithmic small ball rateγ . In this section we
prove analogs of this statement for the random small ball function�ε in many
cases.
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6.1. Sup-norm. Recalling thatγ = 2 in the case of the Wiener process and
for the uniform norm onC[0,1] (denoted by‖ · ‖), and having in mind the
deterministic equivalent of�ε, we prove:

THEOREM 6.1. There existsK ∈ (0,∞) such that

lim
ε↓0

ε2�ε = K a.s.

REMARK 6.2. Recall that the small ball functionϕ satisfies limε↓0 ε2ϕ(ε) =
K0, whereK0 ∈ (0,∞) is the principal eigenvalue of the Dirichlet problem on the
unit ball of Rd . Using Corollary 4.4, we can compareK with K0:

2K0 ≤ K ≤ 8K0.

PROOF OFTHEOREM 6.1. It suffices to show that the limit

lim
ε↓0

ε2ϕ∗(ε)(6.1)

exists forϕ∗(ε) = E[�ε].
We slightly modifyϕ∗ in order to gain a transparent semi-additivity property.

For ε > 0, let

�̃ε :C[0,∞) → [0,∞),
(6.2)

w �→ − sup
x∈Rd

logP
x(‖W − w‖ ≤ ε),

and letϕ̃∗(ε) := ∫
�̃ε dµ. Let us denote fora ≥ 0 andw : [0, a] → R

‖w‖[0,a] := sup
0≤t≤a

|w(t)|

and

�̄a(w) := − sup
x∈Rd

logP
x(‖W − w‖[0,a] ≤ ε

)
.

Notice that �̃ε and �̄1/ε2 are equidistributed when considering the functions as
random variables on the canonical Wiener space. In particular,ϕ̃∗(ε) = �(1/ε2)

for �(a) := ∫
�̄a dµ, a ≥ 0.

We denote by(θt )t≥0 the canonical ergodic flow on Wiener space, that is, for
all t ≥ 0

θt :C[0,∞) → C[0,∞),
(6.3)

w �→ (θtw)(s) = w(t + s) − w(s).
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We are going to show that the family(−�̄t )t≥0 is subadditive for the canonical
dynamical system on Wiener space. Indeed, by the Markov property, one obtains
for a, b ≥ 0 that

−�̄a+b(w)

= sup
x∈Rd

logP
x(‖W − w‖[0,a+b] ≤ 1

)

= sup
x∈Rd

logP
x(‖W − w‖[0,a] ≤ 1,‖W(a) − w(a) + θaW − θaw‖[0,b] ≤ 1

)

≤ sup
x∈Rd

logP
x(‖W − w‖[0,a] ≤ 1

) + sup
x̃∈Rd

logP
x̃(‖W − θaw‖[0,b] ≤ 1

)

= −�̄a(w) − �̄b(θaw).

Therefore,�(a) = ∫
�̄a dµ is superadditive and there exists some constantK ∈

[0,∞] such that

lim
a→∞

�(a)

a
= K

and thus

lim
ε↓0

ε2ϕ̃∗(ε) = K.(6.4)

The finiteness ofK is easily obtained by an application of Corollary 4.4.
It remains to prove the asymptotic equivalence ofϕ∗ andϕ̃∗. Set

Dε = {f ∈ C[0,1] : |f (t)| ≤ ε, ε ≤ t ≤ 1}
and consider a shift functiongε(t) = min{ε, t}. Then for anyx ∈ R

d with |x| ≤ ε

and anyw ∈ C[0,1] we haveB(w + x1, ε) ⊂ w + gε

ε
x + Dε. Therefore, by the

Cameron–Martin formula,

µ
(
B(w + c1, ε)

) ≤ µ

(
w + gε

ε
x + Dε

)

≤ µ(w + Dε) sup
f ∈w+Dε

exp
(

1

ε
〈g,f (ε)〉

)
.

≤ µ(w + Dε)exp
(|w(ε)| + ε

)
.

Next, we can linkµ(w+Dε) back to conventional small ball probabilities. Indeed,
it is true that

B(w, ε + ε5/4) ⊃ (w + Dε) ∩ {f :‖f 0
ε − w0

ε‖ ≤ ε3/4},
wherew0

ε (s) = ε−1/2[w(sε) − sw(ε)] and f 0
ε is defined similarly by usingf .

Hence,

µ
(
B(w, ε + ε5/4)

) ≥ µ(w + Dε)µ0
(
B(w0

ε , ε
3/4)

)
,
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whereµ0 stands for the law of the Brownian bridge. Altogether,

�̃ε(w) = − sup
c∈[−ε,ε]

logµ
(
B(w + c1, ε)

)

≥ − logµ(w + Dε) − (|w(ε)| + ε
)

≥ − logµ
(
B(w, ε + ε5/4)

) + logµ0
(
B(w0

ε , ε
3/4)

) − (|w(ε)| + ε
)
.

From this estimate, it follows thatϕ∗ � ϕ̃∗. On the other hand, by definition it
holdsϕ∗ ≥ ϕ̃∗, and thus it follows thatϕ∗ ∼ ϕ̃∗. Now (6.4) yields the existence of
the limit (6.1) and the proof is complete.�

6.2. Hölder norms. We briefly discuss a modification of the previous result
valid for Hölder seminorms. It is well known that a seminorm

‖f ‖β := sup
s,t∈[0,1]

s �=t

|f (t) − f (s)|
|t − s|β

is β-self-similar and∞-superadditive, using the terminology of [14] (see the
next section). Therefore, the related small ball rate isγ = (1/2 − β)−1 (recall
that ‖W‖β is finite iff 0 ≤ β < 1/2). The proof of the previous section works
equally well for Hölder seminorms. In the first part of the proof, the function
�(a) := ϕ̃∗(aβ−1/2) turns out to be semi-additive. The second part of the proof
is not necessary at all. Indeed, since‖1‖β = 0, we have the identityϕ∗ = ϕ̃∗.

6.3. Other norms. In this section, we prove the existence of small ball
constants in the case of the Wiener process for a broad class of norms.

We follow the ideas of [14] and use the terminology introduced therein
concerning self-similar and superadditive norms (see also [10] and [16]). Recall
that a family of seminorms indexed by intervals of the real line is calledβ-self-
similar iff

‖f (c·)‖I/c = cβ‖f ‖I .

It is calledp-superadditiveiff

‖f ‖[a0,an] ≥ (‖f ‖p
[a0,a1] + · · · + ‖f ‖p

[an−1,an]
)1/p

for p < +∞,

‖f ‖[a0,an] ≥ sup
(‖f ‖[a0,a1], . . . ,‖f ‖[an−1,an]

)
for p = +∞.

First, notice that the most interesting∞-superadditive norms were considered
in the two preceding sections. Therefore, in the sequel, we only consider
p-superadditive norms withfinite p. Again, see many examples in [14], for
example,Lp-norms, Sobolev norms, and so on.

Let ‖ · ‖ = ‖ · ‖[0,1] be aβ-self-similar andp-superadditive norm. Notice that,
by [14], γ = (1/2− β − 1/p)−1 is the right logarithmic small ball rate.
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Forw ∈ C[0,∞), ε > 0 anda ≥ 0 we let

�̃ε(w) = − sup
x∈Rd

logP
x(‖W − w‖ ≤ ε),

�a(w) = sup
x∈Rd

logE
x exp

(−‖W − w‖p
[0,a]

)
.

The functions�̃ε(·) and�a(·) are considered as random variables on the canonical
Wiener space. We are now in a position to state the main theorem.

THEOREM 6.3. Assume thatβ + 1/p < 1/2. Then there exists a constant
K ∈ (0,∞) such that

lim
ε↓0

εγ �̃ε = K in probability,(6.5)

whereγ = (1/2− β − 1/p)−1.

REMARK 6.4. Clearly,�ε and �̃ε are closely related. One even expects that
the theorem remains true when replacing�̃ε by �ε in most cases. As we will show
in the next section, we can do so if the underlying norm is theLp-norm.

PROOF OF THEOREM 6.3. The proof is based on the subadditivity of�a

for the ergodic canonical flow(θt )t≥0. In fact, for anyw ∈ C[0,∞), x ∈ R
d and

a, b ≥ 0, by the superadditivity of our norm,

logE
x exp

(−‖W − w‖p
[0,a+b]

)
≤ logE

x exp
(−‖W − w‖p

[0,a] − ‖W − w‖p
[a,a+b]

)
= logE

x exp
(−‖W − w‖p

[0,a] − ‖W(a) − w(a) + θa(W) − θa(w)‖p
[0,b]

)

≤ logE
x[

exp
(−‖W − w‖p

[0,a]
)] + sup

x′
logE

x′
exp

(−‖W − θa(w)‖p
[0,b]

)
.

Consequently,�a+b(w) ≤ �a(w) + �b(θaw). Subadditivity and the ergodicity
imply that the following limit exists a.s.:

−K := lim
a→∞

�a

a
∈ [−∞,0].(6.6)

Now, for a ≥ 0 andw ∈ C[0,∞), let

�̃a(w) := sup
x

logE
x exp

(−a‖W − w‖p
[0,1]

)
.

Considered as a random variable on the canonical Wiener space,�̃a is equidistrib-
uted with�a1/q for q := p(1/2− β). Hence, using (6.6),

lim
a→∞a−1/q�̃a = −K in probability.
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Now a lower bound for̃� is obtained via the Markov inequality. For any fixed
w ∈ C[0,1], anya, ε > 0, x ∈ R

d , we have

�̃a(w) ≥ logE
x exp{−a‖W − w‖p} ≥ logP

x{‖W − w‖ ≤ ε} − aεp,

thus

�̃ε(w) ≥ −�̃a(w) − aεp.

The choice ofa = a(ε) := (K/q)q/(q−1)ε−pq/(q−1) now yields

εγ �̃ε � K in probability,(6.7)

whereγ = (1/2− β − 1/p)−1 and

K := (q − 1)(K/q)q/(q−1).(6.8)

In particular,K is finite, since�̃ε is enclosed byϕ(ε) and�ε which are both of
orderε−γ (see [14]).

It remains to prove the converse bound to (6.7). Toward this aim, we mimic
the proof of the de Bruijn Tauberian theorem. Letε > 0 and leta = a(ε) :=
K

q−1ε−pq/(q−1). Recall that

�̃a ∼ −K
q

q − 1
ε−γ , ε ↓ 0, in probability.(6.9)

For fixed ε and w ∈ C[0,∞) the supremum supx∈Rd logE
x[e−a‖W−w‖[0,1] ] is

attained for somex0 = x0(ε,w) ∈ R
d . Fix now N ∈ N and associateε with

εi := εi(ε) := εi/N , i ∈ N0. For a fixed valueη ∈ (0,1), we consider

I := N ∩ [(
0, (1− η)N + 1

] ∪ [(1+ η)N,2q1/pN + 1]].
We estimate

exp{�̃a(w)} = E
x0[exp{−a‖W − w‖p}]

≤ E
x0

[
1[(1−η)ε,(1+η)ε](‖W − w‖)exp{−a‖W − w‖p}]

+ ∑
i∈I

E
x0

[
1[εi−1,εi ](‖W − w‖)exp{−a‖W − w‖p}]

+ E
x0

[
1[2q1/pε,∞)(‖W − w‖)exp{−a‖W − w‖p}]

=: �1
ε (w) + �2

ε (w) + �3
ε (w).

Again we consider the functions�1
ε , �2

ε and �3
ε as random variables on the

canonical Wiener space. We will see that�1
ε is the dominating term in the estimate.

First we bound the logarithms of the summands in�2
ε . One has

logE
x0

[
1[εi−1,εi ](‖W − w‖)exp{−a‖W − w‖p}]

≤ −aε
p
i−1 + logP

x0(‖W − w‖ ≤ εi) ≤ −aε
p
i−1 − �̃εi

(w).
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By (6.7) the right-hand side of the previous equation satisfies in probability

−aε
p
i−1 − �̃εi

� −aεp(i − 1)p/Np − Kε
−γ
i

= −Kε−γ

[
(i − 1)p

(q − 1)Np
+ Nγ /iγ

]
=: −κiKε−γ .

Now letf (x) = xp

(q−1)
+x−γ . By elementary analysis one obtains fori ∈ I ∩[N +

1,∞)

κi = (i − 1)p

(q − 1)Np
+ Nγ /iγ ≥ f

(
i − 1

N

)
− γN−1,

and fori ∈ I ∩ (0,N],
κi = (i − 1)p

(q − 1)Np
+ Nγ /iγ ≥ f

(
i

N

)
− p

q − 1
N−1.

The functionf is strictly convex and attains its global minimum at 1. Now choose
N ∈ N sufficiently large such that for alli ∈ I

κi > f (1) = q

q − 1
.

Then all summands in�2
ε are in probability of ordero(exp{�̃a}) [see (6.9)] and

one has

lim
ε↓0

�2
ε

exp{�̃a}
= 0 in probability.

Moreover,�3
ε (w) ≤ exp{−2paqεp} = exp{−2pK q

q−1ε−γ } and, hence,

lim
ε↓0

�3
ε

exp{�̃a}
= 0 in probability.

Therefore, exp{�̃a} ∼ �1
ε in probability. Since

log�1
ε (w) ≤ −a(1− η)pεp + logP

x0
(‖W − w‖ ≤ (1+ η)ε

)
≤ −a(1− η)pεp − �̃(1+η)ε(w)

we arrive at

�̃(1+η)ε ≤ −a(1− η)pεp − log�1
ε

∼ −a(1− η)pεp − �̃a

∼ Kε−γ + [1− (1− η)p] K

q − 1
ε−γ .

Here, all equivalences hold in probability. Letη ↓ 0, then with (6.7)

lim
ε↓0

εγ �̃ε = K in probability. �
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REMARK 6.5. It would be very interesting to extend the results of this
subsection to self-similar processes other than the Wiener process, as done in [14]
for fractional Brownian motion in the case of nonrandomly centered balls. Our
main subadditivity argument for upper bound seems to fail in the non-Markovian
case.

6.4. Lp-norm. In the sequel‖ · ‖ denotesLp[0,1]-norm for some fixedp ∈
[1,∞). Moreover, let‖f ‖[a,b] and‖f ‖[a,b],∞ (a ≤ b) denote theLp-norm and
the sup-norm over the interval[a, b], respectively. Forε > 0 we consider the map

�ε :C[0,∞) → [0,∞),

w �→ − logP(‖W − w‖ ≤ ε)

as random variable on the canonical Wiener space.
Our objective is to prove:

THEOREM 6.6. One has

lim
ε↓0

ε2�ε = K a.s.,(6.10)

whereK is as in Theorem6.3.

Notice that, in order to prove the theorem, it suffices to prove convergence (6.10)
in probability. Since clearly�̃ε � �ε, it remains to show that�ε � Kε−2 in
probability.

We need some preliminary propositions.

PROPOSITION6.7. For w ∈ C[0,1] andε ∈ (0,1/2) it is true that

sup
z∈Rd

P
z(‖W − w‖ ≤ ε) ≤ sup

t∈[ε,2ε]
sup

x∈B(wt ,ε1−1/p)

F (x, t, ε),

whereF (x, t, ε′) = P
x,t (‖W − w‖[t,1] ≤ ε′) for x ∈ R

d, t ∈ [0,1] andε′ ∈ R.

PROOF. Note that if‖W − w‖ ≤ ε, then the stopping time

T := inf{t ≥ ε : |Wt − wt | ≤ ε1−1/p}
satisfiesT ≤ 2ε. Using the Markov property of the Wiener process, we obtain

P
z(‖W − w‖ ≤ ε) = E

z[1{T ≤2ε}F
(
WT ,T ,

(
εp − ‖W − w‖p

[0,T ]
)1/p)]

≤ E
z[1{T ≤2ε}F (WT ,T , ε)

]
≤ sup

t∈[ε,2ε]
sup

x∈B(wt ,ε1−1/p)

F (x, t, ε).
�
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PROPOSITION6.8. Let ε, θ ∈ (0,1/2) andw ∈ C[0,1]. Then

P
(‖W − w‖[0,2ε],∞ ≤ ε

) · sup
t∈[ε,2ε]

sup
x∈B(wt ,ε1−1/p)

F (x, t, ε)

≤ (θ/3)−d
P

(‖W − w‖[0,1] ≤ ε(1+ θ̃ )
)
exp

(
2θ−pε−1[3+ 2‖w‖[0,2ε],∞

])
,

whereθ̃ = (2ε)1/p + 5θ .

PROOF. We fix t ∈ [ε,2ε] andx ∈ B(wt , ε
1−1/p). Let us consider

A = {
f ∈ C[0,∞) :‖f − w‖[0,t],∞ ≤ ε

}
, Ay = {f ∈ A :f (t) ∈ B(y, θε)}

and choosey ∈ B(w(t), ε) such that

µ(Ay) ≥ (θ/3)dµ(A).(6.11)

We have

|x − y| ≤ |x − w(t)| + |y − w(t)| ≤ ε1−1/p + ε ≤ 2.(6.12)

Next, define a shift functiong ∈ H by g′(s) = t−1θ−p1[(1−θp)t,t]. Obviously,
g(t) = 1 and‖g‖[0,t] ≤ θt1/p. Let Qx,y = Ay + (x − y)g.

For anyh ∈ Qx,y we have two properties:h(t) ∈ B(x, θε) and, using (6.12),

‖h − w‖[0,t] ≤ εt1/p + |x − y|‖g‖[0,t]
≤ εt1/p + 2ε1−1/pθt1/p

≤ ε(t1/p + 4θ).

We also need an elementary inequality

inf
z∈B(x,θε)

P
t,z(‖W − w‖[t,1] ≤ ε(1+ θ)

) ≥ F (x, t, ε).

It follows that

P
(‖W − w‖[0,1] ≤ ε(1+ t1/p + 5θ)

)
≥ P

(‖W − w‖[0,t] ≤ ε(t1/p + 4θ); ‖W − w‖[t,1] ≤ ε(1+ θ)
)

≥ P(W ∈ Qx,y) inf
z∈B(x,θε)

P
t,z(‖W − w‖[t,1] ≤ ε(1+ θ)

)

≥ P(W ∈ Qx,y)F (x, t, ε).

Now we pass fromP(W ∈ Qx,y) to P(W ∈ Ay). Recall thatQx,y = Ay +(x−y)g.
Hence, by the Cameron–Martin formula

P(W ∈ Qx,y) ≥ P(W ∈ Ay)exp{−M},
where

M := 1
2|x − y|2|g|2µ + |x − y|t−1θ−p sup

h∈Ay

∣∣∣∣
∫ t

(1−θp)t
dh(s)

∣∣∣∣.
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By using (6.12) and the definition ofg we have

1
2|x − y|2|g|2µ ≤ 2t−1θ−p.

Moreover, forh ∈ Ay ⊂ A,
∣∣∣∣
∫ t

(1−θp)t
dh(s)

∣∣∣∣ = ∣∣h(t) − h
(
(1− θp)t

)∣∣ ≤ 2
(
ε + ‖w‖[0,t],∞

)
.

Hence,

M ≤ 2θ−pε−1(1+ 2ε + 2‖w‖[0,t],∞
)

and by combining this bound with (6.11) and other previous estimates we get

P
(‖W − w‖[0,1] ≤ ε(1+ t1/p + 5θ)

)
≥ (θ/3)dP(W ∈ A)exp

{−2θ−pε−1(3+ 2‖w‖[0,t],∞
)}

F (x, t, ε),

and thus the result follows.�

PROOF OFTHEOREM 6.6. Recall that by Theorem 6.3:

�̃ε ∼ K
1

ε2 asε ↓ 0, in probability.

Moreover, by the above proposition one has forw ∈ C[0,∞), ε, θ ∈ (0,1/2),

�ε(1+θ̃ )(w) ≤ �̃ε(w) − logP
(‖W − w‖[0,2ε],∞ ≤ ε

)

− d log(θ/3) + 2θ−pε−1[3+ 2‖w‖[0,2ε],∞
]
,

whereθ̃ is as in Proposition 6.8. Choosingθ := ε1/(2p) we obtain

�ε(1+7ε1/(2p))(w) ≤ �̃ε(w) − logP
(‖W − w‖[0,2ε],∞ ≤ ε

)

− d log
(
ε1/(2p)/3

) + 2ε−3/2[3+ 2‖w‖[0,2ε],∞
]
.

Now let w be a µ-distributed random variable. Then all summands but
�ε(1+7ε1/(2p))(w) and�̃ε(w) are of ordero(ε−2) in probability. Consequently,

�ε(1+7ε1/(2p)) � �̃ε ∼ K
1

ε2 in probability.

The assertion follows when choosing̃ε > 0 with ε̃ = ε(1 + 7ε1/(2p)) and
letting ε̃ ↓ 0. �
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