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CLOSURES OF EXPONENTIAL FAMILIES1

BY IMRE CSISZÁR AND FRANTIŠEK MATÚŠ
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Academy of Sciences of the Czech Republic

The variation distance closure of an exponential family with a convex
set of canonical parameters is described, assuming no regularity conditions.
The tools are the concepts of convex core of a measure and extension of
an exponential family, introduced previously by the authors, and a new
concept of accessible faces of a convex set. Two other closures related to
the information divergence are also characterized.

1. Introduction. Exponential families of probability measures (p.m.’s) in-
clude many of the parametric families frequently used in statistics, probability and
information theory. Their mathematical theory has been worked out to a consid-
erable extent [1–3, 11]. Although limiting considerations are important and do
appear in the literature, less attention has been paid to determining closures of
exponential families.

For families supported by a finite or countable set, closures were considered
in [1], pages 154–156, and [2], pages 191–201, respectively, the latter with
regularity conditions. In the general case, different closure concepts come into
account. Our main result, Theorem 2 in Section 3, determines the closure in
variation distance (variation closure) of a full exponential family and, more
generally, of any subfamily with a convex set of canonical parameters. Weak
closures appear much harder to describe in general, but Theorem 1 in Section 3
is a step in that direction.

Other closure concepts are based on Kullback–LeiblerI-divergence (informa-
tion divergence or relative entropy)

D(P‖Q) �




∫
ln

dP

dQ
dP, if P � Q,

+∞, otherwise.

With the terminology of [7], these are theI-closure and reverseI-closure
(rI-closure); early work related to the latter appeared in [3]. TheI-closure of a
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convex setS of p.m.’s is relevant, for example, in large deviations theory, where
the conditional limit theorem for i.i.d. sequences on the condition that the empirical
distribution belongs toS involves the “generalizedI-projection” toS which is in
theI-closure ofS; see [4]. In the context of exponential families, therI-closure is
of major statistical interest; for example, when the likelihood function is bounded
but its maximum is not attained, a “generalized maximum likelihood estimate” can
be introduced as a p.m. that belongs to therI-closure; see [7].

Formally, the variation closure clv(S), respectively, theI-closure clI (S) and
the rI-closure clrI(S) of a setS of p.m.’s on a given measurable space, consists
of all p.m.’s P to which there exists a sequenceQn in S such that the total
variation |P − Qn|, respectively, theI-divergenceD(Qn‖P) or D(P‖Qn), goes
to zero asn → ∞. The Pinsker inequality|P − Q|2 ≤ 2D(P‖Q) implies that
both clI (S) and clrI(S) are contained in clv(S). For exponential families, the last
inclusion gives a good approximation to clrI(S), for example, all p.m.’s in clv(S)

with mean belong to clrI(S). This is one motivation for our study of variation
closures, in addition to intrinsic mathematical interest. Theorem 3 in Section 3
characterizes those p.m.’s in the variation closure that belong also to therI-closure.
TheI-closure is much easier to describe than the other closures (see Corollary 2),
in particular, full exponential families areI-closed. It should be mentioned that
the I- andrI-closures are not topological closure operations because they are not
idempotent. An example of an exponential familyE with clrI(clrI(E)) strictly
larger than clrI(E) is given in [8]. On the other hand, theI- and rI-closures are
sequential closures in suitable topologies; see [9].

Our attention is focused on exponential families that consist of p.m.’s onR
d and

have a canonical statistic equal to the identity mapping. Clearly, determining their
variation,I- or rI-closures, the same problems are solved for general exponential
families of p.m.’s on any measurable space, withd-dimensional canonical statistic,
by mapping the family to one onRd via the canonical statistic.

A crucial construction is that of the extension ext(E) of a full exponential
family E , introduced by the authors [5, 7] based on their concept of the convex
core of a measure onRd [6]; see the definitions in Section 2. The inclusion
E ⊆ ext(E) is strict unless no nontrivial supporting hyperplane of the (common)
convex support of the p.m.’s inE has positive probability under these p.m.’s, by [7],
Remark 3. By Lemma 6 below, the variation closure ofE is contained in ext(E).
A stronger result announced in [5], the variation closedness of ext(E), follows
as Corollary 3 from Theorem 4 that deals with variation convergent sequences
in ext(E).

The inclusion clv(E) ⊆ ext(E) implies that if the subset clrI(E) of clv(E) is
equal to ext(E) (e.g., if the domain of canonical parameters is the wholeR

d ;
see [7], Lemma 6(ii)), then also clv(E) = ext(E). Moreover, sinceE is rI-closed
if and only if E = ext(E) ([7], Corollary 2), the last condition is necessary and
sufficient also for the variation-closedness ofE .
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The cases just mentioned, although frequent in practice, are of secondary
interest for our purposes. This paper is primarily devoted to the general case when
all common regularity conditions are absent, although the assumption of steepness
or even regularity (see [1], pages 116 and 117) would not lead to significant
simplifications. The typical situation we have in mind is when the p.m.’s inE
have both discrete and continuous components.

2. Preliminaries.

2.1. Convex sets and faces. The closure and affine hull of a setB ⊆ R
d are

denoted cl(B) and aff(B), and the relative interior [interior in the relative topology
of aff(B)] is denoted ri(B). The linear subspace ofR

d obtained by shifting aff(B)

to contain the origin is denoted lin(B). Orthogonal projections to subspaces of the
form lin(C), whereC ⊆ R

d is a convex set, are often needed in the sequel; they
are denoted briefly asπC rather thanπlin(C).

A face of a nonempty convex setC ⊆ R
d is a nonempty convex subsetF of C

such that whenevertx + (1− t)y ∈ F for somex, y in C and 0< t < 1, thenx, y

are inF . As in [10], but unlike in [12], the empty set is not considered to be a face.
Theproper faces are those different fromC and theexposed faces areC itself and
its intersections with the supporting hyperplanes ofC. A proper exposed faceF
of C is thus represented asF = C ∩ {x : 〈τ, x − a〉 = 0}, wherea ∈ C andτ ∈ R

d

is a unit vector such that〈τ, x − a〉 ≤ 0 for eachx ∈ C. Obviously, there is no loss
of generality in assumingτ ∈ lin(C). Such a vectorτ exposes F in C.

2.2. Convex support and core. A measure always means a finite Borel
measure onRd . The convex support cs(µ) and theconvex core cc(µ) of µ are
defined, respectively, as the intersection of those convex closed and convex Borel
subsetsC of R

d which have fullµ-measure,µ(C) = µ(Rd). While the former is
a standard concept, the latter is of recent origin [6]. Let us recall from [6] the key
facts

cs(µ) = cl(cc(µ)) and cc
(
µcl(F )) = F for facesF of cc(µ),(1)

where the restriction of a measureµ to a Borel subsetB of R
d is denotedµB .

Note that the convex closed set cs(µ) is of full µ-measure, but the convex set
cc(µ), though measurable by [6], Theorem 1, need not be. For brevity, lin(µ) is
written instead of lin(cs(µ)) and similarly with ri(µ) and aff(µ).

LEMMA 1. A supporting hyperplane H of cs(µ) is of positive µ-measure if
and only if F = H ∩ cc(µ) is nonempty. Moreover, µ(H \ cl(F )) = 0.

PROOF. Using [6], Lemma 2(ii), F = cc(µH ). This and (1) give
cl(F ) = cs(µH ), whence both assertions follow.�
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2.3. Exponential families. The termexponential family without any adjective
means below a full exponential family based on a (nonzero) measureµ onR

d , with
a canonical statistic equal to the identity mapping. This familyE = Eµ consists of
the p.m.’sQϑ with µ-densities

dQϑ

dµ
(x) � e〈ϑ,x〉−�(ϑ),(2)

where

�(ϑ) = �µ(ϑ) � ln
∫

Rd
e〈ϑ,x〉µ(dx)

and the canonical parameterϑ belongs to dom(�) = {ϑ :�(ϑ) < ∞}. Note thatµ
is not uniquely determined by the familyE . In particular, any member ofE could
play the role ofµ; in this paper, however,µ is regarded as given.

Clearly, if ϑ ∈ dom(�) andθ −ϑ is orthogonal to lin(µ) for someθ ∈ R
d , then

alsoθ ∈ dom(�) andQϑ = Qθ . A bijective parametrization can be given as

E = {Qϑ :ϑ ∈ �},
(3)

where� = �µ � dom(�µ) ∩ lin(µ) = πlin(µ)

(
dom(�µ)

)
.

Here,� equals dom(�) if and only if lin(µ) = R
d [when (2) is called a minimal

representation]. For the purposes below, it is essential not to require that condition
and not to requireµ to be a p.m., either.

Of main interest are subfamilies

E� = {Qϑ :ϑ ∈ �}, � ⊆ �,

of the full family E , primarily when� is convex. In this case,E� is called a
canonically convex exponential family.

The function � is known to be convex and lower semicontinuous, thus
continuous on closed segments contained in dom(�). The following lemma is a
minor improvement of Lemma 23.5 in [3].

LEMMA 2. Let ϑn be a sequence in dom(�) that converges to some ϑ ∈ R
d .

(i) If Qϑn converges weakly, then ϑ ∈ dom(�) and �(ϑn) converges to �(ϑ).
(ii) If ϑ ∈ dom(�) and �(ϑn) → �(ϑ), then Qϑn converges to Qϑ in

variation.

PROOF. (i) If Qϑn converges weakly to some p.m.P , then for each continuity
setB of P ,

P(B) = lim
n→∞Qϑn(B) = lim

n→∞ exp
(−�(ϑn)

) ∫
B

exp(〈ϑn, x〉)µ(dx),
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where, ifB is compact,
∫
B

exp(〈ϑn, x〉)µ(dx) →
∫
B

exp(〈ϑ,x〉)µ(dx)

by dominated convergence. If alsoP(B) > 0, then exp(−�(ϑn)) converges to a
positive numberc. Hence

P(B) = c ·
∫
B

e〈ϑ,x〉µ(dx)

for each compact continuity setB of P and, consequently, for all Borel setsB.
When B = R

d , it follows that c = e−�(ϑ). Hence,ϑ ∈ dom(�) and �(ϑn)

converges to�(ϑ).
(ii) Under the assumptions, theµ-densities exp(〈ϑn, x〉 − �(ϑn)) of Qϑn

converge to theµ density exp(〈ϑ,x〉 − �(ϑ)) of Qϑ pointwise, which is known
to imply Qϑn → Qϑ in variation. �

2.4. Extensions of exponential families. The restriction ofµ to the closure of
a faceF of cc(µ) is a nonzero measure by (1). The exponential family based on
this restrictionµcl(F ) is denotedEF . It consists of the p.m.’sQF,ϑ defined as in (2)
with µ and� replaced withµcl(F ) and

�F (ϑ) � ln
∫

cl(F )
e〈ϑ,x〉µ(dx).

Obviously, dom(�) ⊆ dom(�F ). The familyEF is bijectively parametrized as

EF = {QF,ϑ :ϑ ∈ �F }, where�F � dom(�F ) ∩ lin(F ) = πF

(
dom(�F )

)
,

similarly to (3), since lin(µcl(F )) = lin(F ) by (1). For eachQϑ ∈ E with
ϑ ∈ dom(�), its conditioningQϑ(·|cl(F )), equal to the restrictionQcl(F )

ϑ divided
by Qϑ(cl(F )), belongs toEF . The simple fact thatQϑ(·|cl(F )) coincides with
the p.m.QF,θ , where θ = πF (ϑ) is in �F , is repeatedly used in the sequel.
These conditionings of the p.m.’s inE exhaustEF if and only if the inclusion
πF (�) ⊆ �F holds with equality.

The extension ext(E) of an exponential familyE = Eµ is the union of the
familiesEF over all facesF of cc(µ). EachEF is called acomponent of ext(E).
A similar construction of a “boundary at infinity” ofE which uses faces of cs(µ)

rather than of cc(µ) was proposed earlier [3]. Some crucial assertions on an
exponential family completed by its “boundary” were found to be erroneous, but
their analogues for ext(E) were found valid in [5, 7]. The reason is that ext(E) may
be strictly larger thanE completed by its “boundary”: By [6], Lemma 11, the latter
consists of those componentsEF that correspond to the proper exposed facesF

of cc(µ).
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2.5. Accessible faces. For any faceF of a convex setC ⊆ R
d there exists

a chain

C = F0 ⊃ F1 ⊃ · · · ⊃ Fm = F,

not necessarily unique, such thatFi is an exposed face ofFi−1, 1≤ i ≤ m. If for
every 1≤ i ≤ m a unit vectorτi ∈ lin(Fi−1) exposesFi in Fi−1, thenτ1, . . . , τm

is called anaccess sequence to the faceF of C; the access sequence toF = C is
empty. Sinceτi ∈ lin(Fi−1) is orthogonal to lin(Fi), the vectors of any nonempty
access sequence are orthonormal.

Let C and � be two nonempty convex subsets ofR
d . For our main result,

where the role ofC is played by cc(µ) and the role of� is played by a convex
subset of�µ, a new concept of�-accessible faces ofC is suitable. This concept
involves a constraint on access sequences in terms of recession cones of projections
of ri(�). Recall that therecession cone of a convex set� ⊆ R

d is

rec(�) = {τ :ϑ + tτ ∈ � for all ϑ ∈ �, t ≥ 0}.
By [12], Theorem 8.2 and Corollary 8.3.1, rec(ri(�)) = rec(cl(�)), and this
is a closed cone that contains rec(�). Now, a faceF of the convex setC is
�-accessible if an access sequenceτ1, . . . , τm to F exists such that

τi ∈ rec
(
πFi−1(ri(�))

)
, 1 ≤ i ≤ m.(4)

An access sequence toF that satisfies (4) is calledadapted to �. It may seem
artificial that these notions depend on� only through its relative interior, but if
ri were omitted in (4), some later assertions would not hold; see Example 3 in
Section 3. Note that the empty sequence is trivially adapted; thusC itself is always
a�-accessible face ofC.

LEMMA 3. If � ⊆ lin(C), an access sequence τ1, . . . , τm to a proper face F

of C is adapted to � if and only if τ1 ∈ rec(ri(�)) and for the face F1 of C exposed
by τ1 the access sequence τ2, . . . , τm to the face F of F1 is adapted to πF1(�).

PROOF. By the hypotheses� ⊆ lin(C), the setπF0(ri(�)) in the condition (4)
for i = 1 is equal to ri(�). In the conditions for 2≤ i ≤ m, the setsπFi−1(ri(�))

are equal to the setsπFi−1(ri(πF1(�))) that appear in the analogue of (4) for
the adaptedness ofτ2, . . . , τm to πF1(�), since the operation ri interchanges with
orthogonal projections ([12], Theorem 6.6), andπFi−1 πF1 = πFi−1 if i ≥ 2. �

EXAMPLE 1 (Figure 1). LetC ⊂ R
3 be the convex hull of the union of the

planeH = R
2 × {−1} and the triangleT with vertices(1,0,0) and (0,±1,0),

and let� consist of thoseϑ ∈ R
3 whose second coordinate is strictly between

−1 and 1. In this example,�-accessibility of the nine faces ofC is discussed. The
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FIG. 1.

proper exposed faces ofC areH andT . Of the six nonexposed faces ofC, equal
to faces ofT , consider

F = {(1,0,0)}, G = {(t,1− t,0) : 0≤ t ≤ 1}, S = {(0, t,0) : |t | ≤ 1}.
Since� is open, the relative interiors in (4) can be ignored. Note that the recession
cone ofπC(�) = � is R×{0}×R and the recession cone ofπT (�) is R×{(0,0)}.
Let

τ1 = (0,0,1), τ2 = ( 1√
2
, 1√

2
,0

)
, τ3 = ( 1√

2
,− 1√

2
,0

)
and

τ ′
2 = (1,0,0).

Since rec(�) contains both−τ1 and τ1, the facesH and T are �-accessible.
Both τ1, τ2, τ3 and τ1, τ

′
2 are access sequences toF , with corresponding chains

C ⊃ T ⊃ G ⊃ F and C ⊃ T ⊃ F , respectively. Since rec(πT (�)) containsτ ′
2

but not τ2, the access sequenceτ1, τ
′
2 is adapted to�, whereasτ1, τ2, τ3 is not.

Due to the former,F is a �-accessible face ofC. On the other hand,G is not
�-accessible, because the only access sequenceτ1, τ2 to G, with chainC ⊃ T ⊃ G

hasτ2 /∈ rec(πT (�)). Similarly, the segmentS is �-accessible, but its endpoints
are not.

2.6. Partial means. When studyingrI-closures of exponential families, p.m.’s
that do not have a mean require special attention. The following simple concept is
useful: for any p.m.P on R

d , write

M(P ) = {τ ∈ R
d : 〈τ, ·〉 is P -integrable}

and define thepartial mean m(P ) as the unique element of the linear spaceM(P )

with ∫
Rd

〈τ, x〉P(dx) = 〈τ,m(P )〉, τ ∈ M(P ).
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Note thatM(P ) = R
d if and only if P has a mean, in which casem(P ) equals the

mean.
The following lemma is well known, but usually stated in less generality.

LEMMA 4. For ϑ ∈ dom(�) and a unit vector τ such that ϑ + tτ ∈ dom(�)

for some t > 0, the integral
∫ 〈τ, x〉Qϑ(dx) exists, either finite or −∞. This

integral equals the directional derivative of � at ϑ in the direction τ .

PROOF. The directional derivative, that is, the right derivative of the function
t �→ �(ϑ + tτ ) at t = 0, equals

1∫
e〈ϑ,x〉µ(dx)

lim
t↓0

∫
et〈τ,x〉 − 1

t
e〈ϑ,x〉µ(dx).

The ratio (et〈τ,x〉 − 1)/t decreases to〈τ, x〉 when t decreases to zero, and the
assertion follows by the monotone convergence.�

The following lemma shows the relevance of partial means for exponential
families.

LEMMA 5. The I-divergence D(Qθ‖Qϑ) of p.m.’s in E is finite if and only if
θ − ϑ ∈ M(Qθ), in which case

D(Qθ‖Qϑ) = 〈θ − ϑ,m(Qθ)〉 − �(θ) + �(ϑ).

PROOF. By definition,

D(Qθ‖Qϑ) =
∫

Rd
ln

e〈θ,x〉−�(θ)

e〈ϑ,x〉−�(ϑ)
Qθ(dx)

=
∫

Rd
〈θ − ϑ,x〉Qθ(dx) − �(θ) + �(ϑ).

The last integral is finite if and only ifθ − ϑ belongs toM(Qθ), in which case it
equals〈θ − ϑ,m(Qθ)〉. �

This lemma also is used withE replaced by a componentEF of ext(E),
combined with the obvious identity

D(P‖Q) = D
(
P‖Q(·|cl(F ))

) − lnQ(cl(F )), P ∈ EF ,Q ∈ E .(5)

3. Main results. Below,E = Eµ always denotes an exponential family in the
sense of Section 2.3,Qϑ with ϑ ∈ � = dom(�) ∩ lin(µ) denotes a p.m. inE and
E� with � ⊆ � denotes a subfamily ofE .

THEOREM 1. If a sequence of p.m.’s Qϑn with ϑn in � converges weakly to a
p.m. P , then one of the following two alternatives takes place:
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(i) The sequence ϑn converges to an element ϑ of �, P = Qϑ and Qϑn → P

even in variation distance.
(ii) The norm of ϑn goes to ∞, a proper exposed face G of cs(µ) exists such

that P(G) = 1, and the limit of any convergent subsequence of ϑn/‖ϑn‖ exposes
such a face of cs(µ).

The proof is given in Section 4. It follows from Theorem 1 that the weak
convergence of a sequenceQϑn to someQϑ in E implies ϑn → ϑ ; see [1],
Theorem 8.3, for a direct proof. A consequence of this and Lemma 2 is stated
for reference purposes.

COROLLARY 1. For a sequence ϑn in � and ϑ ∈ � the following assertions
are equivalent.

(i) Convergence Qϑn → Qϑ weakly.
(ii) Convergence Qϑn → Qϑ in variation.
(iii) Convergences ϑn → ϑ and �(ϑn) → �(ϑ).

COROLLARY 2. For any subset � of �,

Ecl(�)∩� ⊇ clv(E�) ∩ E ⊇ clI (E�).

When � is convex, the equalities take place.

PROOF. The first inclusion follows from Corollary 1. For the second one, if
D(Qϑn‖P) → 0, the sequenceQϑn converges in variation toP ; thus clv(E�)

contains clI (E�). Moreover, the alternative (i) holds in Theorem 1, since otherwise
D(Qϑn‖P) = +∞ for all n. This proves thatE contains clI (E�).

Supposing� is convex, letϑ ∈ cl(�) ∩ � and letτ be a unit vector such that
ϑ + tτ belongs to ri(�) for somet > 0. It suffices to show thatD(Qϑn‖Qϑ) → 0
for ϑn = ϑ + tnτ with tn decreasing to zero. By Lemma 4,τ ∈ M(Qϑn) and then
Lemma 5 implies

D
(
Qϑn‖Qϑ

) = tn
〈
τ,m

(
Qϑn

)〉 − �(ϑn) + �(ϑ).

Since�(ϑn) → �(ϑ) and the sequence〈τ,m(Qϑn)〉 is decreasing by Lemma 4,
the claim follows. �

The following technical assertion, which is crucial for Theorem 2, is proved in
Section 5. The notion of�-accessibility enters the scene.

LEMMA 6. If a sequence of p.m.’s in a canonically convex exponential family
E� converges in variation distance to a p.m. P , then there exists a �-accessible
face F of cc(µ) such that P belongs to EF .
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Lemma 6 enables us to conclude that the variation closure of a canonically
convex familyE� is contained in the union of those componentsEF of ext(E)

which correspond to the�-accessible facesF of cc(µ). For our main result, still
another tool is needed, namely a special convergence concept: A sequence of p.m.’s
Qn is said to convergeneatly to a p.m.P if the P -dominated component ofQn has
constantP -densitycn andcn → 1 or, equivalently, ifQn(·|cs(P )) equalsP when
defined andQn(cs(P )) → 1. Obviously, the neat convergence implies variation
convergence, and evenrI convergence, due toD(P‖Qn) = − ln cn.

LEMMA 7. For a convex subset � of � and �-accessible face F of cc(µ),
each p.m. QF,θ with θ ∈ πF (ri(�)) is the neat limit of a sequence from Eri(�).

This lemma is proved in Section 5.

THEOREM 2. The variation closure of a canonically convex exponential
family E� is

clv(E�) = ⋃{
QF,θ : θ ∈ cl

(
πF (�)

) ∩ �F

}
,

where the union runs over all �-accessible faces F of cc(µ).

PROOF. SupposeP is the limit in variation distance of a sequenceQn in E�.
By Lemma 6,P ∈ EF for a �-accessible faceF of cc(µ). ThenP(cl(F )) = 1
impliesQn(cl(F )) → 1, and thus the sequenceQn(·|cl(F )) in EF also converges
to P in variation distance. These conditioned p.m.’s are of formQF,θn with
θn ∈ πF (�); thus Corollary 2 impliesP = QF,θ for someθ in cl(πF (�)) ∩ �F .
This proves the inclusion⊆.

Conversely, ifF is a�-accessible face of cc(µ), Lemma 7 implies that clv(E�)

contains the p.m.’sQF,θ with θ ∈ πF (ri(�)). Thus, by Corollary 2 and the
convexity ofπF (ri(�)),

clv(E�) ⊇ {
QF,θ : θ ∈ cl

(
πF (ri(�))

) ∩ �F

}
.

Since ri interchanges with projections, the inclusion⊇ follows. �

EXAMPLE 2. Using the notation of Example 1, letµ be the sum of the
measure that gives mass 1 to each vertex ofT and of the p.m. on the planeH with
density exp(−x2

1)exp(−|x2|) w.r.t. the Lebesgue measure onH . Then cc(µ) = C

and�µ = dom(�µ) coincides with� of Example 1, defined by restricting the
second coordinate to be between−1 and 1. By Theorem 2, the variation closure
of the full family E = Eµ intersects five out of the nine components of ext(E). In
addition to the full familiesE , EH andEF , the latter consisting of the point mass
at (1,0,0), clv(E) contains also some p.m.’s fromET andES . Note that clv(E)

intersectsEF but notEG, althoughF ⊂ G.



592 I. CSISZÁR AND F. MATÚŠ

Part (ii) of the following Theorem 3 gives a necessary and sufficient condition
for a p.m.P in clv(E�) to belong also to clrI(E�), even when� ⊆ � is not
convex. When� is convex, this condition can be effectively verified by Theorem 2.
Part (iii) provides a simple sufficient condition which has a direct proof. A trivial
consequence of Theorem 3 is that clrI(E�) contains all p.m.’s in clv(E�) that have
a mean.

THEOREM 3. (i) Suppose a sequence Qϑn , ϑn ∈ �, of p.m.’s in E converges
in variation to a p.m. P = QF,θ , θ ∈ �F , in a component EF of ext(E).
Then D(P‖Qϑn) goes to zero if it is eventually finite, which is equivalent to
ϑn ∈ θ + M(P ) eventually.

(ii) A p.m. P = QF,θ belongs to the rI-closure of a subfamily E� of E if and
only if it belongs to the variation closure of E�∩(θ+M(P )).

(iii) The rI-closure of a canonically convex exponential family E� contains
all p.m.’s P in the variation closure of E� that satisfy D(P‖Q) < ∞ for some
Q ∈ Eri(�).

PROOF. (i) Consider first the case whenEF = E ; that is,P = Qϑ for some
ϑ ∈ �. Thenϑn → ϑ and�(ϑn) → �(ϑ) by Corollary 1. Thus, the assertion for
this case follows by Lemma 5.

WhenF is a proper face of cc(µ), note that the variation convergence assump-
tion impliesQϑn(cl(F )) → P(cl(F )) = 1. Hence, (5) shows thatD(P‖Qϑn) goes
to zero if and only ifD(P‖Qϑn(·|cl(F ))) does. MoreoverQϑn(·|cl(F )), equal to
QF,θn ∈ EF with θn = πF (ϑn), also converges in variation toP . It follows, apply-
ing the result in the first case toEF in the role ofE , thatD(P‖Qϑn) → 0 if it is
eventually finite. Also by (5), the finiteness ofD(P‖Qϑn) is equivalent to that of
D(P‖Qϑn(·|cl(F ))) and, therefore, by Lemma 5, toθ −θn ∈ M(P ). Sinceϑn −θn

is orthogonal to lin(F ), it belongs toM(P ); thus the last condition is equivalent to
ϑn ∈ θ + M(P ).

(ii) This follows directly from (i).
(iii) SupposeP = QF,θ ∈ clv(E�), whereF is a �-accessible face of cc(µ)

and θ belongs to cl(πF (�)) ∩ �F ; see Theorem 2. IfD(P‖Qϑ0) is finite for
someϑ0 ∈ ri(�), then as in the proof of part (i),D(P‖QF,θ0) is also finite, where
θ0 = πF (ϑ0) and QF,θ0 = Qϑ0(·|cl(F )). Then for θn = tnθ0 + (1 − tn)θ with
tn ↓ 0, D(P‖QF,θn) is also finite by Lemma 5 andQF,θn → QF,θ in variation
by Corollary 1. It follows by part (i) thatD(P‖QF,θn) → 0.

Sinceθ0 ∈ πF (ri(�)) = ri(πF (�)) and θ ∈ cl(πF (�)) imply θn ∈ ri(πF (�)),
Lemma 7 gives that eachQF,θn is the neat limit of a sequence inEri(�). Thus to
eachθn there existsϑn ∈ ri(�) such thatQF,θn = Qϑn(·|cl(F )) andQϑn(cl(F )) is
arbitrarily close to 1. From this andD(P‖QF,θn) → 0 the claimD(P‖Qϑn) → 0
follows by (5). �

The following example illustrates a use of Theorem 3(ii) and Theorem 2
when deciding whether a p.m. belongs to therI-closure of a canonically convex
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exponential family. It also illustrates why ri(�) rather than� appears in the
definition (4) of�-accessibility and in Lemma 7.

EXAMPLE 3 (Figure 2). Letµ be the measure onR3 equal to the sum of
the point mass at(−1,0,0), the imageP under t �→ (0, t,0) of the p.m. with
density dt

t2 on the half-linet > 1 and the image undert �→ (t, t2,−1) of the p.m.

with density2dt
t3 on the same half-line. Then

�(ϑ) = ln
[
exp(−ϑ1) +

∫ ∞
1

exp(ϑ2t)
dt

t2
(6)

+ exp(−ϑ3)

∫ ∞
1

exp(ϑ1t + ϑ2t
2)

2dt

t3

]
, ϑ = (ϑ1, ϑ2, ϑ3),

dom(�) is given byϑ2 < 0 orϑ2 = 0,ϑ1 ≤ 0, and� = dom(�). Consider� = �,
thusE� = E , and the faceF = {(0, t,0) : t > 1} of cc(µ). This F is not exposed
and the unique access sequence to it isτ1 = (0,0,1) and τ2 = (1,0,0). This
access sequence is adapted to� but it would not be if� rather than ri(�) had
been used in the definition (4). SinceπF (�) = {(0, t,0) : t ≤ 0} = �F andF is
�-accessible, Theorem 2 gives thatEF ⊆ clv(E). In particular, clv(E) containsP
that equalsQF,θ with θ = (0,0,0) ∈ πF (�). On the other hand, as

M(P ) = R × {0} × R, � ∩ (
θ + M(P )

) = {(ϑ1,0, ϑ3) :ϑ1 ≤ 0}
and the unique access sequence toF is not adapted to the latter set,P is not in
the variation closure ofE�∩(θ+M(P )) by Theorem 2. ConsequentlyP /∈ clrI(E) by
Theorem 3(ii). Thus,P cannot be the neat limit of any sequence inE , showing
that Lemma 7 is not valid when ri(�) is replaced by�.

Our final results address variation convergence of arbitrary sequences in ext(E).

THEOREM 4. If a sequence Qn in ext(E) converges in variation distance to
a p.m. P , then P belongs to a component EF of ext(E), for sufficiently large
n the face Fn of cc(µ) with Qn ∈ EFn contains F , and the conditioned p.m.’s
Qn(·|cl(F )) belong to EF and also converge to P in variation distance.

FIG. 2.
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Theorem 4 is proved in Section 6.

COROLLARY 3. The extension ext(E) of an exponential family E is variation-
closed.

Corollary 3 strengthens [7], Theorem 2, on therI-closedness of ext(E). Note
that a familyE completed by its “boundary at infinity” in the sense of [3] is
not necessarilyrI-closed, let alone variation-closed, contrary to [3], Lemma 23.7;
see [6], Example 3.

COROLLARY 4. If a sequence Qn in ext(E) converges in variation distance
to a p.m. P and D(P‖Qn) is eventually finite, then D(P‖Qn) → 0.

The eventual finiteness takes place, in particular, ifP has a mean.

PROOF OF COROLLARY 4. By Theorem 4, the variation convergence of
Qn ∈ EFn to P implies P ∈ EF , F ⊆ Fn eventually andQn(·|cl(F )) → P in
variation. Hence, the proof can be completed similarly to that of Theorem 3(i)
using (5) withEFn playing the role ofE . �

4. Weak convergence in exponential families. In this section Theorem 1 is
proved. For its second alternative, a corollary of the following lemma is needed.
Note that

ρ(a) � inf{‖y − a‖ :y ∈ aff(µ) \ cs(µ)}
is obviously positive for any elementa of ri(µ).

LEMMA 8. For a ∈ ri(µ) and 0 < s < ρ(a) there exists a positive constant C

such that the inequality

〈ϑ,b − a〉 ≥ r‖ϑ‖ − Ce−s‖ϑ‖[r‖ϑ‖er‖ϑ‖ + 1
]

(7)

holds for all 0< r < s, ϑ ∈ � and b ∈ R
d satisfying 〈ϑ,b〉 = ∫

Rd 〈ϑ,x〉Qϑ(dx).

In particular, (7) holds whenb is the mean ofQϑ . What actually is used is the
following consequence of Lemma 8.

COROLLARY 5. Let ϑn be a sequence in � such that each p.m. Qϑn has a
mean bn. If ‖ϑn‖ → ∞, ϑn/‖ϑn‖ → τ and bn → b, then 〈τ, b − a〉 ≥ ρ(a) for
each a ∈ ri(µ).

PROOF. Fora ∈ ri(µ) and 0< r < s < ρ(a), (7) implies

〈ϑn, bn − a〉 ≥ r‖ϑn‖ − C
[
r‖ϑn‖exp

(−(s − r)‖ϑn‖) + exp(−s‖ϑn‖)].
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Dividing both sides by‖ϑn‖ and lettingn → ∞, it follows that〈τ, b − a〉 ≥ r for
all 0< r < s < ρ(a). �

For the proof of Lemma 8 the following auxiliary lemma, a simple refinement
of known assertions (see [3], Lemma 21.8, and [11], proof of Theorem 3.1), is
needed. Denote

Aϑ
a,s � {x ∈ R

d : 〈ϑ,x − a〉 ≥ s‖ϑ‖}, ϑ, a ∈ R
d, s > 0,

which is a closed half-space of distances from a whenϑ �= 0.

LEMMA 9. If a ∈ ri(µ) and 0< s < ρ(a), then

ca,s � inf{µ(Aϑ
a,s) :ϑ ∈ lin(µ)}

is positive and

�(ϑ) − 〈ϑ,a〉 − s‖ϑ‖ ≥ ln ca,s, ϑ ∈ lin(µ).(8)

PROOF. Let µ(A
ϑn
a,s) ↓ ca,s for a sequenceϑn in lin(µ) that can be supposed

to consist of unit vectors converging to someτ ∈ lin(µ). Each x ∈ R
d with

〈τ, x − a〉 > s belongs toAϑn
a,s eventually; thus the open half-space given by the

last inequality is covered by the union over allm of the intersections
⋂

n≥m A
ϑn
a,s .

Since theµ-measure of the half-space is positive due tos < ρ(a), one of these
intersections has positiveµ-measure. Thus,ca,s > 0. Finally, the inequalities

e�(ϑ)−〈ϑ,a〉 =
∫

Rd
e〈ϑ,x−a〉µ(dx) ≥

∫
Aϑ

a,s

e〈ϑ,x−a〉µ(dx) ≥ es‖ϑ‖ · µ(Aϑ
a,s)

are valid for anyϑ ∈ lin(µ) and imply (8). �

PROOF OFLEMMA 8. AbbreviateAϑ
a,r to A and abbreviate its complement

to B. Then

〈ϑ,b − a〉 =
∫

Rd
〈ϑ,x − a〉Qϑ(dx) ≥

∫
B
〈ϑ,x − a〉Qϑ(dx) + r‖ϑ‖Qϑ(A)

and, in turn,

〈ϑ,b − a〉 − r‖ϑ‖ ≥
∫
B
[〈ϑ,x − a〉 − r‖ϑ‖]Qϑ(dx)

= e〈ϑ,a〉−�(ϑ)
∫
B
[〈ϑ,x − a〉 − r‖ϑ‖]e〈ϑ,x−a〉µ(dx).

Sincetet > −1 for eacht ∈ R ande〈ϑ,x−a〉 < er‖ϑ‖ for x ∈ B, the last integral is
bounded below by

−[
1+ r‖ϑ‖er‖ϑ‖]µ(B).
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It follows that

〈ϑ,b − a〉 − r‖ϑ‖ ≥ −e〈ϑ,a〉−�(ϑ)+s‖ϑ‖µ(Rd) · e−s‖ϑ‖[r‖ϑ‖er‖ϑ‖ + 1
]
.

This completes the proof on account of (8). [The constantC in (7) can be chosen
asµ(Rd)/ca,s .] �

PROOF OF THEOREM 1. Let a sequence of p.m.’sQϑn with ϑn in � =
dom(�) ∩ lin(µ) converge weakly to a p.m.P . Note thatP(cs(µ)) = 1 because
Q(cs(µ)) = 1 for everyQ ∈ E .

In the case when the sequenceϑn is bounded, letϑ be the limit of an arbitrary
convergent subsequence. By Lemma 2(i), the weak convergence ofQϑn along
this subsequence impliesϑ ∈ dom(�), and since clearlyϑ ∈ lin(µ), alsoϑ ∈ �.
Moreover, P = Qϑ by Lemma 2, and since the parametrization (3) ofE is
bijective, it follows that each convergent subsequence ofϑn has the same limit.
Thusϑn converges toϑ . Applying Lemma 2,�(ϑn) → �(ϑ) follows from the
weak convergence ofQϑn by (i), andQϑn → P in variation by (ii).

In the case when‖ϑn‖ → ∞, assume with no loss of generality thatϑn/‖ϑn‖
converges to someτ , clearly in lin(µ). Suppose first that cs(µ) is compact. Then
the meanbn of Qϑn exists and converges to the meanb of P . By Corollary 5,
〈τ, b − a〉 ≥ ρ(a) for eacha ∈ ri(µ) and thus〈τ, x − b〉 ≤ 0 for eachx ∈ cs(µ).
Since obviouslyb ∈ cs(µ), it follows thatHb = {x : 〈τ, x − b〉 = 0} is a supporting
hyperplane of cs(µ), andG = Hb ∩ cs(µ) is a proper face of cs(µ), exposed byτ .
ThenP(cs(µ)) = 1 impliesP(G) = P(Hb) and this equals 1 because the meanb

of P belongs toHb.
Turning to the situation when cs(µ) is not compact, there exists a continuity

setB of P such thatP(B) > 0 and lin(µB) = lin(µ). Then the conditioned p.m.’s
Qϑn(·|B) belong to the exponential family based onµB , the parametersϑn in
� = �µ belong also to�µB and Qϑn(·|B) converges weakly toP(·|B). If, in
addition,B is compact, thenP(·|B) has a meanb and the result proved above gives
thatHb is a nontrivial supporting hyperplane of cs(µB). Taking another compact
continuity setC of P with C ⊇ B, let c be the mean ofP(·|C) and letHc be
the corresponding supporting hyperplane of cs(µC). Since P(Hb|B) = 1 and
P(Hc|C) = 1 together withC ⊇ B imply P(Hc|B) = 1, the parallel hyperplanes
Hb andHc coincide. This proves thatHb is a nontrivial supporting hyperplane of
cs(µC) satisfyingP(Hb|C) = 1 for those compact continuity setsC of P which
containB. ThenP(Hb) = 1 andHb is a nontrivial supporting hyperplane to cs(µ),
as well, because eachx ∈ ri(µ) belongs to cs(µC) for someC as above. Thus,
G = Hb ∩ cs(µ) is a proper face of cs(µ) exposed byτ andP(G) = 1, the same
conclusions as when cs(µ) was compact.

Finally, ϑn cannot have both a convergent subsequence and another subse-
quence with norms tending to infinity. Indeed, by the above arguments, the for-
mer impliesP ∈ E and the latter impliesP(G) = 1 for a proper face of cs(µ),
a contradiction. �
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5. Proofs of Lemmas 6 and 7.

PROOF OFLEMMA 6. By induction on the dimension of cs(µ). The case of
zero dimension is trivial. The induction hypothesis assumes the assertion is true for
canonically convex exponential families based on measures whose convex support
has smaller dimension than that of the givenµ.

GivenQϑn with ϑn ∈ � converging in variation distance toP , if the alternative
(i) in Theorem 1 takes place, thenP ∈ EF holds with F = cc(µ), obviously a
�-accessible face of cc(µ). Otherwise, by Theorem 1(ii),‖ϑn‖ → +∞ and the
limit τ1 of any convergent subsequence ofϑn/‖ϑn‖ exposes a proper faceG
of cs(µ) with P(G) = 1. Note thatϑn ∈ � ⊆ lin(µ) implies τ1 ∈ lin(µ). The
supporting hyperplaneH = {x : 〈τ1, x − a〉 = 0} that containsG has positive
µ-measure, sinceP(H) = P(G) = 1 and µ dominates the variation limitP
of the p.m.’s Qϑn . It follows by Lemma 1 thatF1 = H ∩ cc(µ) is a face
of cc(µ), clearly exposed byτ1, and µ(H \ cl(F1)) = 0. Thus P(H) = 1
implies P(cl(F1)) = 1. By the variation convergenceQϑn → P , it follows that
Qϑn(cl(F1)) → 1 and the conditioned p.m.’sQϑn(·|cl(F1)) also converge toP in
variation distance. These p.m.’s belong toEF1 and thus can be written asQF1,θn

with θn = πF1(ϑn) ∈ πF1(�). Hence, by the induction hypothesis applied to the
canonically convex exponential family

{
QF1,θ ∈ EF1 : θ ∈ πF1(�)

}
,

their variation limit P belongs toEF for a faceF of cc(µcl(F1)) = F1, which
is πF1(�)-accessible, that is, an access sequenceτ2, . . . , τm to the faceF of
F1 is adapted toπF1(�). Sinceτ1 is the limit of a convergent subsequence of
ϑn/‖ϑn‖ with ϑn ∈ �, it belongs to rec(ri(�)) by [12], Theorem 8.2. This and the
adaptedness ofτ2, . . . , τm to πF1(�) imply by Lemma 3 that the access sequence
τ1, . . . , τm to the faceF of cc(µ) is adapted to�. �

The following simple auxiliary assertion resembles [3], Lemma 21.7, and [7],
Lemmas 6 and 7(i).

LEMMA 10. If τ exposes a face G of cc(µ), then τ belongs to the recession
cone of dom(�µ) and for every ϑ ∈ dom(�µ), the sequence Qϑ+nτ converges
neatly to Qϑ(·|cl(G)) ∈ EG.

PROOF. Sinceτ exposesG, 〈τ, x〉 ≤ 〈τ, a〉 for all x ∈ cc(µ) anda ∈ G, with
equality if and only ifx ∈ G. Then, fort ≥ 0 the functione〈ϑ+tτ ,x〉 of x ∈ cs(µ)

is bounded above bye〈ϑ,x〉 · et〈τ,a〉. This implies thatϑ + tτ ∈ dom(�µ) whenever
ϑ ∈ dom(�µ) andt ≥ 0, provingτ ∈ rec(dom(�µ)).
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Knowing from Lemma 1 thatµ(cl(G)) equals theµ-measure of the supporting
hyperplaneH = {x : 〈τ, x − a〉 = 0} with a ∈ G, we have for anyϑ ∈ dom(�µ)

�µ(ϑ + nτ) − 〈ϑ + nτ, a〉
= ln

[∫
Rd

e〈ϑ+nτ,x−a〉µ(dx)

]

= ln
[∫

cl(G)
e〈ϑ,x−a〉µ(dx) +

∫
cs(µ)\H

e〈ϑ+nτ,x−a〉µ(dx)

]
.

Whenn tends to infinity,�µ(ϑ +nτ)−〈ϑ + nτ, a〉 decreases to�G(ϑ)−〈ϑ,a〉,
since the integral over cs(µ) \ H decreases to zero by dominated convergence.
This fact ande〈ϑ+nτ,x〉 = e〈ϑ,x〉+n〈τ,a〉 for x ∈ cl(G) imply

Qϑ+nτ (cl(G)) = e〈ϑ+nτ,a〉−�(ϑ+nτ)
∫

cl(G)
e〈ϑ,x−a〉µ(dx)

→
∫

cl(G)
e〈ϑ,x〉−�G(ϑ)µ(dx) = 1

andQϑ+nτ (·|cl(G)) = Qϑ(·|cl(G)). Thus the neat convergence follows.�

PROOF OF LEMMA 7. By induction. As in the proof of Lemma 6, the
induction hypothesis assumes the assertion is true for exponential families based
on measures whose convex support has smaller dimension than that ofµ.

The assertion trivially holds ifF = cc(µ). Thus supposeF is proper face of
cc(µ) and letτ1, . . . , τm be an access sequence toF adapted to�. Let F1 be
the face of cc(µ) exposed byτ1. Then, by Lemma 3,τ1 ∈ rec(ri(�)) and the
access sequenceτ2, . . . , τm to the faceF of F1 is adapted toπF1(�). ThusF is a
πF1(�)-accessible face ofF1.

To prove that forϑ ∈ ri(�) there exists a sequence of p.m.’s inEri(�) that
converges neatly toQϑ(·|cl(F )), apply the induction hypothesis to the exponential
family EF1 based onµcl(F1) with convex coreF1, to theπF1(�)-accessible face
F of F1 and to θ = πF1(ϑ) in πF1(ri(�)) = ri(πF1(�)). It follows that some
sequenceQF1,θn in EF1 with θn ∈ πF1(ri(�)) converges neatly to the conditioning
on cl(F ) of QF1,θ , which equalsQϑ(·|cl(F )) sinceθ = πF1(ϑ). Here, on account
of θn ∈ πF1(ri(�)), the p.m.QF1,θn equalsQϑn(·|cl(F1)) for someϑn ∈ ri(�).

Since τ1 ∈ rec(ri(�)), Lemma 10 gives that the sequenceQϑn+kτ1 con-
verges neatly toQϑn(·|cl(F1)) = QF1,θn , where eachQϑn+kτ1 is in Eri(�) due
to τ1 ∈ rec(ri(�)). The last assertion and the neat convergence ofQF1,θn to
Qϑ(·|cl(F )) imply that for a suitable sequencekn → ∞, the p.m.’sQϑn+knτ1

in Eri(�) converge neatly toQϑ(·|cl(F )). �

6. Variation convergence in ext(E ). In this section Theorem 4 is proved. An
auxiliary lemma is sent forward.



CLOSURES OF EXPONENTIAL FAMILIES 599

LEMMA 11. If µ dominates a p.m. P , then:

(i) There exists a face F of cc(µ) with P(cl(F )) = 1 such that all faces G of
cc(µ) with P(cl(G)) = 1 contain F .

(ii) If P(cl(Fn)) → 1 for a sequence Fn of proper faces of cc(µ), then the face
F of (i) is proper.

PROOF. (i) The closure cs(µ) of cc(µ) has full µ-measure, hence also full
P -measure due to domination. Thus, the faceG = cc(µ) of cc(µ) satisfies
P(cl(G)) = 1. Consider any faceG with the last property and letF be a face
with that property whose dimension is smallest. Then bothµcl(G) and µcl(F )

dominateP , hence so does also the restriction ofµ to cl(F ) ∩ cl(G). By [6],
Corollary 4, this intersection has the sameµ-measure as cl(F ∩ G). Therefore,
the restriction ofµ to cl(F ∩ G) dominatesP and thusP(cl(F ∩ G)) = 1. The
minimality of the dimension ofF impliesF ⊆ G.

(ii) The proper facesFn in the hypotheses can be supposed to be exposed. Thus
let a unit vectorτn from lin(µ) exposeFn of cc(µ). Then fora ∈ ri(µ) the closed
half-space{x : 〈τn, x − a〉 ≤ 0} is disjoint with cl(Fn); thus itsP -measure is at
most 1− P(cl(Fn)). It can be assumed thatτn → τ and then, as in the proof of
Lemma 9,

{x : 〈τ, x − a〉 < 0} ⊆ ⋃
m≥1

⋂
n≥m

{x : 〈τn, x − a〉 ≤ 0}.

SinceP({x: 〈τn, x − a〉 ≤ 0}) ≤ 1− P(cl(Fn)) andP(cl(Fn)) → 1, the open half-
space on the left-hand side hasP -measure zero whenevera ∈ ri(µ). Hence, on
account ofP(cs(µ)) = 1,τ exposes a proper face of cs(µ) that has fullP -measure.
Thus, there exists a nontrivial supporting hyperplaneH of cs(µ) with µ(H) > 0.
By Lemma 1,G = H ∩ cc(µ) is a proper face of cc(µ) andµ(H \ cl(G)) = 0.
It follows thatP(cl(G)) = P(H) = 1. Hence,G contains the faceF of (i) which
implies thatF is proper. �

PROOF OF THEOREM 4. The variation limitP of p.m.’s Qn in ext(E) is
obviously dominated byµ; thus Lemma 11(i) applies to thisP . Let F be
the smallest face of cc(µ) with closure of full P -measure. The variation
convergenceQn → P implies Qn(cl(F )) → P(cl(F )) = 1, and Qn ∈ EFn

implies Qn(cl(Fn)) → 1. Since Qn(cl(Fn) ∩ cl(F )) equals Qn(cl(Fn ∩ F))

by [6], Corollary 4, it follows thatQn(cl(Fn ∩ F)) → 1. Thus, again by the
variation convergence, alsoP(cl(Fn ∩ F)) → 1. If a subsequence ofF ∩ Fn

consisted of proper faces ofF , the last limit relationship would imply, by
Lemma 11(ii), applied toµcl(F ) in the role ofµ, the existence of a proper face
of F = cc(µcl(F )) with closure of fullP -measure, a contradiction to the choice
of F . This proves thatFn eventually containsF . The last inclusion implies that the
conditioningQn(·|cl(F )) of Qn ∈ EFn belongs toEF , and sinceQn(cl(F )) → 1,
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these conditionings also converge toP in variation distance. Finally, applying
Theorem 1 to the p.m.’sQn(·|cl(F )) in EF , the alternative (ii) is ruled out byF
not having proper faces with closure of fullP -measure, and it follows thatP ∈ EF .

�

REFERENCES

[1] BARNDORFF-NIELSEN, O. (1978). Information and Exponential Families in Statistical
Theory. Wiley, New York.

[2] BROWN, L. D. (1986).Fundamentals of Statistical Exponential Families. IMS Lecture Notes
Monogr. Ser. 9. Hayward, CA.

[3] CHENTSOV, N. N. (1982).Statistical Decision Rules and Optimal Inference. Amer. Math. Soc.,
Providence, RI.

[4] CSISZÁR, I. (1984). Sanov property, generalizedI-projections, and a conditional limit theorem.
Ann. Probab. 12 768–793.

[5] CSISZÁR, I. and MATÚŠ, F. (2000). Information projections revisited. InProc. 2000 IEEE
International Symposium on Information Theory 490. IEEE, New York.

[6] CSISZÁR, I. and MATÚŠ, F. (2001). Convex cores of measures onR
d . Studia Sci. Math.

Hungar. 38 177–190.
[7] CSISZÁR, I. and MATÚŠ, F. (2003). Information projections revisited.IEEE Trans. Inform.

Theory 49 1474–1490.
[8] CSISZÁR, I. and MATÚŠ, F. (2004). On information closures of exponential families:

A counterexample.IEEE Trans. Inform. Theory 50 922–924.
[9] HARREMOËS, P. (2002). The information topology. InProc. 2002 IEEE International

Symposium on Information Theory 431. IEEE, New York.
[10] HIRIART-URRUTY, J.-B. and LEMARÉCHAL, C. (2001).Fundamentals of Convex Analysis.

Springer, Berlin.
[11] LETAC, G. (1992).Lectures on Natural Exponential Families and Their Variance Functions.

Monografias de Matemática 50. Instituto de Matemática Pura e Aplicada, Rio de Janeiro,
Brazil.

[12] ROCKAFELLAR, R. T. (1970).Convex Analysis. Princeton Univ. Press.

A. RÉNYI INSTITUTE OFMATHEMATICS

HUNGARIAN ACADEMY OF SCIENCES

H-1364 BUDAPEST

P.O. BOX 127
HUNGARY

E-MAIL : csiszar@renyi.hu

INSTITUTE OFINFORMATION THEORY

AND AUTOMATION

ACADEMY OF SCIENCES OF

THE CZECH REPUBLIC

POD VODÁRENSKOU VĚŽÍ 4
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