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MARTINGALE APPROXIMATIONS FOR SUMS OF
STATIONARY PROCESSES
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University of Chicago and University of Michigan

Approximations to sums of stationary and ergodic sequences by martin-
gales are investigated. Necessary and sufficient conditions for such sums to
be asymptotically normal conditionally given the past up to time 0 are ob-
tained. It is first shown that a martingale approximation is necessary for such
normality and then that the sums are asymptotically normal if and only if the
approximating martingales satisfy a Lindeberg–Feller condition. Using the
explicit construction of the approximating martingales, a central limit theo-
rem is derived for the sample means of linear processes. The conditions are
not sufficient for the functional version of the central limit theorem. This is
shown by an example, and a slightly stronger sufficient condition is given.

1. Introduction. The central limit problem for sums of stationary and ergodic
processes has attracted continuing interest for over half a century, and two major
lines of inquiry have developed. Under conditions of weak dependence such
as strong mixing, blocking techniques have proved effective. Ibragimov (1962)
provides an early account of this line. See Doukhan (1999) and Peligrad (1996) for
more recent ones. An alternative approach, due to Gordin (1969), uses martingale
approximation to establish asymptotic normality; see also Gordin and Lifsic
(1978). Ho and Hsing (1997), Maxwell and Woodroofe (2000) and Wu and
Woodroofe (2000) have followed this line recently. Here we come down on the side
of martingale approximations by showing that if the partial sums of a stationary
process are asymptotically normal in a suitable sense, then the martingale structure
is present and the result could have obtained by using it. In addition, we sharpen
the result of Maxwell and Woodroofe (2000), so that the necessary and sufficient
conditions meet.

It is convenient to address the problem using the following notation. Let
(Xn)n∈Z be a stationary and ergodic Markov chain with values in the state spaceX,
and consider additive functionals

Sn = Sn(g) =
n∑

i=1

g(Xi),(1)
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where g :X → R is a measurable function for whichg(X0) has mean 0 and
finite variance. The partial sums of any stationary and ergodic process(ξn)n∈Z

may be written in this form by lettingXn = ( . . . , ξn−1, ξn) and g(Xn) = ξn.
Let π denote the marginal distribution ofX0; suppose that there is a regular
conditional distribution forX1 givenX0, sayQ(x;B) = P (X1 ∈ B|X0 = x); and
write Qh(x) = E[h(X1)|X0 = x] a.e.(π) for h ∈ L1(π).

Let σ 2
n = E(S2

n) and suppose throughout the paper that

σ 2
n → ∞(2)

asn → ∞. This condition is needed to avoid degeneracy since otherwise there
exists a stationary sequenceYn such thatg(Xn) = Yn − Yn−1 [Theorem 18.2.2,
Ibragimov and Linnik (1971)]. It will not be repeated in statements of lemmas
and theorems. Consider a doubly indexed sequenceDnj of random variables for
which Dnj , j = 1,2, . . . , are martingale differences with respect to the filter
Fj = σ( . . . ,Xj−1,Xj ) for eachn; and letMnk = Dn1 + · · · + Dnk , so thatMnk,
k = 1,2, . . . , is a martingale with respect toFk for eachn. The Dnj or Mnk is
called amartingale approximation (to Sn) if

max
k≤n

E[(Sk − Mnk)
2] = o(σ 2

n ).(3)

A martingale approximation is calledstationary if Dnj , j = 1,2, . . . , is a
stationary sequence for eachn, andnontriangular if Dnj = Dj are independent
of n. It is shown below that the existence of a stationary martingale approximation
is equivalent to the existence of a nontriangular one. When (3) holds, asymptotic
normality of Sn/σn is equivalent to asymptotic normality ofMnn/σn, and this
question may be addressed using the martingale central limit theorem [see, e.g.,
Billingsley (1995), pages 475–478].

It is shown in Section 2 that a simple growth condition onE[E(Sn|X0)
2] is

necessary and sufficient for the existence of a martingale approximation. Then, in
Section 3, it is shown thatSn/σn is asymptotically standard normal, conditionally
givenX0, iff the approximating martingales satisfy the conditions of the martingale
central limit theorem. These conditions are not sufficient for the functional version
of the central limit theorem. This is shown by example in Section 4, and a set of
sufficient conditions is developed there.

Dedecker and Merlevede (2002) have used blocking techniques to obtain
necessary and sufficient conditions for conditional asymptotic normality without
assuming that the process is strongly mixing, or even ergodic. One of their
conditions is closely related to (4), but their conditions do not include the existence
of a martingale approximation and their uniform integrability condition forS2

n/n

looks quite different from our Lindeberg–Feller conditions, (11) and (12). Using
the explicit construction of martingales, we are able to obtain novel asymptotic
theory for the sample means of linear processes, important and widely used
stationary processes.
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2. Martingale approximations. Below, ‖ · ‖ denotes the norm in anL2

space, which may vary from one use to the next. For example,‖ · ‖ denotes the
norm inL2(P ) in (4), and the norm inL2(π) in (5).

LEMMA 1. If

‖E(Sn|X0)‖ = o(σn),(4)

as n → ∞, then there is a slowly varying function � for which σ 2
n = n�(n).

PROOF. If relation (4) holds, then|E[Sn(Sn+m − Sn)]| = |E[SnE(Sn+m −
Sn|Xn)]| ≤ ‖Sn‖ × ‖E(Sm|X0)‖ ≤ εmσmσn, where εm → 0 as m → ∞. The
lemma then follows from Ibragimov and Linnik [(1971), Theorem 18.2.3 and the
Remark on page 330], after correcting for obvious typographical errors.�

Relation (4) is crucial in what follows. Since‖E[g(Xk)|X0]‖ = ‖Qkg‖, it is
implied by the condition,

∑n
k=1‖E[g(Xk)|X0]‖ = ∑n

k=1 ‖Qkg‖ = o(σn), on the
individual summands; but (4) is weaker and not unintuitive.

Recall that the equationh = Qh + g is calledPoisson’s equation. Below, we
will call a sequencehn ∈ L2(π) an approximate solution to Poisson’s equation
( for g) if

‖hn‖ + n‖(I − Q)hn − g‖ = o(σn)(5)

as n → ∞. Also, if an and bn are positive sequences, thenan ∼ bn iff
limn→∞ an/bn = 1.

THEOREM 1. The following are equivalent:

(i) Relation (4) holds.
(ii) There is an approximate solution to Poisson’s equation (5).
(iii) There is a stationary martingale approximation (3).
(iv) There is a nontriangular martingale approximation.

In this case E(D2
n1) ∼ �(n) for any stationary martingale approximation; and

there is a stationary martingale approximation for which maxk≤n ‖Sk − Mnk‖ ≤
3 maxk≤n ‖E(Sk|X0)‖.

PROOF. It will be shown first that (i)⇒ (ii) ⇒ (iii) ⇒ (i) and then that
(iii) ⇒ (iv) ⇒ (i). The remainder of the proof is placed between the two
equivalences.

(i) ⇒ (ii). If (4) holds, let ho
n = g + Qg + · · · + Qn−1g. Then ho

n(x) =
E(Sn|X1 = x) andQho

n(x) = E(Sn|X0 = x) for a.e.x. Clearly,ho
n = g + Qho

n −
Qng, and‖ho

n − Qho
n‖ ≤ 2‖g‖. So,‖ho

n‖ ≤ ‖E(Sn|X0)‖ + 2‖g‖ = o(σn), by (4).
Next, let

hn = ho
1 + · · · + ho

n

n
.
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Then ‖hn‖ ≤ maxk≤n ‖ho
k‖ = o(σn), andhn = g + Qhn − Qho

n/n. So,n‖(I −
Q)hn − g‖ ≤ ‖Qho

n‖ = o(σn), establishing (5).
(ii) ⇒ (iii). If (5) holds, letfn = g − (I − Q)hn,

Dnk = hn(Xk) − Qhn(Xk−1),(6)

andMnk = Dn1 + · · · + Dnk for k = 1,2, . . . . ThenDn1,Dn2, . . . are stationary
martingale differences for eachn. Next, writing g(Xk) = hn(Xk) − Qhn(Xk) +
fn(Xk) in (1) and rearranging terms then leads toSk = Mnk +Sk(fn)+Qhn(X0)−
Qhn(Xk). So,

max
k≤n

‖Sk − Mnk‖ ≤ n‖fn‖ + 2‖Qhn‖ = o(σn),

and (3) holds.
(iii) ⇒ (i). If (3) holds, then‖E(Sn|X0)‖ = ‖E(Sn − Mnn|X0)‖ ≤ ‖Sn −

Mnn‖ = o(σn). This establishes the equivalence of (i)–(iii).
For any stationary martingale approximation in (3),nE(D2

n1) = E(M2
nn) =

E(S2
n) + o(σ 2

n ) ∼ σ 2
n , so thatE(D2

n1) ∼ �(n); and for the stationary martingale
approximation constructed in the proof of (i)⇒ (iii), maxk≤n ‖Sk − Mnk‖ ≤
n‖fn‖ + 2‖Qhn‖ ≤ 3 maxk≤n ‖Qho

k‖ ≤ 3 maxk≤n ‖E(Sn|X0)‖.
(iii) ⇒ (iv) ⇒ (i). If there is a stationary martingale approximation, then (4)

holds and there is a stationary martingale approximation of the form (6), say
Mnk = Dn1 + · · · + Dnk . Then‖Mnk − Mmk‖ ≤ ‖Sk − Mnk‖ + ‖Sk − Mmk‖, and
m‖Dn1 − Dm1‖2 = ‖Mnm − Mmm‖2 ≤ 2‖Sm − Mmm‖2 + 2‖Sm − Mnm‖2. Let
Dk = Dkk andMn = D1 + · · · + Dn. ThenM1,M2, . . . is a martingale,‖Sn −
Mn‖ ≤ ‖Sn − Mnn‖ + ‖Mnn − Mn‖, and‖Sn − Mnn‖ = o(σn), by assumption.
Here‖Mnn − Mn‖2 = ∑n

k=1 ‖Dnk − Dkk‖2 = ∑n
k=1 ‖Dn1 − Dk1‖2. So,

‖Mnn − Mn‖2 ≤
n∑

k=1

2‖Sk − Mkk‖2

k
+

n∑
k=1

2‖Sk − Mnk‖2

k
= In + IIn,

say. Karamata’s theorem [see, e.g., Theorem 0.6 in Resnick (1987)] implies
that, forα > −1,

∑n
i=1 iα�(i) ∼ n1+α�(n)/(1 + α). HenceIn = o[∑n

k=1 �(k)] =
o[n�(n)] = o(σ 2

n ). For the second term, notice that‖Mnk‖2 = k‖Dn1‖2 and
‖Dn1‖2 ∼ �(n). Then for some positiveC and any positiveε < 1/2,

IIn ≤ 4
∑
k≤nε

‖Sk‖2 + ‖Mnk‖2

k
+ 2

∑
nε<k≤n

‖Sk − Mnk‖2

k

≤ C
∑
k≤nε

[�(k) + �(n)] + 2

ε
max
k≤n

‖Sk − Mnk‖2,

which by Karamata’s theorem implies that lim supn→∞ IIn/σ
2
n ≤ 2Cε and, there-

fore, lim supn→∞ IIn/σ
2
n = 0. Conversely, if there is a nontriangular martingale
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approximation, then‖E(Sn|X0)‖ = ‖E(Sn − Mn|X0)‖ ≤ ‖Sn − Mn‖ = o(σn), as
above. �

As it is clear from Theorem 1, martingale approximations are not unique. Any
two are asymptotically equivalent, however, in the following sense: If (3) holds,
and ifM ′

nk = D′
n1 + · · · + D′

nk is a second martingale approximation, then

E

[
max
k≤n

(M ′
nk − Mnk)

2
]

≤ 4‖M ′
nn − Mnn‖2 = 4

n∑
k=1

‖D′
nk − Dnk‖2,(7)

using Doob’s [(1953), page 317] inequality, and‖M ′
nn − Mnn‖ ≤ ‖Sn − M ′

nn‖ +
‖Sn − Mnn‖ = o(σn).

If �(n) → ∞ in Lemma 1, then it is impossible to have a martingale
approximation that is both nontriangular and stationary, but ifσ 2

n ∼ σ 2n, then
it is. Maxwell and Woodroofe (2000) show that if

∑∞
n=1n−3/2‖E(Sn|X0)‖ < ∞,

then there is a martingaleM1,M2, . . . with stationary increments for which
‖Sn − Mn‖2 = o(n). A simplified proof of a special case of this result is provided
in Lemma 5, along with an explicit bound on‖Sn − Mn‖.

The proof of Theorem 1 contains the explicit construction ofDnk = hn(Xk) −
Qhn(Xk−1) in terms of any approximate solutionhn to Poisson’s equation and also
an explicit construction ofhn. An alternative approximate solution to Poisson’s
equation is provided next.

COROLLARY 1. If (4) holds, then (5) holds with hn = f1/n, where

fε(x) =
∞∑

j=1

(1+ ε)−jQj−1g

for 0 < ε < 1.

PROOF. From the definition, it is clear that(1 + ε)fε = g + Qfε and
(I − Q)hn = g − hn/n. So, the corollary would follow from‖hn‖ = o(σn).
To see this, first observe thatfε = ε

∑∞
k=1(1 + ε)−k−1ho

k , by partial summation,
whereho

k(x) = E(Sk|X1 = x), as above. LetV (s) = ∑∞
k=1 σks

k+1. Then‖hn‖ =
o[V (n/(n + 1))]/n by (4), andV (s) ∼ 1

2

√
π(1 − s)−3/2�1/2(1/(1 − s)) ass ↑ 1

by Tauberian’s theorem [see, e.g., Feller (1971), page 445].�

For some examples, let. . . η−1, η0, η1, . . . be a stationary sequence of mar-
tingale differences with finite variance; and let. . . θ−1, θ0, θ1, . . . be a se-
quence of i.i.d. random elements that is independent of. . . η−1, η0, η1, . . . . Then
Xk = [( . . . θk−1, θk), ( . . . , ηk−1, ηk)] is a stationary Markov chain with values
in X = 	N × R

N, where	 is the range of theθk andN is the nonnegative in-
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tegers. Letaj :X → R be measurable functions for which

∞∑
j=0

E[aj (X0)
2η2

1] < ∞.

Then

ξk =
∞∑

j=0

aj (Xk−j−1)ηk−j(8)

converges w.p.1 for eachk and is of the formg(Xk). Processes of the form (8)
include linear processes with constantaj andθk ≡ 0, and are calledquasi-linear
processes below. They also include many nonlinear time series models, like autore-
gressive processes with random coefficients. Writingξk = ∑

j≤k ak−j (Xj−1)ηj

and lettingbn = a0 + · · · + an, it is easily seen that

E(Sn|X0) = ∑
j≤0

[bn−j (Xj−1) − b−j (Xj−1)]ηj ,

Sn − E(Sn|X0) =
n∑

j=1

bn−j (Xj−1)ηj .

So,σ 2
n = σ 2

n,1 + σ 2
n,2, with

σ 2
n,1 = ‖E(Sn|X0)‖2 =

∞∑
j=0

E{[bj+n(X0) − bj (X0)]2η2
1},

σ 2
n,2 = ‖Sn − E(Sn|X0)‖2 =

n−1∑
j=1

E[bj (X0)
2η2

1],

and (4) is equivalent toσ 2
n,1 = o(σ 2

n,2). In this case, by (6) in the proof of
Theorem 1,Dnk = b̄n(Xk−1)ηk , where b̄n = (b0 + · · · + bn−1)/n, by some
routine calculations, andE[b̄n(X0)

2η2
1] must be slowly varying. Observe that if

bj (X0), j ≤ 0, are independent ofη1, thenE[b̄n(X0)
2η2

1] = E[b̄n(X0)
2]E(η2

1)

and thatσ 2
n,1 andσ 2

n,2 simplify similarly.

EXAMPLE 1 (Linear processes). Suppose thatan are constants and (without
loss of generality) thatE(η2

k) = 1. Thenbn are also constants, andσ 2
n,1 = o(σ 2

n,2)

iff

∞∑
j=0

(bj+n − bj )
2 = o

[
n−1∑
k=1

b2
k

]
.(9)
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If an are absolutely summable andb := ∑∞
n=0an �= 0, thenσ 2

n,2 ∼ b2n and there

is aC for which σ 2
n,1 ≤ C

∑n
i=1

∑∞
j=i |aj | = o(n), so that (9) holds. Relation (9)

also holds ifb �= 0 andbn = b + O(1/n). If a0 = 0 andan = 1/n for n ≥ 1,
then bn ∼ log(n), andσ 2

n,2 ∼ n log2(n). In this caseσ 2
n,1 = O(n) = o(σ 2

n,2), so

that (9) holds. To see this, observe that, forj ≥ 3, 1/(j + 1) ≤ ∫ j+1
j u−1du and

[log(j + n) − log(j)]2 ≤ ∫ j
j−1[log(u + n) − log(u)]2 du, so that

∞∑
j=3

(bj+n − bj )
2 ≤

∞∑
j=3

(∫ j+n

j

1

u
du

)2

=
∞∑

j=3

log2 j + n

j

≤
∫ ∞

2
log2 u + n

u
du = O(n).

Similarly, if a0 = 0, a1 = 1/ log(2) andan = 1/ log(n + 1) − 1/ log(n) for n ≥ 2,
thenσ 2

n,2 ∼ n/ log2(n) andσ 2
n,1 = O[n/ log3(n)] = o(σ 2

n,2), so that (4) holds. On
the other hand, ifan = n−β , where 1/2 < β < 1, then there are positive constants
c1,β andc2,β for whichσ 2

n,i ∼ ci,βn3−2β asn → ∞ for i = 1,2, so that (4) fails.

3. Asymptotic normality. The main result of this section is thatS∗
n := Sn/σn

is asymptotically standard normal givenX0, as described below, iff there is a
martingale approximation, (3), and theDnk satisfy the conditions of the martingale
central limit theorem, (11) and (12). In more detail, letP x andEx denote the
regular conditional probability and conditional expectation forF∞ givenX0 = x;
and letFn denote the conditional distribution function

Fn(x; z) = P x(S∗
n ≤ z).

Further let� denote the standard normal distribution function; and let� denote the
Levy distance between two distribution functions. Then by asymptotic normality
givenX0, we mean

lim
n→∞

∫
X

�[�,Fn(x; ·)]π{dx} = 0.(10)

Clearly, (10) implies thatS∗
n is asymptotically standard normal, but (10) is stronger

in general; it implies thatS∗
n is asymptotically standard normal for related models

in which X0 has any distribution that is absolutely continuous with respect to
the stationary distribution. Such a property is needed, for example, if asymptotic
normality is used to set approximate error bounds for Markov chain Monte
Carlo experiments. See, for example, Tierney (1994). Under conditions of weak
dependence, (10) can be deduced from (unconditional) asymptotic normality ofS∗

n .
See Proposition 1 for the details and the continuation of Example 1 for a case in
whichS∗

n is (unconditionally) normal, but (10) fails.
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LEMMA 2. If (10) holds, then (4) holds; that is, ‖E(Sn|X0)‖ = o(σn).

PROOF. The proof follows Maxwell and Woodroofe (2000), who considered
the special caseσ 2

n ∼ cn; it is included because the lemma is crucial to what
follows. Let ⇒ denote convergence in distribution. Notice that ifZm ⇒ �,
then lim infm→∞ var(Zm) ≥ 1, where var(Zm) = E(Z2

m) − [E(Zm)]2. To see
this, for J > 0, let Tm,J = min[max(Zm,−J ), J ]. Then limm→∞ var(Tm,J ) =∫
R
{min[max(u,−J ), J ]}2 d�(u) →

J→∞1. By Corollary 4.3.2 in Chow and Teicher

(1978), var(Zm) ≥ var(Tm,J ). So lim infm→∞ var(Zm) ≥ 1.
Assume otherwise that there is aδ > 0 such that‖E(S∗

n′ |X0)‖ > δ along a
subsequence{n′}. By (10), there exists a further subsequence{n′′} ⊂ {n′} such
that �[�,Fn′′(x; ·)] → 0 for almost allx(π ). Let τ2

n (x) = var(S∗
n |X0 = x). By

the result in the previous paragraph, lim infn′′→∞ τ2
n′′(x) ≥ 1 for almost allx(π).

Thus 1≤ lim infn′′→∞
∫
X τ2

n′′(x)π(dx) by Fatou’s lemma. On the other hand, the
integral in the previous inequality equals‖S∗

n′′‖2 − ‖E(S∗
n′′ |X0)‖2 ≤ 1− δ2, which

is a contradiction. �

LEMMA 3. Suppose there is a martingale approximation {Dnk} for which

1

σ 2
n

n∑
k=1

E(D2
nk|Fk−1)

p→ 1(11)

and

1

σ 2
n

n∑
k=1

E
(
D2

nk1{|Dnk|≥εσn}|Fk−1
) p→ 0(12)

hold for each ε > 0. Then for any martingale approximation {D′
nk} (say),

(11) and (12) are satisfied. In addition,

sup
0<t≤1

∣∣∣∣∣ 1

σ 2
n

∑
k≤nt

E(D′2
nk|Fk−1) − t

∣∣∣∣∣ p→ 0.(13)

PROOF. Observe thatE|E(D′2
nk|Fk−1) − E(D2

nk|Fk−1)| ≤ E|D′2
nk − D2

nk| and

E
(
D′2

nk1{|D′
nk|≥2εσn}|Fk−1

)
≤ 2E

(
D2

nk1{|Dnk|≥εσn}|Fk−1
) + 2E(|D′2

nk − D2
nk||Fk−1).

So, if Dnk satisfies (11) and (12), then so doD′
nk , since

E

(
n∑

k=1

|D′2
nk − D2

nk|
)

≤
√√√√ n∑

k=1

‖D′
nk + Dnk‖2 ×

√√√√ n∑
k=1

‖D′
nk − Dnk‖2 = o(σ 2

n ),
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as in (7). To establish (13), letm = �nt�, where�x� is the greatest integer that does
not exceedx; let M ′

nk = D′
n1 + · · · + D′

nk. Observe thatσ 2
m/σ 2

n → t asn → ∞,
(11) implies

1

σ 2
n

m∑
k=1

E(D′2
mk|Fk−1)

p→ t.

Since‖M ′
nm − M ′

mm‖ ≤ ‖M ′
nm − Sm‖ + ‖Sm − M ′

mm‖ = o(σn),

E

(
m∑

k=1

|D′2
nk − D′2

mk|
)

≤
√√√√ m∑

k=1

‖D′
nk + D′

mk‖2 ×
√√√√ m∑

k=1

‖D′
nk − D′

mk‖2

= o(σ 2
n ).

LetVn(t) = σ−2
n

∑m
k=1 E(D′2

nk|Fk−1). ThenVn(t)− t
p→ 0. LetI ≥ 2 be an integer.

Observe that supt≤1 |Vn(t) − t| ≤ maxi≤I |Vn(i/I ) − i/I | + 1/I . By first letting
n → ∞ and thenI → ∞, (13) follows. �

THEOREM 2. Relation (10) holds iff there is a martingale approximation for
which (11) and (12) hold.

PROOF. Suppose first that there is a martingale approximation (3) for which
(11) and (12) hold. By Lemma 3, assume without loss of generality that the
martingale approximation is defined by (6). Then, it suffices to establish (10)
for all subsequencesnr , r ≥ 1, that increase to∞ sufficiently fast asr → ∞.
Observe thatDnk , k = 1,2, . . . , are martingale differences with respect toP x for
a.e.x(π) by the Markov property. Ifnr → ∞ sufficiently quickly asr → ∞, then
(12) and (13) both hold with convergence in probability replaced by convergence
w.p.1 (P ), and limn→∞(Sn − Mnn)/σn = 0 w.p.1, too. So, these relations hold
w.p.1(P x) for a.e.x(π). Then, for a.e.x(π), limr→∞ Fnr (x; z) = �(z) for all z,
by the martingale central limit theorem applied conditionally givenX0 = x, and
(10) holds (along the subsequence) by the bounded convergence theorem.

The converse will be deduced from Theorem 2 of Gänssler and Häeusler (1979),
that provides necessary conditions for the functional version of the martingale
central limit theorem. If (10) holds, then so does (4), by Lemma 2; and then
there is a stationary martingale approximation, by Theorem 1. So, the issues are
(11) and (12). LetB denote a standard Brownian motion. Then, since the process
is stationary andS∗

n is asymptotically normal givenX0,

1

σn

[
S�nt1�, S�nt2� − S�nt1�, . . . , S�ntk� − S�ntk−1�

]
⇒ [

Bt1,Bt2 − Bt1, . . . ,Btk − Btk−1

]
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for every choice of 0< t1 < t2 < · · · < tk ≤ 1, where⇒ denotes convergence in
distribution. For example, ifk = 2, 0< s < t < 1, andm = �nt� − �ns�, then∣∣∣∣P [

S�ns� ≤ σny,S�nt� − S�ns� ≤ σnz
] − �

(
y√
s

)
�

(
z√

t − s

)∣∣∣∣
≤

∫
X

∣∣∣∣Fm

(
x; σnz

σm

)
− �

(
z√

t − s

)∣∣∣∣π{dx}

+ �

(
z√

t − s

)∣∣∣∣P [
S�ns� ≤ σny

] − �

(
y√
s

)∣∣∣∣,
which approaches zero asn → ∞ sinceσm/σn → √

t − s. Next let

Mn(t) = 1

σn

∑
k≤nt

Dnk(14)

for 0 ≤ t < 1, andMn(1) = Mn(1−). Then the finite-dimensional distributions
of Mn converge to those ofB, since|S�nt� − M�nt�|/σn

p→ 0 for each 0< t < 1;
and sinceE[Mn(t)

2] ∼ ntE(D2
n1)/σ

2
n → t , it follows that eachMn(t)

2, n ≥ 1,
is uniformly integrable for each 0< t ≤ 1. It then follows from the martingale
inequality thatMn is tight in D[0,1]. So, Mn converges toB in D[0,1]; and
relations (11) and (12) then follow from Theorem 2 of Gänssler and Häeusler
(1979). �

EXAMPLE 1 (Continued). For linear processes, relations (11) and (12) follow
from (4), which implies thatDnk = b̄nηk and that|b̄n| is slowly varying, for the
stationary martingale approximation constructed in the proof of Theorem 1. On
the other hand, ifan = n−β , where 1/2 < β < 1, thenSn/σn is asymptotically
standard normal, but (4) and (10) do not hold.

In the next corollary, letπ1 denote the joint distribution ofX0 and X1, so
that π1(B) = P [(X0,X1) ∈ B] for measurableB ⊆ X2; and let Hn(x0, x1) =
hn(x1) − Qhn(x0), so thatDnk = Hn(Xk−1,Xk) in (6).

COROLLARY 2. If (4) holds and Hn/
√

�(n) → H ∈ L2(π1), then (10) holds.

PROOF. Let Dnk = Hn(Xk−1,Xk) be the martingale approximation (6) and
let D′

nk = √
�(n)H(Xk−1,Xk) andM ′

nk = D′
n1 +· · ·+D′

nk . Then theD′
nk provide

another stationary martingale approximation, since‖Mnn − M ′
nn‖2 = n‖Dn1 −

D′
n1‖2 = n‖Hn − √

�(n)H‖2 = o(σ 2
n ). Moreover, theD′

nk satisfy (11) and (12).
For example,

1

σ 2
n

∑
k≤nt

E(D′2
nk|Xk) = 1

n

∑
k≤nt

E[H(Xk−1,Xk)
2|Xk−1] → tE[H(X0,X1)

2]
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by the ergodic theorem; andE[H(X0,X1)
2] = ‖H‖2 = 1, since‖Hn‖2 ∼ �(n), by

Lemma 1. Condition (12) may be obtained similarly.�

To relate the condition in Corollary 2 to the sumsSn, first observe that
Hn/

√
�(n) converges inL2(π1) iff Dn1/

√
�(n) converges inL2(P ) and next that

Dn1 is the average ofE(Sk|X1) − E(Sk|X0) overk = 1, . . . , n. It is not difficult
to see that if[E(Sn|X1) − E(Sn|X0)]/√�(n) converges inL2(P ), then so does
Dn1/

√
�(n). Woodroofe (1992) shows how the condition of Corollary 2 can be

related to the Fourier coefficients ofg whenXk is a Bernoulli or Lebesgue shift
process.

EXAMPLE 2. For a quasi-linear process (8),Dn1 = b̄n(X0)η1. So, if . . . η−1,

η0, η1, . . . are i.i.d., σn,1 = o(σn,2), and b̄n/
√

�(n) → b �= 0 in L2(π), the
Dn1/

√
�(n) converges inL2(P ) and, therefore, (11) and (12) both hold.

3.1. Strong mixing processes. Many classical results concerning asymptotic
normality for stationary processes require strong mixing conditions; see, for
example, Peligrad (1986, 1996). Here we show how the strong mixing assumption
is related to our main condition (4). LetXn = ( . . . , ξn−1, ξn) and Sn = ξ1 +
· · · + ξn, where(ξi)i∈Z is a stationary sequence that is strong mixing; that is,

αn := sup
A∈F0,B∈Gn

|P (A ∩ B) − P (A)P (B)| → 0

asn → ∞, whereFn = σ( . . . , ξn−1, ξn) andGn = σ(ξn, ξn+1, . . . ).

LEMMA 4. If F and G are two distribution functions and ε > 0, then there are
continuous functions w1, . . . ,wm, depending only on ε and G, for which |wi | ≤ 1
and

∫
R

wi dG = 0 for all i and

�(G,F ) ≤ ε + max
i≤m

∣∣∣∣
∫

R

wi dF −
∫

R

wi dG

∣∣∣∣.
PROOF. The proof consists of first findinga and b for which G(a) + 1 −

G(b) ≤ ε, then partitioning[a, b] into a = x0 < x1 < · · · < xm = b, where
xi − xi−1 ≤ ε/2, constructing piecewise linear functionsui for which ui(x) = 1
for x ≤ xi−1 andui(x) = 0 for x ≥ xi , and then lettingwi = ui − ∫

R ui dG. The
details are omitted. �

PROPOSITION1. Assume that (ξn)n∈Z is a strong mixing process with mean 0
and finite variance. Then S∗

n ⇒ � implies (10),and consequently (4).

PROOF. By Lemma 4, it suffices to show that∫
X

∣∣∣∣
∫

R

w(z)F {x;dz}
∣∣∣∣π{dx} → 0
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asn → ∞ for all continuousw :R → [−1,1] for which
∫
R

w d� = 0; and since
the inner integral is justEx[w(S∗

n)], it suffices to show thatE|E[w(S∗
n)|X0]| → 0

asn → ∞ for all suchw. To see this, letm = mn be a sequence for whichm → ∞
and Sm/σn

p→ 0; and let S̃n = (Sn+m − Sm)/σn. Further, letw :R → [−1,1]
be a continuous function for which

∫
R

wd� = 0 and letwn(x) = Ex[w(S∗
n)]

and w̃n(x) = Ex[w(S̃n)]. Then E[wn(X0)] = E[w(S∗
n)] → 0, sinceS∗

n ⇒ �;

E|wn(X0) − w̃n(X0)| ≤ E|w(S∗
n) − w(S̃n)| → 0, sinceS̃n − S∗

n

p→ 0 asn → ∞;
and

E|w̃n(X0)|2 =
∫

w̃n(X0)w(S̃n) dP ≤ E[w(S̃n)]2 + 4αm → 0,

by standard mixing inequalities [see, e.g., Hall andHeyde (1980), page 277]. So,
E|wn(X0)| → 0 asn → ∞ as required. �

4. An invariance principle. Let

Bn(t) = 1

σn

S�nt�

for 0 ≤ t < 1, Bn(1) = Bn(1−), where�x� denotes the greatest integer that is
less than or equal tox. If (10) holds, then the finite-dimensional distributions
of Bn converge to those of standard Brownian motionB, andMn converges in
distribution toB in the spaceD[0,1], both from the proof of Theorem 2. Relations
(4) and (10) do not imply thatBn converges in distribution toB in D[0,1],
however.

EXAMPLE 3. LetG be a symmetric distribution function for which

1− G(y) ∼ 1

y2 log3/2(y)

as y → ∞. Let . . . , η−1, η0, η1, . . . ∼ � and . . . , Y−1, Y0, Y1, . . . ∼ G be inde-
pendent random variables. Leta0 = 0, a1 = 1/ log(2) andak = 1/ log(k + 1) −
1/ log(k) for k ≥ 2, as in Example 1. Defineξk by (8); let ξ ′

k = ξk + Yk − Yk−1;
and letSn = ξ1 + · · · + ξn andS′

n = ξ ′
1 + · · · + ξ ′

n. Then (4), (11) and (12) hold for
bothSn andS′

n with σ 2
n ∼ n/ log2(n). In this example,

1

σn

max
k≤1

|Yk − Y0| → ∞
in probability, so thatBn andB

′
n cannot both converge toB.

In Theorem 3 and Corollary 3, we consider the special case in whichσ 2 =
limn→∞ σ 2

n /n exists. These results improve Theorem 2 and Corollary 4 in
Maxwell and Woodroofe (2000) by imposing a weaker condition as well as by
obtaining a stronger result. The heart of the matter is whether there is a martingale
approximation for which maxk≤n |Sk −Mnk|/√n → 0 in probability. This question
is addressed first. Two lemmas are needed.
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LEMMA 5. Suppose that, for some q > 1,

‖E(Sn|X0)‖ = o
(√

n log−q n
)
.(15)

Then there is a martingale M1,M2, . . . with stationary increments for which
‖Sn − Mn‖ = o(

√
n log1−q n).

PROOF. Recall the constructionDnk andMnk = Dn1 + · · · + Dnk from (6)
and also that maxk≤n ‖Sk − Mnk‖ ≤ 3 maxk≤n ‖E(Sk|X0)‖. Thus, maxk≤n ‖Sk −
Mnk‖ = o[√n log−q(n)] in the present context. So, ifm ≥ 2 andm ≤ n ≤ 2m, then
‖Mnm −Mmm‖ = o[√m log−q(m)]. Since‖Mnm −Mmm‖2 = m‖Dn1 −Dm1‖2 =
m‖Hn − Hm‖2, it then follows that

∞∑
k=j

‖H2k − H2k−1‖ ≤
∞∑

k=j

o[log−q(2k)] = o[log1−q(2j )].(16)

It follows that H2k has a limit H , say, in L2(π1) and that ‖H − Hm‖ =
o[log1−q(m)]. Letting Dk = H(Xk−1,Xk) andMn = D1 + · · · + Dn, the lemma
then follows from‖Sn − Mn‖ ≤ ‖Sn − Mnn‖ + √

n‖Hn − H‖. �

LEMMA 6. Let Yk, k ∈ Z, be a second-order stationary process with mean 0
and let Tn = Y1 + · · · + Yn. Then

E

[
max
k≤n

T 2
j

]
≤ d

d∑
j=0

2d−j‖T2j ‖2,

where d = �log2(n)�, the least integer that is greater than or equal to log2(n).

PROOF. The proof uses a simple chaining argument and appears in Doob
[(1953), page 156] for uncorrelated random variables. Briefly, any integerk ≤ n

may be written ask = 2r1 + · · · + 2rj , where 0≤ rj < · · · < r1 ≤ d . So,

|Tk|2 =
∣∣∣∣∣

j∑
i=1

(T2r1+···+2ri − T2r1+···+2ri−1)

∣∣∣∣∣
2

≤ j

j∑
i=1

|T2r1+···+2ri − T2r1+···+2ri−1 |2,

where an empty sum is to be interpreted as 0, and

max
k≤n

|Tk|2 ≤ d

d∑
j=0

2d−j∑
i=1

∣∣Ti2j − T(i−1)2j

∣∣2,
from which the lemma follows by stationarity.�
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THEOREM 3. Let Rn = Sn − Mn, where Mn is as in Lemma 5. If g ∈ Lp for
some p > 2 and (15) holds for q ≥ 2, then σ 2 = limn→∞ σ 2

n /n exists, and

lim
n→∞P

[
max
j≤n

|Rj | ≥ ε
√

n

]
= 0(17)

for each ε > 0; and if (15) holds for some q > 5/2, then

lim
n→∞P x

[
max
j≤n

|Rj | ≥ ε
√

n

]
= 0

for a.e. x(π) for each ε > 0.

PROOF. Let γ = 1/4 − 1/(2p) > 0, wherep is as in the statement of the
theorem,a = am = �2mγ �, andb = bm = �2m(1−γ )�. Then

max
j≤2m

|Rj | ≤ max
1≤k≤b

[
|Rak| + max

0≤j≤a
|Rak+j − Rak|

]
.

Here,

max
0≤j≤a

|Rak+j − Rak|
≤ max

0≤j≤a
|Mak+j − Mak| + max

0≤j≤a
|Sak+j − Sak|

≤ max
0≤j≤a

|Mak+j − Mak| + a max
j≤2m

|g(Xj )|

for eachk. So,

P x

[
max
j≤2m

|Rj | ≥ 3ε
√

2m

]

≤ P x

[
max∗ |Mk − Mj |√

2m
≥ ε

]
(18)

+ P x

[
max
j≤2m

|g(Xj )|√
2m

≥ ε

a

]
+ P x

[
max
k≤b

|Rak|√
2m

≥ ε

]
,

where max∗ runs over all pairs(j, k) such that 1≤ j, k ≤ 2m and |k − j | ≤ a.
The first term clearly tends to 0 for a.e.x(π), by the functional martingale central
limit theorem. The second term in (18) also converges to 0 for a.e.x(π) by the
Borel–Cantelli lemma, since∫

X
P x

[
max
j≤2m

|g(Xj )|√
2m

≥ ε

a

]
π{dx} ≤ ap

εp
2m(1−p)E|g(X1)|p,

and the right-hand side is summable overm (recalling thata = �2γm� and
observing thatpγ + 1 − p < 0). Similarly, for the third term on the right-hand
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side of (18), ∫
X

P x

[
max
k≤b

|Rak|√
2m

≥ ε

]
π{dx} = P

[
max
k≤b

|Rak|√
2m

≥ ε

]

≤ 1

ε2
E

[
max
k≤b

|Rak|√
2m

]2

,

and, lettingd = �log2(b)�,

E

[
max
k≤b

|Rak|√
2m

]2

≤ d

2m

d∑
i=0

2d−i‖Ra2i‖2

≤ d

2m

d∑
i=0

2d−i o(a2i)

log2(q−1)(a2i)

= abd

2m
o

[
1

m2q−3

]
= o(m4−2q),

by Lemmas 5 and 6. Relation (17) follows immediately, sinceab = O(2m) and
d = O(m); and if q > 5/2, theno(m4−2q) is summable andP x[maxk≤b |Rak| ≥
ε
√

2m ] → 0 for a.e.x, by the Borel–Cantelli lemma.�

Now let Gn and� be the distributions ofBn and Brownian motion inD[0,1],
and let� denote the Prokhorov metric forD[0,1].

COROLLARY 3. If (15) holds for some q ≥ 2 and 0< σ 2 < ∞, then

lim
n→∞

∫
X

�[�,Gn(x; ·)]π{dx} = 0;
and if q > 5/2 in (15), then limn→∞ �[�,Gn(x; ·)] = 0 for a.e. x(π).

PROOF. LetKn(x; ·) be the distribution ofMn in D[0,1]. ThenKn(x; ·) ⇒ �

asn → ∞ for a.e.x(π), by the functional central limit theorem, and

�[�,Gn(x; ·)] ≤ �[�,Kn(x; ·)] + P x

[
max
k≤n

|Rk| ≥ εσn

]
+ ε

for eachε > 0. The caseq > 5/2 follows immediately, and the case 2≤ q ≤ 5/2
from

∫
X P x[maxk≤n |Rk| ≥ εσn]π{dx} = P [maxk≤n |Rk| ≥ εσn]. �

COROLLARY 4. If (15) holds for some q ≥ 2 and σ 2 = 0, then maxk≤n |Sk|/√
n

p→ 0; and if q > 5/2, then limn→∞ P x[maxk≤n |Sk| ≥ ε
√

n ] = 0 for a.e. x(π)

for each ε > 0.

PROOF. In this caseSk = Rk . �
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REMARK 1. A simple sufficient condition for (15) is

‖E[g(Xn)|X0]‖ = O(n−1/2 log−q n).(19)

However, (15) allows processes of the form (8) withan = n−β(−1)n for n ≥ 1,
where 1/2 < β < 1. In this case (19) is violated. Wu (2002) derived central
limit theorems for processes of this sort whose covariances are summable but not
absolutely summable. A typical example is the Gegenbauer process which exhibits
long-range dependence and has oscillatory covariances [Beran (1994)].
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