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COMPETITION INTERFACES AND SECOND CLASS PARTICLES1

BY PABLO A. FERRARI AND LEANDRO P. R. PIMENTEL

Universidade de São Paulo

The one-dimensional nearest-neighbor totally asymmetric simple
exclusion process can be constructed in the same space as a last-passage per-
colation model inZ2. We show that the trajectory of a second class particle in
the exclusion process can be linearly mapped into the competition interface
between two growing clusters in the last-passage percolation model. Using
technology built up for geodesics in percolation, we show that the competi-
tion interface converges almost surely to an asymptotic random direction. As
a consequence we get a new proof for the strong law of large numbers for the
second class particle in the rarefaction fan and describe the distribution of the
asymptotic angle of the competition interface.

1. Introduction. The relation between the totally asymmetric nearest-
neighbor simple exclusion process in dimension one and two-dimensional last-
passage percolation models is well known since the seminal work of Rost [19].
The macroscopic behavior of the density profile of the exclusion process is gov-
erned by the Burgers equation [1, 17]. This corresponds to the “shape theorem” in
last-passage percolation [19, 20]. An important property of the exclusion process
is that the so-called second class particles (that follow roughly the behavior of a
perturbation of the system) are asymptotically governed by the characteristics of
the Burgers equation. When there is only one characteristic, the second class par-
ticle follows it [5, 18, 21]; when there are infinitely many, the particle chooses
one of them at random to follow [6]. These results hold when the initial distribu-
tion is a product measure with densitiesλ ∈ (0,1], ρ ∈ [0,1), to the left and right
of the origin, respectively. The existence of infinitely many characteristics occurs
at points where the solution of the Burgers equation is a rarefaction front. The
rescaled position of the second class particle converges almost surely to a random
variable uniformly distributed in the interval[1 − 2λ,1 − 2ρ] as time goes to in-
finity [14]. A similar phenomenon has been observed in first-passage percolation
starting from two growing clusters competing for space: the rescaled competition
interface converges almost surely to a random direction [16] with a so far unknown
distribution. Motivated by this we investigate the relation between the second class
particle and the competition interface in last-passage percolation. We conclude that
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one object can be mapped into the other (as processes) realization by realization.
Indeed, the difference of the coordinates of the competition interface at timet is
exactly the position of the second class particle at that time (see Proposition 3 and
Lemma 6). We show a law of large numbers for the competition interface in the
positive quadrant(Z+)2; this corresponds toλ = 1 andρ = 0. Our mapping then
permits to describe the distribution of the angle of the competition interface in last-
passage percolation (Theorem 1) and to give a new proof of the strong law of large
numbers for the second class particle (Theorem 2, for the moment restricted to the
caseλ = 1 andρ = 0; we comment in the final remarks what should be done in
the other cases). A key tool to prove the asymptotic behavior of the competition
interface is the study of thegeodesics, random paths maximizing the passage time.
We show that each semi-infinite geodesic has an asymptotic direction and that two
semi-infinite geodesics with the same direction must coalesce. The approach fol-
lows Newman [15] who proved analogous results for first-passage percolation (see
also [9, 10]).

In Section 2 we introduce the models, state the results and prove them. In
Section 3 we show properties of the geodesics needed for the proofs.

2. Last-passage percolation and simple exclusion. Let W = (w(z), z ∈ Z2)

be a family of independent random variables with exponential distribution of
mean 1. LetP andE be the probability and expectation induced by these variables
in the product space� = (R+)Z2

.
Given z = (i, j), z′ = (i ′, j ′) in Z2 with i ≤ i′ and j ≤ j ′, we say that

(zk, k = 1, . . . , n) is anup/right path fromz to z′ if z1 = z, zn = z′ andzk+1 − zk ∈
{(0,1), (1,0)} for k = 1, . . . , n− 1. Let�(z, z′) be the set of up/right paths fromz
to z′. Themaximal lengthbetweenz andz′ is defined by

G(z, z′) := max
π∈�(z,z′)

{ ∑
z′′∈π

w(z′′)
}
.(1)

This model is calledlast-passage percolation. Since we are interested in the paths
starting at(1,1), we use the notationG(z) = G((1,1), z). This function satisfies
the recurrence relation

G(z) = w(z) + max
{
G

(
z − (0,1)

)
,G

(
z − (1,0)

)}
(2)

with G(i, j) = 0 if eitheri = 0 or j = 0. We say that a pointz is infectedat timet

if z ∈ Gt , where

Gt := {z ∈ (Z+)2 :G(z) ≤ t}
is called theinfected region. LetQ(i, j) := (i −1, i]× (j −1, j ] be the unit square
having(i, j) as north-east vertex. The setGt := ⋃

z∈Gt
Q(z) describes the subset

of (R+)2 attained by the infection at timet . The random processGt is called a
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spatial growth modeland describes a growing Young tableau. Thegrowth interface
is defined by

γt := {(i, j) ∈ (Z+)2 :G(i, j) ≤ t andG(i + 1, j + 1) > t}.(3)

The polygonal curve interpolating the points ofγt that are at distance 1 separates
the infected regionGt and its complement.

Rost [19] proved a “shape theorem” forGt : with P probability 1, for allε > 0
there exists at0 such that for allt > t0,

t (1− ε)M ⊂ Gt ⊂ t (1+ ε)M(4)

whereM := {(u, v) ∈ (R+)2 :µ(u, v) ≤ 1} and

µ(u, v) := (√
u + √

v
)2

.(5)

The interfaceγt converges to{(u, v) :µ(u, v) = 1} in the same sense: withP
probability 1, for allε > 0 there exists at0 such that for allt > t0,

γt ⊂ [t (1+ ε)M] \ [t (1− ε)M].(6)

Competing spatial growth.The sets of points infected through(2,1) and
(1,2), respectively, are defined by

G21
t := {

z ∈ (Z+)2 :G(z) ≤ t andG(z) = w(1,1) + G
(
(2,1), z

)}
,

G12
t := {

z ∈ (Z+)2 :G(z) ≤ t andG(z) = w(1,1) + G
(
(1,2), z

)}
.

The process(G21
t ,G12

t ) describes a competing spatial growth model between two
different infections (see Figure 1). For related models in first-passage percolation

FIG. 1. Growth and competition interfaces.
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see [3, 8, 16]. One can see that the regionsG21
t ,G12

t are connected,Gt =
{(1,1)} ∪ G21

t ∪ G12
t and that thecompetition interfaceϕ = (ϕ0, ϕ1, . . .) between

G21∞ andG12∞ can be defined inductively as follows:ϕ0 = (1,1) and forn ≥ 0,

ϕn+1 =
{

ϕn + (1,0), if ϕn + (1,1) ∈ G21∞,

ϕn + (0,1), if ϕn + (1,1) ∈ G12∞.
(7)

So that, if we paint blue the squaresQ(z) with z ∈ G21∞ and red the squaresQ(z)

with z ∈ G12∞, the line obtained by linear interpolation ofϕ0, ϕ1, . . . separates the
blue and red regions. The squareQ(1,1) gets no color. Definition (7) is equivalent
to

ϕn+1 = argmin
{
G

(
ϕn + (1,0)

)
,G

(
ϕn + (0,1)

)}
, n ≥ 0.(8)

Note that givenG(z) for all z, the interfaceϕ chooses locally the shorter step to
go up or right. We prove thatϕ has an asymptotic (random) direction and compute
the law of the direction:

THEOREM 1.

lim
n→∞

ϕn

|ϕn| = eiθ , P-a.s.(9)

whereθ = θ(W) is a random angle in[0,90◦] with law

P(θ ≤ α) =
√

sinα√
sinα + √

cosα
.(10)

Second class particles in simple exclusion.The one-dimensional nearest-
neighbor totally asymmetric simple exclusion process is a Markov process(ηt ,

t ≥ 0) in the state space{0,1}Z. ηt (x) indicates if there is a particle at sitex at
time t ; only one particle is allowed at each site. At rate 1, if there is a particle
at site x ∈ Z, it attempts to jump tox + 1; if there is no particle inx + 1
the jump occurs, otherwise nothing happens. To construct a realization of this
process à la Harris, one considers independent one-dimensional Poisson processes
N = (Nx(·), x ∈ Z) of intensity 1; letQ be the law ofN . The process(ηt , t ≥ 0)

can be constructed as a deterministic function of the initial configurationη and
the Poisson processesN as follows: if s is a Poisson epoch ofNx and there is a
particle atx and no particle atx + 1 in the configurationηs−, then at times the
new configuration is obtained by making the particle jump fromx to x + 1. This
construction is well defined; see [4], for instance. Let� be the function that takes
η andN to (ηt , t ≥ 0). Let η0 andη1 be two arbitrary configurations. Thebasic
coupling between two exclusion processes with initial configurationsη0 andη1

respectively is the joint realization(�(η0,N ),�(η1,N )) = ((η0
t , η

1
t ), t ≥ 0)

obtained by using the same Poisson epochs for the two different initial conditions.
Liggett [11, 12] are the default references for the exclusion process.
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FIG. 2. Second class particle. The first line isη0 and the second one isη1.

Let η0 andη1 be two configurations defined by

η0(x) = 1{x ≤ −1}, η1(x) = 1{x ≤ 0}.(11)

These configurations are full to the left of the origin and empty to the right of
it and differ only at the origin (see Figure 2). CallX(0) = 0 the site where both
configurations differ at time zero. With the basic coupling, the configurations at
time t differ only at the siteX(t) defined by

X(t) := ∑
x

x1{η0
t (x) �= η1

t (x)}.

(X(t), t ≥ 0) is the trajectory of a “second class particle.” The process
((η0

t ,X(t)), t ≥ 0) is Markovian but the process(X(t), t ≥ 0) is not. The motion of
X(t) depends on the configuration ofη1

t in its neighboring sites. The second class
particle jumps one unit to the right at rate 1 if there is noη1 particle in its right
nearest neighbor and it jumps one unit to the left at rate 1 if there is anη1 particle
in its left nearest-neighbor site, interchanging positions with it. Ferrari and Kipnis
[6] proved thatX(t)/t converges in distribution to a uniform random variable as
t → ∞ for initial configurations distributed according to product measures with
densitiesλ > ρ to the left and right of the origin, respectively. In these cases,
Mountford and Guiol [14] proved almost sure convergence. Our approach gives an
alternative proof to Mountford and Guiol in the caseλ = 1 andρ = 0:

THEOREM 2. Let (X(t), t ≥ 0) be the trajectory of a second class particle
put initially at the origin in the one-dimensional totally asymmetric nearest-
neighbor simple exclusion process starting with the configurationη1 defined by
η1(x) = 1{x ≤ 0}. Then

lim
t→∞

X(t)

t
= U, Q-a.s.(12)

whereU = U(N ) is a random variable with uniform distribution in[−1,1].

Pair representation of the second class particle.It is convenient to represent
the second class particle with a pair hole–particle. For that we consider the initial
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FIG. 3. Pair representation of the second class particle.

configurationη01 defined by

η01(x) =




η1(x), if x ≤ −1,

η1(x − 1), if x > 1,

0, if x = 0,

1, if x = 1.

(13)

This configuration has a particle at site 1 called *particle and a hole at site 0
called *hole. The pair *hole–*particle is called *pair (see the configuration before
jump in Figure 3). The processη01

t is constructed using the Poisson marks as
before; ignoring the *pair, the process is just the exclusion process starting with
the configurationη01. On top of it we define the evolution of the *pair as follows:
when a particle (from the left) jumps over the *hole, the *pair moves one unit
to the left (giving rise to the configuration after the jump in Figure 3); when the
*particle jumps to the right (over a hole), the *pair moves one unit to the right.
This is the same behavior as that of the second class particle; the difference is that
the second class particle occupies only one site while the *pair occupies two sites.
Call P ∗(t) andH ∗(t) the position of the *particle and *hole respectively at timet ;
clearlyP ∗(t) = H ∗(t) + 1 for all times. If we collapse again the *pair to one site
by definingη̄t (x) = η01

t (x) for x < H ∗(t), η̄t (x) = η01
t (x + 1) for x ≥ P ∗(t), then

the process
(
η̄t ,H

∗(t), t ≥ 0
)

has the same law as
(
η1

t ,X(t), t ≥ 0
)
.(14)

In Lemma 6 we give an explicit construction which maps these processes for
almost all realizations.

Growth model and simple exclusion.Rost [19] showed that the simple
exclusion process can be constructed in the probability space induced byW ,
where the oriented percolation model is defined. This can be done for any initial
configuration; we do it for the process with initial configurationη01 as follows. Let

P1(0) = 1, H1(0) = 0;
(15)

Pi(0) = −i + 1 and Hi(0) = i, i ≥ 2,
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be the positions of the particles ofη01
0 labeled from right to left and the positions

of the holes, labeled from left to right. We constructPi(t) andHi(t), the position
of the ith particle, respectivelyith hole, at timet as a function of the random
variablesG01(z) := G(z) − w(1,1). The rule is:

at timeG01(i, j) thej th particle and theith hole interchange positions.(16)

The initial ordered labels of the holes and particles make that after the(j − 1)st
particle has interchanged positions with theith hole and thej th particle has
interchanged positions with the(i − 1)st hole, thej th particle must wait an
exponential time of parameter 1 to interchange positions with theith hole. This
is the particle–hole interpretation of the recurrence relation (2).

Rule (16) is well defined in this case because only a finite number of exponential
random variables is involved in the definition of each next move. Indeed, the
variablesG01(z) are well ordered, inducing a (random) order on the sites of(Z+)2,
say z1, z2, . . . with G01(zk) < G01(zk+1). In particularz1 ∈ {(1,2), (2,1)}, for
example. Starting with the minimum betweenG(1,2) andG(2,1), sayG(1,2) <

G(2,1), then z1 = (1,2) and at timeG01(z2) the second particle and the first
hole interchange positions (see Figure 4 ignoring the parentheses and the stars).
Inductively, if zn = (i, j), then at timeG01(zn), thej th particle and theith hole
interchange positions. CallPi(G

01(zn)) and Hi(G
01(zn)) the positions at time

G01(zn) of theith particle and hole, respectively. Fori ≥ 1 define(
Pi(t),Hi(t)

) = (
Pi(G

01(zn)),Hi(G
01(zn))

)
(17)

if t ∈ [
G01(zn),G

01(zn+1)
)
.

The resulting process((Pi(t),Hi(t)), i ≥ 1, t ≥ 0) is the exclusion process in the
sense that, if one disregards the labels, the process(ζ 01

t , t ≥ 0) defined by

ζ 01
t (Pi(t)) = 1, ζ 01

t (Hi(t)) = 0, i ≥ 1,(18)

has the same law as the process(η01
t , t ≥ 0) = �(η01,N ), defined with the

Poisson processes. We callϒ(η01,W) = (ζ 01
t , t ≥ 0) the deterministic function

that constructsζ 01
t usingW .

The second class particle in the competition model.In the previous paragraph
we have constructed a simple exclusion process starting with a particle at site 1 and
a hole at site 0. In this construction we keep track of the position of each particle
and hole. We now want to track the *pair, the *hole and *particle initially at sites
0 and 1, respectively, whose evolution is described after Theorem 2. The labels
of the *particle and *hole change with time. At time 0 the *particle has label 1
and so does the *hole:P ∗(0) = P1(0) andH ∗(0) = H1(0) and hence the labels
of the *pair are represented by the pointϕ0 = (1,1), the initial value of the
competition interface. Suppose in the next step, sayG(1,2) < G(2,1), the second
particle jumps over the *hole before the *particle jumps over the second hole (see
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FIG. 4. Labels of particles, holes and *pair. The particle configuration and the jump are the same
as in Figure3.

Figure 4). In this case, the labels of the *pair at timeG(1,2) are(1,2), which is
exactly the argument that minimizes{G(2,1),G(1,2)}, so that, after the first jump
of the *pair, its labels are given byϕ1 [recall (8)]. By recurrence,ϕn gives exactly
the labels of the *pair after itsnth jump. More precisely, letτ0 := 0 and define

τn := G01(ϕn)(19)

where(ϕn, n ≥ 0) is the competition interface defined in (7). The labels of the
*pair are given by the coordinates of the competition interface:(

H ∗(τn),P
∗(τn)

) = (
Hin(τn),Pjn(τn)

)
(20)

where in and jn are the coordinates ofϕn: (in, jn) := ϕn. Define the process
(ψt , t ≥ 0) = (I (t), J (t), t ≥ 0) ∈ (Z+)2 by

ψt := ϕn if t ∈ [τn, τn+1).(21)

By definition (3) ofγt , it is clear thatψt belongs to both the growth interface and
the competition interface (see Figure 1):

ψt ∈ ϕ ∩ γt+w(1,1) and
(
H ∗(t),P ∗(t)

) = (
HI(t)(t),PJ(t)(t)

)
.(22)

On the other hand, when the *pair jumps to the right the *hole increments its label
by one, and when the *pair jumps to the left, the *particle increments its label by
one. Hence, (

H ∗(t),P ∗(t)
) = (

I (t) − J (t), I (t) − J (t) + 1
)
.(23)

Combining (23) with (14), we get the following result.

PROPOSITION 3. The processes((η̄t , I (t) − J (t)), t ≥ 0) and ((η1
t ,X(t)),

t ≥ 0) are identically distributed.

We construct simultaneously both processes in such a way that they are identical
almost surely. See Lemma 6.

Using the technology of geodesics and the ergodicity of the last-passage
percolation model we prove in Section 3 the following proposition (this is
Theorem 1 without identifying the limit).
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PROPOSITION4.

lim
t→∞

ϕn

|ϕn| = eiθ , P-a.s.(24)

whereθ = θ(W) is a random angle in[0,90◦].

Propositions 3 and 4 and (22) are the keys to characterize the long time behavior
of (ψt , t ≥ 0) as a line with a random angle and identify the distribution of the
limiting angle:

PROPOSITION5. The following limits holdP-a.s.:

lim
t→∞

ψt

|ψt | = eiθ ,(25)

lim
t→∞

ψt

t
= eiθ /µ(eiθ ),(26)

lim
t→∞

I (t) − J (t)

t
= f (θ),(27)

whereθ = θ(W) is the random angle in[0,90◦] given by Proposition4,

f (θ) :=
√

cosθ − √
sinθ√

cosθ + √
sinθ

(28)

andf (θ) is distributed uniformly in[−1,1]:
P

(
f (θ) ≤ u

) = 1
2(u + 1).(29)

PROOF. Sinceψt ∈ γt+w(1,1) and by (6) inf{|z| : z ∈ γt } is of the order oft
[indeed, this infimum divided byt converges to 1/

√
8, the distance between

the origin and the curve{µ(u, v) = 1}], |ψt | → ∞ as t → ∞ and (25) follows
from (24).

The limit (26) follows from (25), (22), the shape theorem (6) and (5). Indeed,
the shape theorem (6) and the limit (25) imply thatψt/t convergesP-almost
surely tog(θ)eiθ , whereg(θ) is the distance from the origin to the intersection
of the limiting curveM = {(u, v) ∈ (R+)2 :µ(u, v) = 1} with the line {(u, v) ∈
(R+)2 : tanθ = u/v} (the line with inclinationθ ). Hence by the definition (5) ofµ,√

g(θ)cosθ + √
g(θ)sinθ = 1, from where (26) is derived.

The limit in (27) is an immediate consequence of (25) and (26). It is a uniform
random variable as consequence of Proposition 3—that identifies the difference
between the coordinates of the interface with the second class particle—and Ferrari
and Kipnis [6], who proved that the asymptotic law of the second class particle is
uniform in [−1,1]. �

We finish this section by proving Theorems 1 and 2.
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PROOF OFTHEOREM 1. TheP-a.s. convergence follows from Proposition 4.
Since by (29)f (θ) is uniformly distributed in[−1,1] andf (α) is decreasing inα,

P(θ ≤ α) = P
(
f (θ) ≥ f (α)

) = 1

2

(
1− f (α)

) =
√

sinα√
sinα + √

cosα
.(30) �

The proof of Theorem 2 requires the following lemma.

LEMMA 6. There exists a mapR :N �→ W such that if the trajectory of
the second class particle(X(t), t ≥ 0) as a function ofN is well defined, then
it is identical to the trajectory of(I (t) − J (t), t ≥ 0) as a function ofR(N ).
Furthermore, if N has lawQ, thenR(N ) has lawP.

PROOF. Let N be a family of Poisson processes. Let((η1
t ,X(t)) : t ≥ 0) be

the exclusion process starting with the configuration full of particles to the left of
the origin, empty to the right of the origin and with one second class particle in the
origin constructed usingN .

Let N be a Poisson process independent ofN . Let τn(N ) be the times of jumps
of the second class particleX(t) with τ0 = 0. Then defineN ′ = (N ′

x(t) : t ≥ 0) as
a function ofN andN as follows:

N ′
x[τn, τn+1) :=




Nx(τn, τn+1], if x < X(τn),

N(τn, τn+1], if x = X(τn),

Nx−1(τn, τn+1], if x > X(τn).

(31)

Here Nx(s, t] is the Poisson processNx in the interval (s, t] (as a counting
measure), and analogously forN . By the strong Markov property,N ′ has the same
law asN .

Let η01 be the configuration defined in (13). Label its particles as in (15). Let the
*pair be the *hole and the *particle initially at sites 0 and 1, respectively. Realize
the processη01

t as a function ofN ′. For this evolution track the position of the
labeled particlesPi(t) and holesHi(t) and the *pair(H ∗(t),P ∗(t)) as a function
of the particle jumps as described after display (13). In this way we construct the
processes(η01

t ;Pi(t),Hi(t), i ≥ 1;H ∗(t),P ∗(t); t ≥ 0) as a function ofN ′. Call
(I (t), J (t)) the labels of the *hole–*particle at timet , so that(H ∗(t),P ∗(t)) =
(HI (t)(t),PJ(t)(t)); of course these are also function ofN ′.

Then, for allt :

X(t)(N ) = HI(t)(N
′) = I (t)(N ′) − J (t)(N ′),(32)

that is, the second class particle in the system governed byN is in the same place
as the *hole in the system governed byN ′. Collapsing the *hole–*particle in
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the system governed byN ′, one obtains the particle configuration of the system
governed byN :

η01
t (N ′)(x) :=




η1
t (N )(x), if x < X(t)(N ),

0, if x = X(t)(N ),

1, if x = X(t)(N ) + 1,

η1
t (N )(x − 1), if x > X(t)(N ) + 1.

(33)

DefineG′(1,1) = 0 and fori, j ≥ 1 let G′(i, j) = G′(N ′)(i, j) be the time the
j th η01 particle jumps over theith hole. Definew′(N ′)(1,1) as an exponential
random variable independent ofN ′ and w′ = w′(N ′) by w′(i, j) = G′(i, j) −
max{G′(i − 1, j),G′(i, j − 1)}. Sincew′(i, j) is the time theith particle waits
to jump over thej th hole when they are neighbors,w′(i, j) are independent and
identically distributed exponential of rate 1 (again strong Markov property). Hence
R(N ) := W ′ = (w′(N ′)(i, j) : {(i, j) ∈ N2}) has the same law asW .

It is immediate to check that

(I (t), J (t))(W ′) = (I (t), J (t))(N ′) for all t ≥ 0.(34)

That is, the *pair evolution described after (22) using the exponential timesW ′ is
exactly the same as the *pair evolution constructed as a function of the Poisson
processesN ′. Notice that the auxiliary Poisson processN used in the definition
(31) ofN ′ as a function ofN plays no role in the *pair evolution. This is also true
for w′(1,1). �

PROOF OF THEOREM 2. The convergenceP-a.s. is established in Proposi-
tion 5. The convergenceQ-a.s. is a consequence of Lemma 6.�

3. Geodesics. In this section we prove Proposition 4. We introduce the notion
of geodesics in last-passage percolation and explore its connection with the
competition interface. Letπ = (zk; k = 1, . . . , n) be an up/right path fromz to z′.
We say thatπ is ageodesicfrom z to z′ if

G(z, z′) = ∑
z′′∈π

w(z′′).(35)

Of course this is not a “geodesic” in the sense that it is the shortest way between
two points. Indeed our geodesic is the longest oriented path between two points.
For all z, z′ ∈ Z there existsP-a.s. a unique geodesic fromz to z′ which is denoted
by π(z, z′). If u = (u1, u2) andv = (v1, v2) belongs toR2 anduk ≤ vk for k = 1,2,
then we defineG(u,v) = G(zu, zv) whereu ∈ Q(zu) andv ∈ Q(zv), where we
recall Q(z) is the unit square with north-east pointz. Analogously, we define
π(u, v) = π(zu, zv). Let πz = (zk; k = 1, . . .) be anup/right semi-infinite path
starting atz = z1. For eachα ∈ [0,90◦] we say thatπz has directionα if

lim
k→∞

zk

|zk| = eiα.
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We say thatπz is a uni-geodesicif for all i < j the geodesic fromzi to zj is
exactly(zi, . . . , zj ). For eachα ∈ [0,90◦] we say thatπz is anα-geodesicif it is a
uni-geodesic and has directionα. Proposition 4 is a consequence of the following
propositions concerning geodesics. The proofs follow Newman [15], Licea and
Newman [10] and Howard and Newman [9] who proved analogous results for
two-dimensions first-passage percolation models. Martin [13] has independently
proved these results for the model under consideration.

Let z ∈ Z2 andN2
z = z + N2 (N = {0,1,2, . . .}). DefineR(z) = ⋃

z′∈N2
z
π(z, z′).

SinceP-a.s. finite geodesics do exist and are unique,R(z) can be seen as a tree
spanning allN2

z . The set of vertices of the tree isN2
z and the set of edges is

{(z′′, z′) : z′′ − z′ = 1 andz′′ ∈ π(z, z′)}.

PROPOSITION 7. For z ∈ Z2 let �1(z) be the event“every uni-geodesic
πz ⊆ R(z) is anα-geodesic for someα = α(πz) ∈ [0,90◦] and there exists at least
oneα-geodesic for eachα ∈ [0,90◦].” ThenP(�1(z)) = 1.

PROPOSITION8. For z ∈ Z2 andα ∈ [0,90◦] let �2(z,α) be the event“ there
exists at most oneα-geodesic inR(z)” and let � be the Lebesgue measure in
[0,90◦]. Then there exists a setD ⊆ [0,90◦] of full Lebesgue measure such that
for all α ∈ D, P(�2(z,α)) = 1.

We recall thatD does not depend on the realization of the exponential
times W . Indeed, a stronger version of Proposition 8 holds: forevery α ∈
(0,90◦) there is only oneα-geodesic inR(z) with probability 1 [13]. On the
other hand, with probability 1 there are directions with more than one geodesic:
P(

⋂
α∈(0,90◦) �2(z,α)) = 0.

For α ∈ D let πz(α) be the uniqueα-geodesic starting atz. This isP-a.s. well
defined by Propositions 7 and 8.

PROPOSITION9. For α ∈ D let �3(α) be the event“ for all z, z′ ∈ Z2, there
exists a random pointcα = c(α, z, z′) ∈ Z2 such thatπz(α) = π(z, cα) ∪ πcα(α)

andπz′(α) = π(z′, cα) ∪ πcα (α).” ThenP(�3(α)) = 1.

As a consequence of the above propositions we get that for allα ∈ D, P-a.s. for
all z, z′ ∈ Z2, z �= z′, there exists a randomcα = c(α, z, z′) andr0 > 0 such that for
all r > r0

G(z, reiα) − G(z′, reiα) = G(z, cα) − G(z′, cα) �= 0.(36)

Indeed, from Propositions 7 and 8, if we fixα ∈ D, then P-a.s. for allz ∈ Z2

limr→∞ π(z, reiα) = πz(α). This means that for all̄z ∈ πz(α) there existsr0 > 0
such that for allr > r0, π(z, z̄) ⊆ π(z, reiα). This together with Proposition 9
implies that for allz, z′ ∈ Z2 there existscα ∈ Z2 andr0 > 0 such that for allr > r0,
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π(z, reiα) = π(z, reiα) ∪ π(cα, reiα) andπ(z′, reiα) = π(z′, reiα) ∪ π(cα, reiα),
which yields (36).

PROOF OFPROPOSITION4. Let G21∞ := ⋃
z∈G21∞ Q(z), G12∞ := ⋃

z∈G12∞ Q(z).

For eachα ∈ [0,90◦] and r > 0 let lαr = {seiα; s > r}. Define the random
decomposition of[0,90◦] by

I21 = {
α ∈ [0,90◦]; ∃ r0 so thatlαr0

⊆ G21∞
}
,

I12 = {
α ∈ [0,90◦]; ∃ r0 so thatlαr0

⊆ G12∞
}
,

and I = (I21 ∪ I12)
c. Notice that 0∈ I21, 90◦ ∈ I12, and sinceG21∞,G12∞ are

connected regions of{(x, y); x > 0, y > 0}, then I21 and I12 are intervals in
[0,90◦]. This implies thatI is also an interval in[0,90◦]. Thus if we denote
ϕn = |ϕn|eiθn , then (

lim inf
n

θn, lim sup
n

θn

)
⊆ I.(37)

Let D0 be an enumerable subset ofD that is dense in(0,90◦) (recall thatD has
full Lebesgue measure). By (36),P-a.s., for allα ∈ D0,

lim
r→∞

(
G

(
(2,1), reiα) − G

(
(1,2), reiα))

(38)
= G

(
(2,1), cα

) − G
(
(1,2), cα

) �= 0.

Notice also that ifα ∈ I , then

lim inf
r→∞

(
G

(
(2,1), reiα) − G

(
(1,2), reiα))

(39)
≤ 0≤ lim sup

r→∞
(
G

(
(2,1), reiα) − G

(
(1,2), reiα))

,

because the linelα0 alternates infinitely often its color and this implies (39). Thus
(38) and (39) imply that

P(I ∩ D0 = ∅) = 1.(40)

Now, (40) implies thatP-a.s.I has empty topological interior and this together
with (37) implies that(θn)n∈N converges. �

The following lemma, proven in the end of this section, is the main ingredient to
prove Proposition 7. It gives an upper bound for the fluctuations of the geodesics.
Let d(z,A) be the Euclidean distance betweenz ∈ R2 and the setA ⊂ R2.

LEMMA 10. There existsε0 > 0 such that for allε ∈ (0, ε0), there exist
constantsC1,C2,C3 > 0 andδ > 0 such that for allz ∈ N2 with |z| > C1,

P

(
sup

z′∈π(0,z)

d(z′, [0, z]) ≥ |z|3/4+ε

)
≤ C2 exp(−C3|z|δ).
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PROOF OF PROPOSITION 7. By translation invariance we can assumez =
(0,0). For z̄, z′ ∈ N2 \ {(0,0)}, denote by ang(z̄, z′) the angle in[0,90◦] between
z̄ andz′ and letC(z̄, ε) = {z′; ang(z̄, z′) ≤ ε}. Let R be an infinite connected tree
with vertices inN2 and nearest-neighbor oriented edges. Assume also that(0,0)

andz̄ ∈ N2 are vertices ofR. We denote byRout[z̄] the set of verticesz′ of R such
that the path inR between(0,0) andz′ touches̄z. Leth :R+ → R+. We say thatR
is h-straight if for all but finitely many vertices̄z of R, Rout[z̄] ⊆ C(z̄, h(|z̄|)). By
Proposition 2.8 of [9], ifR is h-straight withh satisfying limL→∞ h(L) = 0, then
every semi-infinite path inR starting from(0,0) has a directionα ∈ [0,90◦] and
for everyα ∈ [0,90◦] there exists at least one semi-infinite path inR starting from
(0,0) and with directionα. Let δ ∈ (0,1) and sethδ(L) = L−δ . By Lemma 2.7
of [9], to prove that for allδ ∈ (0,1/4), R((0,0)) is hδ-straight it is sufficient
to prove that for all sufficiently smallε > 0, the number ofz ∈ N2 such that
supz′∈π(0,z) d(z′, [0, z]) ≥ |z|3/4+ε is P-a.s. finite. Therefore, by Borel–Cantelli,
Proposition 7 is a consequence of Lemma 10.�

PROOF OFPROPOSITION8. Again we can assume thatz = (0,0). Let e =
(z, z + (1,0)) be an edge of the treeR((0,0)) such thatz + (1,0) has infinitely
many descendants. We inductively define a uni-geodesicπe in R((0,0)) as follows.
Put z0 = z and z1 = z + (1,0). For eachn ≥ 1, if zn has exactly one child,
say z′

n, with infinitely many descendants, then putzn+1 = z′
n; otherwise put

zn+1 = zn + (0,1). If there are two distinctα-geodesics starting from(0,0), say
π1 andπ2, then they have to bifurcate at somez ∈ R((0,0)) going, respectively, to
z + (1,0) andz + (0,1) in their next steps. In this case,πe with e = (z, z + (1,0))

is caught betweenπ1 andπ2. Henceπe is anα-geodesic because we are in two
dimensions. Therefore,�2((0,0), α) must occur unless the eventB(e,α) := [πe

is anα-geodesic] occurs for somee = (z, z + (1,0)). Thus

1≥ P
(
�2((0,0), α)

) ≥ 1− ∑
e=(z,z+(1,0))

P(B(e,α)).(41)

For eache = (z, z + (1,0)), πe cannot be anα-geodesic for more than oneα, and
so

∫
1B(e,α)�(dα) = 0 for each realization of the exponential times. By Fubini,∫

P(B(e,α))�(dα) =
∫ [∫

1B(e,α)�(dα)

]
dP = 0.(42)

Integrating (41) with respect to�(dα) and using (42) completes the proof of
Lemma 8. �

PROOF OF PROPOSITION 9. By Proposition 8, for fixedα ∈ D P-a.s., if
πz(α) and πz′(α) are not site disjoint, then they must coalesce. Therefore we
must show that there is zero probability that there exist disjointα-geodesics. Let
S(α) = ⋃

z∈Z2 πz(α) be the set ofα-geodesics emanating fromz ∈ Z2. ThenS(α)
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FIG. 5. Local modification.

is a forest composed by a random numberN(α) ∈ {1, . . . ,+∞} of connected
trees. The event “there are not disjointα-geodesics” is equivalent to the event
“N(α) = 1” and with this formulation we can apply the Burton and Keane [2]
argument. This argument is based on a local modification idea that is formalized
as follows. Lety1 < · · · < yk be points inZ, and letA(y1, . . . , yk) be the event
“π(0,y1)(α), . . . , π(0,yk)(α) are disjoint and every site touched byπ(0,yj ) after its
initial site at(0, yj ) has strictly positive first coordinate” (see Figure 5). We claim
that

if P
(
N(α) ≥ 2

)
> 0 �⇒ ∃y1, y2, y3;P

(
A(y1, y2, y3)

)
> 0.(43)

Indeed, if the right-hand side of (43) holds, then there existy1, y2 such that
the probability of A(y1, y2) is positive. For i = 1,2 and l ∈ Z let yl

i =
yi + l(y1 − y2). By translation invariance, the probability ofA(yl

1, y
l
2) does

not depend onl. This together with Fatou implies that for somel1 < l2

the probability ofA(y
l1
1 , y

l2
2 ) ∩ A(y

l2
1 , y

l2
2 ) is also positive, althoughπ

y
l1
1

can-

not intersectπ
y

l2
1

or π
y

l2
2

because otherwise it must intersectπ
y

l1
2

(by pla-

narity). ThusA(y
l1
1 , y

l2
2 ) ∩ A(y

l2
1 , y

l2
2 ) ⊆ A(y

l1
1 , y

l2
1 , y

l2
2 ) which proves (43). Let

Aδ
m(y1, y2, y3) := A(y1, y2, y3) ∩ Bδ ∩ Cm, whereBδ is the event “w(z) > δ for

all z ∈ [(−1, y1), (−1, y3)] ∪ [(−1, y3), (m,y3)]” and Cm is the event “π(0,y1)(α)

intersects the point(m,y3).” Sinceα ∈ (0,90◦), (43) implies that, if the right-hand
side of (43) holds, then for somem > 0 andδ > 0,

P
(
Aδ

m(y1, y2, y3)
)
> 0.(44)

Consider the eventA = Aδ
m(y1, y2, y3) appearing in (44). Letz2 be the first

intersection betweenπ(0,y2)(α) and [(0, y3), (m,y3)], and letπ1 be the piece of
π(0,y1)(α) between the points(0, y1) andz1 := (m,y3) (see Figure 5). Consider
the bounded region� (not including the boundary) limited by[(−1, y1), (−1, y3)],
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[(−1, y3), (m,y3)] andπ1. Thus we define a mapping� on subsetsB of A by first
lettingW(ω) = {z ∈ �; w(z) > δ} and then setting

�(B) = ⋃
ω∈B

[ ∏
z/∈W(ω)

{w(z)} × ∏
z∈W(ω)

(0, δ)

]
.

Heuristically, � alters eachω ∈ B into an ω′ ∈ �(B) by changing each
w(z) > δ with z ∈ � to some valuew′(z) ∈ (0, δ) [it may happen that�(B)

is nonmeasurable]. Since thew(z)’s with z ∈ π(0,y1)(α), or z ∈ π(0,y3)(α), or
z ∈ πz2(α), were unchanged while the others decreased or stayed as before, it
follows that each one of the pathsπ(0,y1)(α), π(0,y3)(α) andπz2(α) continues to be
anα-geodesic forω′ ∈ �(A). Similarly, ω′ continues to belong toBδ . Although,
since for eachz ∈ � we havew′(z) < δ and for eachz ∈ [(−1, y1), (−1, y3)] ∪
[(−1, y3), (m,y3)] we havew′(z) > δ, then for allz ∈ [(−1, y1), (−1, y3)] and
z′ ∈ [(−1, y3), (m,y3)] the geodesicπ(z, z′) for ω′ either will be the path which
starts atz, goes vertically until it reaches(−1, y3) and then goes horizontally
until it reachesz′, or π(z, z′) ∩ π1 �= ∅. Let z3 := (m,y′) be the point where the
geodesic from(0, y3) crosses the vertical line{m} × Z. Therefore, anyα-geodesic
for ω′, starting atu = (x, y) /∈ [0,m] × [y1, y

′] with x < m, cannot touch the
middle pathπz2(α) without first intersectingπ(0,y1) or π(0,y3) and this leads to
a contradiction because in such a case, by Proposition 8, they must coalesce. Thus,
�(A) ⊆ F whereF denotes the event that some tree inS(α) touches the rectangle
[0,m] × [y1, y

′] but no other site in the half-plane{(x, y); x < m}. Since to
each site we attached an exponential random variable andP(A) > 0 [inequality
(44)], by Lemma 3.1 of [10], there exists a measurable setĀ ⊆ �(A) such that
P(Ā) > 0, which implies thatP(F ) > 0. Now consider a rectangular array of
nonintersecting translates�z of the rectangle�0 = [0,m] × [y2, y3] indexed by
z ∈ Z, and consider the corresponding translated eventsFz of F0 = F . Notice that,
if Fz andFz′ both occur, withz �= z′, then the corresponding trees inS(α) must be
disjoint. LetnL be the number of�z’s in [0,L]2 and letNL be the number of the
correspondingFz’s which occur. By translation invarianceENL = nLP(F ). The
number of disjoint trees inS(α) which touch[0,L]2 cannot exceed the number of
boundary sites in[0,L]2 and this together withP(F ) > 0 yields a contradiction
for largeL becausenL is of orderL2. Therefore, we have proved thatP(F ) = 0
and this together with (43) and (44) implies thatP(N(α) ≥ 2) = 0. This together
with Proposition 7 implies thatP(N(α) = 1) = 1 which completes the proof of
Proposition 9. �

The proof of Lemma 10 is based on the following lemma that provides an upper
bound for moderate deviations ofG(0, z) from its asymptotic valueµ(z).

LEMMA 11. There existsε0 > 0 such that for allε ∈ (0, ε0), there exist
constantsC4,C5,C6 > 0 such that for allz ∈ N2 with |z| > C4, for any r ∈
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[|z|1/2+ε, |z|3/2−ε]
P

(|G(0, z) − µ(z)| ≥ r
) ≤ C5 exp(−C6r/|z|1/2).

We prove this lemma after the proof of Lemma 10.

PROOF OF LEMMA 10. Let Cε(z) = {z′; d(z′, [0, z]) ≥ |z|3/4+ε} and let
�(z, z′) = µ(z) − µ(z − z′) − µ(z′). If supz′∈π(0,z) d(z′, [0, z]) ≥ |z|3/4+ε, then
there existsz′ ∈ ∂Cε(z) such thatG(0, z) = G(0, z′) + G(z′, z). By summing
�(z, z′) in both sides of the last equality and using the translation invariance of
the model, we obtain

P

(
sup

z′∈π(0,z)

d(z′, [0, z]) ≥ |z|3/4+ε

)

≤ P
(|G(0, z) − µ(z)| ≥ |�(z, z′)|/3

)
(45)

+ P
(|G(0, z′) − µ(z′)| ≥ |�(z, z′)|/3

)
+ P

(|G(0, z − z′) − µ(z − z′)| ≥ |�(z, z′)|/3
)
.

If z = (z1, z2), z
′ = (z′

1, z
′
2), then

�(z, z′) = 2
(√

z1z2 − √
z′

1z
′
2 − √

(z1 − z′
1)(z2 − z′

2)
)
.

This implies that (see Lemma 2.1 of [23]) there exist constantsA1,A2,A3 > 0
such that for allz ∈ N2 with |z| ≥ A1, for all z′ ∈ ∂Cε(z)

A2|z|1/2+2ε ≤ �(z, z′) ≤ A3|z|3/4+ε.(46)

Notice that (46) implies that there existsM > 0, such that for allz ∈ N2 with
|z| > M , �(z, z′) ∈ [z̄1/2+2ε, z̄3/4+ε], wherez̄ = z, or z̄ = z′, or z̄ = z − z′. By
choosingε > 0 small enough and using (45), together with Lemma 11 we complete
the proof of Lemma 10. �

PROOF OF LEMMA 11. Since for allz = (z1, z2) ∈ N2, for all π ∈ �(0, z)

(the set of allup-right paths connecting 0 toz), |π | = z1 + z2 + 1, where|π | is the
number of sites inπ , it is a consequence of Corollary 8.2.4 of [22] that there exist
constantsA1,A2,A3 > 0 such that for allz ∈ N2, for all x ∈ [0,A1|z|],

P
(|G(0, z) − EG(0, z)| > x

√|z| ) ≤ A2 exp(−A3x).(47)

To replaceEG(0, z) by µ(0, z) in (47) we need to consider some technical details.
First, we claim that (47) implies that there exist constantsA4,A5 such that for all
z ∈ N2 with |z| ≥ A4,

EG(0,2z) ≤ 2EG(0, z) + A5
√|z| log(|z|).(48)
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Indeed, letHz = {z′; |z′| = |z|} ∩ N2 (|z| = |z1| + |z2|). By the definition ofG and
by the translation invariance of the model,

EG(0,2z) ≤ 2E max
z′∈Hz

G(0, z′).(49)

Now assume thatY z
i for 1 ≤ i ≤ n(z) are nonnegative random variables on a

common probability space such that for somea,M0,C0,C1,C2,C3 ∈ (0,+∞),
for all z ∈ N2 with |z| > M0,

E(Y z
i ) ≤ |z|a and n(z) ≤ C0|z|,(50)

and

P
(|Y z

i − E(Y z
i )| > x

) ≤ C1 exp(−C2x) for x ≤ C3|z|.(51)

Then, for someM1,C4 > 0 (see Lemma 4.3 of [9]), for allz ∈ N2 with |z| > M1,

E max
1≤i≤n(z)

(
E(Y z

i ) − Y z
i

) ≤ C4 log|z|.(52)

Therefore, to conclude the proof of (48) we order the pointsz′ ∈ H(z) by
z1, . . . , zn, where n depends onz but n ≤ C0|z| for some constantC0. Take
Y z

i = G(0, zi)/
√|z| and note that the hypotheses (50), (51) are satisfied with

a = ε + 1/2, C0 as before, andM0,C1,C2,C3 given by (47). Thus, (52) together
with (49) completes the proof of (48). Now, we claim that the superadditivity of
EG(0, z) and (48) imply that for some constantA6 > 0

EG(0, z) − A6
√|z| log(|z|) ≤ µ(z) ≤ EG(0, z).(53)

Indeed, the right-hand side of (53) is an immediate consequence of superadditivity.
To prove the left-hand side, assume thath :R+ → R and g :R+ → R+ satisfy
the following conditions: lims→∞ h(s)/sµ ∈ R, lims→∞ g(s)/s = 0, h(2s) ≥
2h(s) − g(s) andφ = lim sups→∞ g(2s)/g(s) < 2. Then, for anyc > 1/(2 − φ),
h(s) ≤ µs + cg(s) for all large s (see Lemma 4.2 of [9]). Therefore, if we fix
a directionẑ = z/|z| and takeh(s) = −EG(0, sẑ), g(s) = A5

√
s log(s), then this

last claim together with (48) completes the proof of (53). Thus, (53) and (47) imply
that for some constantsA7,A8,A9,A10 > 0, for all x ∈ [A7 log|z|,A8|z|],

P
(|G(0, z) − µ(z)| > 2x

√|z| ) ≤ A9 exp(−A10x).(54)

Takingr = 2x
√|z| and adjusting the constants, (54) yields Lemma 11.�

4. Final remarks. We have shown a law of large numbers for the competition
interface in last-passage percolation in the positive quadrant(Z+)2. A crucial step
in this proof was Proposition 9 which establishes that uni-geodesics starting at
different fixed points with the same direction must coalesce. The law of large
numbers for the competition interface also holds for other random regions as a
consequence of the law of large numbers for the second class particle of Mountford
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and Guiol [14] and Lemma 6. These regions are limited to the south-west by a
random curveγ = (γn, n ∈ Z) ⊂ Z2 defined byγ0 = (1,1), γ1 = (1,0), γ−1 =
(0,1) and thenγn − γn−1 = (η(n)− 1,−η(n)), for n ∈ Z \ {0,1} andη distributed
according to the product measure with densitiesλ to the left of the origin andρ
to the right of it. Since Lemma 6 can be extended to any region obtained as a
transformation of the initial configuration of the simple exclusion process, the law
of large numbers for the competition interface also holds in this case [7]. However,
it would be nice to have an autonomous proof using geodesics. To extend the result
to the regions considered by Mountford and Guiol one should be able to show
that when the point is asymptotically beyond the corresponding characteristic the
“point to semi-line” geodesic is realized in the limit by a random location in the
semi-line. More precisely, letLρ be a random semi-line starting at(0,0) doing
independent steps at right with probability 1− ρ and down with probabilityρ.
This interface corresponds to the right initial configuration for the simple exclusion
process chosen with the product measure with densityρ. Let zn = (xn, yn) be a
sequence of points inN2 such thatxn, yn → ∞ and xn

yn
→ (

ρ
1−ρ

)2 − ε for some
ε > 0, asn → ∞. Let gn be the location inLρ that realizes thezn to Lρ geodesic.
Then one needs to show that asn → ∞, gn → g, a random location, almost surely.
The inclination( ρ

1−ρ
)2 corresponds to the asymptotic behavior of the second class

particle under this initial measure:X(t)
t

→ (1− 2ρ) = (1− ρ)2 − ρ2, ast → ∞.
An anonymous referee and Christoffe Bahadoran asked the authors about the

resemblance between our Proposition 3 which identifies the second class particle
and the competition interface determined by looking, in the last-passage picture,
from which side of point(1,1) the maximizing paths of different points emanate.
The referee says: “This bears a curious resemblance to Proposition 4.1 in [21]:
that result also identifies the positionX(t) of the second class particle by looking
at which side of the initial positionX(0) come the maximizers in the variational
formula of the process. One wonders whether these two representations are two
sides of the same coin.” We leave this investigation for future work.
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