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PROBABILITIES OF RANDOMLY CENTERED SMALL BALLS
AND QUANTIZATION IN BANACH SPACES

By S. DEREICH! AND M. A. LIFSHITS?
Technische Universitat Berlin and St. Petersburg State University

We investigate the Gaussian small ball probabilities with random centers,
find their deterministic a.s.-equivalents and establish a relation to infinite-
dimensional high-resolution quantization.

1. Introduction. Consider a centered Gaussian veciorin a separable
Banach spacér, || - ||) with law n and reproducing kernel Hilbert space (RKHS)
(H,|-|x). We letB and B,, denote the closed unit balls i and H, respectively.
We also use the following notation for shifted balB(x, ¢) := x + ¢B. The small
ball function (SBF)y is defined by

@(e) := —logu(B(0, ¢)), e>0.

The properties of SBF have been extensively investigated during the last decade;
see, for example, [11] and [13]. See also works [6] and [8] on further deep
applications of SBF. A complete bibliography on the topic can be found on the
website http://www.proba.jussieu.fr/pageperso/smalldev.

Our aim is to study the concentration properties of the r.v.

le(w) :=—logu(B(X (w), ¢)), e >0,

the random small ball functiofRSBF), whene is small. We will see that some
typical features of the SBF are true as well for the RSBF but the exact asymptotics
of the two functions do not coincide.

Beyond structural properties of Gaussian measures, the research is motivated by
a close link to so-called random strategies in quantization problems, that we briefly
recall now. LetE be a space of objects (images, pictures, speech records, etc.) we
want to code via a finite codebook. In particular, one can take a finite subget of
say, (yi)i<n, as a codebook. In the spirit of Bayesian approach, assume that the
subject of codingX € E is random and its distribution (prior measurgis known.
Then we can evaluate the quality of a codebook (quantization error) by

1/s
a)=E[ min 1x =] .

.....
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1398 S. DEREICH AND M. A. LIFSHITS

In general it is not feasible to find optimal codebooks under a given constraint on
the sizen of the codebook. Therefore, recent research focused on the finding of
asymptotically good codebooks or on the determination of the (weak or strong)
asymptotics of the (theoretically) best achievable coding quality whiemds to
infinity, the so-callechigh-resolution quantization problentt was shown in [5]
that these weak asymptotics are in many cases of the same order as the inverse
of the small ball function. If the underlying space is a Hilbert space and under
a polynomial decay assumption on the eigenvalues of the covariance operator,
Luschgy and Pagés [15] proved equivalence of the strong asymptotics to the
Shannon distortion rate function. Now using an explicit formula for the distortion
rate function based on the eigenvalues, the problem can often be solved explicitly.
In the general high-resolution case, a reasonable codebook can be created by
taking independent-distributed variable§Y;} (assuming also their independence
of X). We are thus led to consider the approximation quantities

1/s
D(r,s) =E[ min | X —Y; ||S} .
i=1,..,[e"]
The asymptotics oD (r,s), r — oo, were related to the (standard) small ball
function in [5]. Some first properties of the random small ball function and its
close relationship to the asymptoticsf-, s) have been derived in [4]. Whenever
the underlying spac& is a separable Hilbert space, the RSBF is almost surely
equivalent to an invertible deterministic functign : R, — R.. Moreover, one
has

D(r,s) ~ o (), r— 00,

for arbitrarys > O under certain assumptions on the eigenvalues of the underlying
covariance operator. Here and elsewhere we wfite g iff lim f =1, while

f < g stands for lim suyégc— < 1. Finally, f ~ ¢ means

0 < liminf ! <lim supi < 00.
8 8

In this article we extend all mentioned results to the Banach space setting. Since
the proofs in [4] made strong use of the Hilbertian structure, the new techniques
used here differ significantly from those used previously.

The article is arranged as follows. First we prove an almost sure upper bound
for £, based on the SBF. In Section 3 we find a.s.-equivalence of the RSBF and its
median under weak regularity conditions. Some alternative gauge functions for the
RSBF are considered in Section 4. In Section 5 a link between the approximation
quantity D and the RSBF is established. Finally, in Section 6 the existence of
polynomial equivalents for the RSBF is shown in some important particular cases.
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2. General propertiesof RSBF.

THEOREM2.1. One has

e < 20(e/2) ase | 0, as.

PROOF Forn € N, denotec, = n ande, = ¢~ 1(n%). Let & and Y denote
the distribution function and the tail of the standard normal law. Consider the sets
(enlarged balls, in Talagrand’s terminology, see [17])

Ap =B+ (cu + T H(1(B(0, ¢,))))By.
Then, by the isoperimetric inequality (see, e.g., [12], Chapter 11):
1(An) = [y + Y Hu(B(O, £2))) + D (1(B(0, £4)))] = P(cn).

The tail probabilities of standard normal random variables satisfy
(2.1) Ty <ie?  y>o
Therefore,

DA =D Tlen) < 0.

neN neN
By the Borel-Cantelli lemma, almost surely all but finitely many evéits A,},
n € N, occur.

On the other hand, for every € A, there existsh € H such that|a|, <
cn + T (w(B(0, g,))) and |lx — k|| < &,: thus, using Borell’s shift inequality
(see, e.g., [12], page 150), one has
|2

h
(B Cx, 260) = i(Blh, &) = exp{—'—“ -y

2.2) 2

1
> eXp{—E[cn + Y w(B(O, )] — w(eiz)}.

Using the elementary consequence of (2.1)

(2.3) T Yw) </—2logu, u € (0,1/2],
we arrive at
1
—logi(B(x. 26,)) < Slen + T H(u(BO. e) ]+ pen)
1
< E[Cn +V20(en) P + 0(en)

c

+ cnv 29 (en) + 20(ey).

N|:M
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Note thatc,f =o(¢p(e,)) asn — oo and, therefore,

sup —logu(B(x, 2¢,)) < 2¢(ey), n— o0o.

XeA,
Since lim,— o0 ¢(en+1)/9(e,) = 1 and the small ball probabilities are monotone,
our theorem is proved.[]

REMARK 2.2. The previous theorem and Anderson’s inequality (see,
e.g., [12], page 135) imply that the random small ball functigris asymptoti-
cally enclosed between two deterministic functions, that is,

(2.4) p(e) <t: S20(e/2), 10, as.
Suppose now that there exists< co such that

(2.5) @(e) <vp(2e)

for sufficiently smalle > 0. Then the RSBF function is of the same order as the
small ball function and we have

p(e) < Le S 2vp(e), ¢l 0, as.

A better asymptotic lower bound will be presented in Corollary 4.4 below.

REMARK 2.3. One can find alternative estimates for probabilities of enlarged
balls eB + rB,, in [17]. These estimates proved to be more efficient than the
isoperimetric inequality in the work concerning Strassen’s functional law of the
iterated logarithm, where they yield the correct convergence rate. Surprisingly,
in the range of parametetsr considered in our work, the estimates from [17]
provide worse results than the isoperimetric inequality.

3. Equivalence to a deterministic function. The main objective of this
section is to prove concentration inequalities for the random varidplase | 0.

In the main theorem, we will find equivalence of random small ball probabilities
to a deterministic function under weak assumptions.

It is well known that concentration phenomena occur fbilipschitz func-
tionals. We will show, by using a result of Kuelbs and Li [6], that the function
logu(B(-, ¢)) is H-Lipschitz on a set of probability “almost 1,” and the corre-
sponding Lipschitz constant will be controlled.

3.1. Large set of good points.Let us fix e > 0 and choosel = M(¢) =
3V¢(¢e). Introduce again an enlarged ball

Ve:=¢B+ MB,.
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Let us start by showing tha¥, is large enough. Indeed, by the isoperimetric
inequality and (2.3):

u(VE) < T(@Hu(eB)) + M)
=T (=Y (u(eB)) + M)

(3.1) < Y(—v-2logu(eB) + M)

=Y (—v20(c) + M)

< exp(—¢(e)).

We also observe that the small ball probabilities are uniformly bounded from
below onV;. Indeed, for eaclx € V,, there existsi e M B, N B(x, ¢). Hence,
B(x,2¢) D B(h, ¢), and we obtain, similarly to (2.2),

logu(B(x, 2¢)) > logu(B(h, €))
(3.2) > log(exp(— |17 /2) (B0, &)))
> —M?/2— ¢(c) = —5.5¢(¢).

3.2. Estimate of the Lipschitz constantn this section, we consider the
H-Lipschitz property of the functiod () := log u(B(:, 2¢)) on V,.

PROPOSITION3.1. Lete > 0be so small that

¢(2¢) = —log @ (-3).

Leth € H andx,x +h € V.. Then
(3.3) W (x+h) —W(x)| <8Vp(e)lhly-

PROOFE SinceV, is convex, without loss of generality we may and do assume
that|r|, < 1.SinceB(x +h, 2¢) = B(x, 2¢) + h, we can use the estimate from [7]
which states that for an arbitrary Gaussian meagyi@ measurable set and an
element: of the RKHSH, one has

(B4)  @(@Hu(A) — |hly) < u(A+h) < @D Hu(A) + 1hlL).
Thus,
w(B(x +h,2¢)) < @O + |hlL),
whered = d~1(w(B(x, 2¢))), and we obtain
A:=V(x+h)—V(x)
(3.5) =logu(B(x + h, 2¢)) — log u(B(x, 2¢))
<log®(® + |h|,) —log®(6).
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Under our assumptions it is true that
w(B(0, 2¢)) = exp(—¢(2¢)) < P(-3).
Therefore,
®(0) = u(B(x, 28)) < u(B(0, 2¢)) < ®(-3),

which shows tha# < —3. It follows from|A|, < 1 thatd <6 + |h|, < —2. Using
the elementary inequality

0< (log®)'(r) < 2Ir|, r<-2,

we obtain

O+|h|.

log® (6 + |hl,) —log@(6) < 2/9 Il dr = 210|lh], — k15 < 210] 1],

Now note that due to (3.2)
®(0) = u(B(x, 2¢)) > exp(—5.5¢(¢))
and, hence by (2.3),
01 =" ((B(x,8))) < v1lp(e).
Altogether, we obtain
A <8/p(e)|hly.

To derive the converse bound, we use that the situation is symmetric. Namely,
takex = x + h andh = —h. Then we havea, x + h € V, and the arguments from
above imply that

—A=Vx)—Wx+h)=VE+h) — V)

=8vVe(e)lhly. O

3.3. Concentration and convergenceWe are now in a position to prove our
main result on the deterministic equivalent for the RSBF.

THEOREM 3.2. Assume that for alt > 0 small enough it is true that

(3.6) @(e) < vp(2e)

for somev < oo. Letm, be a median of,. Then

lim—= =1  almost surely
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ProOFE Definer, from the equation
O (re) = 5 + w(VY).

It follows from (3.1) that lim or. = 0. By (3.3) and the concentration principle
for H-Lipschitz functionals (see, e.qg., [9], page 210) we have, forrany- that,

P(|02: — moe| > 8V p(e)r) < w(VE) + exp(—(r — re)?/2).

Let us fixs > 0 and let

_ 8p(2e)
CNION
Then using (3.1), we obtain that
2 2
P62 = mau| 2 59(22) = exp—g(e) + expf -2 L),
Due to (3.6), it holds foe > 0 sufficiently small
82¢(2
(1o, — ] = 59(20)) = expl—p(e) +exp ~ =L )

. 52
< 2exp(— mln{l; m}q)(Zs))
=: 2exp—vi1p(2¢)}.

By switching from 2 to ¢, we get
3.7) P(|€e — me| > 8¢(e)) < 2exg—vig(e)}.

Next recall that due to Remark 2.2, is asymptotically a.s. enclosed by the two
functionsg(¢) and 2¢(¢). Hence, it holds foe > 0 sufficiently small

(3.8) @(e) <mg < 3vg(e).

Now consider fom € N the setT, := {¢ > 0:n <m, < n + 1}. For sufficiently
largen € N ande € T,, we have, by using (3.7) and (3.8),

P(te > 1+ 8)(n + D) < P(6 > L+ 5ym,)
<Pl —mg > dm;)

<2exg—vip(e)}

V1
< 2exp{—$mg}
V1
<2exp,——
- p{ an}
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so that

]P’(sup@s > A+8)n+ 1)) < 2exp{—;—ln}.
Ty

Vv

By the Borel-Cantelli lemma we eventually have, for all langend alle € T,,,
n+1
le<(1+0)(n+DH =<1+ 5)Tme,
and, sinceS > 0 can be chosen arbitrarily small, it follows that

. L
limsup—= <1 a.s.
el0 Mg

The inverse bound can be obtained in the same way.

In the case where Theorem 3.2 is not applicable, we still can show:

ProPOSITION 3.3. For any continuous functiony : R, — R, such that
limg 0 (¢) = oo, there exist constants,, Cy, € [0, oo] such that

liminf =cy
el0 W(e)
and
limsu C
nsup oy = Cv

almost surely

PROOF Let E* denote the topological dual of and C,:E* — E the
covariance operator oft. Let x € E and h = C,(z) for somez € E*. The
Cameron—Martin formula (see, e.g., [12], page 107) gives

p(BG—ho)= [ explz() = Bl g0} diy).
B(x,e)
Sincez: E — R is a continuous function, it holds
w(B(x —h, ) ~ explz(x) — 3llzlI7, }4(B(x, £)
ase | 0. In particular,
—logu(B(x — h,&)) ~ —logu(B(x, €)), el 0.
Therefore, for any > 0, the set

Ay = {x ¢ E:limipf —29MB(x. ) fs}
£40 V()

is invariant under an arbitrary shift € C,,(E*). Sincey is continuous, the set

A is measurable. Moreover, by the zero—one law for Gaussian measures (see [1],

Theorem 2.5.2), the set; hasu-measure 0 or 1. The first assertion follows. The

second one may be proved analogousiy
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4. Gauge functions. In this section we suppose that the regularity condi-
tion (3.6) applies. By Theorem 3.2 one has
4.1) Le ~ 4 (e) ase | 0, a.s.
for ¢.(¢), € > 0, equal to the mediam. of £.. In the sequel, we study alternative
representations fap,.. We will need the following lemma.

LEMMA 4.1. Let Z denote a standard normalr For any p > 1 ande > 0
with u(e B) <1/2,0ne has

2
1626 1l Loy < @(e) + 3 (V20(e) + 1 Z1l 2n ()"

PrROOFE The proof is similar to that of Theorem 2.1. We fix> 0 with
u(eB) <1/2 and let

A =¢eB + (t + Y Y(u(eB)))B,, t>0.

By the isoperimetric inequality one has
(4.2) 1(A) = @l + Y (u(eB) + &1 (u(eB)] = (1)
for anyr > 0. As in the proof of Theorem 2.1, we obtain foe A;,

1(B(x, 28)) = exp{—3[t + T (u(eB)]? - p(e)}
and inequality (2.3) yields

—logu(B(x,26)) < 31t + T 1 (u(eB) 1 + ¢(e)
< %[t + \/%]Z—i-(p(e).

Combining this estimate with (4.2) gives

P(t2e > 3[1 +v20(e) P + ¢(e)) < Y(1)
for all r > 0. Hence, withZz+ = Z v 0 it follows that

I€2: Ly < E[(3[Z + V20 (@) P+ ¢()"]Y7.
Applying the triangle inequality twice yields
€26l Loy < SE[(Z + V20177 + o(e)
< JEIEZHPIY +20(0)) + ()
and the assertion follows.[J

THEOREM4.2. For ¢, satisfying(4.1),we have

lim b _ 1
el0 @4 (&)

in L?(P) for any p > 1. In particular,
i (&) ~ el Lr(p) ase | 0.
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PROOE Fixn e (0,1) and let

—logu(B(x,€)) 1‘ - n}
¥« (&) )

Recall thatX = X (w) denotes the.-distributed center of the random ball. One has

L V4
‘ d 17(8)(X)< - — 1)
@ (&) LP(P)

0u(e)
Irer (X)<<pf(€8) B 1)

Le
7o (X ~1
L7 )<<p*(8) )

Le
g ey (X
~e LP(P)+|| 7@ X | @)

=:I1(e) + Ix(e) + I3(e).

Clearly, I1(¢) < n. Using the Cauchy—Schwarz inequality, we estimate the second
term by

T(s):{er:‘

IA

LP(P) ‘

+

LP(P)

IA

LP(IP)

+

L7 () (X)

1
@« ()

Iy(e) = |27 ey COLe | Lo p)

-~ 1/2
< ———w(T @) 2 1ell 120 )

P« (€)
By (3.6) and the previous lemmale|l 2, p) S 29(¢/2) S 2vp(e) ase | 0.
Due to Anderson’s inequality, one has(e) = ¢(¢) (¢ | 0). On the other hand,
limg o (7 (e)€) = 0 by assumption (4.1). Hence,

lim I>(e) = 0.
" 2(8)
Furthermore, lim o /3(¢) = 0. Putting all three estimates together gives

L
‘ - rS n, & ‘L 0.
@« (&) LP(P)

Sincen € (0, 1) was arbitrary, the proof is completel]

REMARK 4.3. As a consequence of the above theorem one can replace the
medianm, by E[£.] in Theorem 3.2. By the well-known fact that small ball
functions are convex, it is easy to deduce that the fundign— R, ¢ — E[£,]
is convex, one-to-one and onto.

COROLLARY 4.4. ltis true that
0(e/V2) S0ue) S20(/2), 0.
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PrROOFE The asymptotic upper bound follows from Theorem 2.1. It remains to
prove the lower bound. Due to the previous remark we can prove the statement for
¢« (e) =E[£.]. Denote byX a u-distributed r.v. that is independent &f One has
fore >0,

—E[¢:] =E[logu(B(X, ¢))]
=E[logP(|| X — X|| < |X)]
<logE[P(|X — X|| < &|X)]
=logP(|X — X|| <e),

where the inequality follows from Jensen’s inequality. Note that X and«/2X
are both centered Gaussian vectors with the same covariance operator. Therefore,
£L(+/2X) = L£(X — X), which shows that

E[€:] = —logu(B(0,6/v2)) = ¢(s/v/2). O

REMARK 4.5. If there exist$ > 1 such that
0(e) > To(v/2e)
for all sufficiently smalle > 0, then the strong asymptotics @fandg, differ.

5. Equivalence of random small ball probabilities and random quantiza-
tion. In this section, we relate the asymptotics Bf-, s) to the RSBF. Recall
that

1/s
D(r,s) ZE[ min [|X — Yi||s:| ,
i=1,...le"]

wherel{Y;};cn is a sequence of independent §ofais well) -distributed r.v.s inE.
In terms of information theory, Theorem 3.2 can be interpreted aadjeptotic
equipartition propertyAEP) corresponding to the random quantization problem.
For more details on AEPs and their connections to coding theory we refer the
reader to [2].

In the sequel, we assume the existence of a convex fungtioR | — R that
is one-to-one, onto and satisfies

(5.1) @«(e) ~ —logu(B(X,¢)) ase | 0, in probability.
By the preceding consideratiogs(¢) := E[£.] is an appropriate choice if (3.6)
applies.

THEOREMb5.1. If there exist® > 1 such that for alls > 0 sufficiently small
(5.2) @(e) = Dp(2e),
then

D(r,s) ~ w;l(r), F — 00.
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We will need a couple of elementary results:

LEMMA 5.2. Let f:R; — R4 be a decreasing convex function satisfying

f@r)yz=vf(r)

for all r sufficiently large Then for any functionA : Ry — R, with A(r) = o(r)
(r — o0), one has

(5.3) fr+Ar)~ fr) asr — oo.

ProOOF Convexity yields that for al, » > 0 it is true that

%)f(r).

v

FIAL+8)r) > (1—

The further necessary estimates are triviall

LEMMA 5.3. Assumption(5.2) implies that there exists a constant such
that

(5.4) ot = vty and ¢7(2r) > vip i)

for sufficiently larger > 0.

PrRoOOF Choosex € N such that v < 1. By assumption (5.1) and
Theorem 2.1, one has fer> 0 sufficiently small

3 1
(5.5) va(e) <3p(e/2) < —9(/2T) < Su(e/2H).
VK
Consequently,
— &
0 (204(6)) 2 5y
Choosings = ¢ 1(r) and assuming thatis sufficiently large, we obtain

1
o ).

-1
@, ~(2r) = T

In a similar way, the equation

1 1
0(@) = =9(e/2) = E‘”(S/ZKH)

can be used to derive the second assertion of the lemma.

PrROPOSITIONS5.4. Letk € (0,1) and § := %min{l, vik}, where vy satis-
fies(5.4).For r > 0 define the sets

X1(r) = {x € E:=logu(B(x, 1+ K)p; 1)) < (1 - 8)r}
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and
X2(r)={x € E:—logu(B(x, (1—)g;1(r))) = A1+ 8)r}.
Then
Nim p(Xa(r) = lim p(X2(r)) = 1.

PROOF Making use of the convexity af_* and equation (5.4), one has

26 45
oM r — 28r) — o7 Mr) < S (01 r/2) — o7 Mr) < — k)
r/2 V1

for r large. Therefore, there existg> 0 such that
0 H(r — 28r) < (L4691 (r)
for all r > rg. Consequently, the sé€1(r) satisfies for > rg

1)
X1(r) D {x € E:—logu(B(x, go*_l((l —28)r))) < 1% 1- 28)r}.

Since <p;1((1 — 28)r) converges to 0 andl — §)/(1 — 25) > 1, it holds by
assumption (5.1) that

lim_p(Xa(r) =1.
The proof of the second assertion is similar: one has ferg
0, ) — @M+ 28r) <M — 26r) — M) < kM),

where the first inequality is a consequence of the convexityp,p’f. Hence,
go*_l(r +25r) > (1— K)(p*_l(l") for r > rg and it follows

1
X2(r) D {x € E:—logu(B(x, (p*_l(r + 28r))) > 1_:_285 1+ 28)r}.
Finally, assumption (5.1) yields
rILmOOM(XZ(”)) =1 O

PrROPOSITIONS.5. Letk € (0, 1). For r > 0 consider
Z(r):= min X-Y
(r):=,_min 11X = Yi|

and the event

T(r):=1Z() € [L =0 (), L+ 09 (0]},
Under the assumptions of Theor& one has

lim P(7 () = 1.
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PrRooE Recall that<p;1 is convex. In view of Lemma 5.2, it suffices to
considerr € I :={logj:j € N}, that is, the values for which ¢" is an integer.
By Proposition 5.4, one has

rILmOOM(.‘Xil(r) NX2(r)) =1

with X1(r) andX2(r) as in the proposition. Moreover, foere I andX € X1(r),
one has

P(Z(r) > L+ 2)1X) = (L — w(B(X, A+ )r))"

. o e’
< (1_ efr+8r)e — <1_ _)

e}"
< exp{—e‘sr} — 0, r — 00.
On the other hand, fak € X2(r), r € I, it holds
P(Z(r) > 1—)e; 1) X) = (1— u(B(X. A —x)r)))"

. e—(Sr e’
>A—e ") = (1— ) —~1

er

asr — oo. Hence, the eventg (r), r > 0, satisfy lim o P(T(r)) =1. O

For the proof of Theorem 5.1, we use a consequence of Theorem 2.1 of [5] (see
also [3], Theorem 3.1.2).

THEOREM5.6. Suppose there exists > 0 such that
o H2r) = vip~ ()
for all sufficiently larger > 0. Then one has for arbitrary > 0
D(r,s) S 297 (r/2)

asr — oQ.

PROOF OFTHEOREMb5.1. Fixs > 0. First we prove
D(r,s) S (), r — 0.
Fix « € (0, 1) and let7 () and Z(r) be as in the previous proposition. Now
E[Z(r)*] < E[Ly ) (L4 €) 0 ()] + B[y (e Z(r)*] = I1(r) + La(r).
One had1(r) < (l—}—K)S(p;l(r)S. Moreover, the Cauchy—Schwarz inequality gives

L(r) <P(T(r)°)V?RBIZ () > ]1Y2.
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As a consequence of Lemma 5.3 and assumption (5.2), there exists a constant
v1 > 0 such that

o712 > v107 ()

for larger > 0. Thus, Theorem 5.6 is applicable and

BIZOP 1229702 < 29 0y
1
asr — oo. By the previous proposition, lim, ., P(7 (r)¢) = 0. Consequently,
I(r) = O(go*_l(r)s), r — 00
and
EZ) T S A+ e (), r— oo
Sincex € (0, 1) was chosen arbitrarily, it follows that

D(r,s) =E[Z()* 1Y <o 1), r — 00.

The converse inequality is obvious, since for fixed (0, 1) and7 (r) as above
one has

E[Z(I’)S]l/s > E[Jlf]'(r)Z(r)s]l/s > }P’(‘T(I’))l/s(l _ K)(p*_l(r)

Z(l—/{)sl’*_l(”), r — 00. O

6. Polynomial equivalents for the RSBF. In the sequejx denotes Wiener
measure on the canonical Wiener spa@®, oo) := C([0, 0o), RY) for some
fixed d € N. Moreover,X = W denotes &[0, oo)-valued random variable that
is a Wiener process under the standard meaBuiM/e will sometimes use the
alternative measureé®* andP*’ (x RY, t > 0). Under these measurés is a
Wiener process starting inat time 0 or at time, respectively. The corresponding
expectations are denoted By andE*"’.

Recall that for many underlying Banach spaces (&.8[0, 1]) the limit

lime”
e @(e)
exists and is finite for the right logarithmic small ball rate In this section we

prove analogs of this statement for the random small ball funatiom many
cases.
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6.1. Sup-norm. Recalling thaty = 2 in the case of the Wiener process and
for the uniform norm onC[O, 1] (denoted by| - ||), and having in mind the
deterministic equivalent of;, we prove:

THEOREMG6.1. There existsK € (0, oo) such that

”?c]) 2, =X as
&

REMARK 6.2. Recall that the small ball functiansatisfies Iir@wszgo(g) =
Ko, WwhereXg € (0, co) is the principal eigenvalue of the Dirichlet problem on the
unit ball of R¢. Using Corollary 4.4, we can compafé with Xo:

2K < K < 8XKo.

PrRoOOF OFTHEOREM6.1. It suffices to show that the limit

; 2
(6.1) lim &g (e)

exists forp,(¢) = E[£,].
We slightly modify ¢, in order to gain a transparent semi-additivity property.
Fore > 0, let

£s :CJ0, 00) — [0, 00),
(6.2)
w > — suplogP*(|W —w| <e),
xeRd

and letg, (¢) .= fZe du. Let us denote forr > 0 andw : [0, a] — R

lwllio,a) :== Sup [w(®)]

O<t<a

and

Ly(w) :=— suplogP* (|W — wl{0,4] < €)-

xeRd

Notice thatf, and El/gz are equidistributed when considering the functions as
random variables on the canonical Wiener space. In particiilés) = A(1/£2)
for A(a) := ffa du,a>0.

We denote by(6;),>0 the canonical ergodic flow on Wiener space, that is, for
allt>0

6, : C[0, c0) — CJ0, 00),
(6.3)
w = Gw)(s) =w( +s) —w(s).
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We are going to show that the family-¢,),~¢ is subadditive for the canonical
dynamical system on Wiener space. Indeed, by the Markov property, one obtains
for a, b > 0 that

_Ea—i-b(w)
= suplogP*(|W — wlljo,at+r < 1)
xeRd
= suplogP*(|W — wlljo,a] < L [W(a) — w(a) + 0, W — bawlljo,p) < 1)
xeRd

< suplogP* (|W — wllj0.a) < 1) 4+ suplogP*(|W — 6,wllj0.5) < 1)

XERd )‘EeRd
= —Ly(w) — Lp(Oaw).

Therefore,A(a) = [ £,du is superadditive and there exists some consfdnt
[0, oo] such that

im 2@ _ %
a— o0 a
and thus
(6.4) lim €23, () = X.
el0

The finiteness ofX is easily obtained by an application of Corollary 4.4.
It remains to prove the asymptotic equivalencepfindg,. Set

D, ={feC[0,1]:|f(t)| <e,e <t <1}

and consider a shift functiog. () = min{e, r}. Then for anyx € R¢ with |x| < ¢
and anyw € C[0, 1] we haveB(w + x1,&) C w + £2x + D.. Therefore, by the
Cameron—Martin formula,

w(B(w +cl,e)) < /,L(w + %x + DS)

1
<+ D) sup exp(—<g, f(8)>)-
few+Dg €

< uw(w + D) exp(lw(e)| + ).

Next, we can linku (w + D, ) back to conventional small ball probabilities. Indeed,
it is true that

Bw,&+&¥" D (w+ D) N {f:1If2—wl| < ¥4,

where w?(s) = e Y?[w(se) — sw(e)] and f2 is defined similarly by usingf.
Hence,

w(Bw, & + &%) = w(w + De)po(Bw?, £3/4)),
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whereu stands for the law of the Brownian bridge. Altogether,

le(w)=— sup logu(B(w+cl,e))

ce[—e,¢]
> —logu(w + D;) — (lw(e)| +¢)
> —logu(B(w. e + &%) +loguo(Bw?, £3/%) — (lw(e)| +¢).

From this estimate, it follows that, < ¢,.. On the other hand, by definition it
holdsg, > ¢,, and thus it follows thap, ~ ¢,. Now (6.4) yields the existence of
the limit (6.1) and the proof is completel]

6.2. Holder norms. We briefly discuss a modification of the previous result
valid for Hélder seminormslt is well known that a seminorm

[f(@) — f($)]
= sup L L0
171l s,te[Ol,jl] |t —s|#
SF£t

is B-self-similar andoco-superadditive, using the terminology of [14] (see the
next section). Therefore, the related small ball rate is (1/2 — g)~1 (recall
that ||W]|g is finite iff 0 < 8 < 1/2). The proof of the previous section works
equally well for Holder seminorms. In the first part of the proof, the function
W(a) := ¢.(a?~1?) turns out to be semi-additive. The second part of the proof
is not necessary at all. Indeed, sindgl g = 0, we have the identity,, = ..

6.3. Other norms. In this section, we prove the existence of small ball
constants in the case of the Wiener process for a broad class of norms.

We follow the ideas of [14] and use the terminology introduced therein
concerning self-similar and superadditive norms (see also [10] and [16]). Recall
that a family of seminorms indexed by intervals of the real line is caflesklf-
similar iff

ILf (e lzse =Pl fIlT
It is called p-superadditiveiff

1
1 o) = (1 F W gy - AL ) for p< oo,

”f”[ao,an] > Sup(”f”[ao,al]v ey ||f||[an_1,an]) for P = +00.

First, notice that the most interesting-superadditive norms were considered
in the two preceding sections. Therefore, in the sequel, we only consider
p-superadditive norms wittiinite p. Again, see many examples in [14], for
example,L?-norms, Sobolev norms, and so on.

Let |-l =1 - lljo.;y be ap-self-similar andp-superadditive norm. Notice that,
by [14], y = (1/2— B — 1/p)~Lis the right logarithmic small ball rate.
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Forw € C[0, c0), ¢ > 0 anda > 0 we let

e(w) = — suplogP* (| W — w]|| <e),

xeR4

Aq(w) = suplogE* exp(—||W — w”ﬁm)-

xeRd

The function<, (-) andA,(-) are considered as random variables on the canonical
Wiener space. We are now in a position to state the main theorem.

THEOREM 6.3. Assume thap + 1/p < 1/2. Then there exists a constant
K € (0, o0) such that

(6.5) “5% e’l, =X in probability,
&€
wherey = (1/2— B —1/p)~L.

REMARK 6.4. Clearly,t, and?, are closely related. One even expects that
the theorem remains true when replaciady £, in most cases. As we will show
in the next section, we can do so if the underlying norm islithenorm.

PROOF OF THEOREM 6.3. The proof is based on the subadditivity &f
for the ergodic canonical flowd;);>o. In fact, for anyw € C[0, o0), x € R4 and
a, b > 0, by the superadditivity of our norm,

logE* exp(—|W — wll{g 44
< logE" exp(— W — wllig o) = IW = wlif, 41 )
= 0gE" exp(—|W — wl|{g o) — W (@) — w(@) +6a(W) — 8 (W) {5 )
< logE*[exp(—IW — wlifg ;)] + s}gplogE’“' exp(— W = 6a(w)ll{g 1))-

ConsequentlyA 1 p(w) < Ay(w) + Ap(6,w). Subadditivity and the ergodicity
imply that the following limit exists a.s.:

(6.6) ko= lim 2 e —oo. 0],

a—>o0 q
Now, fora > 0 andw € C[0, 00), let
Ag(w) = s)lcjplogEx exp(—allW —wlfy 1))-
Considered as a random variable on the canonical Wiener spaéeequidistrib-
uted with A 1, for ¢ := p(1/2 — B). Hence, using (6.6),
lim a Y4A,=—K  in probability.

a—0o0
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Now a lower bound for is obtained via the Markov inequality. For any fixed
w € C[0, 1], anya, ¢ > 0, x € R4, we have

Ag(w) > logE* exp{—a||W — w|”} > logP*{|W — w| < &} — ae?,
thus
le(w) > —Agy(w) — agl.

The choice ofi = a(e) := (K /q)?/ 4~ De=P4/(a=D now yields

(6.7) e’l, > X  in probability,
wherey = (1/2— g —1/p)~1and
(6.8) K= (g — V(K /g)*/ 4D,

In particular, X is finite, sincel, is enclosed byy(¢) and £, which are both of
ordere™Y (see [14]).

It remains to prove the converse bound to (6.7). Toward this aim, we mimic
the proof of the de Bruijn Tauberian theorem. let- 0 and leta = a(e) :=
%8‘1’4/(‘1‘1). Recall that

q

-V
q—lg

(6.9) Ag~—XK

, ¢ | 0, in probability.

For fixed ¢ and w € C[0, 00) the supremum sypgp. logE*[e~¢IV-wlou] js
attained for somexg = xo(e, w) € R?. Fix now N € N and associate with
gi:=¢&;(e) :=¢i/N, i € Ng. For afixed valug € (0, 1), we consider

1:=NN[0,Q—nN+1U[L+nN,2¢Y"N +1]].
We estimate
explA,(w)} = E°[exp{—al|W —w]|”}]
E[ 11—y, armel(IW — wl) exp{—a|| W — w||?}]

+ Y EO[1pe_y e (IW — wl) expi—al| W — w]"}]

iel

+ EL 12010, 00) (IW — w) eXp{—a|W — w]|}]

A

= 2 (w) + 22w) + 3(w).

Again we consider the functiong?, =2 and £2 as random variables on the
canonical Wiener space. We will see tlizitis the dominating term in the estimate.
First we bound the logarithms of the summand&Zf One has

l0GE"[11e,_y 1 (IW — wl) exp—al| W — w]”}]

< —ael | +10gPO(|W — w|| < &) < —ael | — s (w).
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By (6.7) the right-hand side of the previous equation satisfies in probability

—agl | — Ly S —agP(i — VP /NP — Ke; "

F_1)p
=—K8_V[u+NV/iV:| = —k; Ke 7.
(g —DNP
Now let f(x) = (qupl) +x~7. By elementary analysis one obtains far I N[N +
1, 00)
(i—17 . (i—1> -1
—_ 77 NY/iV > — " )—vN ,
Ki (q—l)Np+ = N 14
and fori e I N (0, N1,
(i—17 . (l) P -1
i=————+N"/)i"> f|—)———N "
" (q—l)NP+ /=t N g—1

The functionf is strictly convex and attains its global minimum at 1. Now choose
N e N sufficiently large such that for alle 1
k> f(ly=—9_
g—1
Then all summands i ? are in probability of ordep(exp{A,}) [see (6.9)] and
one has
22
lim £ =0 in probability.
10 exp{Ag)

Moreover,Ef(w) <exp{—2Paqe?} = exp{—ZPJCﬁs—V} and, hence,

23
lim £ —=0 in probability.
el0 exp{Ay}

Therefore, expA,} ~ > in probability. Since

log =l (w) < —a(1—n)Pe? +logPO(|W — w| < (1+ n)e)
< —a(L—n)PeP — Lapye(w)
we arrive at
ine < —a(l—n)Ps? —logz}

~—a(l—pPe” — A,

K
~KeTV+[1-1-nP]
q J—
Here, all equivalences hold in probability. Let, 0, then with (6.7)

Y
18 .

lime¥ i, = X in probability.
8¢08 e p V. 0
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REMARK 6.5. It would be very interesting to extend the results of this
subsection to self-similar processes other than the Wiener process, as done in [14]
for fractional Brownian motion in the case of nonrandomly centered balls. Our
main subadditivity argument for upper bound seems to fail in the non-Markovian
case.

6.4. LP-norm. In the seque| - || denotesL?[0, 1]-norm for some fixedp €
[1, 00). Moreover, let|| fla.51 @and || fllja.p].00 (@ < b) denote thel”-norm and
the sup-norm over the intervgt, b], respectively. Foe > 0 we consider the map

£e . C[0, 00) — [0, 00),
w > —logP(|W — wl| <¢)
as random variable on the canonical Wiener space.
Our objective is to prove:
THEOREMG6.6. One has

(6.10) lime?, =X  as,
el0

whereX is as in Theoren®.3.

Notice that, in order to prove the theorem, it suffices to prove convergence (6.10)
in probability. Since clearlyl, < ¢, it remains to show that, < Ke2 in
probability.

We need some preliminary propositions.

PROPOSITIONG.7. Forw € C[0, 1] ande € (0, 1/2) itis true that

SUpP*(|W —wl| <e) < sup sup  F(x,t,e),
z€R4 r€le,2¢] xeB(w,,e1-1/p)

whereF (x, ¢, &) = PX (|W — wl|j.1) < &) for x e R?, ¢ € [0, 1] and ¢’ € R.

PROOF Note that if| W — w|| < ¢, then the stopping time
T:=inf{t > e:|W, —w,| <&l P)
satisfiesT < 2¢. Using the Markov property of the Wiener process, we obtain
P(|W — wl| < &) = E[L7 <2 F (W7, T, (" — IW — wllfy 7)"")]
<E*[Lir<2e}F (Wr, T, ¢)]

< Ssup sup 37()6,1‘,8).
tele,2e] xeB(w;,s1-1/p) O
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PROPOSITIONG6.8. Lete, 6 € (0,1/2) andw € C[O, 1]. Then
P(|W — wll{0,2¢],00 < €) - SUP sup  F(x,1,¢)

tele,2e] xe B(w;,e1-1/p)
= O/3'P(IW — wlloa < e(L+0) exp(20 e {3+ 2] wl0.2:1.00)),
wheref = (2¢)1/7 + 5.

PROOF We fixt € [¢, 2¢] andx € B(w,, e171/7). Let us consider

A={feC[0,00): | f—wllo.00 <&}, Ay={f€A:if() e B(y,0¢))}
and choose € B(w(t), €) such that

(6.11) 1(Ay) = 0/3) 1u(A).
We have
(6.12) X =yl <lx —w®|+ ]y —w@)| < eV 4e <2

Next, define a shift functiory € H by g'(s) = t_19_p1[(1—9p);,;]. Obviously,
g(t)=1and|gllon <0rMP. Let Q= Ay + (x — y)g.
For anyh € Q. , we have two propertiedi(r) € B(x, 6¢) and, using (6.12),

lh —wlio. < &t™'? + |x — yllgllo.n
< ett/P 4 217 pgl/p
<e(tY? + 49).
We also need an elementary inequality

inf PI’Z(HW—w”[;,l]ES(l—i—@))Z?(x,t,S).
z€B(x,0¢)

It follows that
P(IW — wlljo.q < e(1+1Y7 +5))
>P(IW — wlo < e™? +40); W — w1 < e(1+6))
>P(W e Qx,y)zeBigfﬁs) PRE(|W — wll, < e(146))

>P(W e Qxy)F(x,t,8).

Now we pass fronP(W € Q. ;) toP(W € A)). RecallthatQ, , = Ay, +(x —y)g.
Hence, by the Cameron—Martin formula

]P(W € Qx,y) = P(W € Ay) eXp{_M}»

where

M :

3l = yIP1817; + lx — ylt =07 sup
heA,

t
f dh(s)
(1—67)t
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By using (6.12) and the definition gfwe have
Sx—yPlglh <27t

Moreover, forh € A, C A,

‘/(i—@ﬂ)z dh(s)

=|h(t) — h((L—0P)1)| < 2(e + [lwll{0,1],00)-

Hence,
M <207Pe L1+ 26 + 2| wll{0,1),00)
and by combining this bound with (6.11) and other previous estimates we get
P(|W — wlljo.1 < e(L+ Y7 4 50))
> (0/3)9P(W € A) exp{ —20 P 1(3+ 2|wll[0.11.00) } F (x. 1, &),

and thus the result follows.[]
PROOF OFTHEOREMG6.6. Recall that by Theorem 6.3:

Oy ~ :Kg—lz ase | 0, in probability.
Moreover, by the above proposition one hasifoe C[0, 00), ¢, 6 € (0, 1/2),
Coaidy W) < Le(w) = l0gP(|W — wl{0 2,00 < ¢)
— dlog(8/3) + 203+ 2 wll{0.2¢].00)
whereé is as in Proposition 6.8. Choosiig= ¢1/(2?) we obtain
Coar7e1/eny (W) < Le(w) — 10gP(|W — wl|[0,26],00 < &)
— dlog (Y @P) /3) + 2673/2[3 4+ 2||w|[0.2¢.00)-
Now let w be a u-distributed random variable. Then all summands but
oy 7:1/@py (W) andZ, (w) are of orde(¢2) in probability. Consequently,

- 1 , -
Coqrizeviamy Sle ™~ J<8—2 in probability.

The assertion follows when choosirlg> 0 with & = (1 + 7¢¥/?P)) and
lettingg | 0. O
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