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CLOSURES OF EXPONENTIAL FAMILIES!
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The variation distance closure of an exponential family with a convex
set of canonical parameters is described, assuming no regularity conditions.
The tools are the concepts of convex core of a measure and extension of
an exponential family, introduced previously by the authors, and a new
concept of accessible faces of a convex set. Two other closures related to
the information divergence are also characterized.

1. Introduction. Exponential families of probability measures (p.m.’s) in-
clude many of the parametric families frequently used in statistics, probability and
information theory. Their mathematical theory has been worked out to a consid-
erable extent [1-3, 11]. Although limiting considerations are important and do
appear in the literature, less attention has been paid to determining closures of
exponential families.

For families supported by a finite or countable set, closures were considered
in [1], pages 154-156, and [2], pages 191-201, respectively, the latter with
regularity conditions. In the general case, different closure concepts come into
account. Our main result, Theorem 2 in Section 3, determines the closure in
variation distance (variation closure) of a full exponential family and, more
generally, of any subfamily with a convex set of canonical parameters. Weak
closures appear much harder to describe in general, but Theorem 1 in Section 3
is a step in that direction.

Other closure concepts are based on Kullback-Leibltivergence (informa-
tion divergence or relative entropy)

if P<Q,

otherwise.

With the terminology of [7], these are theclosure and reversé-closure
(rl-closure); early work related to the latter appeared in [3]. THaéosure of a
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convex set§ of p.m.’s is relevant, for example, in large deviations theory, where
the conditional limit theorem for i.i.d. sequences on the condition that the empirical
distribution belongs t& involves the “generalizet-projection” to$ which is in
thel-closure of§; see [4]. In the context of exponential families, ttheclosure is

of major statistical interest; for example, when the likelihood function is bounded
but its maximum is not attained, a “generalized maximum likelihood estimate” can
be introduced as a p.m. that belongs torthelosure; see [7].

Formally, the variation closure @l$), respectively, thd-closure c}($) and
therl-closure ¢ (8) of a set$ of p.m.s on a given measurable space, consists
of all p.m.’s P to which there exists a sequengg, in § such that the total
variation|P — Q,|, respectively, thé-divergenceD(Q, || P) or D(P| Q,), goes
to zero a1 — oo. The Pinsker inequality? — Q|2 < 2D(P||Q) implies that
both cl; () and c}, (8) are contained in ¢[$8). For exponential families, the last
inclusion gives a good approximation tq,¢), for example, all p.m.’s in ¢(¥)
with mean belong to @l(8). This is one motivation for our study of variation
closures, in addition to intrinsic mathematical interest. Theorem 3 in Section 3
characterizes those p.m.’s in the variation closure that belong alsottio¢hasure.
Thel-closure is much easier to describe than the other closures (see Corollary 2),
in particular, full exponential families areclosed. It should be mentioned that
thel- andrl-closures are not topological closure operations because they are not
idempotent. An example of an exponential famé@ywith cly (cl; (8)) strictly
larger than i (&) is given in [8]. On the other hand, tHe andrl-closures are
sequential closures in suitable topologies; see [9].

Our attention is focused on exponential families that consist of p.mRamnd
have a canonical statistic equal to the identity mapping. Clearly, determining their
variation, |- or rl-closures, the same problems are solved for general exponential
families of p.m.’s on any measurable space, witliimensional canonical statistic,
by mapping the family to one oR? via the canonical statistic.

A crucial construction is that of the extension @t of a full exponential
family &, introduced by the authors [5, 7] based on their concept of the convex
core of a measure oR? [6]; see the definitions in Section 2. The inclusion
& C ext(€) is strict unless no nontrivial supporting hyperplane of the (common)
convex support of the p.m.’s i has positive probability under these p.m.’s, by [7],
Remark 3. By Lemma 6 below, the variation closuregaf contained in ext).

A stronger result announced in [5], the variation closedness @€ gxfollows
as Corollary 3 from Theorem 4 that deals with variation convergent sequences
in ext(&).

The inclusion ¢l(&) C ext(§) implies that if the subset ¢(&) of cl, (&) is
equal to ext¢) (e.g., if the domain of canonical parameters is the wiife
see [7], Lemma 6(ii)), then also ) = ext(&). Moreover, sinces is rl-closed
if and only if & = ext(&) ([7], Corollary 2), the last condition is necessary and
sufficient also for the variation-closednessgof
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The cases just mentioned, although frequent in practice, are of secondary
interest for our purposes. This paper is primarily devoted to the general case when
all common regularity conditions are absent, although the assumption of steepness
or even regularity (see [1], pages 116 and 117) would not lead to significant
simplifications. The typical situation we have in mind is when the p.m.§ in
have both discrete and continuous components.

2. Priminaries.

2.1. Convex sets and faces. The closure and affine hull of a s8tC R are
denoted alB) and aff B), and the relative interior [interior in the relative topology
of aff(B)] is denoted 1iB). The linear subspace & obtained by shifting affB)
to contain the origin is denoted liB). Orthogonal projections to subspaces of the
form lin(C), whereC C R? is a convex set, are often needed in the sequel; they
are denoted briefly asc rather thantjin(c).

A face of a nonempty convex s&t C R? is a nonempty convex subsgtof C
such that whenever + (1 —#)y € F for somex, y in C and O<t < 1, thenx, y
areinF. Asin [10], but unlike in [12], the empty set is not considered to be a face.
Theproper faces are those different frof and theexposed faces areC itself and
its intersections with the supporting hyperplane<ofA proper exposed facg
of C is thus represented &= C N {x: (r, x — a) = 0}, wherea € C andt € R?
is a unit vector such thdgt, x — a) < 0 for eachx € C. Obviously, there is no loss
of generality in assuming € lin(C). Such a vector exposes F in C.

2.2. Convex support and core. A measure always means a finite Borel
measure oR?. The convex support cs(i) and theconvex core cc(u) of u are
defined, respectively, as the intersection of those convex closed and convex Borel
subsets” of R? which have fullu-measurep(C) = w(R4). While the former is
a standard concept, the latter is of recent origin [6]. Let us recall from [6] the key
facts

(1) csw)=clce(n)) and cdu)=F  forfacesF of co(u),

where the restriction of a measyieto a Borel subseB of R? is denoteg.?.

Note that the convex closed set(g$ is of full u-measure, but the convex set
cc(w), though measurable by [6], Theorem 1, need not be. For brevity )liis
written instead of liics(w)) and similarly with riu) and affu).

LEMMA 1. A supporting hyperplane H of cs(u) is of positive u-measure if
andonly if F = H Ncc(uw) isnonempty. Moreover, w(H \ cl(F)) =0.

PROOF Using [6], Lemma 2(ii), F = co(u®). This and (1) give
cl(F) = cs(u'!), whence both assertions followd
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2.3. Exponential families. The termexponential family without any adjective
means below a full exponential family based on a (honzero) measom&?, with
a canonical statistic equal to the identity mapping. This faity &, consists of
the p.m.sQ, with p-densities

dQyp

@ 900 (1) 2 olo1=00)
du ’

where

A=A, 0)2 |nfRd e 1 (dx)
and the canonical parametgibelongs to dorA) = {# : A(¥) < oo}. Note thatu
is not uniquely determined by the fami&. In particular, any member & could
play the role ofu; in this paper, howevey, is regarded as given.
Clearly, if 9 € dom(A) andd — ¢ is orthogonal to liti) for somed € R?, then
alsof e dom(A) andQy = Qg. A bijective parametrization can be given as

&={Qy:0 €0},

3
where® = 0, = dom(A ) N 1IN (1) = mlin () (dOM(A ).

Here,® equals dorA) if and only if lin(u) = R¢ [when (2) is called a minimal
representation]. For the purposes below, it is essential not to require that condition
and not to requirgx to be a p.m., either.

Of main interest are subfamilies

€z ={Qy 0 € E}, ECO,

of the full family &, primarily when E is convex. In this case§z is called a
canonically convex exponential family.

The function A is known to be convex and lower semicontinuous, thus
continuous on closed segments contained in @domThe following lemma is a
minor improvement of Lemma 23.5 in [3].

LEMMA 2. Let 9, bea sequencein dom(A) that convergesto some ¢ € R?.

(i) If Qp, convergesweakly, then ¥ € dom(A) and A (9,) convergesto A(¥).
(i) If » € dom(A) and A(Y,) — A(W), then Qp, converges to Qy in
variation.

PROOF (i) If Qy, converges weakly to some p.iR, then for each continuity
setB of P,

P(B)= lim_Qy,(B)= lim exp(—A () fB eXP((J. X)) u(dx),
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where, if B is compact,

[ exwn xputdn) — [ exp, xun
B B

by dominated convergence. If algt(B) > 0, then exp— A (¢,)) converges to a
positive numbet. Hence

P(B)=c- /B e 1 (dx)

for each compact continuity sé of P and, consequently, for all Borel sefs
When B = R, it follows that ¢ = ¢e=2®), Hence,9 € dom(A) and A(%,)
converges ta\ ().

(i) Under the assumptions, thg-densities exp®¥,,x) — A(J,)) of Qy,
converge to the: density exp(d, x) — A(?)) of Qy pointwise, which is known
to imply Qy, — Qyp in variation. [

2.4. Extensions of exponential families. The restriction of to the closure of
a faceF of cc(u) is a nonzero measure by (1). The exponential family based on
this restrictionu®" is denoted ¥'. It consists of the p.m.'® . s defined as in (2)
with i andA replaced with ¥ and

Ap(®) 2 In/ e 1 (dx).
cl(F)

Obviously, doniA) € dom(A 7). The family &7 is bijectively parametrized as
eF ={0rs:9€®F),  where®r 2 dom(Ar) Nlin(F) = nr(dom(Ar)),

similarly to (3), since liiu® ") = lin(F) by (1). For eachQs € & with
© € dom(A), its conditioningQy (-] cl(F)), equal to the restrictioQg\'(F) divided
by Qs (cl(F)), belongs tog¢’. The simple fact thaQy (-| cl(F)) coincides with
the p.m.Qrg, Whered = 7p(9) is in O, is repeatedly used in the sequel.
These conditionings of the p.m.s i exhauste’ if and only if the inclusion
7r(®) € OF holds with equality.

The extension ext(&) of an exponential family¢ = &, is the union of the
families € over all facesF of cc(i). Eaché&f is called acomponent of ext(&).
A similar construction of a “boundary at infinity” & which uses faces of ¢g)
rather than of cqu) was proposed earlier [3]. Some crucial assertions on an
exponential family completed by its “boundary” were found to be erroneous, but
their analogues for egf) were found valid in [5, 7]. The reason is that @t may
be strictly larger thai® completed by its “boundary”: By [6], Lemma 11, the latter
consists of those componer&$ that correspond to the proper exposed fakes
of cc(u).
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2.5. Accessible faces. For any faceF of a convex setC C R? there exists
a chain

C=FDF,D>---DF,=F,

not necessarily unique, such thatis an exposed face df;_1, 1 <i <m. If for
every 1<i <m a unit vectorr; € lin(F;_1) exposesF; in F;_1, thenty, ..., 1,

is called amaccess sequence to the faceF of C; the access sequencefio= C is
empty. Sincer; € lin(F;_1) is orthogonal to ligF;), the vectors of any nonempty
access sequence are orthonormal.

Let C and E be two nonempty convex subsets Rf. For our main result,
where the role ofC is played by c¢w) and the role of2 is played by a convex
subset of®,,, a new concept oE-accessible faces d is suitable. This concept
involves a constraint on access sequences in terms of recession cones of projections
of ri(Z). Recall that theecession cone of a convex seE C R¥ is

reqE)={r:9+treEforalld €&, r>0}.

By [12], Theorem 8.2 and Corollary 8.3.1, (e6cE)) = reqcl(E)), and this
is a closed cone that contains (€. Now, a faceF of the convex serC is
E-accessibleif an access sequeneg, . .., 7, to F exists such that

4) 1 erednr,_, (r(8))), 1<i<m.

An access sequence 10 that satisfies (4) is calleddapted to E. It may seem
artificial that these notions depend @&nonly through its relative interior, but if

ri were omitted in (4), some later assertions would not hold; see Example 3 in
Section 3. Note that the empty sequence is trivially adapteddtitself is always

a E-accessible face af.

LEMmA 3. If E Clin(C), an access sequence 11, ..., T, t0 a proper face F
of C isadapted to E if and only if 71 € req(ri(E)) and for the face Fy of C exposed
by 71 the access sequence 7o, .. ., 7, totheface F of F1 isadapted to 7 r, (E).

PROOFE By the hypotheses C lin(C), the setr g, (ri(E)) in the condition (4)
fori =1is equal to (). In the conditions for X< i < m, the setstg,_,(ri(E))
are equal to the setsr, ,(ri(wr (E))) that appear in the analogue of (4) for
the adaptedness @3, ..., 7,, to 7, (E), since the operation ri interchanges with
orthogonal projections ([12], Theorem 6.6), and , np, =nf,_, ifi >2. O

EXAMPLE 1 (Figure 1). LetC c R2 be the convex hull of the union of the
plane H = R? x {—1} and the trianglel’ with vertices(1, 0,0) and (0, +1, 0),
and let 2 consist of those? € R® whose second coordinate is strictly between
—1 and 1. In this example&g-accessibility of the nine faces dfis discussed. The
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i

Fic. 1.

proper exposed faces 6f are H andT. Of the six nonexposed faces 6f equal
to faces ofT’, consider

F={(1,0,0)}, G={t,1-1,0:0<r<1}, S={@,r,0):¢t] <1}.

Sincek is open, the relative interiors in (4) can be ignored. Note that the recession
cone ofrc (E) = EisR x {0} x R and the recession cone®f (E) isR x {(0, 0)}.
Let

n=001, ©=(% 50, wB=(%-7%0

N

and
5,=(1,0,0).

Since re¢E) contains both—t; and r;, the facesH and T are E-accessible.
Both 71, 72, 73 and t1, 7, are access sequencesHo with corresponding chains
CODTD>GDFandC DT D F, respectively. Since réer(E)) containsr,
but notry, the access sequencg 7, is adapted tdE, whereasry, 12, 73 is not.
Due to the formerF is a E-accessible face of. On the other hand; is not
E-accessible, because the only access sequeneeto G, withchainC > T 5> G
hast; ¢ redzr (E)). Similarly, the segmens is E-accessible, but its endpoints
are not.

2.6. Partial means. When studying|-closures of exponential families, p.m.’s
that do not have a mean require special attention. The following simple concept is
useful: for any p.mP onR¢, write

M(P) = {r e R?: (1, -) is P-integrable
and define thgartial mean m(P) as the unique element of the linear sp&teP)
with

/Rd (t,x)P(dx) = (t, m(P)), T € M(P).
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Note thatM (P) =R if and only if P has a mean, in which casg P) equals the
mean.
The following lemma is well known, but usually stated in less generality.

LEMMA 4. For ¢ € dom(A) and a unit vector t such that & + 7t € dom(A)
for some ¢ > 0, the integral [ (z, x) Qy(dx) exists, either finite or —oo. This
integral equals the directional derivative of A at ¢ inthe direction .

PrROOF The directional derivative, that is, the right derivative of the function
t— A +1t1) atr =0, equals

1 . Hrx) 1
7llm/67e<ﬁ’x),u(dx).
[ e u(dx) 110 t
The ratio (¢/'*) — 1)/ decreases tdr, x) whent decreases to zero, and the
assertion follows by the monotone convergende.

The following lemma shows the relevance of partial means for exponential
families.

LEMMA 5. Thel-divergence D(Qg|| Q) of p.m.’sin & isfiniteif and only if
6 — ¥ € M(Qg), inwhich case

D(QgllQv) = (0 — 0, M(Qy)) — A(O) + A(D).

PROOF By definition,
X)=A(B)

D(QollQ9) = /I Gy Qo (dx)

X

_ /Rd O —9,x)0p(dx) — AB) + AD).

The last integral is finite if and only # — © belongs tav(Qp), in which case it
equals(® — ¥, m(Qyp)). O

This lemma also is used witl§ replaced by a componerg’ of ext(&),
combined with the obvious identity
(5)  D(PIIQ) = D(PIIQ(-|cl(F))) —In Q(Cl(F)), Peef Qcé.

3. Main results. Below, & = &, always denotes an exponential family in the

sense of Section 2.8}y with & € ® =dom(A) Nlin(w) denotes a p.m. i§ and
&z with E C ® denotes a subfamily &.

THEOREM1. If asequenceof p.m.’s Qy, with ¥, in ® converges weakly to a
p.m. P, then one of the following two alter natives takes place:
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(i) The sequence ¥, convergesto an element ¥ of ®, P = Oy and Qy, — P
even in variation distance.

(i) The norm of ¥, goesto oo, a proper exposed face G of cs(u) exists such
that P(G) =1, and the limit of any convergent subsequence of 9, /|9, || exposes
such aface of cs().

The proof is given in Section 4. It follows from Theorem 1 that the weak
convergence of a sequeng;, to someQy in & implies ¥, — ¥, see [1],
Theorem 8.3, for a direct proof. A consequence of this and Lemma 2 is stated
for reference purposes.

COROLLARY 1. For aseguence 9, in ® and ¢ € © the following assertions
are equivalent.

(i) Convergence Qy, — Qy» weakly.
(if) Convergence Qy, — Qy invariation.
(iii) Convergences 9, — ¢ and A(9,) — A(D).

COROLLARY 2. For any subset E of 0,
Eci(z)ne 2 cly(Ex) N & D¢l (8x).

When E is convex, the equalities take place.

PROOFE  The first inclusion follows from Corollary 1. For the second one, if
D(Qy,|P) — 0O, the sequenc&y, converges in variation ta; thus c|,(§z)
contains cl(€zg). Moreover, the alternative (i) holds in Theorem 1, since otherwise
D(Qy,||P) = +oo for all n. This proves tha€ contains cl(€z).

Supposingg is convex, lety € cl(E) N ® and letr be a unit vector such that
v +tt belongs to 1{E) for somer > 0. It suffices to show thab(Qy, [|Qs) — 0
for ¥, = ¥ + t,7 with 7, decreasing to zero. By Lemma#dg M(Qy,) and then
Lemma 5 implies

D(Qy,1109) = tu(r, M(Qy,)) — AWn) + AD).

SinceA(¥,) — A(?) and the sequence, m(Qy,)) is decreasing by Lemma 4,
the claim follows. O

The following technical assertion, which is crucial for Theorem 2, is proved in
Section 5. The notion oE-accessibility enters the scene.

LEMMA 6. If asequence of p.m.’sin a canonically convex exponential family
&g converges in variation distance to a p.m. P, then there exists a E-accessible
face F of cc(u) such that P belongsto &7
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Lemma 6 enables us to conclude that the variation closure of a canonically
convex family &z is contained in the union of those componeé&fs of ext(&)
which correspond to th&-accessible faceB of cc(i). For our main result, still
another tool is needed, namely a special convergence concept: A sequence of p.m.’s
0, is said to convergreatly to a p.m.P if the P-dominated component @,, has
constantP-densityc, andc, — 1 or, equivalently, ifQ, (-] c(P)) equalsP when
defined andQ,(cs(P)) — 1. Obviously, the neat convergence implies variation
convergence, and evehconvergence, due tb(P||Q,) = —Inc,.

LEMMA 7. For a convex subset E of ® and E-accessible face F of cc(u),
each p.m. Qr g With 6 € nr(ri(8)) isthe neat limit of a sequence from &j(z).

This lemma is proved in Section 5.

THEOREM 2. The variation closure of a canonically convex exponential
family &z is

cly(éz) = J{Qr.o:0 ecl(mr(E)) NOF},

where the union runs over all E-accessible faces F of cc(w).

PROOF SupposeP is the limit in variation distance of a sequeng@g in €z.
By Lemma 6,P € &F for a E-accessible facé of co(). Then P(cl(F)) =1
implies Q,,(cl(F)) — 1, and thus the sequene, (| cl(F)) in &F also converges
to P in variation distance. These conditioned p.m.s are of faPng, with
0, € mr(E); thus Corollary 2 implies? = Qr ¢ for somef in cl(zr(E)) N OF.
This proves the inclusiog.

Conversely, ifF is a £-accessible face of ¢a), Lemma 7 implies that ¢{€z)
contains the p.m.sQr g with 6 € wr(ri(€)). Thus, by Corollary 2 and the
convexity of g (ri(8)),

cly(€z) 2 {QF’Q 0 e Cl(nF(rI(E))) N ®F}-

Since ri interchanges with projections, the inclusioifollows. [

EXxAMPLE 2. Using the notation of Example 1, let be the sum of the
measure that gives mass 1 to each vertek ahd of the p.m. on the plané with
density exp—xf) exp(—|x2|) w.r.t. the Lebesgue measure &ih Then cgu) = C
and ®, = dom(A,) coincides withE of Example 1, defined by restricting the
second coordinate to be betweed and 1. By Theorem 2, the variation closure
of the full family & = &,, intersects five out of the nine components of(&xt In
addition to the full familiesg, €% and&”, the latter consisting of the point mass
at (1,0, 0), cl,(&) contains also some p.m.’s fro8Y and &3. Note that cl(&)
intersectss ¥ but not&¢, althoughF c G.
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Part (ii) of the following Theorem 3 gives a necessary and sufficient condition
for a p.m. P in cl,(&z) to belong also to ¢l(&z), even wheng C © is not
convex. WherE is convex, this condition can be effectively verified by Theorem 2.
Part (iii) provides a simple sufficient condition which has a direct proof. A trivial
consequence of Theorem 3 is that @z) contains all p.m.'s in ¢l(z) that have
a mean.

THEOREM 3. (i) Suppose a sequence Qy,, ¥, € ©, of pm.’sin & converges
in variation to a pm. P = Qry, 6 € O, in a component &F of ext(&).
Then D(P| Qy,) goes to zero if it is eventually finite, which is equivalent to
€60 + M(P) eventually.

(i) Ap.m. P = QFp belongs to the rl-closure of a subfamily &z of & if and
only if it belongs to the variation closure of Ezn@-+m(p))-

(i) The rl-closure of a canonically convex exponential family &z contains
all p.m.’s P in the variation closure of &z that satisfy D(P| Q) < oo for some
0 € &(g)-

PrROOF. (i) Consider first the case whedf = &; that is, P = Qy for some
? € ®. Thend, — ¢ andA(¥,) — A () by Corollary 1. Thus, the assertion for
this case follows by Lemma 5.

WhenF is a proper face of @), note that the variation convergence assump-
tion impliesQy, (cl(F)) — P(cl(F)) = 1. Hence, (5) shows thd@(P| Qy,) goes
to zero if and only ifD(P| Oy, (-| cl(F))) does. Moreovey, (-| cl(F)), equal to
QOF.p, € &t with 6, = ¢ (99,), also converges in variation #. It follows, apply-
ing the result in the first case ® in the role ofg, that D(P| Q,) — 0O if it is
eventually finite. Also by (5), the finiteness Di(P || Qy,) is equivalent to that of
D(P|Qy,(-|cl(F))) and, therefore, by Lemma 5, #o-6,, € M(P). Sinced,, — 6,
is orthogonal to liF), it belongs tav (P); thus the last condition is equivalent to
Uy, €0 +M(P).

(i) This follows directly from (i).

(iii) SupposeP = Qry € cl,(€z), whereF is a E-accessible face of ¢a)
and 6 belongs to dlrr(E)) N ©F; see Theorem 2. ID(P| Qy,) is finite for
somedyg € ri(8), then as in the proof of part (i} (P Qr,e,) is also finite, where
0o = mr(¥9) and Qr.g, = Qp,(-|Cl(F)). Then forb, = 1,00 + (1 — #,)0 with
ta 4 0, D(P||QF.p,) is also finite by Lemma 5 an@r s, — QF in variation
by Corollary 1. It follows by part (i) thaD(P|QF,g,) — O.

Sincebp € np(ri(E)) =ri(rrp(E)) andé e cl(mp(B)) imply 6, € ri(mr(E)),
Lemma 7 gives that eac@ r ¢, is the neat limit of a sequence &jz). Thus to
eachy, there exists), e ri(E) such thatQr g, = Qyp, (-|cl(F)) andQy, (CI(F)) is
arbitrarily close to 1. From this anB(P| QF.,) — 0 the claimD(P| Qy,) — 0
follows by (5). O

The following example illustrates a use of Theorem 3(ii)) and Theorem 2
when deciding whether a p.m. belongs to thelosure of a canonically convex
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exponential family. It also illustrates why(E) rather thangE appears in the
definition (4) of E-accessibility and in Lemma 7.

EXAMPLE 3 (Figure 2). Letu be the measure oR® equal to the sum of
the point mass at—1, 0, 0), the imageP under: — (0,7, 0) of the p.m. with
densityj’—z’ on the half-liner > 1 and the image unden— (z, 12, —1) of the p.m.

with density% on the same half-line. Then

o0 dt
A(Y) :In[exp(—l‘}l) +/ exp(dat) —
1 t
(6) -~ 2d
5. 2dt
+ eXIO(—ﬁs)/ exp(i1r + vt )—3], U = (91, U2, 93),
1 t

dom(A) is given by < 0 ori2 =0, 1 < 0, and® = dom(A). Considerz = ®,
thusé&z = &, and the faceF = {(0,¢,0):z > 1} of cc(u). This F is not exposed
and the unique access sequence to itjis= (0,0,1) and 2 = (1,0,0). This
access sequence is adaptedztdut it would not be ifE rather than &) had
been used in the definition (4). Sineg (E) = {(0,7,0):t <0} = ®f and F is
Z-accessible, Theorem 2 gives ti&dt < cl, (). In particular, ¢} (&) containsP
that equal) r ¢ with 6 = (0, 0, 0) € 7 (E). On the other hand, as

M(P)=Rx {0} xR,  EN(6+M(P))={(®1,0,093):01 <0}

and the unique access sequencé’ts not adapted to the latter se?,is not in
the variation closure ofznp-+mp)) by Theorem 2. ConsequentB ¢ cly (&) by
Theorem 3(ii). ThusP cannot be the neat limit of any sequenceSinshowing
that Lemma 7 is not valid when(i®) is replaced byE.

Our final results address variation convergence of arbitrary sequencesgéin. ext

THEOREM 4. If a sequence Q, in ext(&) converges in variation distance to
a p.m. P, then P belongs to a component & of ext(&), for sufficiently large
n the face F, of co(u) with Q,, € &€ contains F, and the conditioned p.m.’s
0, (-|cl(F)) belong to &7 and also converge to P in variation distance.
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Theorem 4 is proved in Section 6.

COROLLARY 3. Theextension ext(&) of an exponential family & isvariation-
closed.

Corollary 3 strengthens [7], Theorem 2, on theclosedness of e&). Note
that a family & completed by its “boundary at infinity” in the sense of [3] is
not necessarilyl-closed, let alone variation-closed, contrary to [3], Lemma 23.7;
see [6], Example 3.

COROLLARY 4. If asequence Q, in ext(&) converges in variation distance
toap.m. P and D(P| Q) iseventually finite, then D(P| Q,) — 0.

The eventual finiteness takes place, in particulaP, ffas a mean.

PrROOF OF COROLLARY 4. By Theorem 4, the variation convergence of
0, € €M to P implies P € €F, F C F, eventually andQ,,(-|cl(F)) — P in
variation. Hence, the proof can be completed similarly to that of Theorem 3(i)
using (5) with&f» playing the role o. [

4. Weak convergence in exponential families. In this section Theorem 1 is
proved. For its second alternative, a corollary of the following lemma is needed.
Note that

p(a) Zinf{lly —all:y € aff(u) \ cs(w)}
is obviously positive for any elementof ri(w).
LEMMA 8. Fora eri(u) and 0 < s < p(a) there exists a positive constant C
such that the inequality
@) (9,b —a) = rl|o]| — Ce*IPI[r|9)e 1 4 1]
holdsfor all 0 < r <5, 9 € ® and b € R? satisfying (19, b) = [a (¥, x) Q (dx).

In particular, (7) holds wheh is the mean oD y. What actually is used is the
following consequence of Lemma 8.

COROLLARY 5. Let ¢, be a sequence in ® such that each p.m. O, has a
mean b,. If ||9,|| = oo, &,/|9:]| — t and b, — b, then (t,b —a) > p(a) for
eacha eri(un).

PROOF Fora eri(u) and O<r < s < p(a), (7) implies

(9n, by — a) = |0 ]l — C[rl19ul €xp(—(s — )19 ll) + expl=s[aD].
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Dividing both sides by, || and lettingn — oo, it follows that(z, b — a) > r for
al0<r<s<pa. O

For the proof of Lemma 8 the following auxiliary lemma, a simple refinement
of known assertions (see [3], Lemma 21.8, and [11], proof of Theorem 3.1), is
needed. Denote

Ag’sé{xeRd:(ﬂ,x—a)Zslll‘}ll}, B,aeR? s >0,

which is a closed half-space of distanc&om a when® # 0.

LEMMA 9. Ifaeri(u) and0 < s < p(a), then
Ca,s ZInf{(A] )19 € lin(u))
is positive and
(8) A@) = (D,a) — sl = Incqs, ¥ elin(p).

PROOF Let u(A.%) | cq s fOr a sequencé, in lin(x) that can be supposed
to consist of unit vectors converging to somec lin(x). Eachx € RY with
(t,x —a) > s belongs toAZ‘f‘s eventually; thus the open half-space given by the
last inequality is covered by the union over allof the intersection§),-,, Alr.

Since theu-measure of the half-space is positive due ta p(a), one of these
intersections has positiye-measure. Thus,, ; > 0. Finally, the inequalities

A (0.a) =fRde<’9’x‘“>/L(dx) z/Aﬁ " u(dx) = W (Al )

a,s

are valid for anyy € lin(u) and imply (8). O

PROOF OFLEMMA 8. AbbreviateA’ , to A and abbreviate its complement
to B. Then

W.b—a)= [ 0.x-a)Qo@n) = [ (9.5 - a0y +71210s(4)
R4 B
and, in turn,
0.0 —a)=rl9l = [ [9.x = a) = r1211Qs (@)
B
= =0 [ (9, x — a) = 119 1el* ().
B

Sincere! > —1 for eachr € R ande”*~4 < ¢"I?ll for x € B, the last integral is
bounded below by

—[14r o1 P u(B).
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It follows that
&, b—a)—r|d] > _e(ﬁ,a>—A(l9)+S||l9||M(Rd) s [r||19||er”ﬁ” + l].

This completes the proof on account of (8). [The constim (7) can be chosen
asu(RY)/cqs] O

PROOF OF THEOREM 1. Let a sequence of p.m.®y, with ¥, in ® =
dom(A) Nlin(w) converge weakly to a p.nP. Note thatP (cs(u)) = 1 because
Q(csu)) =1 foreveryQ € €.

In the case when the sequentgis bounded, let be the limit of an arbitrary
convergent subsequence. By Lemma 2(i), the weak convergengg ohlong
this subsequence impligs e dom(A), and since clearly € lin(w), alsod € ©.
Moreover, P = Qy by Lemma 2, and since the parametrization (3)&ofis
bijective, it follows that each convergent subsequencé,ohas the same limit.
Thus ¢, converges ta?. Applying Lemma 2,A(9,) — A(¥) follows from the
weak convergence @y, by (i), andQy, — P in variation by (ii).

In the case whetj#, || — oo, assume with no loss of generality that/ |9, ||
converges to some, clearly in lin(w). Suppose first that ¢g) is compact. Then
the meanb, of Oy, exists and converges to the meamf P. By Corollary 5,
(t,b —a) > p(a) for eacha € ri(n) and thus(z, x — b) < 0 for eachx € c(u).
Since obviously € cs(w), it follows thatH, = {x: (t, x — b) = 0} is a supporting
hyperplane of agt), andG = H, Nc(w) is a proper face of ¢g), exposed byt .
ThenP(cs(n)) = 1 impliesP(G) = P(Hp) and this equals 1 because the méan
of P belongs toH,,.

Turning to the situation when ¢g) is not compact, there exists a continuity
setB of P such thatP(B) > 0 and lin(i.?) = lin(). Then the conditioned p.m.’s
Qys, (-|B) belong to the exponential family based pif, the parameters,, in
® = ©, belong also to®,» and Qy, (-|B) converges weakly t(:|B). If, in
addition, B is compact, the® (-| B) has a meah and the result proved above gives
that H,, is a nontrivial supporting hyperplane of(g). Taking another compact
continuity setC of P with C 2 B, let ¢ be the mean ofP(-|C) and letH, be
the corresponding supporting hyperplane ofu&9. Since P(H,|B) = 1 and
P(H.|C) = 1 together withC 2 B imply P(H.|B) = 1, the parallel hyperplanes
H;, and H, coincide. This proves thai, is a nontrivial supporting hyperplane of
cs(u©) satisfying P(H,|C) = 1 for those compact continuity sefsof P which
containB. ThenP (Hp) = 1 andH, is a nontrivial supporting hyperplane to(as,
as well, because eaohe ri() belongs to cg.€) for someC as above. Thus,
G = H, NcY(u) is a proper face of ¢g) exposed by and P(G) = 1, the same
conclusions as when @s) was compact.

Finally, ¢, cannot have both a convergent subsequence and another subse-
guence with norms tending to infinity. Indeed, by the above arguments, the for-
mer impliesP € & and the latter implies?(G) = 1 for a proper face of ¢g),

a contradiction. [J
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5. Proofsof Lemmas6 and 7.

PROOF OFLEMMA 6. By induction on the dimension of @s). The case of
zero dimension is trivial. The induction hypothesis assumes the assertion is true for
canonically convex exponential families based on measures whose convex support
has smaller dimension than that of the giyen

Given Qy, with 9, € E converging in variation distance 1, if the alternative
(i) in Theorem 1 takes place, theh e &F holds with F = cc(u), obviously a
E-accessible face of ¢a). Otherwise, by Theorem 1(ii)}®,|| — +oco and the
limit 1 of any convergent subsequence ®f/|%,| exposes a proper fac@
of cs(u) with P(G) = 1. Note thaty, € ® C lin(u) implies 71 € lin(w). The
supporting hyperplané? = {x:(r1,x —a) = 0} that containsG has positive
u-measure, since?(H) = P(G) = 1 and u dominates the variation limitP
of the p.ms Qyp,. It follows by Lemma 1 thatF; = H N cc(n) is a face
of cc(u), clearly exposed byry, and w(H \ cl(F1)) = 0. Thus P(H) =1
implies P(cl(F1)) = 1. By the variation convergeno@y, — P, it follows that
0y, (cl(F1)) — 1 and the conditioned p.m.8y, (-| cl(F1)) also converge t& in
variation distance. These p.m.’s belong&b6' and thus can be written aBry.6,
with 6, =, (9,) € mr, (E). Hence, by the induction hypothesis applied to the
canonically convex exponential family

[OF0c€M:0enr(B)],

their variation limit P belongs to&€” for a face F of cc(u®¥v) = Fy, which

is wr, (E)-accessible, that is, an access sequemnce. ., t, to the faceF of

Fy is adapted tarr, (E). Sincer; is the limit of a convergent subsequence of
/19| with ¢, € E, it belongs to re@i(E)) by [12], Theorem 8.2. This and the
adaptedness ab, . .., 7, to 7x, (E) imply by Lemma 3 that the access sequence
11, ..., Ty t0 the faceF of cc(w) is adapted t&€. O

The following simple auxiliary assertion resembles [3], Lemma 21.7, and [7],
Lemmas 6 and 7(i).

LEMmA 10. If v exposes aface G of cc(u), then t belongs to the recession
cone of dom(A,) and for every ¢ € dom(A ), the sequence Qy4,. CONverges
neatly to Qy (-| cl(G)) € &°.

PROOF Sincer exposess, (1, x) < (t,a) for all x € cc(u) anda € G, with
equality if and only ifx € G. Then, fort > 0 the functione?+7¥) of x e cs()
is bounded above by/?*) . ¢!(7-4) This implies that + ¢t € dom(A ) whenever
¥ e dom(A ) ands > 0, provingr € readom(A,,)).
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Knowing from Lemma 1 that (cl(G)) equals the.-measure of the supporting
hyperplaned = {x: (r,x —a) =0} with a € G, we have for any € dom(A )

Ap(® +nt) — (¥ +nt,a)

= In[/Rd e<’9+"f’x_“>ﬂ(dx)]

= In[/ X9 | (dx) + e<l9+m’x_">,u(dx)}.
cl(G)

CS(u)\H
Whenn tends to infinity,A (9 +nt) — (9 +nt, a) decreases td g () — (9, a),
since the integral over ¢g8) \ H decreases to zero by dominated convergence.
This fact ande?+77:%) = £{X)41(t.0) for x € cl(G) imply

Qe (Cl(G)) = eI ATROTID | e ()
[of

N em’x)_AG(l?),u(dx) =1
cl(G)

and Qy 1, (-] cl(G)) = Oy (-] cl(G)). Thus the neat convergence follows.]

PROOF OF LEMMA 7. By induction. As in the proof of Lemma 6, the
induction hypothesis assumes the assertion is true for exponential families based
on measures whose convex support has smaller dimension than that of

The assertion trivially holds i# = cc(u). Thus supposé is proper face of
cc(w) and letry, ..., 1, be an access sequence Koadapted to=. Let F1 be
the face of c€u) exposed byri. Then, by Lemma 3z; € redri(E)) and the
access sequenesg, ..., t, to the faceF of Fy is adapted torr, (E). ThusF is a
nr, (E)-accessible face afy.

To prove that ford € ri(E) there exists a sequence of p.m.s8pg that
converges neatly t@ (-| cl(F)), apply the induction hypothesis to the exponential
family &1 based oV with convex coreFy, to therr, (E)-accessible face
F of Fy and 100 = g (9) in mp (ri(E)) = ri(ng (E)). It follows that some
sequenc&r, g, in ef1 with 9, € r, (r(E)) converges neatly to the conditioning
on cl(F) of QF, ¢, which equalQy (-| cl(F)) sinced = wf, (). Here, on account
of 6, € mp, (ri(E)), the p.m.QF, 4, €qualsQy, (-| cl(F1)) for somed, eri(Z).

Since 11 € reqri(8)), Lemma 10 gives that the sequen¢d, i, con-
verges neatly taQy, (-|cl(F1)) = QF,.4,, Where eachQy, k-, iS in &gy due
to ty ereqri(8)). The last assertion and the neat convergencalefs, to
Qy(-|cl(F)) imply that for a suitable sequendg — oo, the p.m.sQy, 1k,
in &ri(z) converge neatly t@y (-|cl(F)). O

6. Variation convergencein ext(&). In this section Theorem 4 is proved. An
auxiliary lemma is sent forward.
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LEMMA 11. If u dominatesap.m. P, then:

(i) Thereexistsaface F of cc(u) with P(cl(F)) = 1 such that all faces G of
cc(w) with P(cl(G)) = 1 contain F.

(i) If P(cl(F,)) — 1for asequence F, of proper faces of cc(u), then the face
F of (i) isproper.

PrRooOF (i) The closure c§:) of cc(u) has full u-measure, hence also full
P-measure due to domination. Thus, the faGe= cc(u) of cc(u) satisfies
P(cl(G)) = 1. Consider any fac& with the last property and leF be a face
with that property whose dimension is smallest. Then hoth® and &
dominate P, hence so does also the restrictiongofto cl(F) N cl(G). By [6],
Corollary 4, this intersection has the sameneasure as ¢F N G). Therefore,
the restriction ofu to cl(F N G) dominatesP and thusP(cl(F N G)) = 1. The
minimality of the dimension of impliesF C G.

(ii) The proper faced, in the hypotheses can be supposed to be exposed. Thus
let a unit vectorr, from lin(u) exposer, of cc(w). Then fora € ri(u) the closed
half-space{x : (r,, x —a) < 0} is disjoint with ckF},); thus its P-measure is at
most 1— P(cl(F,)). It can be assumed that — t and then, as in the proof of
Lemma 9,

xi(r,x—a)<0)c | () {xi(m.x —a) <O}
m>1n>m

SinceP ({x:(1,, x —a) <0}) <1— P(cl(F,)) andP(cl(F,)) — 1, the open half-
space on the left-hand side h&smeasure zero whenevere ri(i). Hence, on
account ofP (cs()) = 1, T exposes a proper face of(gg that has fullP-measure.
Thus, there exists a nontrivial supporting hyperpl&hef cs(.) with w(H) > 0.
By Lemma 1,G = H N cc(w) is a proper face of dg) and u(H \ cl(G)) = 0.
It follows that P (cl(G)) = P(H) = 1. Hence G contains the facé" of (i) which
implies thatF is proper. O

PROOF OF THEOREM 4. The variation limitP of p.m.s Q,, in ext(&) is
obviously dominated byu; thus Lemma 11(i) applies to thi®. Let F be
the smallest face of €m) with closure of full P-measure. The variation
convergenceQ, — P implies Q,(cl(F)) — P(cl(F)) =1, and Q, € &f»
implies Q, (cl(F,)) — 1. Since Q,(cl(F,) N cl(F)) equals O, (cl(F, N F))
by [6], Corollary 4, it follows thatQ,(cl(F, N F)) — 1. Thus, again by the
variation convergence, alsB(cl(F, N F)) — 1. If a subsequence of N F,
consisted of proper faces af, the last limit relationship would imply, by
Lemma 11(ii), applied tq:¢¥) in the role ofu, the existence of a proper face
of F =cc(u) with closure of full P-measure, a contradiction to the choice
of F. This proves thaf,, eventually containg’. The last inclusion implies that the
conditioningQ,, (-| cl(F)) of 0, € &f» belongs tos, and sinceQ,, (cl(F)) — 1,
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these conditionings also converge Boin variation distance. Finally, applying
Theorem 1 to the p.m.®,(-| cl(F)) in &7, the alternative (ii) is ruled out by
not having proper faces with closure of fllkmeasure, and it follows thadt € &7 .

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
9]
(10]

(11]

O
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