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Consider a (possibly infinite) exchangeable sequeXce {X,:1 <
n < N}, whereN € NU {oo}, with values in a Borel spadei, +), and note
Xn=(X1,..., Xn). We say thaX is Hoeffding decomposablg for eachn,
every square integrable, centered and symmetric statistic bas¥g ean
be written as an mhogonal sum ofn U-statistics with degenerated and
symmetric kernels of increasing order. The only two examples of Hoeffding
decomposable sequences studied inliteeature are i.i.d. random variables
and extractions without replacement from a finite population. In the first
part of the paper we establish a necessary and sufficient condition for
an exchangeable sequence to be Hoeffding decomposable, that is, called
weak independencéNe show that not every exchangeable sequence is
weakly independent, and, therefore, that not every exchangeable sequence
is Hoeffding decomposable. In the second part we apply our results to a
class of exchangeable and weakly independent random ve)éﬁﬁr‘é) =
(X(l""c),,..,X,(,“’c)) whose law is characterized by a positive and finite
measurex(-) on A and by a real constamt For instance, it =0, Xﬁ,‘”) is
a vector of i.i.d. random variables with lam(-) /a(A); if A is finite,«(-) is
integer valued and = —1, X,(f"c) represents the first extractions without
replacement from a finite population;df> 0, Xf,“’c) consists of the first
instants of a generalized Pdlya urn sequence. For every choioge)andc,
the Hoeffding-ANOVA decomposition of a symmetric and square integrable
statisticT(Xﬁ,“’C)) is explicitly computed in terms of linear combinations of
well chosen conditional expectations®f Our formulae generalize and unify
the classic results of Hoeffdinghfin. Math. Statist19 (1948) 293-325] for
i.i.d. variables, Zhao and CheAdta Math. Appl. Sinic® (1990) 263-272]
and Bloznelis and Goétzé\hn. Statist29 (2001) 353—-365 andnn. Probab.
30 (2002) 1238-1265] for finite population statistics. Applications are given
to construct infinite “weak urn sequess” and to characterize the covariance
of symmetric statistics of generalized urn sequences.

1. Introduction. ForanyN € NU {+oc}, consider a collectioX = {X,,:1 <
n < N} of exchangeable random observations, whose components take values in
some Borel spacet, ) and are defined on a suitable probability spgees , P)
[the reader is referred to Aldous (1983) for any unexplained notion concerning
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exchangeability]. For ¥ n < N andg > 0, we writeX,, andL9(X,,), respectively,

for the vector(X4, ..., X,,) and for the class of real-valued functiondl$X,)

such thatE|T|? < 4+o00. Roughly speaking, we say that the sequeiceas
Hoeffding decomposabl@r Hoeffding-ANOVA decomposable) if, for eveny,

any centered and symmetrit € L(X,) can be uniquely represented as an
Lz-orthogonal sum ofr U-statistics based oK,,, sayTi, ..., T,, such that each

T; has a (completely) degenerated symmetric kernel of oidén particular,

if X is Hoeffding decomposable, for eaghthe covariance between symmetric
statistics based oiX,, can be represented as a sum of covariances between
degenerated/-statistics of the same order. The problem of writing the explicit
Hoeffding-ANOVA decomposition of a given random variable is usually adressed
to characterize the covariance and the consequent asymptotic behavior of such
symmetric functionals of the vectoX,, as nondegeneratel -statistics or
jackknife estimators [see Koroljuk and Borovskich (1994) and Serfling (1980) for
a survey], as well a&’-processes [see, e.g., Arcones and Giné (1993)]. However,
it has been completely solved in only two cases: whkeis a sequence of i.i.d.
random variables [as first proved in Hoeffding (1948), see, e.g., Hajek (1968),
Efron and Stein (1981), Karlin and Rinott (1982), Takemura (1983), Vitale (1990),
Bentkus, Gotze and van Zwet (1997) and the references therein], andXvisen

a collection of N — 1 extractions without replacement from a finite population
[see Zhao and Chen (1990) and Bloznelis and Goétze (2001, 2002)], and in both
instances, the degeneraté&dstatistics7; turn out to be linear combinations of
well chosen conditional expectations®f

The aim of this paper is twofold.

On the one hand, we shall establish a necessary and sufficient condition for a
general exchangeable sequence to be Hoeffding decomposable. Our main result
states, indeed, that is Hoeffding decomposable if, and only X is composed
of weakly independentandom variables. The notion of weak independence is
introduced here for the first time, and will be formally explored in Section 4.
To capture the idea of weak independence, supposg X1, Xo, X3), then, X is
weakly independent if, and only if, the following implication holds:

E(¢(X1,X2)|X1)=0 asP — E(¢(X1,X2)|X3)=0 as.pP,

whereg is an arbitrary symmetric kernel such thifip (X2)2] < +oo. We will see
that not every exchangeable sequence is weakly independent, and, therefore, that
not every exchangeable sequence is Hoeffding decomposable.

On the other hand, we will apply the above results to explicitly calculate,
for every n, the Hoeffding-ANOVA decomposition of a general, symmetric
T € L%(X,), whenX is a generalized urn sequence (GUS), a notion that will be in-
troduced in Section 5. As discussed below, the family of GUS contains exclusively
exchangeable sequences; examples are i.i.d. random variables, extractions without
replacement from a finite population, as wellgeneralized P6lya urn schemes
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[such as the ones introduced in Ferguson (1973) and Blackwell and MacQueen
(2973)]. Consequently, our formulae will extend and unify the classic results about
ANOVA decompositions for i.i.d. variables and finite population statistics, and will
show that exchangeability is quite a natural framework for studying ANOVA-type
decompositions of symmetric statistics. Note, however, that exchangeability is not
a necessary condition for a random sequence to be Hoeffding decomposable, see,
for example, Karlin and Rinott (1982), Friedrich (1989) and Alberink and Bentkus
(1999), where the authors study the case of independent but not identically dis-
tributed random variables. In a companion paper [see Peccati (2002a), but also
Peccati (2002b, 2003)], we apply our results concerning generalized Polya urns
to obtain a “chaotic decomposition” of the space of square integrable functionals
of a Dirichlet—Ferguson process [see, e.g., Ferguson (1973)] defined on a Polish
space(A, A).

The paper is organized as follows: in Section 2 we introduce some notation;
in Section 3 we define the notion bfoeffding spaceand establish some useful
results about exchangeable sequences and (symmgtstatistics; Section 4 is
devoted to the relations between Hoeffding decomposability and weak indepen-
dence; in Section 5 we prove our main theorems about GUS, whereas Section 6 is
devoted to further examples, refinements and applications.

Part of the results of this paper have been announced in Peccati (2003).

2. Basicnotation. Fixn > 1. Foranym €{0,1,...,n}, we define
Va(m) = {k(m) =(ky,....kn): 1<k <--- <k, <n}
with the conventiork ) := 0 andV,,(0) = {0}. We also set

Voo (m) = | Va(m).
n=m
Forn>m > 1, I(m) =(1,...,1p) € Voo(m) andk(n) = (k1,..., k) € Voo(n),
lim) A K@y stands for the class

{li:l; =kjforsomej=1,...,n}

written as an element of . (r), wherer := Cardl,) A k,)}. Analogously, for
anyn,m >0, K \ lgn) Will indicate the setk;:k; #[; Vi =1,..., m} written
as an element of the clasg,(n — r). Again, givenk,) € V(n) and a vector
Ny = (1, ..., hw), BY Ny C Ky we will mean thah,,) € Vo (m), and that for
everyi e {1,...,m}, there existg € {1, ..., n} such thak; = h;.

As in the Introduction, we now fi%y € NU{+4o0} and consider an exchangeable
sequencX = {X,:1 <n < N} composed of random variables with values in the
Borel spacq A, 4). By exchangeability we mean that the law Xfis invariant
under finite permutations of the index $et 1 < n < N}. More to the point, when
N < +o0, X will always satisfy by convention the following:
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ASSUMPTION A. When N is finite, the vectorX = (X1,..., Xy_1) is
composed of the firstv — 1 elements of a finite exchangeable sequence
(X1,..., Xon-2).

In the terminology of Aldous (1983), Assumption A implies th&g, ..., Xy_1)
is a AN — 1)-extendibleexchangeable sequence. [We recall that, according
to Aldous (1983), for 2< M < +o00, an exchangeable vecto¥, ..., Yy) is
said to be(M + k)-extendible § > 1) if there exists an exchangeable vector
(Z1, ..., Zy+i) such that

|
(Y1, Yo) 2(Z1, .. Z).

Of course, not every exchangeable vector is extendible.] This point will play an
important role in the next section. Recall thaiif= 400, and, thereforeX is an
infinite exchangeable sequence, de Finetti's theorem [see Aldous (1983)] implies
thatX is amixtureof i.i.d. sequences.

Forany 1< n < N, we define

Xp=X1,..., X)),
Xo=0
and, for any: > 0 and every ) € Voo (n), we write
X = Xjp . Xj,)-

Now fix 1 <n < N, and consider a symmetric and measurable funcfion
on A" such thatT (X,) € L(X,). Then, exchangeability implies that for every
0 <r <m <n, there exists a measurable function

[T1),: A™ > %

with the following properties: (a) for every,) € Voo(n) and i) € Voo(m)
satisfying Cari;,) A j)} =r, one has

1) E[T(Xj(n))lxi(m)] = [T]}gl’:?’n(xi(m)Aj(n)’ Xi(m)\j(n)) a.s.p;
(b) for any fixed(as, ..., a,) € A", the application
(ar—&-l, ey am) = [T],(Zzn (a17 N N L P am)
is symmetric; (c) for any fixeda, 11, ..., a,) € A", the application
(a1,...,ar) > [T](’) (a1, ooy Ay Aryd, - A)

is symmetric. We will denote byT " m the canonical symmetrization {)T]S,’}n,
that is,

(Tl (@, ... am) = — Z[ 19 (@ @y, - drgm)
) B
:<V:l) Z [T ]ygn(al(/)’ ~-vm)\j(r))’

jo) €V (r)
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whereg , = (ajy,...,a;,), for everyr < m and everyj) € V;,(r), andx runs
over all permutations of the sét, ..., m).

3. Hoeffding spaces associated to exchangeable sequences.

3.1. Hoeffding spaces.Let the previous notation and assumptions prevail
throughout this section. For a certain<ln < N, we introduce the following
notation. Se/p =N and, fori =1, ..., n,

. —1.2(X,)
Ui(Xn) = V8T (Xj,) 1 T(Xj)) € L2(Xn). i) € Va ()} ,

where v.s{B} indicates the vector space generatedhwand eventually
Hp = Uy,
Hi(X,) =Ui(X) NUa(X)t, i=1....m,

where U;_1(X,)* denotes, for every, the orthogonal otU;_1(X,) in L2(X,)

[the reader is referred, e.g., to Dudley (1989) for any unexplained notion concern-
ing Hilbert spaces]. We also sef(xn) to be the subspace @f(X,) composed

of symmetric functionals of the vectot, and eventually, foi =1, ..., n,

SUg= SHp =N,
L2(Xp)

SUiXn) =vsqT:T = 3 (X)), ¢(Xi) € LX) :
Jo €V (@)

SH;(X,) = SU; (X)) N SU;_1(Xp) ™,

where, in the last formula, the orthogonal is takeann{X,,).

We define{H;(X,):i =1,...,n} and{SH;(X,):i =1,...,n} to be respec-
tively the collection ofHoeffding spaceand symmetric Hoeffding spacesso-
ciated toX,. It is immediate that the clads; (X,,) represents, for a fixed< n,
the span of those functionals ¥f, that dependit mostoni components of the
vectorX,,, and that theH; (X,,)'s are obtained as a Gram-Schmidt orthogonaliza-
tion [see Dudley (1989)] of the increasing sequefi¢gX,,)}. On the other hand,
SU; (X,,) is the subspace df; (X,) generated by/-statistics, based oX,,, with
symmetric and square integrable kernels of o¥der

GivenT e L2(X,), for everyi =0, ..., n, we will use the symbols

[T, H;i1(X,) and =[T,SH;1(X,)

to indicate the projection of" on H;(X,) and SH;(X,). Of course, for every
T € L%(Xy),

T =E(T)+ ) #[T, H](X,)
i=1
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and for everyl' € L2(X,,),

T=E(T)+ Y x[T, SH](Xy).
i=1

The rest of the paper is essentially devoted to the characterization of the
operators
7l SH(Xp) 1 LZXp) > SHi (X)) : T+ 7 [T, SH;i1(X,)

for X belonging to some special class of exchangeable sequences. In particular, we
will be interested in sequences satisfying the following:

DEFINITION 1. The exchangeable sequenXeis said to beHoeffding
decomposabl#, for every 1<n < N and every 1< i < n, the following double
implication holds:T € SH;(X,) if, and only if, there exists

¢ AT 0
such that;)(’)(X,-) e L2(X;),
3) E[¢(X)[X;_1]=0,  P-as.

and

Z ¢’(1) XJ(:)

J(l)evn(l)

Of course, the crucial point in the above definition is given by (3). V\ﬂn%)nis
such thatﬁ(’)(xi) € Lf(Xi) and satisfies (3), we write

¢7 € Bi(X),

It is well known that i.i.d. sequences are Hoeffding decomposable. As already
pointed out, this feature has been the key tool to study the asymptotic behavior of
symmetricU -statistics via the characterization of their covariance structure [see,
e.g., Serfling (1980) and Vitale (1990)]. We will see in the next section that another
archetypal class of Hoeffding decomposable sequences is given by extractions
without replacement from finite populations.

3.2. Hoeffding decompositions for finite population statistick this section
we shall shortly recall some of the findings of Zhao and Chen (1990) that will be
useful in the following sections. Note that the theory of Hoeffding decompositions
for finite population statistics has been further developed in the works of Bloznelis
and Gotze (2001, 2002) that have inspired our presentation.
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Fix M > 1. We notez= (z1, ..., zm), anonordered collectiomf M elements
of A, and we identifyz with the measure oA, 4) given by

1 M
MZ(C):—Zlc(Zi), Cea.
M i=1

We noteZ,,(A), the set of all suclz. To eachz € Z;,(A), we associate the
random vector

YMZ = (Y’uza s Y[l&z) = (Zﬂ*(l)5 L] Zﬂ*(M))7

wherer* indicates a random permutation, uniformly distributed over all permu-
tations of(1, ..., M). In other words,Y*z has the law of a vector af/ extrac-

tions without replacement from a finite population whose composition is given
by the measurg:,. The following result, that is essentially due to Zhao and
Chen (1990), characterizes the class of symmetric Hoeffding spaces associated
toYhr =Y/, ..., Yh?), whenm < M. Of courseY!? has the law of the firsk
extractions without replacement fromm

PROPOSITION 1. Let T e L2(YL?), wherezeZy(A) and m < M. Then
there exists a unique class of functions

g AT, i=1m,
that verify forevery =1, ..., m,
@) Mz
E[gT .UZ(YJ(I))| Ja- 1)]
for everyj ;) € Vi, (i) and everyj;_1) € V(i — 1), and

4) n[T,SHi](YZZ)=_ Z gg)uz Jp:)
1) €Vm ()

Moreoverg(’) =0wheni > M —m, and alsq

(D
()

Formula (4) implies thaY,? is Hoeffding decomposable. Proposition 1 will be
used in the proof of the main result of the following section. The main reason of
its usefulness is nested in the following basic result, whose proof can be found, for
example, in Aldous (1983).

(5) E[r[T, SH;1(Y"?)?] = Lr—m=nE[g) . (Y/*)?].

J @)

PrRoOPOSITION 2. Under the previous notatignlet X, = (X1,..., Xu),
M < 400, be a finite exchangeable sequence with valueg4n+). Then
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conditioned onuy,,, the law of X, coincides as. with that of Y#Xu, that is
a.s.-P, for everyC € A®M,

1
P[Xu € Clux, ] = I > 1e(Xr@s - Xnoan)s
4
wherer runs over all permutation ofl, ..., M).

3.3. Representation ol -statistics for exchangeable observation3o avoid
trivialities, from now on we will systematically work under the following:

ASSUMPTIONB. Foreveryl<i <n< N, H;(X;,) # {0} andS H; (X,) # {0}.

Assumption B excludes, for instance, the cage= X, for everyn > 1.
Note that, under Assumption B, for eachl < n (as usual, given a collection
{A,A;:j=0,1,...} of Hilbert spaces, we writd =@ A; to meanthat; C A
for every j, A; L A; for i # j and that everyx ¢ A admits the (unique)
representation =) m[x, A;], whererr stands again for the projection operator),

Ui(Xn) = P Ha(Xn) € L2Xy) = Un(Xn) = @ Ha(X),

a<i a=0

SU; (Xn) =@ SHa(Xn) € LZ(Xn) = SU» (Xp) = @) SHa (Xa).

a<i a=0

We shall now show that the elements$if; (X,,) have a unique representation.
Our key tool will be the following result.

LEMMA 3. LetX ={X,:1<n < N} be an exchangeable sequepnsatisfy-
ing AssumptiorA in the case of a finite&v, as well as AssumptioB. Then there
exist constant& (N, n,i) € (0, +00), 1 <i <n < N, depending uniquely o,
n andi (and not on the law oK) satisfying for every =1, ..., n, and every real
valuede (-), defined ord’ and such thai (X;) € Lf,(X,-),

2
E[( > ¢(Xj@)) } > k(N,n, )E[¢(X;)?].

Ji)eVa (@)

PROOE We start with the cas& = +o00. In this case, de Finetti's theorem
[see once again Aldous (1983), Section 7] yields the existence of a random
probability measureD(-; w) such that, conditioned td, X is a sequence
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of i.i.d. random variables with common law equal o It follows that [noting
(3), = (3)L=n], due to symmetry and exchangeability,

E[<J’m§1<z’)¢(xj0)))2}

= 2 Z(;)(?__,f) Elp (X Xy Xit1. ... Xai )]

- ¥ Z(i)<?:;>*E[/ND®’(dal,...,dar)

x (/ D® " (daj,1, ... ,daz_,)
Ai-r

2
X ¢(a1’ <o Ar, diygd, '~~va2i—i’)) :|
z Z E[¢(Xj(i))2]

i)€EVa (D)
n
= (l, )E[¢(x,-)2].
Now we deal with a finiteN. We recall that, in our settingX is in this
case of the form( X1, ..., Xy_1), with Xony_2 = (X1, ..., Xoy_2) indicating an
exchangeable vector of ® — 1) random variables. Then, we use extensively the

content and the notation of Propositions 1 and 2 to obtain, due again to symmetry
and exchangeability,

E[(j(i)g(i)ﬂxj@))z}
<[e]( £ o00) o
=E[E[<(’;) B[ (X) 15y 5]

: 2
1
n—k\ ® .
£ T (1) s 050))

k=lj(k)EVn (k)

o]
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and, therefore,

2
)
Jo V()

2
Y =E[(’;‘) E[¢ (X0)|xay ]

LEDEENG )
+ Z (2N—2—k) E[g(p’MXZN—Z (Xk) |MX2N72] .
k=1 k

To be clear, the calculations contained in (6) and (7) are performed as follows.
First, write the Hoeffding decomposition af(Xj, ), under the conditioned
probabilityP[-|x,, _,] and for everyj;, € V,(i). Then, by using the relation

k
E[gé’?““xzzv—z (X (k))|/’LX2N—2’ Xj (k—l)] =0, P[|1xay_,]-as.

for everyj—1) € V,(k — 1) [that can be verified directly, by inspecting the proof
of the main results of Bloznelis and Gétze (2001) or by using Corollary 9; i.e., not
circular reasoning, as a matter of fact, to prove Proposition 8 and Corollary 9, we
do not need Lemma 3], observe that

n—k\ .
X (1) e 0
J k) €Vn (k)

is the projection of}}; . cv, i) (Xj,,) on thekth symmetric Hoeffding space
associated toX, under the measur®[-|ux,, ,l. Finally, use Proposition 1.
Now write

s=1...,i

oF (20
1 (ZN—SZ—S) (;)2

to obtain, thanks to the Jensen inequality,

2
ey
IEZ0)

> k(N, n, i)IE[EW (X ey o)

k(N,n,i):min{(

i N
l k
+k2:1 <k> E[gé,Lx2N72 (Xk)2|MX2N—2]:|
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>k(N,n, i)E|:E[¢(Xi)|MX2N—2]2

. 2
l
(k)
+ZE|:< Z gtPMXZNZ J(k)))

k=1 jyeVik)

|

= k(N, n, DE[E[$ (X)?|1txoy ],
which yields the desired result[]

REMARK. An inspection of the proof of Lemma 3 shows the relevance of
the assumption: for a finit&/, X = (X1,..., Xny_1) is a AN — 1)-extendible
sequence. Suppose indeed that,..., Xy_1) are the firstV — 1 instants of
a sequenc&y = (X1,..., Xy), with N < M < 2N — 2. Then, according to
Proposition 1,

i
n—=ky\ .
> > <i_k>g¢,uxM(XJ<k>)

k=1j(k)€Vn(k)
min{i, M — n—k
- (k) .
= Z Z (i _k>g¢,MxM(XJ(k))’ a-S-P('|MXM),
k= J (k) €V (k)
and, also,
min{i, M —i} n—k o 2
78 5, (o) ol
k=1 oy €Van (k)

(8)

min{i,M —n} M—n\ (n
" AW

k
k
k=1 )

It is easily seen that, when> M —i > M — n, relation (8) does not allow to
conclude the proof of Lemma 3.

Lemma 3 has important consequences which are stated in the next two
corollaries.

CEgf X))

(
(M

COROLLARY 4. For1<i<n < N, suppose the applicatiorsand¢’, both
from A’ to 9%, are such that (X;), ¢’ (X;) € L2(X;). Then

> oXj)= Y. ' (Xj) P-a.s.
j(l)evn(l) J(z)evn(l)
implies
d(Xi) =¢'(Xi), P-as.
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Corollary 4 says that elements &fU;(X,) admit an essentially unique
representation a¥-statistics with symmetric kernel of ordér The next result
states thafU; (X,,) contains exclusively random variables of this kind.

COROLLARY 5. Forl<i<n<N,

SUK) ={T:T= 3 $(Xi,) 6 (X)) € L2X) |.
Ji)eVa ()

PrROOFE For fixedi and n as in the statement, just observe that if the
family {T® :1 > 1}, defined as

0= 3 ¢"(X,).  ¢PXneLiXn.i=12....
jG)EVn ()

is a Cauchy sequence ib?(X,), then Lemma 3 implies thap®(X;) is also
CauchyinL?(X;). O

4. Hoeffding decomposability and weak independence. For the rest of
the sectionX will be a possibly infinite exchangeable sequence satisfying both
Assumptions A and B.

DEFINITION 2. We say that the sequenkeis composed ofveakly indepen-
dentrandom variables (or that the sequedcis weakly independehif for every
1<n< N and evenT e L2(X,),

(n=1)
n,n—1

[T] X,-1) =0, a.s.P,

implies

1)

[T], 1—1(Xp-1) =0, a.s.P,

for every 0<r <n—1suchthat2—r < N, where the functiongr']"? and[’vT]f"?
have been introduced, respectively, in (1) and (2).

Of course, independence implies weak independence. Another example of
weak independence is given by sampling without replacement and, in general,
by the class of GUS that we will discuss in the next section. However, not every
exchangeable sequence is weakly independent.

EXAMPLE (A class of exchangeable sequences that are not weakly indepen-
dent). Consider an infinite sequence

X={X,:n>1}
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with values in{0, 1}, whose law is determined by the following relation, valid for
everyn > 1 and everyes, ..., e,) € {0, 1}"*:

& n
]P)(Xlzel’---’xn=€n)=8_1/ []x“@—x)4dx,
0 :
i=1

wheree is a fixed constant such thatfe < 1.
This is equivalent to saying that, conditioned on the realization of a real valued
random variablg” such that

P(Y €C) = 5—1/ dy,
0,6)NC

the sequenceX is composed of independent Bernoulli trials with common
parameter equal t&. In this case, a necessary condition ¥rto be weakly
independent is that for any symmeticon {0, 1}2 such that

&) E(¢ (X1, X2)|X2) =0
must also hold
(10) E(¢(X1, X2)|X3) =0.

We shall construct a symmetricthat respects (9) but not (10). Define, indeed,
#1,00=¢0,1)=1

and also
Jox(1—x)dx 3
1. 1) )=—-">>"— 7 -1 —
o1 Jo x2dx 2¢’
[fxL—x)dx &2—(3/2¢
0,0)=— =
0.0 [5(Q—x)2dx  3—3e+¢?
so that
E(¢(X1, X2)|X2=0)=E(¢ (X1, X2)|X2=1) =0,
and also

e3e—1) 0
(3= 3¢ +62)(s — (1/2)s2)

1
E(¢(X1, X2)|X3=0) =2

sinces € (0, 1).

It is interesting to note that by taking = 1, one would obtain a weakly
independent sequence. As a matter of fXcis in this case a Polya urn sequence
with parametergl, 1) (see the discussion below).

The following result establishes a necessary and sufficient condition for
Hoeffding decomposability.
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THEOREM 6. The exchangeable sequends Hoeffding decomposable if
and only if it is weakly independent

ProOOF To simplify, we will systematically consider r.v.'§ such that
E(T) =0. Now suppose that the sequen¥ds weakly independent, and take
T(X2) e L2(X2) According to Corollary 5, there exists a functid){;\l) AR

such thaE[ (¢ (X1))2] < 400, and also

7T, SHi1(X2) = 3P (X1) + P (X2),
(11) T[T, SHol(X2) = T(X2) — ¢V (X1) — ¢ (X2)
= P (X2).

Plainly, ¢>(T2) € E2(X): as a matter of fact, for every boundean A and thanks
to exchangeability and symmetry,

E[¢P (X2)h(X1)] = SE[¢P (X2) (h(X1) + h(X2))]
=0.

Now taken > 2. To show that ifG € SH>(X,,), then there exist$(Gz) € 22(X)
such that

(12) G= ), ¢(2) Xje)-

i@eVn(2

it is sufficient to show that representation (12) holds for random variables of
the type

G =n[F, SH2](X,),

whereF is centered and such thAte SU»(X,,). Thanks again to Corollary 5, we
know that there exists a symmetric and square integrable k&raeth that

F= Z T(Xi(z))

i@€Vn(2)
and also, with the notation introduced in (11),

7[F, SH(X,) = (n — 1) qu(”(x,-),

2
2[F, SHAXD) = Y ¢2(Xjs).
i@€Vn(2)
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As a matter of fact,

1 1
F= Z [T(Xi(z))_ (T)(le)_ (T)(ij)]
i@€Vn(2

2 [0 (X5 + 95 (X))

j@eVn (2

= Y 4PXjy) +(n—1)2¢(1)(Xi).

i@€Vn(2) i=1

Moreover, for every: such thatE(h(X1)?) < 4o,

( Y 6P (X)) Zh(x,») =0,
i=1

j@€Vn(2)

since we have assumed thatis weakly independent. Now we use a recurrence
argument. Suppose, indeed, that there exists1 with the following property:
foreveryk <mn < N,fori=1,...,k— 1, F € SH;(X,,) implies that there exists

¢V € E;(X) such that
(13) Z ¢(l) Xje) @)
J(i)eVn(l)
and observe that we have verified such a claimkfer 1, 2, 3. Givenk, we shall
verify that for everyn > k, a random variable of the type
G =n[F, SHl(Xy)

for a genericF € SU(X,) has the representation (13) foe k& and¢(’) € &E;(X).
To see this, start with = k, and take a symmetric and square integrable kefnel

such thaf®(7 (X,)) = 0. Then, there exigt(Ti) e &8;(X),i=1,...,k—1,suchthat

T[T, SHIX0 = Y. P (Xj),  i=1.... k-1,
J@eVi(@)
k—1
(14) AT, SHIX) =TX) — Y. Y. ¥ (Xie)
i=1jueVi()
= o7 (Xp).

Since for every bounded and symmetric functioan A*~1 with the form

k-1
h(ay,...,ax-1) = Z 1_[ 1c; (@)

T oj=1
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where Cq,...,Cr_1 € A and  runs over all permutations ofl, ...,k — 1),
we have

0= E[¢“ka) 3 hoqwlg}

(k-1 € Vi (k—1)

= kE[¢ X)h(Xi—1)]

k—1
k'E[W(xk) [11c <X‘;>},

j=1

due to exchangeability and to the symmetry@ﬁp we obtain immediately
¢>(k) € Ex(X). Now, forn > k, takeF € SU,(X,,) with the form

F= Z T(Xj(k))’
J (k) € Vi (k)

whereT is a centered, square integrable and symmetric kernel. Then, by using the
same notation as in (14),

F= Z qb(k) XKigw) +Z Z ( ) (l)( Xj)

Jty€Vn (k) i=1] ) €Va(i)

and, moreover, for everly on AK~1 such that:(Xy_1) € L2(X_1),

|: Z ¢(k) XJ(k) Z h(xj(k—l))i| =0,

JaeVak) Je—1 €V (k=1
since for every _1) € V,(k — 1),

k
Z E[ () Xj(k) |XJ(k l)]
J () € Vi (k)

(k)1(r) . . . .
—Z Z Licard g Aju-1)= r)[¢ ]kk 1(x1<k)AJ(k—1>’XJ(k—l)\J(k>)
r= Oj(k)e\/n(k)

(k)1(r)
—Z Z Z 1(J<k)AJ<k n= J(r>)[¢ ]krk l(Xj(r)’Xj(k—l)\j(r))

r=0jn Cjx-1) oy €Va k)
and, therefore,

k
Z E () XJ(k))|X](k 1)]
§ () €V (k)

- n—k+1\ [ @70
- Z Z k—r ) (67 ]kr,k—l(xi(r)’ Xjg-p\ie)
r=0j) Clk-1 *
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ST ()P
_r:0 k—r . r T Ik k—1\"M k-1
=0

thanks to the assumption of weak independence and to the faqbt%&t Er(X).
On the other hand, it is clear that X is weakly independent and, for
1<i<n<N, F has the representation (13) fg* e E;(X), then for any
Ji—p € Vuli = 1),
i-1

n—i+1\ (i—1\ 5"
E[lej(il)]:Z< i—7r )*< r )[ Tl]i,i—l(xiufl))zov

r=0

and, thereforeF € SH; (X,,).

Thus, we have shown that weak independence implies Hoeffding decomposabil-
ity. To deal with the opposite implication, suppose for the momentihat+oco,
and thatX is Hoeffding decomposable in the sense of Definition 1. For a given
k > 1, consider a certaifi (X;) € L?(Xk) such that

[T]l(clfk__l)l(xk—l) =0, P-a.s.

Then,
FXer) = D T(Xjg) € SHi(Xkr1)
J () € Vir1(k)

that yields, due to exchangeability and symmetry,
0=E[F (Xg+1)Xk-1]

= Z E[T(Xi(k))|xk—1]
§ (k) € Vg1 (k)

k-1
= Z Z Z 1(j(k)/\(1»~~uk_l):j(r))

r=k—=2])€Vk-1(r) j (t) € Vit 1 (k)

")
X T 1K X k=10 )

*k=2) (. .
= > [T1 s 2Kz X k=D j2))

Jk—2)€Vi—1(k—2)

k—1)! — x—
:&_ggﬂ&ﬂmpu

Now we use again a recurrence argument. Suppose, indeed, that the Hoeffding
decomposability oK implies the following relation for every (Xy) Lf(Xk):

k=1 — (k-1
[T]l(c,k—?l. =0 = [T]I(c,k—)l =0,
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for a certain 2< j <k — 1, and every 2< [ < j. Then, if T is such that

[T],(f,:_l)l = 0, we must have

FGa) = ) T(Xjy) € SH:Xx+)),
J (k) € Vit j (k)

that implies, again by exchangeability and symmetry,
0=E[F(Xi4;)Xk-1]

= Z E[T(X](k))|xk—l]

J (k) € Vi j (k)

r=k—j—1j)€Vi—1(r) k) € Vit (k)

(r) ) .
x [T]kr,k—l(xl(r)’ X(ls'"vk_l)\J(l‘))

k=1
[+ 1\ (k—=1\ =0
r=k—j—1
k—1 A (k—j—1
- <k —J— 1) [T]l(c,k—jl )(Xk—l)

and, therefore, the desired result. To deal with the case of a fihijgst repeat the
same argument fof suchthatt + j <N —1. O

One immediate consequence of Theorem 6 is the following:

COROLLARY 7. Let the exchangeable sequen¢ebe weakly independent
Thenfor everyl <n < N, everyT (X,) € LE(Xn) andeveny=1,...,n,

m[T, SHi1(Xn) =7[T, H;](X,).
Starting from the next section we analyze the specific case of GUS.

5. The case of GUS. In this section we shall investigate the case of GUS,
which represent a fundamental example of Hoeffding decomposable sequences.
We will consider uniquely the caséA, ) is a Polish space endowed with its
Borel o -field. More precisely, fotv € N U {oo}, and writing M (A) for the class
of finite and positive measures a@n we say that a sequence

X =[x 1 <p < N}

is a GUS of parameteis € M(A) andc e N, if a(A) + ¢(N — 1) > 0 and if, for

everyk and every i € Vy_1(k),

a(dxi) + X5 86, (dx;)
a(A)+c(i —1) ’

(ar,) (e, 0) —
(15) ]P’(le €dxy, ""Xjk dek) = 1_[1
1=
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where §{(-) := cé,(-), with §,(-) the Dirac measure concentrated xn Note
that (15) is equivalent to the following relation: for evety € A and for
everyn < N,

a(C) + Lh218%, (C)
a(A)+c(n—1)

Equations (15) and (16) imply that, for every choicecobindc s.t. @ (A) +
c(N — 1) > 0, the sequenc¥®©) is exchangeable. One can think #fas an urn
whose composition is determined by the measur¢ (thus, A could contain a
“continuum” of balls), whereaX ®) represents a sequence of extractions from
A according to the following procedure: at each step, one ball is extracted, and
(1+ ¢) balls of the same color are placedAnbefore the subsequent extraction
(one should substitutéplaced in” with “eliminated from” whenc < —1). Note
that the assumptioa(A) + ¢(N — 1) > 0 ensures thahe urn is not exhausted
before the(N — 1)st step; more to this point: when= 0, X* is a sequence
of i.i.d. variables with common lave(-)/a(A); if A = {a1,...,as}, a is the
counting measure and= —1, then we must have(A) = § > N — 1 andX @
has the law of the firstv — 1 extractions without replacement from the finite
population{as, ..., as} [this is the case studied in Zhao and Chen (1990) and
Bloznelis and Gétze (2001, 2002)]; when> 0 and N is infinite, X*9 is a
generalized Pdlya urn sequengéhosedirecting measurdin the terminology
of Aldous (1983)] is a Dirichlet—Ferguson process @h, 4) with parameter
a(-)/c [the reader is referred to Ferguson (1973), Blackwell and MacQueen
(21973), Blackwell (1973) and Ferguson (1974) for definitions, proofs of the above
claims and discussions of the relevance of such objects in Bayesian nonparametric
statistics; see also Pitman (1996) for a rich survey of some recent developments of
Poélya urn processes]. Note also that, in all cases, the |ao? is characterized

by the following two facts: (i) for everyi < N, ]P’(X(“ 9 e dx) = a(dx)/a(A),
(i) for every j < N, the law of

(16) P(X@9 e C|Xy,..., X, 1) =

(X% 1<n<N-j)

under the probability measure
P(1X{) =x1,... X9 = x;)

is that of a GUS of lengttV — 1 — j and parameters(-) + > -1 . ; d5, (-) andc.

To be sure that Assumption B is satisfied and that we work with 2 1)-exten-
dible sequences, we will systematically assume th@t) + c2(N — 1) > 0.
For instance, in the case of extractions without replacement from a finite set
of cardinalityx(A) € N, this condition is necessary and sufficient both to have
2(N — 1)-extendibility and to satisfy Assumption B. [More precisely, consider
the case of extraction without replacement from a finiteseand suppose that
CardA) =S > 0, and thatS/2 < N — 1 < +o¢. In this case, it is easy to see
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that every symmetric statistic afx\*”,..., X\*9)) is contained in the space
SUs_n-1(X\&9)), i.e., the projection of any symmetrlc statistic on

@ SH(X)
k=S—N
must equal zero; see Bloznelis and @#1{2001), Proposition,for a complete
discussion of this point.]
One nice feature of GUS is that they are weakly independent, and, therefore,
thanks to Theorem 6, Hoeffding-decomposable, as shown by the following:

PROPOSITIONS. LetX®© be a finite GUS satisfying the assumptions of this
section angfor a fixedl < n < N, consider a symmetri€ (X)) e L1(X*).
Then for everym = 1,...,n and for everyj.), € Vy_1(n) and everyig, <
Vn—1(m), the following equality holds with probability one

r(n— —14+1)
(r) ¢l
(T] nm '(m) qzr (a(A)+C(n+l_1))

x > T x©9),

iemy A1) Cliq)Clm)

ﬁq,m,r(a(A)7 C)
17)

where[T1% = E(T),

Bg.m.r(@(A), )
1, q=m,
(@(A) +c(m—1)) x - x ((A) + ¢cq), r<g<m-1
andr =r (i), jn) = Cardig) A @), and all conventions are as before

PROOFE To prove (17), consider a vectpy) € Vy—1(n), as well as an index
i ¢]u:itis easily verified that
(©) (y @0) ne @) (@) a(A) ©)

T — (T X: — (T ,

(71, 2(G77) = oe(A)—{—nc[ b (X )+a(A)+nc[ In.o
that gives (17) forn = 1. To show the general case we use once again a recurrence
argument. Assume, indeed, that the result is provedifee 1,...,k — 1. we
recall that for everyi, € Vy_1(k), for any fixedx, = (x1,...,x,) € A", under
the probability measure

P[X(*9) =x,],

TGS

wherer = r(ix) A j)) is defined as in the statement, the veck}? s

m\ k)
a finite GUS of lengthm — r and parameters(-) + > ;_1 ¢ () andc. Now

,,,,, r xl
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fix i) € Va—1(k) such thatr > 0. The recurrence assumption, along with the
obvious relation(i \ jm) A (Jaw) \ 1) = &, implies

(a,c) (a,c) _ (a,c)
E[T (%, Xi(n)\i<k>)|xi<k>ﬂ<n> =%, Xi<k>\i<n)]

k=r My —r =141

=5 "
qgo [T/2f (@(A) + c(n+1— 1))

By k—r.0(a(A) +cr, c)

(r+q) ,C
X Z [T]n’:r—zq (er Xj(f;)c))'
J@Ciw\im

But
By k—r.0(a(A) +cr, c)
1, q=k—r,
(@(A) +ctk—1)) x --- x (a(A) + c(r +q)), O<g<k—-r-1

and the change of variablgs= g + r yields immediately (17). We are left with
the casd ) A j) = @ to see that the statement is still valid, fix € A and
Xigeyy = Kigs -5 Xiy_y) € A*—1 and write, due to the recurrence assumption,

0
[T]fl}c(xik’ Xi(k—l))

= E[T(Xj(z,’f)) |Xi(:’C) = Xiy., Xl((ak)i:k = Xi(k—l)]

_ kfcq st —1+1)
[T @A) 4+ c(n + 1))

q=0
(q) . )
X Z [T]n,q+l(xl(q)’ xlk)
J@)Clo \ix

:"i g =141

R
g=0 [z @A) +cmn+1)
X - X (a(A) +c(g+ 1)

cn=q) @+
,q+1\ Mgy ik
J @) Clw \ik a(A) +cn

By.k—1,0(c(A) +c,c)

((A) +c(k - 1))

(A +¢q @ }
a(A)+cn [T]”sq(xl(q)) >

wherex; , stands for(x;,, ..., x;,), giving the desired conclusionL]

Actually, Proposition 8 yields much more than weak independence. As a matter
of fact, we have the following:
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COROLLARY 9. LetX@9 be a GUS as in Propositio8, and fix1 <n < N
andm < n: if a symmetricI’ on A" is such that (X)) e L1(X*) and

(18) [T (X@9)=0,  P-as,
then

[719),(X@9) =0, P-as

for everyr < m and such thatts + m — r < N. In patrticular, if T(Xﬁf"c)) €
LE(XSL“’C)) and T satisfies(18), then T(Xj(f;’)c)) € Um(ng’c))L for everyj €

Vy_1(n) andm <M < N, WhereUm(Xﬁ‘}”c)) denotes the direct sum of the first

Hoeffding spaces associatedXd>“, and the orthogonal is taken ih2(X @),
This implies thaiX @ is weakly independent

We have also the following generalization of the calculations contained, for
example, in Bloznelis and Gétze [(2001), formula (2.5)].

COROLLARY 10. Let X®*© be a GUS TakeT and V square integrablg
symmetric onA” and satisfying the hypotheses of Coroll@yfor m =n — 1
li.e, T,V € B,(X@N]: then for everyj ), i) € Vy—1(n) such thatCardi,, A
joy) =r,

E[T(X{5)V (X[)]

(19) I(n) J)

n—r n—}"—l+l X(a’c))V(Xr(la’c))],

=< lzl_[la(A)—i—c(n—i—l—l) [T

We now want to calculate the explicit form of the Hoeffding-ANOVA decom-
position for urn sequences.

5.1. Hoeffding decompositions for GUStatemenfs Now consider a se-
quenceX@ that is a GUS in the sense of the previous section, and fix
1< M < N. Most of the subsequent results are related to the following sequence
of real constants associated to the lavX§f-<:

1" P la(A) + c(r + p+5 — D]
[T [a(A) +c(n+s —1)]
where lI<m<n<M,0<r<m,0<p<m-r,a(A)+cn+m—r) >0,

(@)@ :=a!/b! for a > b and ngl — 1 = 0° by convention, and, for ¥ g <
m<n<M,

(22) Wy (g, n,m) ::i<q><M_n>*<I>(n,m,r,q—r)

r m—r
r=0

(20) @, m,r, p):=cP(m—r)m—r—p)

’
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with (;), := (;)1@=p). We are now in a position to state the main result of the
section.

THEOREM 11. Under the previous notation and assumptigitse € M(A)
such thatWy, (¢, n,q) # 0 for everyn =1,..., M and everyl < g < n. Write
alsg for anyk > 1,

(22) y® = (W (k, k, k)™t
with the notation introduced i21). For everys = 1, ..., M — 1, the following
equality holds @.-P for any T € L2(X'%“) with E(T) =

(o, c) (s,a) (a) (05 )
m [T, SH](Xy 29 > T (X))
a=1 @ €Vm(a)

N
= 2 [Zeﬁf) > ITI Xff‘;))},

jsyeVm(s)La=1 J@Cles)

(23)

whereg -4 .= g (k@) ("kl_a“) and the coefficientss*’ are recursively defined by

the set of condition§Sy, (k), k=1, ..., M — 1} given by
Oy = a1

(24)  Suk) =1 & y

" ZZ%’”‘I’M(Q,kJ):O, g=1,....k—1,

i=q j=q

and consequently

(a, c) (M ,a) (a) (a,c)
7T, SHy1(X Z Yo O VT (X00),
a= lj(a)GVM(a)

where g;;"" = —ZM oG for g = 1,...,M — 1 and 0U"™ =
Wy (M, M, M) 1=

Note how the above assumptions, concerning the constagts, -, -), are
immaterial in the case > 0. It is also clear that Theorem 11 can be applied to
noncentered symmetric statistics by considehg= T — E(T).

The statement of Theorem 11 can be further refined by means of Theorem 6 and
Corollaries 4 and 10. Indeed, the symmetric functionals

(25) (TS)(XJ(Z)C)) . |:Z 9(5 ,a) Z [T (a) J(?)C))i|

a=1 J@Cl
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defined fors = 1,..., M and for coefficient®:” (note thato')-) = 6{/'”) as
in (23), are uniquely determined (thanks to Corollary 4), and such that

_1 ,
(619 (X D)

since theX (<) is weakly independent and, therefore, Hoeffding decomposable.
Moreover, Corollary 9 yields

") ,
[0 11 (X %7)

forevery2 —r < N + 1.

0, P-a.s,

0, P-a.s,

REMARKS. (a) It is interesting that, for any fixetff, the coefficients91(‘;')
appearing in (23) depend on the lawXf only throughthe quantityc/a(A),
that can be interpreted as the (initiabte of replacementssociated to the
GUS X@9 |t follows that the Hoeffding-ANOVA decompositons of two
different finite GUS with the same rate of replacement can be obtained by first
calculating thg M — 1)-ple of functions[T]E‘?’i(-), i=1...,M—1, andthen by
implementingexactly the same algorithm

(b) The above discussion shows that, not only a statiBtic SH; (XE&’”),
i < M, is uniquely determined by a functicm(ri) € E;(X), but also that such
function can be “recovered” frorfi, through (25).

(c) Note that the recursive relation that defines the coeffic'ﬂ;“'pt)sis different
from that deduced in Zhao and Chen (1990) or Bloznelis and Gétze (2001) for the
case ofA being a finite set with cardinality > 2M, endowed with the counting
measurex. However, Corollary 4 ensures that the results implied by Theorem 11
and those in the references above are equivalent. One can also compare the explicit
computations of the paramet@&’ b, 0,(”2’1) and@,(wz’z) that appear in Bloznelis and
Gotze [(2001), beginning of page 901] with those exhibited in Section 6.1.

Examples and applications of Theorem 11 are given in the next section and, to
a much wider extent, in Peccati (2002a, b, 2003). Now we establish some relations
that are used to prove Theorem 11.

5.2. Auxiliary calculations. Let X = X be a GUS as in the previous
section (the dependence anandc is tacitly dropped to simplify the notation
whenever there is no risk of confusion). The following result is the key step of
the section:

PROPOSITION12. Letthe previous notation prevaénd fixm, n, M such that
1<m<n<M < N,aswell as vectorg,,) € Vi (m) andj,) € Vi (n). Then for
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every symmetri@ e LY(Xy), aversion oﬂE[[T](’") (X.(m))|XJ(n)] is given by

m—r(ignys Jn))
(r+p) . )
(26) ZO | Yoo @emr pIT1 KA Xig):
p= (Sl \igm)

wherer = r(ign), J () = Cardim) A j)) and thed’s are given by20).

PROOF By the symmetry off and of the distribution of the vectoX,,,
we can assume without loss of generality that = (1,...,n), ju) A im) =
@, ....,r(m),J@my) andi ., >n+1fort =1,...,m — r(ipm), ). Note that
whenr (ign), j (n)) = m, formula (26) is trivial and we shall therefore assume that
r=r(m),jm) €1{0,...,m — 1}. Now observe that, thanks to exchangeability,
straightforward calculations yield

[[T](m) Kig) [ Xj ]

m a(dys) + Yh_g 8% (dys) + X011 85, (dys)
Am=r a(A)+cn+s—1)

X IT15 (X1, oo, Xy V1 Ymer)  ASP,

and one can, moreover, rewrite the product measure inside the integral according
to the following formula:

I [a(dys) + Z 8%, (dys) + Z 85 (dyy) }

s=1 a=1

- [a(dm £ 85y + Z 5 (dys) }

s=1 a=1

m-—r

+ > [T 8%, @

rl<iilo#Flp_r<n s=1

m—r—1 14
SR S | RS
p=1 r4+l<hi#-#lp<nlLs=1
h(p)C(l,...,m—r)

(27)

e
H |: dy,q +ZSX1 dyfq)

=1 s=1

Q

+Zac (dy,) +Za (dys, H
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where in the last summand we used the notation

1:(m—r—p) = (tl’ ceey tq’ ceey tm—r—p)
::(l,...,m—r)\h(p).
Note that (27) can be easily shown far, say, equal to 2, whereas the general

case is proved by a standard recurrence argument. To conclude, use once again
symmetry and exchangeability to have

[[T](m) Xig) [ Xj ]

" [e(A) +c(r+5 = 1))

T (i’) X . N
=[T1y ( U '(m)))sljl[a(A)+c(n+s—1)]

A" (m—r)! (m)
— [T] (XlnAlm’XImr)
[T [@(A) +c(n+s —1D)] |<m_r)c(2r;rl,..., ) Aoy Mon—r)

m r(l(m) J(n)) 1 ( ) m r

r+p . . -

+ Z |:[T]M,r+p(xl<n>m(m>’X'(p))cpp!( D )
p=1 l(p) Tl \gm)

LSl + e+ p s = D)
[T [a(A) +c(n+s — 1)] ’
which agrees with (26) and (20)

From Proposition 2 we obtain the following:

CoRroOLLARY 13. Under the assumptions of Propositid2, for a fixed
j(n) eVy (n), a.s.-P,

Z [[T](m) (Xl(m) |Xl(n) Z Z LI’M(q = m)[T](q) (Xj(q))’

)€V (m) 9=0j ) Tim
where thel’s are defined as if21).

PrROOFE Straightforward computation, along with Proposition 12, yields
Z E[[T]Eltln)m (Xj(m))|xj(n)]

Jomy€Vp (m)
@ S
- Z Z [T Xl(q) |: Z 1(J(n1)/\1(n)cj(q))q)(n’ m,r,q — }"):|,
9=0j¢)Cim Jmy €V (m)

wherer :=r(jum) A jm)) = Card jom) A jn)) as before and a simple combinatorial
argument gives the desired result]
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Another consequence of Proposition 12 is:

COROLLARY 14. Under the assumptions and notation of this paragrdph
T e L?(Xy) for somel <n < M < N, and such that

E[T[Xj,_,] =0

for everyi(,—1) € Vyy(n —1). Then

2T, SHAXw) =vs Y IT19, (X))
i €Vm@n)

with y,fj) defined according t¢22).

PrRoOOF We shall find a constagt such that, a.s, for everyi(,) € Vy(n),
[T]Elz),n(xi(n))_q Z [[T](n) Xj(n))|xi(n)]=0'
jaeVun)
But, thanks to Corollary 13 and the hypotheses in the statement, we can
explicitly compute
Z [[T](n) (Xl(n))|xl(n)] [T ](n) (X|(n))‘-I/M(n n,n),
Jmy€Vu(n)

thus concluding the proof.(J

5.3. End of the proof of Theorerhl. To obtain the coefficients appearing
in (23), just write fors =1, ..., M — 1 and a given € Vi (s), the a.s. condition

28) [T15), (X)) — ZZ@“"’) > E(T15) (X)) X)) =0

b=1la=1 ](a)GVM(a)

and observe that exchangeability and symmetry imply that iPfpe satisfy (28)
for onej) € Vu(s), then a.s. they satisfy the same condition for every element
of Vi (s); but the left-hand side of (28) can be rewritten, due to Corollary 13, as

[T ](S) (XJ(A))(l Q(S S)WM(S s, S))

s b
Y Y 9, %) [z Zexsmww,s,m}

q=1j)Cie) b=qa=q

that implies (24). The last assertion in the statement of Theorem 11 is just plain
algebra, and the proof is therefore concluded.
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6. Examplesand applications.

6.1. Examples(maxima and minima In this section we first consider a
finite GUS, notedX(®©), for which we calculate the first two terms of the
Hoeffding-ANOVA decomposition of & e L2(X§“}”C)) for M > 2. Then, we apply
such a result to the case of the simplester statisticsassociated to a real valued
finite GUS.

Now consider a finite GUX @ satisfying the assumptions of Theorem 11:

it is easily seen that{i = (@(A) + ¢)/(@(A) + cM), 622 = (a(A) + 3¢) x
(@(A) + 20)/(@(A) + Mc) (@(A) + c(M + 1)) and

g2 _ _ (M — 1) (a(A) +3c)(a(A) + )
(a(A) + cM)(a(A) +c(M + 1))’
so that, for any symmetric and centerBd LZ(X%’C)),
7[T, SH11(Xm)

Ate &
= O T ()

a(A)+cM =
[T, SH2](Xn)
((A) +3c)(a(A) + 20) S 7@, )
(Ot(A)+cM)(oe(A)+c(M+1)) M2\

i@eVu(2)

(M= D(@(A) +3) (@A) +0) L) @
(a(A) + cM)(a(A) +c(M + 1)) l;[ lra(X;™7)

_ Z [ (a(A) +3c)(x(A) + 2¢) (T ](2)( (otc))

j2€eVm (2 (a(A) + cM)(a(A) +c(M + 1)) 1(2)

_ (a(A) + 3c)(a(A) +¢) S (7] (1) X(a c)
(a(A) + cM)(a(A) + c(M + 1))

lCJ(z)

Suppose also thad ¢ 9: we shall compute the three quantitﬂEST(XE&’C))),
(717 1(z) and [T]ﬁ{z(zl, z2) associated to the symmetric statistieeX ') =

max(X(“ ‘), o Xﬁ’c)) (the same calculations hold for the minimum), so to write
the first two terms of its Hoeffding-ANOVA decomposition. In this case, it is easily
seen that

M-1
E(T(X@9) anca(A)/Mkma)((xl,...,xM—k)
k=0 i

x a® M0 (dx1, o dxy—i),
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where
M-1 M-1 k M
n(k,c,a(A)):= ck|: Yoo (]_[ isﬂ [n(a(A) +(t— 1))‘1}
i1=1 ir=ig_1+1 \s=1 t=1
and, again,
M-2
[T15 1@ = Y n'(k,c,a(A)
k=0

M-1-k
« Z (M k— 1) M—k—1—i

wheren' (k, ¢, a(A)) :=n(k, ¢, a(A) [T}y (@(A) +c( — D)/ 1} a(A) +cj)

and
(M=2)A(M—1—i)
%hcxﬂAH(Al_f_l)cM_k44

¢(i,c,a(A) = >
k=0
and, eventually,

2
[T157 (21, 22)

with n”(k, ¢, a(A)) :=n'(k, ¢, e (A) TTT S @(A) +¢))/ T (@ (A) +c(+1),

and

M—-3M—-2—k .
M_k_2)<l'>CM—k—2—j
J

¢(joeaA)=Y > n kcra(A))( ;
k=0 i=j
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and, therefore, by notinQ‘ii (z) = [y max(xy, ..., x;, 2)a® (dx1, ...,dx;) and

we obtain
‘ Ay e M M1 ‘
T.SHy (X)) = A e k,c,a(A)0Y (X @) — B(T
[T, SH11(X;, ) ot(A)+cM; kg(:)f( ¢, a(A)) 07 1 (X;™7) = E(T)
and, finally,

[T, SH] (X%

_ (o(A) +30)(x(A) + 2c)
~ (@(A) +cM)(@(A) + (M + 1))

M-2
x 2 [(Z ¢/<k,aa(A))Q%‘,k(Xff;;”)—E(T))

i@eVu (2 k=0

QA +e  (M2D o
—oingae 2 Xetkcam)of,xie) ~Em) )|

iCj(z) k=0

where E(T) is given in (29). This example shows in particular that, even if
the coefficients determining the decomposition of a symmetric statistic depend
exclusively on the rate of replacement associated to the GUS, the whole
decomposition strongly depends on the form of the associated measure
[in this case through the function@*(-)]. To conclude, observe that, far=0

and x¢(A) =1, the above calculations reduce to the usual formulae for i.i.d.
random variables,

M
[T, SHl(X§7 ") = Y[ 0F 1 (X*7) — E(T)]
i=1

o7, SHIXE?) = Y [(Q%,M_2<xff;;°>> )
i@eVu (2

Y (04X —Em)]

iCj

6.2. Weak copies of exchangeable sequenc&be content of this section
is inspired by Follmer, Wu and Yor (2000). Given an infinite exchangeable
sequenc& with values in a Polish spacd , 4), andk > 1, we say that a random

sequenceY = {Y,:n > 1} is a k-weak copyof X if, for every j) € Voo(k),
Yie 'g"xj(k). Plainly, X is a k-weak copy of itself for eaclk: however, one
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may wonder whether there exigtweak copies ofX for somek, whose law
differs from that of X. Such a problem can be solved by means of the theory
developed in this paper: the next proposition shows that the answer is positive
for some class of weakly independent sequences (containing infinite GUS), and
that, moreover, exchangeability is preserved by/ameak copy ofX constructed

by our techniques. We will note b®(-; ») the directing (probability) measure of

the infinite sequencxk.

PROPOSITION 15. Suppose that the infinite exchangeable sequetias
Hoeffding decomposahland that there exists some bounded and symmétric
on A¥*1 such thatl” € Z;,1(X) and

IP’(/ T dD®+1 0) > 0.
Ak+1

Considermoreoverthe canonical spaceA™, A%, P), whereP is the law ofX.
Then there exists a random sequerfcé") = {Yn(k) :n > 1}, with elements taking
values in(A, 4) and with lawQy(-), that has the following properties

1 Qe <P

2. QU # P,

3. Y® is exchangeable

4. Y® is ak-weak copy oK.

Moreoverfor everyn > 0, there exist€)y , satisfying pointsl to 4 above and
such that

d@k,n
dPpP

<.

o0

-

PrRoor Call X = {X,:n > 1} the canonical projection of the space
(A%, A®) to itself so that, if we endowA>, A®>) with a probability mea-
sureP, X becomes a random element with 1&xvNow, it is immediate that under
the probability measur@;, given by

dQy = (1 + / T a’D®k+1) dP,
Ak+l

X satisfies points 1 to 3 in the statement: moreover, for eygiy= (j1, ...,
Ji) € Voo k),

v v ®k+1 - -
Qk(le €By,..., Xjk € Bk) = E|:<l+ /,;k+l TdD )jl(leeBlszjkeBk)jI

=]P’()~(jl€Bl,...,)~(jk€Bk)
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due to the weak independence Xfas well as the following relation, that is a
consequence of de Finetti's theorem and of the factThiatbounded,

-1
i M k+1
lim ( ) Z T(Xj(k+l)) :/ T dD® P-a.s.,
Moo\ R+ 1 Joe+n €Var (k+1) Akt

yielding point 4. The last assertion is an easy consequence of the above discussion.
O

To eventually construct such & for a GUS X of parametersx andc¢ > 0,
maintain the notation of the proof of the above propositiog]PSetP(“*C), that is,
the law ofX, and take a bounded and symmetric stati$tiX,1). Theorem 11
implies that one can choosdésuch that the functionat[V, S Hi+1]1(Xy+1) is not
only symmetric and different from zero, but also &) equal to a finite linear
combination of conditional expectations uf It follows that for anyn € (0, 1),
there existg > 0 such thak |7 [V, SHi41]| < n, P@9-a.s. It is shown in Peccati
(2002a), that in this case

]P’(f 2V, SHis1]1d DO 2 0) >0
Ak+1
so that it is sufficient to tak® = ex [V, Hi+1].

6.3. Covariance analysis.A standard combinatorial argument yields the
following result that shows how the covariance of two centered and symmetric
statistics can be decomposed by means of the funciihslefined in (25).

PrRoPOSITION 16 (Covariance decomposition)lUnder the assumptions of
Theoremll, let T and Z be two centered elements Df(xgj’c)), 1<M <N,
and let the function&v(Ts) andqb(zs), s=1 ..., M, be defined by25). Then

M
EITZ]1= Ju(s, c, a(A)E[pf (X )93 (X)),
s=1

where
M\ (s\(M~—s P s—p—1+1
Jyu (s, c,x(A)) = S—p .
u(s. e ald) <s)pzzo<p)<s—p>*c Do +es+i-1
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Flour summer school of July 2002. The expression “weakly independent random
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