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MARTINGALE APPROXIMATIONS FOR SUMS OF
STATIONARY PROCESSES
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Approximations to sums of stationary and ergodic sequences by martin-
gales are investigated. Necessary and sufficient conditions for such sums to
be asymptotically normal conditionally given the past up to time O are ob-
tained. It is first shown that a martingale approximation is necessary for such
normality and then that the sums are asymptotically normal if and only if the
approximating martingales satisfy a Lindeberg—Feller condition. Using the
explicit construction of the approximating martingales, a central limit theo-
rem is derived for the sample means of linear processes. The conditions are
not sufficient for the functional version of the central limit theorem. This is
shown by an example, and a slightlysiger sufficient andition is given.

1. Introduction. The central limit problem for sums of stationary and ergodic
processes has attracted continuing interest for over half a century, and two major
lines of inquiry have developed. Under conditions of weak dependence such
as strong mixing, blocking techniques have proved effective. Ibragimov (1962)
provides an early account of this line. See Doukhan (1999) and Peligrad (1996) for
more recent ones. An alternative approach, due to Gordin (1969), uses martingale
approximation to establish asymptotic normality; see also Gordin and Lifsic
(1978). Ho and Hsing (1997), Maxwell and Woodroofe (2000) and Wu and
Woodroofe (2000) have followed this line recently. Here we come down on the side
of martingale approximations by showing that if the partial sums of a stationary
process are asymptotically normal in a suitable sense, then the martingale structure
is present and the result could have obtained by using it. In addition, we sharpen
the result of Maxwell and Woodroofe (2000), so that the necessary and sufficient
conditions meet.

It is convenient to address the problem using the following notation. Let
(X)nez be astationary and ergodic Markov chain with values in the state $pace
and consider additive functionals

1) Sp=3Su(8) =) _8(Xi),
i=1
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where g: X — R is a measurable function for whics(Xg) has mean 0 and
finite variance. The partial sums of any stationary and ergodic praégssz
may be written in this form by letting<,, = (...,&,-1,&,) and g(X,) = &,.
Let 7= denote the marginal distribution ofg; suppose that there is a regular
conditional distribution forX; given Xg, sayQ(x; B) = P(X1 € B|Xo = x); and
write Qh(x) = E[h(X1)|Xo =x] a.e.(n) for h € L1(x).

Leto? = E(S?) and suppose throughout the paper that

2) 02— o0

asn — oo. This condition is needed to avoid degeneracy since otherwise there
exists a stationary sequeng&g such thatg(X,,) =Y, — ¥,,_1 [Theorem 18.2.2,
Ibragimov and Linnik (1971)]. It will not be repeated in statements of lemmas
and theorems. Consider a doubly indexed sequéngeof random variables for
which D,;, j =1,2,..., are martingale differences with respect to the filter
Fi=o0(...,X;_1,X;) for eachn; and letM,; = D,1+ --- + Dy, SO thatM,,
k=1,2,...,is a martingale with respect t6; for eachn. The D,; or M, is
called amartingale approximation (to S,,) if

3 MaxE|[(S — Mu)?] = 0(c}7).

A martingale approximation is calledationary if D,;, j =1,2,..., is a
stationary sequence for eaghandnontriangular if D,; = D; are independent

of n. Itis shown below that the existence of a stationary martingale approximation
is equivalent to the existence of a nontriangular one. When (3) holds, asymptotic
normality of S, /o, IS equivalent to asymptotic normality d#,, /o,, and this
guestion may be addressed using the martingale central limit theorem [see, e.qg.,
Billingsley (1995) pages 475-478].

It is shown in Section 2 that a simple growth condition BRE (S,|X0)?] is
necessary and sufficient for the existence of a martingale approximation. Then, in
Section 3, it is shown that, /o, is asymptotically standard normal, conditionally
given Xy, iff the approximating martingales satisfy the conditions of the martingale
central limit theorem. These conditions are not sufficient for the functional version
of the central limit theorem. This is shown by example in Section 4, and a set of
sufficient conditions is developed there.

Dedecker and Merlevede (2002) have used blocking techniques to obtain
necessary and sufficient conditions for conditional asymptotic normality without
assuming that the process is strongly mixing, or even ergodic. One of their
conditions is closely related to (4), but their conditions do not include the existence
of a martingale approximation and their uniform integrability conditionSyn
looks quite different from our Lindeberg—Feller conditions, (11) and (12). Using
the explicit construction of martingales, we are able to obtain novel asymptotic
theory for the sample means of linear processes, important and widely used
stationary processes.
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2. Martingale approximations. Below, | - | denotes the norm in ai?
space, which may vary from one use to the next. For exanjpli,denotes the
norm in L2(P) in (4), and the norm ir.2(xr) in (5).

LEMMA 1. If
(4) IE(Sn|X0) || = o(on),
asn — oo, thenthereis a slowly varying function ¢ for which onz =nl(n).

PROOF  If relation (4) holds, thenE[S, (Sntm — S| = |E[SpE (Spim —
Sal XD < 1Skl X 1E(Sy| X0l < emomon, Wheree,, — 0 asm — oco. The
lemma then follows from Ibragimov and Linnik [(1971), Theorem 18.2.3 and the
Remark on page 330], after correcting for obvious typographical errags.

Relation (4) is crucial in what follows. SindeE[g(Xx)|Xolll = ||Q%gll, it is
implied by the conditiony_}_1 | E[g(Xi)| Xolll = > 5_1 | Q% gll = o(cy), on the
individual summands; but (4) is weaker and not unintuitive.

Recall that the equatioh = Qh + g is calledPoisson’s equation. Below, we
will call a sequenceé,, € L?(xr) an approximate solution to Poisson’s equation
(for g) if

®) 1hnll +nll(I = Q)hn — gll = 0(0n)

as n — oo. Also, if a, and b, are positive sequences, then ~ b, iff
lim, o0 a,/b, = 1.

THEOREM 1. Thefollowing are equivalent:

(i) Relation (4) holds.

(i) Thereisan approximate solution to Poisson’s equation (5).
(i) Thereisa stationary martingale approximation (3).
(iv) Thereisanontriangular martingale approximation.

In this case E(Dsl) ~ £(n) for any stationary martingale approximation; and
there is a stationary martingale approximation for which max, <, || Sk — M|l <
3maX.<, | E(Sk|Xo)|-

PrROOF It will be shown first that (i)= (ii) = (iii) = (i) and then that
(i) = (iv) = (i). The remainder of the proof is placed between the two
equivalences.

(i) = (i). If (4) holds, let h® = g + Qg + --- + Q" 1g. Thenh%(x) =
E(S,|X1=x) and Qh (x) = E(S,|Xo = x) for a.e.x. Clearly,h, = g + Qh{ —
Q"g, and||hy — Qhyll < 2|igll. So,lIAll < IE(Sx1X0) ]l + 2ligll = o(os), by (4).
Next, let

I
B

hi
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Then ||, || < maX< 1Al = o(on), andhy, = g + Qh, — Qhy/n. So,n||(I —
O)h, — gl < |Qh%|| = o(oy), establishing (5).
(ii) = (iii). 1f (5) holds, let f,, =g — (I — Q)hy,

(6) Dk =hpy(Xi) — Qhp(Xi—1),

andM,y = Dy1+---+ Dy fork=1,2,.... ThenD,1, D>, ... are stationary
martingale differences for eaeh Next, writing g(X;) = h,(Xi) — Qh, (Xy) +
f»(Xx) in (1) and rearranging terms then leadsSte= M, + Sk (f,,) + Oh, (Xo) —
Qhyn(Xi)- So,

Max|| Sy — Myl =< nll full + 211 Qhyll = o(oy),
and (3) holds.

(i) = (). If (3) holds, then||E(S,|Xo)|l = [E(Sy — Munl X0)l < 1Sy —
M., || = o(o,). This establishes the equivalence of (i)—(iii).

For any stationary martingale approximation in (ii)'i(D2 EM 2 W) =
E(S52) + 0(c2) ~ 02, so thatE(D?) ~ £(n); and for the statlonary martlngale
approximation constructed in the proof of & (i), MaXi<y, [|Sx — Myukll <

nll full + 201 Qhy |l < 3max<, | QhZ |l < 3maX.<, |E(S:| X0

(i) = (iv) = (i). If there is a stationary martingale approximation, then (4)
holds and there is a stationary martingale approximation of the form (6), say
My = Dy1+ -+ Dyi. Then|| My, — Myl < ISk — Mkl + 1Sk — Mokl and
m||Du1 — Du1ll? = | Mum — Mym |12 < 21Sm — Mm% + 21ISm — Mum||?. Let
Dy = Dy andM,, = D1 + --- + D,. ThenM1, Mo, ... is a martingale||S, —
Mn” =< ”Sn - Mnn” + ||Mnn - Mn”’ and ||Sn - Mnn” = o(oy), by assumption-
Here || My — My ||? = 37 _1 | Duk — Dixcl|? = X¢_1 1 Dp1 — Diall?. So,

218 — Mixll? W 2118k — M |12
My — M, | <Z ISk — M|l s ISk — M|l 14,
k 1 k
say. Karamata’s theorem [see, e.g., Theorem 0.6 in Resnick (1987)] implies
that, fora > —1, > 1 i%0(@i) ~ nt%¢(n)/(1+ «). Hencel, = DN REAIES
o[nt(n)] = o(c?). For the second term, notice thdat,;||°> = k| D,1[? and
| Dn1]l2 ~ £(n). Then for some positiv€ and any positive < 1/2,

<4Z 42 Z ”Sk_ nk”

k<ne ne<k<n

ISk 1% + | Mk |1?

2
<C ) [Lk) +Lm]+ - maXIISk — Mull%,

k<ne

which by Karamata’s theorem implies that lim sup, 11,,/02 < 2Cs and, there-
fore, limsup,_, o Iln/an2 = 0. Conversely, if there is a nontriangular martingale
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approximation, them E(S, | Xo) | = |E(S, — M,|Xo) |l < ISy — M, || = 0(0y), as
above. O

As it is clear from Theorem 1, martingale approximations are not unique. Any
two are asymptotically equivalent, however, in the following sense: If (3) holds,
andifM, =D, +---+ D,, is a second martingale approximation, then

n
() E|mahy — M2 | <410, = Mo =43 D)y~ Dol
= k=1
using Doob’s [(1953), page 317] inequality, aft¥,, — Myl < IS, — M), || +
S0 — Mun |l = 0(oy).

If £(n) - oo In Lemma 1, then it is impossible to have a martingale
approximation that is both nontriangular and stationary, bwt,?ifw o2n, then
it is. Maxwell and Woodroofe (2000) show that¥> , n=3/2| E(S,,|Xo)|| < oo,
then there is a martingaldZ1, M», ... with stationary increments for which
1S, — M, |1% = o(n). A simplified proof of a special case of this result is provided
in Lemma 5, along with an explicit bound ¢iis,, — M,,||.

The proof of Theorem 1 contains the explicit constructioDgf = h,,(X;) —
0Oh,(X;—1) interms of any approximate solutidr to Poisson’s equation and also
an explicit construction of:,,. An alternative approximate solution to Poisson’s
equation is provided next.

COROLLARY 1. If (4) holds, then (5) holdswith i, = f1,,, where

fe=>1A+e) 70 Y

j=1

forO<e < 1.

PrROOF From the definition, it is clear thatl + ¢)f. = ¢ + Qf, and
I — Q)h, =g — h,/n. So, the corollary would follow from||A,| = o(oy,).
To see this, first observe that = ¢ > 72 (1 + e)~%=1h?, by partial summation,
wherehj (x) = E(S¢| X1 =x), as above. LeV (s) =} 2, orsktL. Then|h, || =
o[V(n/(n + 1))1/n by (4), andV (s) ~ /7 (1 —s)~¥/2¢Y2(1/(1 - 5)) ass 1 1
by Tauberian’s theorem [see, e.g., Feller (1971), page 445].

For some examples, let.n_1, no, n1,... be a stationary sequence of mar-
tingale differences with finite variance; and let.6_1,69,61,... be a se-
quence of i.i.d. random elements that is independent.of_1, o, 1, .... Then
X =[(...60k—1,6), (..., m—1, mx)] IS a stationary Markov chain with values
in X =Y x RN, where® is the range of the, andN is the nonnegative in-
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tegers. Letz; : XX — R be measurable functions for which

> Elaj(X0)*n?] < 0.
j=0

Then

(8) Ee=) aj(Xp—j—1) M,

j=0

converges w.p.1 for eachand is of the formg(X;). Processes of the form (8)
include linear processes with constantandé, = 0, and are calleduasi-linear
processesbelow. They also include many nonlinear time series models, like autore-
gressive processes with random coefficients. Writipg= >_ ;- ax—; (X ;-1)n;

and lettingb, = ap+ - - - + a,, it is easily seen that

E(Sp|X0) = ) [baj(Xj—1) —b_j(X;-1D)]nj,
j=<0

n
Sp— E(SulX0) =Y bu_j(Xj—1)n;.
j=1

2__ 2 2 ;
So,0/ = oy 1t 0,0 with

o1 =IESuXo)l* =3 Ellbjn(Xo) = bj(Xo)I*ni),
j=0
n—1

02, =118, — E(SplXo) 1= > Elb;(X0)*nl,
j=1

and (4) is equivalent tas?; = 0(c?,). In this case, by (6) in the proof of
Theorem 1,D,x = b,(Xx_1)nk, Whereb, = (bg + --- + b,_1)/n, by some
routine calculations, anE[En(Xo)znf] must be slowly varying. Observe that if
b;(Xo), j <0, are independent of, then E[b,(X0)?n?] = E[b,(X0)?1E (n?)
and thaws?; ando?, simplify similarly.

EXAMPLE 1 (Linear processes). Suppose thatare constants and (without
loss of generality) thak (3?) = 1. Thenb, are also constants, angf , = 0(0,2,)
iff

00 n—1
9) > (Bjtn —bj)2=0[zbzf]
j=0 k=1
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If a, are absolutely summable and= Y7 a, # 0, thenc 2, ~ b?n and there
is aC for which a,fl <CY'!", Z?‘;i la;| = o(n), so that (9) holds. Relation (9)
also holds ifb £ 0 andb, = b + O(1/n). If ap =0 anda, = 1/n for n > 1,
thenb, ~ log(n), ando?, ~ nlog?(n). In this caser?, = O(n) = 0(c?,), SO
that (9) holds. To see this, observe that, for 3, 1/(j + 1) < ff”u—ldu and
[log(j + n) —l0g(j)1? < f7_yllog(u +n) —log()1? du, so that

. 2
00 o0 Jjtn 1
> byt ([ )
j=3 j=3 J

u

- i jog2 ! "
j=3 J

< /oologzu " du=0m).
2 u

Similarly, if ag=0, a1 = 1/log(2) anda, = 1/log(n + 1) — 1/log(n) for n > 2,

theno2, ~ n/log?(n) ando?, = O[n/log®(n)] = 0(0,2,), so that (4) holds. On

the other hand, i, = n~#, where 2 < B < 1, then there are positive constants

c1,4 andcy, g for whicho?; ~ ¢; gn®2# asn — oo for i = 1, 2, so that (4) fails.

3. Asymptotic normality. The main result of this section is th&} := S, /o,
is asymptotically standard normal giveXy, as described below, iff there is a
martingale approximation, (3), and tig satisfy the conditions of the martingale
central limit theorem, (11) and (12). In more detail, Bt and E* denote the
regular conditional probability and conditional expectationdgs given Xo = x;
and letF,, denote the conditional distribution function

F,(x;2) = P*(S, <2).

Further let® denote the standard normal distribution function; andléenote the
Levy distance between two distribution functions. Then by asymptotic normality
given Xo, we mean

(10) lim | A[®, F,(x; )]m{dx}=0.
n—-oo J

Clearly, (10) implies tha$ is asymptotically standard normal, but (10) is stronger
in general; it implies tha$ is asymptotically standard normal for related models
in which X has any distribution that is absolutely continuous with respect to
the stationary distribution. Such a property is needed, for example, if asymptotic
normality is used to set approximate error bounds for Markov chain Monte
Carlo experiments. See, for example, Tierney (1994). Under conditions of weak
dependence, (10) can be deduced from (unconditional) asymptotic normaljty of
See Proposition 1 for the details and tlentnuation of Example 1 for a case in
which S;; is (unconditionally) normal, but (10) fails.
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LEMMA 2. If (10)holds, then (4) holds; that is, || E (S, | X0)|| = o(oy).

PrRooFr The proof follows Maxwell and Woodroofe (2000), who considered
the special casen2 ~ cn; it is included because the lemma is crucial to what
follows. Let = denote convergence in distribution. Notice thatZf, = &,
then liminf,_,  varz,) > 1, where vatZ,) = E(Z2) — [E(Z»)]?. To see
this, for J > 0, let 7, ; = min[max(Z,,, —J), J1. Then lim,_. o varT,, ;) =
Jri{min[max, —J), JI2dd () Jjool' By Corollary 4.3.2 in Chow and Teicher
(1978), vatZ,,) > vanT,, ;). So liminf, . vanz,) > 1.

Assume otherwise that there issa> 0 such that|E(S},|Xo)| > § along a
subsequencé:’}. By (10), there exists a further subsequefed c {n’} such
that A[®, F,»(x; -)] — O for almost allx(r). Let t2(x) = var(S}|Xo = x). By
the result in the previous paragraph, limnf, o, rnz,,(x) > 1 for almost allx ().
Thus 1<Iliminf, _ « [ 'L'nz,,(x)n(dx) by Fatou’s lemma. On the other hand, the
integral in the previous inequality equdls}, |12 — |E(S},|X0) 1> < 1 — 82, which
is a contradiction. O

LEMMA 3. Supposethereisa martingale approximation {D,,;} for which

1 n
(11) 2 Z E(D3k|~7’vk—1) £
On k=1
and
15 2 P p
(12) 2 Z E(Dﬂkl{ank‘zsan}|fk—l) -0
O k=1

hold for each ¢ > 0. Then for any martingale approximation {D,,} (say),
(11)and (12) are satisfied. In addition,

1
(13) sup | — Y E(DZ|Fi-1) — 1| > 0.

0<l‘§1 Un kgnt

PROOF  Observe thaE|E (D)3 |Fi—1) — E(D2| Fi—1)| < E|D)3 — DZ,| and
2 Py
E(DYpr, 22¢0,) | Fi—-1)
< 2E(D3 LDyl ze00)| Fi-1) + 2E(I D)3 — D2 || Fi1).
So, if Dy satisfies (11) and (12), then so @, , since

n n n
E(Z |D/3 — D3k|) < J S IDL, + Dl x J > IDY — Dl = 0(6P).
k=1 k=1

k=1
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asin (7). To establish (13), let = |nt |, where| x| is the greatest integer that does
not exceed; let M/, = D/, + --- + D/,. Observe that2 /02 — t asn — oo,
(11) implies

1 m p
= Y E(D | Fie1) > t.
On k=1

Since||My,,, — My, | < 1My, — Smll + 11Sm — My, | = 0(0n),

m m m
E(Z D)% — D:fki) < | DD+ Dpy 2 x J Y ID), = D, 112
k=1 k=1 k=1
= 0(0,12).

LetV,(r) = Gn_z Dieq E(D;l2k|5¢‘k_1). ThenV, (1) —t 20. Lets > 2 be an integer.
Observe that syp; [V, (1) — ] <max<; |V, (i/1) —i/I| + 1/1. By first letting
n — oo and thenl — oo, (13) follows. O

THEOREM 2. Relation (10) holds iff there is a martingal e approximation for
which (11)and (12) hold.

PROOF Suppose first that there is a martingale approximation (3) for which
(11) and (12) hold. By Lemma 3, assume without loss of generality that the
martingale approximation is defined by (6). Then, it suffices to establish (10)
for all subsequences,, r > 1, that increase teo sufficiently fast as* — oc.
Observe thaD,;, k =1, 2, ..., are martingale differences with respectRé for
a.e.x(r) by the Markov property. If, — oo sufficiently quickly as — oo, then
(12) and (13) both hold with convergence in probability replaced by convergence
w.p.1 (P), and lim,_ oo (S, — My,) /0, = 0 w.p.1, too. So, these relations hold
w.p.1(P*) for a.e.x(rr). Then, for a.ex(rw), lim,_, o Fy, (x; 2) = ®(z) for all z,
by the martingale central limit theorem applied conditionally givgn= x, and
(10) holds (along the subsequence) by the bounded convergence theorem.

The converse will be deduced from Theorem 2 of Ganssler and Haeusler (1979),
that provides necessary conditions for the functional version of the martingale
central limit theorem. If (10) holds, then so does (4), by Lemma 2; and then
there is a stationary martingale approximation, by Theorem 1. So, the issues are
(11) and (12). LeB denote a standard Brownian motion. Then, since the process
is stationary and; is asymptotically normal giveXo,

1
—[Stnna)s Sineat = Stans)s -+ -» Stane) = Stane-a ]

n

= [Btl’ sz - Bfl’ ) Btk - Bfk—l]
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for every choice of O< 11 < < --- < 1y < 1, where= denotes convergence in
distribution. For example,#=2,0<s <t <1, andm = |nt] — |ns], then

‘P[SLnSJ < 0nY: Sint] — Sins| Sanz]_¢(%)®(%)
= /x Fnl(x; %nz) - qD(«/tZTS)‘H{dx}
+®<¢,ZTS>‘P[SLnsJ So'ny]_q:,(%)

which approaches zero as— oo sinceos,, /o, — +/t —s. Next let

’

1
(14) M, (1) = O'_ Z Dy

n k<nt

for 0 <r < 1, andM, (1) = M, (1-). Then the finite-dimensional distributions

of M, converge to those d, since|S ;| — M |l/on 2 0foreach O< ¢ < 1;

and sinceE[M,(1)2] ~ nt E(D?))/a2 — t, it follows that eachMl, ()2, n > 1,

is uniformly integrable for each & r < 1. It then follows from the martingale
inequality thatM,, is tight in D[0, 1]. So, M, converges tdB in D[O, 1]; and
relations (11) and (12) then follow from Theorem 2 of Ganssler and Héaeusler
(2979). O

ExamMPLE 1 (Continued). For linear processes, relations (11) and (12) follow
from (4), which implies thaiD,; = b,n; and that|b,| is slowly varying, for the
stationary martingale approximation constructed in the proof of Theorem 1. On
the other hand, ifi, = n=#, where ¥2 < 8 < 1, thenS, /o, is asymptotically
standard normal, but (4) and (10) do not hold.

In the next corollary, letr; denote the joint distribution oXg and X1, so
that 71(B) = P[(Xo, X1) € B] for measurableB € X2; and let H, (xo, x1) =
hy(x1) — Qhy(x0), SO thatD,x = H, (Xi—1, Xi) in (6).

COROLLARY 2. If (4)holdsand H,/+/€(n) — H € L?(r1), then (10) holds.

PROOE Let D, = H,(Xy_1, Xx) be the martingale approximation (6) and
let D), = /€(n)H(Xy—1, Xy) andM,, = D, , +---+ D,,. ThentheD,, provide
another stationary martingale approximation, sitjéé,, — M;m||2 =n| D1 —

D! ,|1> = n|H, — VEW)H|? = 0(c,?). Moreover, theD!, satisfy (11) and (12).
For example,

1 1
— > E(DAIX)) = - > E[H(Xk-1, Xx)?|Xx—1] = tE[H (X0, X1)?]

n k<nt k<nt
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by the ergodic theorem; arfe] H (Xo, X1)%1 = ||H |2 = 1, since|| H, ||? ~ £(n), by
Lemma 1. Condition (12) may be obtained similarly.

To relate the condition in Corollary 2 to the sun§s, first observe that
H, //T(n) converges in.2(xr1) iff D,1/+/Z(n) converges ir.2(P) and next that
D, is the average of (S;|X1) — E(Sk|Xo) overk =1,...,n. Itis not difficult
to see that i E(S,|X1) — E(S.|X0)1/+~/€(n) converges inL2(P), then so does
D,1/+/€(n). Woodroofe (1992) shows how the condition of Corollary 2 can be
related to the Fourier coefficients gfwhen X; is a Bernoulli or Lebesgue shift
process.

EXAMPLE 2. For a quasi-linear process (8),1 = bp(Xo)n1. So, if...n_1,
no, N1, ... are iid., o,.1 = o(on2), and b,//€(n) — b # 0 in L2%(7), the
D,1/+/%(n) converges irnL2(P) and, therefore, (11) and (12) both hold.

3.1. Strong mixing processes. Many classical results concerning asymptotic
normality for stationary processes require strong mixing conditions; see, for
example, Peligrad (1986, 1996). Here we show how the strong mixing assumption
is related to our main condition (4). LeX, = (...,§,-1,&,) and §,, = & +
-+ &,, where(§;);cz Is a stationary sequence that is strong mixing; that is,

@yi= Sup |P(ANB)— P(A)P(B)|— 0O
AeFg,BeGy

asn — oo, wheref, =o(...,&,-1,&,) andg,, = o (&, Ent1, ---).

LEMMA 4. If F and G aretwo distribution functionsand ¢ > 0, thenthereare
continuous functions w1, .. ., w,,, depending only on ¢ and G, for which jw;| <1

and [ w; dG =0for all i and
/w,-a’F—/ w,-a’G‘.
R R

PrRoOF The proof consists of first finding and b for which G(a) + 1 —
G(b) < &, then partitioning[a, b] Int0 a = xg < x1 < -+ < x,, = b, Where
xi —xi_1 < &/2, constructing piecewise linear functionsfor which u; (x) =1
for x <x;_1 andu;(x) =0 for x > x;, and then lettingv; = u; — [ u; dG. The
details are omitted. O]

A(G, F) < & + max

i<m

PrROPOSITIONL. Assumethat (§,),c7z iSastrong mixing processwith mean O
and finite variance. Then S = & implies (10), and consequently (4).

PROOF By Lemma 4, it suffices to show that

/X‘/Rw(z)F{x;dz}

m{dx}— 0




MARTINGALE APPROXIMATIONS 1685

asn — oo for all continuousw : R — [—1, 1] for which [ wd® = 0; and since
the inner integral is jusE*[w(S))], it suffices to show thaE | E[w(S))|Xo]l| — O
asn — oo for all suchw. To see this, let: = m,, be a sequence for whieh — oo
and S,, /o, = 0; and letS, = (Syam — Sw)/on. Further, letw:R — [—1, 1]
be a continuous function for whiclfiy wd® = 0 and letw,(x) = E*[w(S;)]
and W, (x) = EX[w(S,)]. Then E[w,(Xo)] = E[w(SH] — 0, sinceS; = &,

E|w,(Xo) — W (X0)| < E|lw(S*) —w(S,)| — 0, sinceS, — S* 5 0 asn — oo;
and

E|W,(X0)|? = / W (Xo)w(S,) dP < E[w(S,)]? + 4a,, — O,

by standard mixing inequides [see, e.g., Hall anHleyde (1980), page 277]. So,
E|w,(Xg)| — 0 asn — oo as required. O

4. Aninvarianceprinciple. Let

1
IBgn(l‘) = G_SLnIJ
n

for0<t <1, B,Q) =B,(1-), where|x]| denotes the greatest integer that is
less than or equal te. If (10) holds, then the finite-dimensional distributions
of B,, converge to those of standard Brownian motibnand M,, converges in
distribution toB in the spaceé)[0, 1], both from the proof of Theorem 2. Relations
(4) and (10) do not imply thaB, converges in distribution t® in DJO, 1],
however.

EXAMPLE 3. LetG be a symmetric distribution function for which

1
Lo y2log*?(y)
asy —» oo. Let...,n_1,n0,n1,...~® and...,Y_1,Yp, Y1,... ~ G be inde-
pendent random variables. Leg = 0,a1 = 1/l0og(2) anda, = 1/logk + 1) —
1/log(k) for k > 2, as in Example 1. Defing, by (8); let&; = & + Yi — Yi_1;
andletS, =& +---+§, andS, =& +--- +&,. Then (4), (11) and (12) hold for
both S, ands’ with o2 ~ n/log?(n). In this example,

1
— max|Y; — Yp| = o0
op k<1

in probability, so thai, andB], cannot both converge .

In Theorem 3 and Corollary 3, we consider the special case in whick
Iim,,_mocrnz/n exists. These results improve Theorem 2 and Corollary 4 in
Maxwell and Woodroofe (2000) by imposing a weaker condition as well as by
obtaining a stronger result. The heart of the matter is whether there is a martingale
approximation for which mayx,, |Sx — M,«|/+/n — 0 in probability. This question
is addressed first. Two lemmas are needed.



1686 W. B. WU AND M. WOODROOFE

LEMMA 5. Supposethat, for someg > 1,
(15) IE(Su|X0) || = o(v/nlog™ n).

Then there is a martingale M1, M>, ... with stationary increments for which
1S, — Myl = o(y/nlog ™ n).

ProoOF Recall the constructio®,; and M,y = D,1 + --- + Dy from (6)
and also that max,, || Sk — Mkl < 3maX<, [|E(Sk|Xo)|l. Thus, max<, || Sk —
M|l = o[/nlog™4(n)] in the present context. Soyif > 2 andm < n < 2m, then
1My — My | = o[ /m10g™4 (m)]. SINCE|| My — My ||? = m|| Dy1 — Dyna||* =
m|| H, — Hy |2, it then follows that

(16) > N Hy — Hyal < > ollog™4(2")] = o[log™™4 (2/)].

It follows that Hx has a limit H, say, in L?(z;) and that||H — H,| =
ollog*~9(m)). Letting Dy = H(Xy_1, Xx) andM,, = D1 + --- + D, the lemma
then follows from|| S, — M,,|| < IS, — My, || + /nllH, — H|. O

LEMMA 6. LetY, k € Z, be a second-order stationary process with mean 0
adlet T, =Y1+---+7Y,. Then

d
2 d— j 112
E[rpng,}stOz 1717,
]:

whered = [log,(n)], the least integer that is greater than or equal to log, ().

PrROOF The proof uses a simple chaining argument and appears in Doob
[(1953), page 156] for uncorrelated random variables. Briefly, any integen
may be written ag =2 4 ...+ 2"/, where 0<r; <--- <ry <d. So,
2

J
> (Torgegoi = Toy oy pi1)
i—1

Ty |2 =

J
<J Z | Toryy..q2ri — T2"1+...+2"f—1|2,
i=1
where an empty sum is to be interpreted as 0, and

d 24-i

2
rpng|Tk| <d Z Z |Ti2i — Tji—1y2s
= j=0i=1

2

’

from which the lemma follows by stationarity[]
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THEOREM 3. LetR, =S, — M,, where M,, isasin Lemma 5. If g € L? for
some p > 2 and (15) holdsfor ¢ > 2, then 02 =lim,,_, », 0,2/ exists, and

(17) lim P[max|Rj|zsﬁ]:O
n—o00 j<n

for each ¢ > 0; and if (15) holds for someg > 5/2, then
lim P"[max|Rj| > sﬁ:| =
n—00 j<n

for a.e. x (o) for each ¢ > 0.

PROOE Lety =1/4—1/(2p) > 0, wherep is as in the statement of the
theoremg = a,, = [2"], andb = b,, = [2"1=¥)]. Then

max|R; |< max [lRak| + max |Rak+, akl}.

j=a2m
Here,
max |Rak+;j — Rak|
0<j=<a
= max |Mak+] - akl + max |Sak+j - Sakl
0<j< 0<j=<a
< max | M, a max X
0% 20 | ak+j — Max| + j§2’”|g( j)l

for eachk. So,

P [max|R | > 3w2m]

<2m
/2m
1g(X ;)| 8} [ | Rak| ]
P*| max > — P*|l max— > ¢/,
T |:j<2’” /2m “a + k<b /2m =

where max runs over all pairgj, k) such that 1< j, k < 2™ and |k — j| < a.
The first term clearly tends to 0 for a.xe(r), by the functional martingale central
limit theorem. The second term in (18) also converges to O forxdze) by the
Borel-Cantelli lemma, since

x lg(X DI _ ] al - )
/xP [j<zm Nl ,,2 E|g(X)|”,

and the right-hand side is summable over(recalling thata = [2¥™] and
observing thatpy + 1 — p < 0). Similarly, for the third term on the right-hand
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side of (18),

and, lettingd = [log, ()1,

E[maxM]z < i sz—i IR oi ”2
ksb f2m] T 2m “
_d Xd:Z’H 0(a2)
= om = |0g2(q—l)(a2i)
abd 1 4-2q
S o R

by Lemmas 5 and 6. Relation (17) follows immediately, sinbe= O(2") and
d = O(m); and if g > 5/2, theno(m*~27) is summable and*[max,<; | R.i| >
e+/2" ] — 0 for a.ex, by the Borel-Cantelli lemma.[]

Now let G,, andW¥ be the distributions aB,, and Brownian motion irD[0, 1],
and letA denote the Prokhorov metric f@|[0, 1].

COROLLARY 3. If (15)holdsfor someg > 2 and 0 < 02 < oo, then
im | AV, G,(x: )]w{dx} =0;
n—oo X
andif g > 5/2in (15),then lim,_, - A[Y, G, (x; -)]=0for a.e. x ().

PrROOFR LetK,(x;-) bethe distribution oM,, in D[0, 1]. Thenk,,(x; ) = ¥
asn — oo for a.e.x (), by the functional central limit theorem, and

ALY, Gu(x; )] < ALY, Kn(x; )]+ P"[r]anIRkl > ecrn] +e&
<n

for eache > 0. The casg > 5/2 follows immediately, and the case2q < 5/2
from [y P*[MaX<y |Rk| > copm{dx} = P[MaX.<, |Ri| > e0,]. O

COROLLARY 4. If (15)holds for some g > 2 and o = 0, then max,<,, | S|/

Vi 5 0;andif ¢ > 5/2, then lim,,_, o P*[MaX.<, |S| > e+/n ] = 0 for a.e. x(r)
for each ¢ > 0.

PrROOFE Inthis cases, = R;,. O
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REMARK 1. A simple sufficient condition for (15) is
(19) IE[(Xa)|Xolll = O(n~?log ™ n).

However, (15) allows processes of the form (8) with= n=f(-1)" for n > 1,

where Y2 < 8 < 1. In this case (19) is violated. Wu (2002) derived central
limit theorems for processes of this sort whose covariances are summable but not
absolutely summable. A typical example is the Gegenbauer process which exhibits
long-range dependence and has oscillatory covariances [Beran (1994)].
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