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COMPETITION INTERFACES AND SECOND CLASS PARTICLES!

By PaBLO A. FERRARI AND LEANDRO P. R. RMENTEL
Universidade de Sao Paulo

The one-dimensional nearest-neighbor totally asymmetric simple
exclusion process can be constructed in the same space as a last-passage per-
colation model irZ2. We show that the trajectory of a second class particle in
the exclusion process can be linearly mapped into the competition interface
between two growing clusters in the last-passage percolation model. Using
technology built up for geodesics in percolation, we show that the competi-
tion interface converges almost surely to an asymptotic random direction. As
a consequence we get a new proof for the strong law of large numbers for the
second class particle in the rarefaction fan and describe the distribution of the
asymptotic angle of the competition interface.

1. Introduction. The relation between the totally asymmetric nearest-
neighbor simple exclusion process in dimension one and two-dimensional last-
passage percolation models is well known since the seminal work of Rost [19].
The macroscopic behavior of the density profile of the exclusion process is gov-
erned by the Burgers equation [1, 17]. This corresponds to the “shape theorem” in
last-passage percolation [19, 20]. An important property of the exclusion process
is that the so-called second class patrticles (that follow roughly the behavior of a
perturbation of the system) are asymptotically governed by the characteristics of
the Burgers equation. When there is only one characteristic, the second class par-
ticle follows it [5, 18, 21]; when there are infinitely many, the particle chooses
one of them at random to follow [6]. These results hold when the initial distribu-
tion is a product measure with densitieg (0, 1], p € [0, 1), to the left and right
of the origin, respectively. The existence of infinitely many characteristics occurs
at points where the solution of the Burgers equation is a rarefaction front. The
rescaled position of the second class particle converges almost surely to a random
variable uniformly distributed in the interv@l — 2i, 1 — 2p] as time goes to in-
finity [14]. A similar phenomenon has been observed in first-passage percolation
starting from two growing clusters competing for space: the rescaled competition
interface converges almost surely to a random direction [16] with a so far unknown
distribution. Motivated by this we investigate the relation between the second class
particle and the competition interface in last-passage percolation. We conclude that
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one object can be mapped into the other (as processes) realization by realization.
Indeed, the difference of the coordinates of the competition interface at time
exactly the position of the second class patrticle at that time (see Proposition 3 and
Lemma 6). We show a law of large numbers for the competition interface in the
positive quadrantZ*)?; this corresponds ta = 1 andp = 0. Our mapping then
permits to describe the distribution of the angle of the competition interface in last-
passage percolation (Theorem 1) and to give a new proof of the strong law of large
numbers for the second class particle (Theorem 2, for the moment restricted to the
caser =1 andp = 0; we comment in the final remarks what should be done in
the other cases). A key tool to prove the asymptotic behavior of the competition
interface is the study of thgeodesicsrandom paths maximizing the passage time.
We show that each semi-infinite geodesic has an asymptotic direction and that two
semi-infinite geodesics with the same direction must coalesce. The approach fol-
lows Newman [15] who proved analogous results for first-passage percolation (see
also [9, 10]).

In Section 2 we introduce the models, state the results and prove them. In
Section 3 we show properties of the geodesics needed for the proofs.

2. Last-passage percolation and simpleexclusion. Let W = (w(z), z € Z?)
be a family of independent random variables with exponential distribution of
mean 1. Lef® andE be the probability and expectation induced by these variables
in the product space = (R+)%*.

Given z = (i, j), z = (i’,j) in Z? with i <i’ and j < j/, we say that
(zk, k=1, ...,n)is anup/right path frony to 7' if z1 =z,z, =7 andzx41—zx €
{(0,1),(1,0)} fork=1,...,n—1. Letll(z, Z') be the set of up/right paths from
to z/. Themaximal lengtthetweern; andz’ is defined by

1) G(z,Z):= max { > w(z”)}.

mell(z,z/
@) 7"en

This model is callediast-passage percolatiosince we are interested in the paths
starting at(1, 1), we use the notatiotw(z) = G((1, 1), z). This function satisfies
the recurrence relation
(2) G(2) =w(z) + max{G(z — (0,1)), G(z — (1,0))}
with G (i, j) = 0 if eitheri = 0 or j = 0. We say that a pointis infectedat time¢
if z € G;, where

G :={ze(Z")?:G(z) <t}

is called thenfected regionLet O (i, j) := (i —1,i] x (j — 1, j] be the unit square
having (i, j) as north-east vertex. The €8t := |, g, Q(z) describes the subset
of (R™)? attained by the infection at time The random process; is called a
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spatial growth modednd describes a growing Young tableau. Grawth interface
is defined by

(3) =1, j) € (@ZH)?:GG. j) <tandG(i + 1, j+1) > 1).

The polygonal curve interpolating the pointsjgfthat are at distance 1 separates
the infected regios; and its complement.

Rost [19] proved a “shape theorem” fGy;: with IP probability 1, for alle > 0
there exists & such that for alk > 1g,

4) tl—e)MC G, Ct(l+e)M
whereM := {(u, v) € (R1)2: u(u,v) <1} and
(5) ) = (Vi + /).

The interfacey; converges to{(u, v):u(u,v) = 1} in the same sense: with
probability 1, for alle > O there exists & such that for alk > 1,

(6) Ve Clt(A+e)MI\ [t (1—e)M].

Competing spatial growth.The sets of points infected througl, 1) and
(1, 2), respectively, are defined by

G?li={z€(ZM?:G() <randG(z) =w(l, 1) + G((2,1),2)},
G2:={ze(Z"?:G(z) <randG(z) =w(l, 1) + G((1,2),2)}.

The process;G,Zl, G,lz) describes a competing spatial growth model between two
different infections (see Figure 1). For related models in first-passage percolation
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y | i

Pl et g bt} e

€L
1

-
1

' |
—q--bodo-L_2
|

FiG. 1. Growth and competition interfaces
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see [3, 8, 16]. One can see that the regi@@, G? are connectedG, =
{(1, 1)} U G2t U G}? and that thecompetition interface = (¢o, ¢1, ...) between

G2l andG2? can be defined inductively as followsg = (1, 1) and forn > 0,

on+ (1,0, ifg,+(11)eG

on+0,1), ifg,+(1,1)eG

So that, if we paint blue the squar€gz) with z € G2} and red the squareg(z)
with z € Ggg, the line obtained by linear interpolation @§, ¢1, ... separates the

blue and red regions. The squaP€l, 1) gets no color. Definition (7) is equivalent
to

(8) gny1=argminG (g, +(1,0)),G(p, + (0, 1)},  n=>0.

Note that givenG (z) for all z, the interfacep chooses locally the shorter step to
go up or right. We prove that has an asymptotic (random) direction and compute
the law of the direction:

(7) Pn+1=

THEOREM1.

9) lim Y~ /¢  Ppas

n=>00 |y |

wheref = 6 (W) is a random angle 0, 90°] with law

V/Sina
Vsina + /cosa

Second class particles in simple exclusioithe one-dimensional nearest-
neighbor totally asymmetric simple exclusion process is a Markov praegss
¢t > 0) in the state spac, 1}Z. 5, (x) indicates if there is a particle at siteat
time ¢; only one particle is allowed at each site. At rate 1, if there is a particle
at sitex € 7, it attempts to jump tax + 1; if there is no particle inv + 1
the jump occurs, otherwise nothing happens. To construct a realization of this
process a la Harris, one considers independent one-dimensional Poisson processes
N = (N, (+), x € Z) of intensity 1; letQ be the law ofA. The process$n,, t > 0)
can be constructed as a deterministic function of the initial configuratiand
the Poisson processeé as follows: ifs is a Poisson epoch d¥, and there is a
particle atx and no particle at + 1 in the configuratiom,_, then at times the
new configuration is obtained by making the particle jump frono x + 1. This
construction is well defined; see [4], for instance. tbebe the function that takes
n and to (1;, t > 0). Letn® andn! be two arbitrary configurations. Thmsic
coupling between two exclusion processes with initial configuratighand !
respectively is the joint realizationd (%, &), ®(nt, ;) = (% 1), t > 0)
obtained by using the same Poisson epochs for the two different initial conditions.
Liggett [11, 12] are the default references for the exclusion process.

(10) PO <a) =
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FiGc. 2. Second class particl@he first line isy® and the second one ig-.

Let n° andn! be two configurations defined by
(11) ) =1Ur<-1, n'x)=1Lx <0}

These configurations are full to the left of the origin and empty to the right of
it and differ only at the origin (see Figure 2). Call(0) = 0 the site where both
configurations differ at time zero. With the basic coupling, the configurations at
time ¢ differ only at the siteX (z) defined by

X0 =Y x1{n’(x) #ntx)}.

(X(@), t = 0) is the trajectory of a “second class particle.” The process
((n?, X (1)),t > 0) is Markovian but the procesX (¢), r > 0) is not. The motion of

X (¢) depends on the configuration gf in its neighboring sites. The second class
particle jumps one unit to the right at rate 1 if there isifoparticle in its right
nearest neighbor and it jumps one unit to the left at rate 1 if there ig article

in its left nearest-neighbor site, interchanging positions with it. Ferrari and Kipnis
[6] proved thatX (¢)/¢ converges in distribution to a uniform random variable as
t — oo for initial configurations distributed according to product measures with
densitiesir > p to the left and right of the origin, respectively. In these cases,
Mountford and Guiol [14] proved almost sure convergence. Our approach gives an
alternative proof to Mountford and Guiol in the case- 1 andp = 0:

THEOREM 2. Let(X(¢), t > 0) be the trajectory of a second class patrticle
put initially at the origin in the one-dimensional totally asymmetric nearest-
neighbor simple exclusion process starting with the configuratibaefined by
nt(x) = 1{x <0}. Then

X(t
(12) im X9 _y gas

t—>o0 t

whereU = U (N) is a random variable with uniform distribution ir-1, 1].

Pair representation of the second class particlét. is convenient to represent
the second class particle with a pair hole—particle. For that we consider the initial
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before jump % }

after jump |

FiG. 3. Pair representation of the second class particle

configuration;® defined by

nt(x), if x < —1,
1 .
(x—1), if x >1,
13 0y = { "
(13) TO=10, if x =0,
1, if x=1.

This configuration has a particle at site 1 called *particle and a hole at site 0
called *hole. The pair *hole—*particle is called *pair (see the configuration before
jump in Figure 3). The proces:;f’l is constructed using the Poisson marks as
before; ignoring the *pair, the process is just the exclusion process starting with
the configuration;°. On top of it we define the evolution of the *pair as follows:
when a particle (from the left) jumps over the *hole, the *pair moves one unit
to the left (giving rise to the configuration after the jump in Figure 3); when the
*particle jumps to the right (over a hole), the *pair moves one unit to the right.
This is the same behavior as that of the second class particle; the difference is that
the second class particle occupies only one site while the *pair occupies two sites.
Call P*(r) and H*(¢) the position of the *particle and *hole respectively at time
clearly P*(r) = H*(t) 4+ 1 for all times. If we collapse again the *pair to one site

by defining, (x) = 1%L (x) for x < H*(¢), 7, (x) = n%L(x 4 1) for x > P*(z), then

(14) the processi,, H*(t), t > 0) has the same law d§2, X (1), ¢ > 0).

In Lemma 6 we give an explicit construction which maps these processes for
almost all realizations.

Growth model and simple exclusionRost [19] showed that the simple
exclusion process can be constructed in the probability space inducéd, by
where the oriented percolation model is defined. This can be done for any initial
configuration; we do it for the process with initial configuratigh as follows. Let

P1(0) =1, H1(0) =0;
(15)
P(0O)=—-i+1 and H;0) =i, i>2,
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be the positions of the particles 981 labeled from right to left and the positions
of the holes, labeled from left to right. We construtr) and H; (¢), the position
of the ith particle, respectivelyth hole, at timer as a function of the random
variablesG%(z) := G(z) — w(1, 1). The rule is:

(16) attimeGP°L(, j) the jth particle and théth hole interchange positions.

The initial ordered labels of the holes and particles make that afterjthel)st

particle has interchanged positions with tite hole and thejth particle has
interchanged positions with thé — 1)st hole, thejth particle must wait an
exponential time of parameter 1 to interchange positions withtthéole. This
is the particle—hole interpretation of the recurrence relation (2).

Rule (16) is well defined in this case because only a finite number of exponential
random variables is involved in the definition of each next move. Indeed, the
variablesG®1(z) are well ordered, inducing a (random) order on the sit¢&d$2,
say z1, 22, ... With G%(zx) < G%(zx41). In particularzy € {(1, 2), (2, 1)}, for
example. Starting with the minimum betweéril, 2) andG (2, 1), sayG (1, 2) <
G(2,1), thenzy = (1,2) and at timeG%L(z,) the second particle and the first
hole interchange positions (see Figure 4 ignoring the parentheses and the stars).
Inductively, if z, = (i, j), then at timeG%(z,), the jth particle and theéth hole
interchange positions. Cal;(G%(z,)) and H;(G%(z,)) the positions at time
G%L(z,) of theith particle and hole, respectively. For 1 define

(P(1), Hi (1)) = (Pi(G®X(z0)), Hi (G (z)))
if 1 € [GO%zn), GOznt2)).

The resulting procesg P;(t), H;(t)), i > 1, ¢t > 0) is the exclusion process in the
sense that, if one disregards the labels, the pro(@é’ést > 0) defined by

(18) NPy =1 ONH@)=0, =1,

has the same law as the proceg8’, 1 > 0) = ®(%, &), defined with the
Poisson processes. We cal(n%%, w) = (¢, + > 0) the deterministic function
that constructg %! using w.

(17)

The second class patrticle in the competition modéi.the previous paragraph
we have constructed a simple exclusion process starting with a particle at site 1 and
a hole at site 0. In this construction we keep track of the position of each particle
and hole. We now want to track the *pair, the *hole and *patrticle initially at sites
0 and 1, respectively, whose evolution is described after Theorem 2. The labels
of the *particle and *hole change with time. At time O the *particle has label 1
and so does the *hole?*(0) = P1(0) and H*(0) = H1(0) and hence the labels
of the *pair are represented by the poipg = (1,1), the initial value of the
competition interface. Suppose in the next step,Gél, 2) < G(2, 1), the second
particle jumps over the *hole before the *particle jumps over the second hole (see
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N
before jump P5 P4 P3 P2 (Hl Pl)*H2 H3 H4
@,9)=(1,1) H* P*

. PS5 P4 P3 (H1 P2)*P1 H2 H3 H4
after jump : : : : : : : : :

(LN)=(1,2) H* P*

FiG. 4. Labels of particlesholes and *pair The particle configuration and the jump are the same
as in Figure3.

Figure 4). In this case, the labels of the *pair at tiél, 2) are (1, 2), which is
exactly the argument that minimizé& (2, 1), G(1, 2)}, so that, after the first jump
of the *pair, its labels are given by, [recall (8)]. By recurrencey, gives exactly
the labels of the *pair after itath jump. More precisely, letg := 0 and define

(19) 7y 1= G (gn)

where (¢,, n > 0) is the competition interface defined in (7). The labels of the
*pair are given by the coordinates of the competition interface:

(20) (H*(Tn)» P*(Tn)) = (Hi,, (tn), Pjn (Tn))

wherei, and j, are the coordinates af,: (i,, ju) := ¢,. Define the process
Wi, 1 =0) = (1), J (1), 1 2 0) € (Z*)? by

(21) Vii=¢n  ift e[y, Tut).

By definition (3) ofy;, it is clear that), belongs to both the growth interface and
the competition interface (see Figure 1):

(22)  YireoNyyway and (H*(1), P*(t)) = (Hio) (1), Pro)(1)).

On the other hand, when the *pair jumps to the right the *hole increments its label
by one, and when the *pair jumps to the left, the *particle increments its label by
one. Hence,

(23) (H*(t), P*())=(I(t) = J (), I(t) — J(¢) +1).
Combining (23) with (14), we get the following result.

PrROPOSITION3. The processe§(ij;, I(t) — J(t)), t > 0) and ((n,l, X)),
t > 0) are identically distributed

We construct simultaneously both processes in such a way that they are identical
almost surely. See Lemma 6.

Using the technology of geodesics and the ergodicity of the last-passage
percolation model we prove in Section 3 the following proposition (this is
Theorem 1 without identifying the limit).
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PROPOSITIONA.
(24) lim

1=00 |y

P _ it P-as.

wheref = 6('W) is a random angle ini0, 90°].

Propositions 3 and 4 and (22) are the keys to characterize the long time behavior
of (¥4, t > 0) as a line with a random angle and identify the distribution of the
limiting angle:

PropPoOSITIONS. The following limits holdP-a.s.:

(25) lim Y =¢'f,
1=00 ||
(26) tim 0= o e,
(27) tim ZO=IO i),
wheref = 6('W) is the random angle ifi0, 90°] given by Propositior,
\/cosh — +/sind
28 0) =
(28) @) A/C0SH + +/sinb
and f (9) is distributed uniformly irf—1, 1]:
(29) P(f(0) <u)=3(u+1).

PROOFE  Sincey; € yi4w,1) and by (6) inf|z|:z € y;} is of the order oft
[indeed, this infimum divided by converges to 1.8, the distance between
the origin and the curvéu(u, v) = 1}], |¥:] — oo ast — oo and (25) follows
from (24).

The limit (26) follows from (25), (22), the shape theorem (6) and (5). Indeed,
the shape theorem (6) and the limit (25) imply that/r convergesP-almost
surely tog(8)e!?, whereg(0) is the distance from the origin to the intersection
of the limiting curve M = {(u, v) € (R1)?: u(u, v) = 1} with the line {(u, v) €
(R1)2:tand = u/v} (the line with inclinatiorp). Hence by the definition (5) of,
Jg(©0)cos + /g(0)sind =1, from where (26) is derived.

The limitin (27) is an immediate consequence of (25) and (26). It is a uniform
random variable as consequence of Proposition 3—that identifies the difference
between the coordinates of the interface with the second class particle—and Ferrari
and Kipnis [6], who proved that the asymptotic law of the second class particle is
uniformin[—1,1]. O

We finish this section by proving Theorems 1 and 2.
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PrROOF OFTHEOREM 1. ThelPP-a.s. convergence follows from Proposition 4.
Since by (29)f (9) is uniformly distributed if—1, 1] and f («) is decreasing i,

1 0
(30) PO <o) =P(f(6) = f(e) = 5(1~ f(@) = sin;/iTacosa' ]

The proof of Theorem 2 requires the following lemma.

LEMMA 6. There exists a magR: & — W such that if the trajectory of
the second class particleX (z), t > 0) as a function of/ is well definedthen
it is identical to the trajectory of/(t) — J(¢), t = Q) as a function ofR(N).
Furthermore if & has lawQ, thenR(N) has lawP.

PROOF. Let .V be a family of Poisson processes. l(et!, X (1)):t > 0) be
the exclusion process starting with the configuration full of particles to the left of
the origin, empty to the right of the origin and with one second class patrticle in the
origin constructed usingy.

Let N be a Poisson process independentofLet 7, (N) be the times of jumps
of the second class partick(r) with 7o = 0. Then defineVN’ = (N, (r):1 > 0) as
a function of&/ andN as follows:

N)C(Tl’l’ ‘En-‘rl]v If X < X<Tn)9
(31) N)/C [Tnv fn+l) = N(T}’la T}’l+l]’ If X = X(T}’Z)v
Ny—1(tn, Tht1l, if x > X (z,).

Here N,(s,t] is the Poisson proces¥, in the interval (s,¢] (as a counting
measure), and analogously f§t By the strong Markov propertyy” has the same
law asV .

Let 1% be the configuration defined in (13). Label its particles as in (15). Let the
*pair be the *hole and the *particle initially at sites 0 and 1, respectively. Realize
the process;’! as a function of¥”. For this evolution track the position of the
labeled particle®; (r) and holesH; (r) and the *pair(H*(¢), P*(¢)) as a function
of the particle jumps as described after display (13). In this way we construct the
processe$n%%; P; (1), H;(t),i > 1; H*(¢), P*(¢); t > 0) as a function of#”. Call
(I(1), J(¢)) the labels of the *hole—*particle at time so that(H*(r), P*(t)) =
(Hi) (1), Py (1)); of course these are also function.sf.

Then, for allz:

(32) X(O)(N) = Hiy(N) = TN = T (O(N),

that is, the second class patrticle in the system governe# iy/in the same place
as the *hole in the system governed b¥. Collapsing the *hole—*particle in



COMPETITION INTERFACES 1245

the system governed hy”’, one obtains the particle configuration of the system
governed byV':

NN (x), if x < X(#)(N),
0, if x=X@)(WN),
01 / L
(33) Ny (N)(x) = 1, if x = X()(N) + 1,

NN (x — 1), if x> X)) (N)+ 1

DefineG’(1,1) =0 and fori, j > 1 letG'(i, j) = G'(N')(i, j) be the time the
jth n91 particle jumps over théth hole. Definew’(N')(1, 1) as an exponential
random variable independent of’ and w’ = w'(N’) by w'(i, j) = G'(Q, j) —
maxG’'(i — 1, j),G'(i, j — 1)}. Sincew/(i, j) is the time theith particle waits
to jump over thejth hole when they are neighbors;(i, j) are independent and
identically distributed exponential of rate 1 (again strong Markov property). Hence
R(N) =W = W' (N, j):{(, j) € N?}) has the same law a8'.

It is immediate to check that

(34) @), J)YW)=U@), J@)(N) forall + > 0.

That is, the *pair evolution described after (22) using the exponential tiwles
exactly the same as the *pair evolution constructed as a function of the Poisson
processesV’. Notice that the auxiliary Poisson proce§sused in the definition

(31) of &7 as a function of¥ plays no role in the *pair evolution. This is also true
forw'(1,1). O

PROOF OFTHEOREM 2. The convergenc®-a.s. is established in Proposi-
tion 5. The convergend@-a.s. is a consequence of Lemma 6]

3. Geodesics. In this section we prove Proposition 4. We introduce the notion
of geodesics in last-passage percolation and explore its connection with the
competition interface. Let = (zx; k=1, ..., n) be an up/right path fromto z’.

We say thatr is ageodesidrom z to 7’ if

(35) G(z.2)= ) wi@".
"erm

Of course this is not a “geodesic” in the sense that it is the shortest way between
two points. Indeed our geodesic is the longest oriented path between two points.
For allz, 7’ € Z there existd-a.s. a unique geodesic fragto z” which is denoted
by m(z,2). If u = (u1, u2) andv = (v1, v2) belongs tdR? anduy < v fork =1, 2,
then we defineG (u, v) = G(zu, zv) Whereu € QO(z,) andv € Q(z,), where we
recall Q(z) is the unit square with north-east point Analogously, we define
w(u,v) = m(zy, 2p). Letm, = (zx; k =1,...) be anup/right semi-infinite path
starting at; = z1. For eachx € [0, 90°] we say thatr, has direction if

lim £ = fe,

k— 00 |Zk|
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We say thatr, is a uni-geodesidf for all i < j the geodesic from; to z; is
exactly(z;, ..., zj). For eachx € [0, 90°] we say thatr, is anx-geodesidf it is a
uni-geodesic and has direction Proposition 4 is a consequence of the following
propositions concerning geodesics. The proofs follow Newman [15], Licea and
Newman [10] and Howard and Newman [9] who proved analogous results for
two-dimensions first-passage percolation models. Martin [13] has independently
proved these results for the model under consideration.

Letz € Z? andN? =z + N2 (N=1{0, 1, 2,...}). DefineR(z) = U enz 7 (2, 7).
SinceP-a.s. finite geodesics do exist and are unigRi&;) can be seen as a tree
spanning aIINf. The set of vertices of the tree N§ and the set of edges is
{(Z//, Z/) :Z// _ Z/ =1 andz” c JT(Z, Z/)}-

PROPOSITION 7. For z € Z? let Q1(z) be the eventevery uni-geodesic
7, € R(z) is ana-geodesic for some = «(rr;) € [0, 90°] and there exists at least
onewa-geodesic for each € [0, 90°].” ThenP(21(z)) = 1.

PROPOSITIONS. For z € Z2 anda € [0, 90°] let Q2(z, «) be the eventthere
exists at most one-geodesic inR(z)" and let¢ be the Lebesgue measure in
[0, 90°]. Then there exists a sé& C [0, 90°] of full Lebesgue measure such that
forall « € D, P(Q2(z, ) = 1.

We recall thatD does not depend on the realization of the exponential
times W. Indeed, a stronger version of Proposition 8 holds: évery o €
(0,90°) there is only onex-geodesic inR(z) with probability 1 [13]. On the
other hand, with probability 1 there are directions with more than one geodesic:
P(Mge(0,000) $22(2, @) = 0.

Fora € D let ,(«) be the uniquex-geodesic starting at This isP-a.s. well
defined by Propositions 7 and 8.

PROPOSITIONS. For « € D let Q3(«) be the eventfor all z, 7/ € Z?, there
exists a random point, = ¢(, z,z') € Z? such thatr, («) = 7(z, ¢g) U e, (o)
andmy (o) = (7, co) U, (@).” ThenP(Q3()) = 1.

As a consequence of the above propositions we get that feral, P-a.s. for
all z, 7/ € Z2, z #+ 7/, there exists a random, = (e, z, z') andrg > 0 such that for
allr >rg

(36) G(z,re%) —G(Z,re'®) =G(z,cq) — G(Z', cq) #0.

Indeed, from Propositions 7 and 8, if we fixe D, thenP-a.s. for allz 72
lim,_ o0 (2, re'®) = m, (). This means that for all € 7, () there existsg > 0
such that for allr > ro, 7(z,z) € 7 (z, re'®). This together with Proposition 9
implies that for alk, z’ € Z there exists,, € Z2 andrg > 0 such that for alt > ro,
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n(z,rel®) =n(z,re'®) Un(cy, re'®) andn(z/, re'®) = n(z/, re'*) U (cy, re'®),
which yields (36).

PROOF OFPROPOSITION4.  LetG3l:=U,cgzt 0(2), G2 = U cqr2 Q(2)-
For eacha € [0,90°] andr > O let [¢ = {s¢'*; s > r}. Define the random
decomposition of0, 90°] by

I21= {a €[0,90°]; Irg so thatl® < G2},
I2={a €[0,90°]; Iro so that?, < G},

and I = (I1 U I19)°. Notice that Oc I;, 9¢° € I12, and sinceG2l, G12 are
connected regions df(x, y); x > 0,y > 0}, then I>1 and 1> are intervals in
[0,90°]. This implies thatl is also an interval if0, 90°]. Thus if we denote
@n = lgale’™, then

(37) (Iimninf O, lim sup@,,) cI

Let Dg be an enumerable subset Bfthat is dense 0, 90°) (recall thatD has
full Lebesgue measure). By (36);a.s., for alle € Do,

lim (G((2, 1), re’) = G((1,2),re'))
(38) r—>00
=G((2,1),ca) — G((1,2),cq) #0.
Notice also that itx € I, then

Iirnl)i()rgf(G((Z, 1), re'®) — G((1, 2), re'®))
(39) . .
<0<limsup(G((2, 1), re'*) — G((1,2), re'?)),
r—00
because the ling alternates infinitely often its color and this implies (39). Thus
(38) and (39) imply that

(40) PUINDy=2)=1
Now, (40) implies thafP-a.s.I has empty topological interior and this together
with (37) implies that6,), N converges. [

The following lemma, proven in the end of this section, is the main ingredient to
prove Proposition 7. It gives an upper bound for the fluctuations of the geodesics.
Letd(z, A) be the Euclidean distance betweea R? and the sefA ¢ R2.

LEMMA 10. There existseg > 0 such that for alle € (0, gg), there exist
constant<Cy, C», C3 > 0 ands > 0 such that for allz € N2 with |z| > C1,

P( sup d(z’,[O,z])leI3/4+‘9)SCzeXp(—C3|Z|8)-

7'en(0,2)
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PROOF OFPROPOSITION7. By translation invariance we can assume:
(0,0). Forz, z/ € N2\ {(0,0)}, denote by ang, z') the angle in0, 90°] between
zandz and letC(z,¢) = {z/; angz,z’) <e}. Let R be an infinite connected tree
with vertices inN? and nearest-neighbor oriented edges. Assume als@ah@t
andz € N2 are vertices oR. We denote byr°U{[7] the set of vertices’ of R such
that the path irR between(0, 0) andz’ touches. Leth: Rt — R*. We say thaR
is h-straight if for all but finitely many vertices of R, R°“[z] € C(z, h(|Z])). By
Proposition 2.8 of [9], ifR is h-straight withi satisfying limy ..o 2(L) = 0, then
every semi-infinite path iR starting from(0, 0) has a directionx € [0, 90°] and
for everya € [0, 90°] there exists at least one semi-infinite pattRistarting from
(0,0) and with directiona. Let § € (0, 1) and seths(L) = L~%. By Lemma 2.7
of [9], to prove that for alls € (0, 1/4), R((0,0)) is hs-straight it is sufficient
to prove that for all sufficiently smalt > 0, the number ot € N? such that
SUR.cr (0.0 d(2,[0,2]) > [z|¥/#¢ is P-a.s. finite. Therefore, by Borel-Cantelli,
Proposition 7 is a consequence of Lemma 10

PrROOF OFPROPOSITIONS8. Again we can assume that= (0,0). Lete =
(z,z + (1,0)) be an edge of the treR((0, 0)) such that; + (1, 0) has infinitely
many descendants. We inductively define a uni-geodesit R((0, 0)) as follows.
Putzo =z andz1 = z + (1,0). For eachn > 1, if z, has exactly one child,
say z,,, with infinitely many descendants, then pyt,1 = z),; otherwise put
Zn+1 = zn + (0, 1). If there are two distinct-geodesics starting fror0, 0), say
71 andrrp, then they have to bifurcate at some R((0, 0)) going, respectively, to
z+ (1,0) andz + (0, 1) in their next steps. In this case, with e = (z, z + (1, 0))
is caught betweem; and 2. Hencer, is ana-geodesic because we are in two
dimensions. Therefore»((0, 0), «) must occur unless the eveBie, o) := [7,
is ana-geodesitoccurs for some = (z, z + (1, 0)). Thus

(41) 1>P(22(0,0,0)>1- > P(B(e,a)).
e=(z,z+(1,0))

For eache = (z, z + (1, 0)), ., cannot be a-geodesic for more than one and
S0 [ 1p(,a)l(da) = 0 for each realization of the exponential times. By Fubini,

(42) / P(B(e, ))t(dar) = / [ / 13(3,0{)@(@)} dP =0.

Integrating (41) with respect té(da) and using (42) completes the proof of
Lemma8. [J

PROOF OF PROPOSITION9. By Proposition 8, for fixedr € D P-a.s., if
7.(a) and 7y («) are not site disjoint, then they must coalesce. Therefore we
must show that there is zero probability that there exist disppigeodesics. Let
S(a) = U, ez2 (@) be the set of-geodesics emanating frome Z2. ThenS(«)
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Fic. 5. Local modification

is a forest composed by a random numbBbeégx) € {1,..., +oo} of connected
trees. The event “there are not disjoimgeodesics” is equivalent to the event
“N(a) = 1" and with this formulation we can apply the Burton and Keane [2]
argument. This argument is based on a local modification idea that is formalized
as follows. Lety1 < --- < y; be points inZ, and letA(y1, ..., yx) be the event
“T0,y) (@), - .., 0.y (@) are disjoint and every site touched by y;) after its
initial site at(0, y;) has strictly positive first coordinate” (see Figure 5). We claim
that

(43) ifP(N(@)>2)>0 = 3y1,y2 y3:P(A(y1, y2, y3)) > 0.

Indeed, if the right-hand side of (43) holds, then there existy> such that
the probability of A(y1, y2) is positive. Fori = 1,2 and ! € Z let yf =
yi + 1(y1 — y2). By translation invariance, the probability of(y}, y) does
not depend onl. This together with Fatou implies that for sonige < I»
the probability ofA(y 2) N A(y 2) is also positive, althouglir n can-

not intersectsr J2 or 7 12 because otherwise it must mtersectzl (by pla-
Y1 2

narity). ThusA(y 2) N A(y 2) - A(y 12 2) which proves (43). Let
A% (1, y2, y3) 1= A(y1 y2,¥3) N Bs NCp, whereBg is the event f(z) > § for
aII ze[(=1,y1), (=1, y3)]U[(—1, y3), (m, y3)]" and Cy, is the event (g y,)(x)
intersects the pointn, y3).” Sincea € (0, 90°), (43) implies that, if the right-hand
side of (43) holds, then for somwe > 0 andé > 0,

(44) P(A, (y1, y2, y3)) > O.

Consider the eventi = A? (y1, y2, y3) appearing in (44). Let, be the first
intersection between(o,yz)(oz) and[(0, y3), (m, y3)], and letr; be the piece of
7(0,yy) (@) between the pointg0, y;) andz; := (m, y3) (see Figure 5). Consider
the bounded region (not including the boundary) limited Hy—1, y1), (—1, y3)],
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[(—1, y3), (m, y3)] andm1. Thus we define a mapping on subset® of A by first
letting W(w) = {z € A; w(z) > §} and then setting

¢(B):U[ [] tw@}x [] (0,5)].

weBL z¢W(w) zeW(w)

Heuristically, ® alters eachw € B into an o’ € ®(B) by changing each
w(z) > 8 with z € A to some valuew’(z) € (0,8) [it may happen thatb(B)

is nonmeasurable]. Since the(z)’s with z € m(,y) (@), OF z € m(g,ys) (@), OF

z € my,(a), were unchanged while the others decreased or stayed as before, it
follows that each one of the pathsg ;) (@), 7(0,y5) (@) @andm, () continues to be
an«-geodesic fow' € ®(A). Similarly, ' continues to belong t®;. Although,
since for eacly € A we havew’(z) < § and for eachy € [(—1, y1), (=1, y3)] U
[(—1, y3), (m, y3)] we havew’(z) > §, then for allz € [(—1, y1), (—1, y3)] and

7 € [(—1, y3), (m, y3)] the geodesier (z, ') for o’ either will be the path which
starts atz, goes vertically until it reache6-1, y3) and then goes horizontally
until it reaches’, or 7 (z,7') N1 # @. Let z3 := (m, y’) be the point where the
geodesic from0, y3) crosses the vertical lingn} x Z. Therefore, angw-geodesic
for o/, starting atu = (x, y) ¢ [0, m] x [y1, y'] with x < m, cannot touch the
middle pathm,,(a) without first intersectingr(q,,,) Or m(,y;) and this leads to
a contradiction because in such a case, by Proposition 8, they must coalesce. Thus,
®(A) C F whereF denotes the event that some treeS{) touches the rectangle
[0, m] x [y1,y’] but no other site in the half-planfx, y); x < m}. Since to
each site we attached an exponential random variabléPaad > O [inequality
(44)], by Lemma 3.1 of [10], there exists a measurabledset ®(A) such that
P(A) > 0, which implies thatP(F) > 0. Now consider a rectangular array of
nonintersecting translates, of the rectangle®g = [0, m] x [y2, y3] indexed by

z € Z, and consider the corresponding translated event§ Fo = F. Notice that,

if F, andF,, both occur, withy # 7, then the corresponding treesSiw) must be
disjoint. Letn; be the number 0®.’s in [0, L]? and letN; be the number of the
correspondingF,’s which occur. By translation invariandeéN; = ny P(F). The
number of disjoint trees i§ (o) which touch[0, L] cannot exceed the number of
boundary sites ifi0, L]2 and this together witfP(F) > 0 yields a contradiction
for large L because:; is of orderL2. Therefore, we have proved th&tF) = 0
and this together with (43) and (44) implies tif&iV («) > 2) = 0. This together
with Proposition 7 implies thaP(N («) = 1) = 1 which completes the proof of
Proposition 9. O

The proof of Lemma 10 is based on the following lemma that provides an upper
bound for moderate deviations 6f(0, z) from its asymptotic valuei(z).

LEMMA 11. There existssg > 0 such that for alle € (0, g), there exist
constantsCy, Cs, Cg > 0 such that for allz € N2 with |z| > Cq4, for any r €
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LIz Y2+2, 12[3/27]

P(IG(0,2) — u(2)| = r) < Csexp(—Cer/|z|"?).
We prove this lemma after the proof of Lemma 10.

PROOF OF LEMMA 10. Let C.(z) = {z/; d(Z,[0,z]) > |z|¥4*¢} and let
Az,7) = (@) — u(z — 2) — u(@). f SUPcq05d (@, [0, 2]) = [2[¥4F¢, then
there existsy’ € 9C.(z) such thatG(0,z) = G(0,7) + G(Z/,z). By summing
A(z,7') in both sides of the last equality and using the translation invariance of
the model, we obtain

P( sup d(Z,[0,2]) = |z|3/4+8)

7'en(0,z)
(45) <P(IG(0,2) — n()| = |A@z,2)1/3)
+P(IG(0,2) — u(2)| = |A(z, 2)1/3)
+P(G(0,z—2) — u(z -2 = 1A 2)I/3).
If z=(z1,22), 2 = (2}, z5), then
Az, 7)) = 2(Vz122 — V7h2h — V(21— 7)) (z2 — 25)).

This implies that (see Lemma 2.1 of [23]) there exist constantsAs, Az > 0
such that for alk € N2 with |z| > A1, for all 7/ € C,(2)

(46) Ag|z|2T% < A(z, 7)) < Aslz¥/*Te.

Notice that (46) implies that there exist¢ > 0, such that for alk € N2 with

lz| > M, Az, 7)) € [zY/%+% 73/4t¢] wherez =z, 0rz=27,0rz=2z— 7. By
choosing > 0 small enough and using (45), together with Lemma 11 we complete
the proof of Lemma 10. O

PROOF OFLEMMA 11. Since for allz = (z1, z2) € N2, for all = € T1(0, z)
(the set of alup-right paths connecting 0 t9), || = z1 + z2 + 1, wherg| | is the
number of sites inr, it is a consequence of Corollary 8.2.4 of [22] that there exist
constantsiq, A, A3 > 0 such that for alt € N2, for all x € [0, A1]z|],

(47) P(]G(0,z) —EG(O0, 2)| > xv/z]) < Azexp(—Azx).

To replaceEG (0, z) by 1 (0, z) in (47) we need to consider some technical details.
First, we claim that (47) implies that there exist constatysAs such that for all
z € N2 with |z| > Aa,

(48) EG(0,27) < 2EG(0, z) + Asy/|z|log(z]).
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Indeed, letH, = {z; |z/| = |z|} "N? (|z| = |z1| + |z2|). By the definition ofG and
by the translation invariance of the model,
(49) EG(0,2z) < 2E m%xG(O, 7).
7/ €eH,
Now assume that for 1 <i < n(z) are nonnegative random variables on a

common probability space such that for somé\y, Cop, C1, C2, C3 € (0, +00),
for all z € N2 with |z| > Mo,

(50) E(Y{) <lz|* and n(z) < Colzl,

and

(51) P(1YF —E(Y?)| > x) < Crexp(—Caox) for x < C3|z|.

Then, for some\1, C4 > 0 (see Lemma 4.3 of [9]), for all € N2 with |z| > M1,
(52) ElSrPS%Z)(IE(Yf) —Y[) < Cslog|z|.

Therefore, to conclude the proof of (48) we order the poifite H(z) by
71,...,2n, Wheren depends ory but n < Cplz| for some constanCy. Take

Y7 = G(0,z)/4/1z] and note that the hypotheses (50), (51) are satisfied with
a=¢+1/2,Co as before, andlp, C1, C2, C3 given by (47). Thus, (52) together
with (49) completes the proof of (48). Now, we claim that the superadditivity of
EG (0, z) and (48) imply that for some constaag > 0

(53) EG(0, z) — Agy/lz|log(|z]) < u(z) <EG(O, 2).

Indeed, the right-hand side of (53) is an immediate consequence of superadditivity.
To prove the left-hand side, assume thafR™ — R and g:R* — RT satisfy

the following conditions: iMoo A(s)/sp € R, limg_ oo g(s)/s = 0, h(2s) >

2h(s) — g(s) and¢ =limsup,_, , g(2s)/g(s) < 2. Then, for any > 1/(2 — ¢),

h(s) < us + cg(s) for all larges (see Lemma 4.2 of [9]). Therefore, if we fix

a directionz = z/|z| and takei(s) = —EG (0, s2), g(s) = As/s log(s), then this

last claim together with (48) completes the proof of (53). Thus, (53) and (47) imply
that for some constani$;, Ag, Ag, A10> 0, for allx e [A7log|z]|, Agl|z]],

(54) P(IG(0,2) — n(@)| > 2xv/z] ) < AgeXp(—A10%).
Takingr = 2x./|z| and adjusting the constants, (54) yields Lemma 11.

4. Final remarks. We have shown a law of large numbers for the competition
interface in last-passage percolation in the positive quadZani. A crucial step
in this proof was Proposition 9 which establishes that uni-geodesics starting at
different fixed points with the same direction must coalesce. The law of large
numbers for the competition interface also holds for other random regions as a
consequence of the law of large numbers for the second class particle of Mountford
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and Guiol [14] and Lemma 6. These regions are limited to the south-west by a
random curvey = (y,,n € Z) C Z? defined byyo = (1,1), y1 = (1,0), y_1 =

(0,1) and theny,, — y,—1 = (n(n) — 1, —n(n)), forn € Z\ {0, 1} andyp distributed
according to the product measure with densitige the left of the origin ang

to the right of it. Since Lemma 6 can be extended to any region obtained as a
transformation of the initial configuration of the simple exclusion process, the law
of large numbers for the competition interface also holds in this case [7]. However,
it would be nice to have an autonomous proof using geodesics. To extend the result
to the regions considered by Mountford and Guiol one should be able to show
that when the point is asymptotically beyond the corresponding characteristic the
“point to semi-line” geodesic is realized in the limit by a random location in the
semi-line. More precisely, lek, be a random semi-line starting €, 0) doing
independent steps at right with probability-1p and down with probabilityp.

This interface corresponds to the right initial configuration for the simple exclusion
process chosen with the product measure with densityet z,, = (x,, y,) be a
sequence of points iN? such thatx,, y, — oo and )yf— — (ﬁ)2 — ¢ for some

e >0, asn — oo. Letg, be the location in_, that realizes the, to L, geodesic.
Then one needs to show thatas> oo, g, — g, a random location, almost surely.
The inclination(%)2 corresponds to the asymptotic behavior of the second class

particle under this initial measuré” — (1 —2p) = (1— p)2 — p?, ast — oo.

An anonymous referee and Christoffe Bahadoran asked the authors about the
resemblance between our Proposition 3 which identifies the second class particle
and the competition interface determined by looking, in the last-passage picture,
from which side of poin{(1, 1) the maximizing paths of different points emanate.
The referee says: “This bears a curious resemblance to Proposition 4.1 in [21]:
that result also identifies the positiof(r) of the second class particle by looking
at which side of the initial positiotX (0) come the maximizers in the variational
formula of the process. One wonders whether these two representations are two
sides of the same coin.” We leave this investigation for future work.

Acknowledgments. We thank James Martin, Christoffe Bahadoran and Tom
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useful comments about a previous version of this paper.
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