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RATE-OPTIMAL ESTIMATION FOR A GENERAL CLASS OF
NONPARAMETRIC REGRESSION MODELS WITH

UNKNOWN LINK FUNCTIONS

BY JOEL L. HOROWITZ1 AND ENNO MAMMEN2

Northwestern University and University of Mannheim

This paper discusses a nonparametric regression model that naturally
generalizes neural network models. The model is based on a finite num-
ber of one-dimensional transformations and can be estimated with a one-
dimensional rate of convergence. The model contains the generalized addi-
tive model with unknown link function as a special case. For this case, it is
shown that the additive components and link function can be estimated with
the optimal rate by a smoothing spline that is the solution of a penalized least
squares criterion.

1. Introduction. This paper presents a general class of nonparametric regres-
sion models with unknown link functions. The models include neural network
structures where link functions enter into the model on different levels. The in-
puts into the nodes of the net are modeled as sums of transformations of lower
level inputs. Different approaches to modeling the transformations are allowed, in-
cluding smooth nonparametric functions, shape-restricted nonparametric functions
and parametric specifications. We show that rate optimal estimation in this class of
models can be achieved by penalized least squares. The proof of the result relies
on direct application of empirical process theory.

The approach described in this paper permits a unified treatment of a large
class of models that includes some well-known examples. The proposed estimation
method can be implemented in practice by using smoothing splines.

The simplest form of our model is a generalized additive model with an un-
known link function. That is,

Y = F [m1(X
1) + · · · + md(Xd)] + U,(1)

where X1, . . . ,Xd are one-dimensional components of a d-dimensional covariate
vector, F and m1, . . . ,md are unknown functions and U is an unobserved error
variable satisfying E[U |X] = 0. We first discuss estimation of this model when all
the unknown functions belong to the same smoothness class. We will show that
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these functions can be estimated with L2-rate n−k/(2k+1) if they are k-times differ-
entiable. Penalized least squares estimators with properly chosen penalty functions
achieve this rate. The rate is optimal because it would be optimal if the link func-
tion were known. As a corollary, we will get the result that this rate carries over
to models that assume more structure on F and m1, . . . ,md . Empirical process
theory is our main tool for obtaining rate optimality. See van de Geer [40] for a
comprehensive exposition of the use of empirical process theory in nonparamet-
ric estimation. Applying these techniques, it can be shown relatively directly that
the function (x1, . . . , xd) � F [m1(x1) + · · · + md(xd)] can be estimated with rate
n−k/(2k+1). The main difficulty is to show that this rate carries over to the estima-
tion of the functions F and m1, . . . ,md . Clearly, identification of these functions
requires normalizing restrictions.

If the link function, F , is known to be the identity function, then (1) is a non-
parametric additive regression model. This model has been extensively studied.
Stone [35–37] and Newey [30] have shown that optimal L2-rates can be achieved
by piecewise polynomial fits and regression splines. Breiman and Friedman [4] and
Buja, Hastie and Tibshirani [5] discuss backfitting for additive models. Opsomer
and Ruppert [34] and Opsomer [33] considered pointwise asymptotic distribution
theory for backfitting. Mammen, Linton and Nielsen [22] introduced smooth back-
fitting estimates, a modification of backfitting that works more reliably in the case
of many components and irregular design and that allows a complete asymptotic
theory. Nielsen and Sperlich [31] and Mammen and Park [24, 25] discuss prac-
tical implementation of smooth backfitting. Tjøstheim and Auestad [38], Linton
and Nielsen [21] and Fan, Härdle and Mammen [9] discuss marginal integration
estimators. See Christopeit and Hoderlein [6] for a related approach. Horowitz,
Klemelä and Mammen [13] showed that in an additive model with a known iden-
tity link function, each additive component can be estimated with the same point-
wise normal asymptotic distribution that it would have if the other components
were known. Estimation and inference for generalized additive models with known
link functions that are not necessarily the identity function have been discussed by
Hastie and Tibshirani [11], Linton and Härdle [20], Linton [19], Kauermann and
Opsomer [18], Härdle, Huet, Mammen, and Sperlich [10], Yu, Park and Mam-
men [43] and Horowitz and Mammen [14]. These models are natural generaliza-
tions of generalized linear models (Nelder and Wedderburn [29], Wedderburn [41]
and McCullagh and Nelder [28]). Generalized additive models have been put in a
larger model framework in Mammen and Nielsen [23]. Generalized additive mod-
els with unknown link function have been treated in Horowitz [12] and Horowitz
and Mammen [15]. The latter paper generalizes Ichimura’s [16] approach for semi-
parametric single-index models. Coppejans [7] considered a class of additive mod-
els that is based on Kolmogorov’s theorem on representation of functions of several
variables by functions of one variable.
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In this paper we will discuss the nonparametric regression model

Y = m

[
L1∑

l1=1

ml1

(
L2∑

l2=1

ml1,l2

{
· · ·

Lp−1∑
lp−1=1

ml1,...,lp−1

(2) [ Lp∑
lp=1

ml1,...,lp (Xl1,...,lp )

]})]
+ U,

where m,m1, . . . ,mL1,...,Lp are unknown functions and Xl1,...,lp are one-dimen-
sional elements of a covariate vector X, which may be identical for two differ-
ent indices (l1, . . . , lp). This model is a natural generalization of neural networks
where all functions are parametrically specified.

The remainder of the paper is organized as follows. The next two sections
discuss the generalized additive model (1). Optimal estimation of the regression
function (x1, . . . , xd) � F [m1(x1) + · · · + md(xd)] is discussed in Section 2. In
Section 3 we show that this result implies that the estimates of the functions F

and m1, . . . ,md are rate optimal. Section 4 discusses rate optimal estimation in
model (2). Section 5 considers regression quantiles in models (1) and (2). Sec-
tion 6 presents the results of a simulation study that illustrates the finite-sample
performance of our method. Section 7 concludes. The proofs of all results are in
Section 8.

2. Optimal estimation in generalized additive models. In this section we
discuss rate optimal estimation for model (1). We suppose that the response vari-
ables Yi (i = 1, . . . , n) are given by

Yi = F [m1(X
1
i ) + · · · + md(Xd

i )] + Ui,(3)

where X
j
i denotes the j th component of the covariate vector Xi = (X1

i , . . . ,X
d
i ),

and Xi may be fixed in repeated samples or random. If the covariates are fixed, we
assume that the unobserved random variables U1, . . . ,Un are independently dis-
tributed with E[Ui] = 0. If the covariates are random, we assume that U1, . . . ,Un

are conditionally independent and that E[Ui |Xi] = 0. The functions F and
m1, . . . ,md are assumed to belong to a specified class M. M can be the class
of all functions or it can incorporate shape restrictions, such as monotonicity, on
some components of (F,m1, . . . ,md).

We estimate F and m1, . . . ,md by penalized least squares. The estimator (F̂ ,
m̂1, . . . , m̂d) minimizes

n−1
n∑

i=1

{Yi − F [m1(X
1
î ) + · · · + md(Xd

i )]}2 + λ2
nJ (F,m1, . . . ,md)(4)

over (F,m1, . . . ,md) ∈ M. Here J (F,m1, . . . ,md) is a penalty term that measures
smoothness of order k with k the number of times the functions F,m1, . . . ,md
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are differentiable. The choice of J is somewhat delicate because we want J to
have the same value for all choices of (F,m1, . . . ,md) that result in the same
function (x1, . . . , xd) → F [m1(x1)+· · ·+md(xd)]. As we discuss below, this can
be achieved by the following choice of J :

J (F,m1, . . . ,md) = J
ν1
1 (F,m1, . . . ,md) + J

ν2
2 (F,m1, . . . ,md),

J1(F,m1, . . . ,md) = Tk(F )

{
d∑

j=1

[T 2
1 (mj ) + T 2

k (mj )]
}(2k−1)/4

,

J2(F,m1, . . . ,md) = T1(F )

{
d∑

j=1

[T 2
1 (mj ) + T 2

k (mj )]
}1/4

,

constants ν1, ν2 > 0 that satisfy ν2 ≥ ν1, and

T 2
l (f ) =

∫
f (l)(x)2 dx

for 0 ≤ l ≤ k and any integrable function f . The (possibly random) sequence
(λn :n = 1,2, . . .) satisfies conditions that are given in assumption (A5) below. We
conjecture that the performance of the estimator does not strongly depend on the
choices of the constants ν1, ν2, but we allow here this additional flexibility because
a certain choice may simplify the numeric calculation of the estimator.

In fact, the theory that follows does not require (F̂ , m̂1, . . . , m̂d) to really min-
imize (4). It suffices for (4) to differ from its minimum by a term whose size is at
most of order OP (n−2k/(2k+1)). In what follows, we will assume that the estimate
is chosen so that this holds. This also simplifies the numerical implementation of
the estimator. We return to this point below. We call the resulting estimates ap-
proximate minimizers of (4).

Further normalizing assumptions are needed to identify the functions (F,m1,

. . . ,md) in (3). To see this, let α > 0 and β = (β1, . . . , βd) ∈ R
d be constants.

Define

Fα,β(x) = F [α(x + β1 + · · · + βd)](5)

and

mj,α,β(x) = α−1mj(x) − βj ,(6)

for j = 1, . . . , d . Then

Fα,β[m1,α,β(x1) + · · · + md,α,β(xd)] = F [m1(x1) + · · · + md(xd)].(7)

Thus, the regression function (conditional mean function of Y ) is the same for
all choices of α > 0 and β ∈ R

d . In fact, for a given regression function H(x) =
F [m1(x1) + · · · + md(xd)] and under mild regularity conditions, the functions F
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and m1, . . . ,md are identified up to transformations that correspond to different
choices of α > 0 and β ∈ R

d . The penalty functionals J1 and J2 are chosen such
that they do not depend on the special choice of α and β . That is,

J1(Fα,β,m1,α,β, . . . ,md,α,β) = J1(F,m1, . . . ,md)(8)

and

J2(Fα,β,m1,α,β, . . . ,md,α,β) = J2(F,m1, . . . ,md)(9)

for all α > 0 and β ∈ R
d . Therefore, the penalty functionals depend only on the

regression function H(x). We will assume that M is closed under the transforma-
tions (5) and (6). See assumption (A3). Then without loss of generality we can
assume that

∑d
j=1[T 2

1 (mj ) + T 2
k (mj )] = 1, and the penalized least squares esti-

mator (F̂ , m̂1, . . . , m̂d) can be defined as the minimizer of

1

n

n∑
i=1

{Yi − F [m1(X
1
i ) + · · · + md(Xd

i )]}2

(10)

+ λ2
n

{[∫
F (k)(z)2 dz

]ν1/2

+
[∫

F ′(z)2 dz

]ν2/2}
over all (F,m1, . . . ,md) ∈ M with

d∑
j=1

[∫
m

(k)
j (xj )

2 dxj +
∫

m′
j (xj )

2 dxj

]
= 1.

This norming simplifies the notation when we move to general neural network
models in Section 4. But also other scalings are possible and we will use another
normalization when we discuss estimation of the additive components and of the
link function in Section 3; see (A9) below.

The penalty functionals J1 and J2 contain the L2 norms of the first and kth
derivatives of F and m1, . . . ,md . It can be seen easily that a penalty containing
only the kth derivatives of these functions will not work here. Consider the extreme
case in which F is a linear function. Then Tk(F ) = 0 and Tk(mj ) can be made
arbitrarily small by using the transformations (5) and (6). On the other hand, if
m1, . . . ,md are linear functions, then Tk(mj ) = 0 for 1 ≤ j ≤ d and Tk(F ) can
be made arbitrarily small by using the transformations. Therefore, a penalty that
depends only on Tk(F ) and Tk(m1), . . . , Tk(md) cannot work because it puts zero
penalty on the semiparametric specification in which F or the mj ’s are linear.

Our first result states that the regression function H(x) = F [m1(x1) + · · · +
md(xd)] can be estimated with rate n−k/(2k+1). This rate is optimal for model (3)
with a known link function and unknown additive components under the assump-
tion that the additive components are k times differentiable. Clearly, model (3) is
more general, because the link function is unknown. Therefore, this rate is also
optimal for (3), and our approach provides a rate optimal estimator.

The rate optimality result needs the following assumptions.
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(A1) The covariates X1
i , . . . ,X

d
i may be fixed in repeated samples or random and

take values in a compact subset of R that, without loss of generality, we take
to be [0,1]. The random variables U1, . . . ,Un are independent if the covari-
ates are fixed. If the covariates are random, then U1, . . . ,Un are conditionally
independent given X1, . . . ,Xn.

(A2) The functions F and m1, . . . ,md have k derivatives. Moreover,∫
F (k)(x)2 dx < ∞,

∫ 1

0
m

(k)
j (x)2 dx < +∞

for j = 1, . . . , d . Furthermore, (F,m1, . . . ,md) ∈ M.
(A3) For all α > 0 and β ∈ R

d , if (G,μ1, . . . ,μd) ∈ M, then (Gα,β,μ1,α,β, . . . ,

μd,α,β) ∈ M. [For a definition of Gα,β,μ1,α,β, . . . ,μd,α,β , see (5) and (6).]
(A4) The (conditional) distribution of Ui (i = 1, . . . , n) has subexponential tails.

That is, there are constants tU , cU > 0 such that

sup
1≤i≤n

E[exp(t |Ui |)|X1, . . . ,Xn] < cU

almost surely for |t | ≤ tU . Moreover, E[Ui |X1, . . . ,Xn] = 0 for each i =
1, . . . , n if the covariates are random, and E[Ui] = 0 for each i = 1, . . . , n if
the covariates are fixed in repeated samples.

(A5) λ−1
n = Op(nk/(2k+1)) and λn = Op(n−k/(2k+1)).

These conditions are standard and very weak. In (A1) we assume that the covari-
ates have a compact support to avoid the need of smoothing estimates in the tails
of the distribution of X. Moreover, a poor rate of convergence for an estimator of
one component in the tails could affect the estimator of another component in the
center of the distribution of X. The (conditional) independence of the Ui ’s can be
weakened to permit martingale difference or mixing sequences of dependent vari-
ables. This would complicate the technical analysis and produce a less transparent
treatment. Assumption (A2) can be generalized to permit a model that increases
with increasing sample size. Again, this would make the theory less transparent
and would lead to an estimation procedure in which the sieve model and penalty
factors λn have to be chosen data-adaptively. Assumption (A3) entails no less gen-
erality, because M can always be enlarged to make (A3) hold. Assumption (A4)
enables us to use the exponential inequalities needed in empirical process theory.
Assumption (A5) allows the possibility that λn is random. This includes the im-
portant case of a data-adaptive choice of λn.

We are now ready to state our first result on rate optimality of our estimator.

THEOREM 2.1. Let (A1)–(A5) hold with k ≥ 2. Then

n−1
n∑

i=1

{F̂ [m̂1(X
1
i ) + · · · + m̂d(Xd

i )]
(11)

− F [m1(X
1
i ) + · · · + md(Xd

i )]}2 = Op

(
n−2k/(2k+1))
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and

J (F̂ , m̂1, . . . , m̂d) = Op(1).(12)

We now state a corollary of Theorem 2.1 for random covariates that satisfy:

(A6) The covariates X1, . . . ,Xn are independently and identically distributed with
distribution P .

THEOREM 2.2. Let (A1)–(A6) hold with k ≥ 2. Then∫
{F̂ [m̂1(x1) + · · · + m̂d(xd)] − F [m1(x1) + · · · + md(xd)]}2P(dx)

(13)
= Op

(
n−2k/(2k+1))

and J (F̂ , m̂1, . . . , m̂d) = Op(1).

Up to this point, we have assumed that the penalty factor λn is the same for all
components of (F,m1, . . . ,md). This has been done to simplify the notation. In
practice, we can choose a different penalty factor for each component function.
To do this, we introduce random factors ρn,0, . . . , ρn,d and modify the penalty
functionals J1 and J2 to

J1(F,m1, . . . ,md) = ρn,0Tk(F )

{
d∑

j=1

[T 2
1 (mj ) + ρ2

n,jT
2
k (mj )]

}(2k−1)/4

and

J2(F,m1, . . . ,md) = T1(F )

{
d∑

j=1

[T 2
1 (mj ) + ρ2

n,jT
2
k (mj )]

}1/4

.

Then Theorems 2.1 and 2.2 hold if ρn,0, . . . , ρn,d = OP (1) and ρ−1
n,0, . . . , ρ

−1
n,d =

OP (1).
In this paper we only consider L2 losses. The discussion for sup-norm losses

is quite different. Optimal rates differ by different powers of n and not only by
a log-term. This can be seen by the construction in the first part of the proof of
Theorem 1 in Juditsky, Lepski and Tsybakov [17], which implies that for d = 2
and F with γ bounded derivatives and m1,m2 with β bounded derivatives up to
a logarithmic factor, the order of the optimal rate for sup-norm losses is not faster
than n−γ /(2γ+1+1/β). For β = γ = 2, this rate is slower than n−2/5. Only if one
assumes one more degree of smoothness for F (γ = 3) does the rate coincide with
the optimal L2 rate for β = γ = 2. The basic idea of the construction in Judit-
sky, Lepski and Tsybakov [17] is to consider testing problems with functions F

and m2 both depending on n with shrinking support around zero but with fixed
m1(x1) = x1. Then for estimating m1 and m2 for x1 = x2 = 0, only observations
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(X1
i ,X

2
i ) from a local neighborhood around (0,0) can be used. In Horowitz and

Mammen [15] we study pointwise asymptotics of a kernel smoother in an additive
model with unknown link under smoothness assumptions β = 2, γ = 3 and we
show that the pointwise rate n−2/5 is achieved.

3. Optimal estimation of the additive components and link function of a
generalized additive model. Section 2 discussed how well our penalized least
squares procedure estimates the conditional mean function, H(x). We now discuss
the asymptotic performance of the estimators of the additive components and link
function. We make the following additional assumptions.

(A7) The covariates (X1, . . . ,Xd) have a probability density function f that is
bounded away from 0 and ∞.

(A8) F ′(z) is bounded away from 0 for z ∈ {m1(x1) + · · · + md(xd) : 0 ≤
x1, . . . , xd ≤ 1}. The additive components mj are nonconstant for at least
two values of j (1 ≤ j ≤ d).

(A9) The functions m1, . . . ,md and F and their estimates m̂1, . . . , m̂d and F̂ are
chosen such that∫

mj(xj ) dxj = 0,

∫
m̂j (xj ) dxj = 0

for j = 1, . . . , d and
d∑

j=1

∫
mj(xj )

2 dxj = 1,

d∑
j=1

∫
m̂j (xj )

2 dxj = 1.

These are mild conditions. Condition (A7) implies that the L2 norms with respect
to the density f and Lebesgue measure are equivalent. This technical point is used
in the proof of Theorem 3.2. The assumption that the link function is monotonic
is used for identification. All common choices of link functions have this prop-
erty. The assumption that two additive components are nonconstant is needed for
identification. If there were only one nonconstant additive component, say, m1,
then it would follow trivially that F(m1 + const.) does not identify F and m1.
Condition (A9) can be always achieved because of (A3) and (A8): Condition (A8)
excludes the case that all functions m1, . . . ,md are constant and because of (A3) all
functions in M can be transformed by (5) and (6), at least if not all additive com-
ponents are constant. Conditions (A8) and (A9) identify the functions m1, . . . ,md

and F . This can be seen by a simple argument. We state this in the following
proposition.

PROPOSITION 3.1. For continuously differentiable functions F : R → R,
m1 :A1 → R, . . . ,md :Ad → R and G : R → R, μ1 :A1 → R, . . . ,μd :Ad → R

with intervals A1, . . . ,Ad ⊂ R, we assume that the functions mj are nonconstant
for at least two values of j (1 ≤ j ≤ d), F ′(z) > 0 for z ∈ R,

F [m1(x1) + · · · + md(xd)] = G[μ1(x1) + · · · + μd(xd)]
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for xj ∈ Aj , 1 ≤ j ≤ d ,∫
Aj

mj (xj ) dxj = 0,

∫
Aj

μj (xj ) dxj = 0

for 1 ≤ j ≤ d , and

d∑
j=1

∫
Aj

mj (xj )
2 dxj =

d∑
j=1

∫
Aj

μj (xj )
2 dxj = 1.

Then

mj(xj ) = μj(xj )

for xj ∈ Aj , 1 ≤ j ≤ d , and

F(z) = G(z)

for z ∈ {m1(x1) + · · · + md(xd) :x1 ∈ A1, . . . , xd ∈ Ad}.

We now state rate-optimality of our estimates of m1, . . . ,md and F .

THEOREM 3.2. Let (A1)–(A9) hold with k ≥ 2. Then∫ 1

0
[m̂j (xj ) − mj(xj )]2 dxj = OP

(
n−2k/(2k+1))(14)

and ∫ {
F̂

[
d∑

j=1

mj(xj )

]
− F

[
d∑

j=1

mj(xj )

]}2

dx = OP

(
n−2k/(2k+1)).(15)

We now briefly discuss numerical computation of the estimates. We will do this
for two approaches. The first is based on B-splines, the second one on smooth-
ing splines. Our estimates are not fully specified because we require only that
the penalized least squares objective function be approximately minimized. This
leaves some freedom to choose estimates that are best suited to computation. The
approach based on B-splines will be used in the simulations below. In this ap-
proach we minimize (4) over B-splines m1, . . . ,md and F . If the B-splines are
of order k and if they use O(n1/(2k+1)) knot points, then functions m1, . . . ,md

and F that satisfy Tk(m1) = O(1), . . . , Tk(md) = O(1) and Tk(F ) = O(1) can
be approximated with an L2 error that is of order O(n−k/(2k+1)). This implies
that the derivative of F is in supnorm approximated with order o(1) and, thus,
F [m1(x1) + · · · + md(xd)] is approximated with order O(n−k/(2k+1)). Thus, the
minimizer of (4) over B-splines m1, . . . ,md and F is an approximate minimizer
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of (4), as defined in the discussion after (4). The B-spline estimator can be calcu-
lated by a backfitting algorithm that alternates between two steps. In one step, F̂

is held fixed at its current value, and a quadratic appoximation to the objective
function considered as a function of the Fourier coefficients of m is optimized. In
the second step, m̂ is held fixed at the value found in the first step, and a new value
of F̂ is obtained by optimizing the objective function over the Fourier coefficients
of F . The first step is an equality-constrained quadratic programming problem
that can be solved by the method of Lagrangian multipliers. The second step is an
unconstrained quadratic programming problem that can be solved analytically.

The second approach is based on smoothing splines. We will discuss this under
the additional assumption that the class M does not restrict F or one additive
component. Condition (A10) makes an assumption for a j0 with 1 ≤ j0 ≤ d .

(A10) For each (G,μ1, . . . ,μd) ∈ M, (G,μ1, . . . ,μj0−1,μ
∗
j0

,μj0+1, . . . ,μd) ∈
M for any function μ∗

j0
: [0,1] � R.

(A11) For each (G,μ1, . . . ,μd) ∈ M, (G∗,μ1, . . . ,μd) ∈ M for any function
G∗ : R � R.

THEOREM 3.3. Let (A1)–(A8) hold with k ≥ 2.

(i) Let (A10) hold for a j0 with 1 ≤ j0 ≤ d . Suppose (F̃ , m̃1, . . . , m̃d) is an
approximate minimizer of (4). Let m̄j0 be chosen among natural splines mj0 of or-

der 2k with knots X
j0
1 , . . . ,X

j0
n so that (F̃ , m̃1, . . . , m̃j0−1, m̄j0, m̃j0+1, . . . , m̃d)

minimizes (4) among (F̃ , m̃1, . . . , m̃j0−1,mj0, m̃j0+1, . . . , m̃d). Then, (F̃ , m̃1,

. . . , m̃j0−1, m̄j0, m̃j0+1, . . . , m̃d) is also an approximate minimizer of (4) and,
therefore has the properties stated in Theorems 2.1, 2.2 and 3.2.

(ii) Let (A11) hold. Suppose (F̃ , m̃1, . . . , m̃d) is an approximate minimizer
of (4). Let F̄ be chosen among natural splines F of order 2k with knots m̃1(X

1
1) +

· · ·+ m̃d(Xd
1 ), . . . , m̃1(X

1
n)+· · ·+ m̃d(Xd

n) so that (F̄ , m̃1, . . . , m̃d) minimizes (4)
among (F, m̃1, . . . , m̃d). Then, (F̄ , m̃1, . . . , m̃d) is also an approximate minimizer
of (4) and, therefore, has the properties stated in Theorems 2.1, 2.2 and 3.2.

Natural splines of order 2k with knots at the design points arise as minimizers
of a penalized least squares criterion for the classical nonparametric regression
problem with a one-dimensional regression function and are also called smoothing
splines. See, for example, Eubank [8].

We now discuss application of Theorem 3.3 for the case that M contains all
functions. Then (A11) holds and (A10) holds for all 1 ≤ j0 ≤ d . Therefore, re-
peated application of Theorem 3.3 implies that all estimates, F̂ and m̂1, . . . , m̂d ,
can be chosen as natural splines. The computation of the estimates could be done
by application of a backfitting algorithm. In each step of the algorithm one esti-
mate (F̂ , m̂1, . . . , or m̂d , resp.) would be updated. This could be done by using
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standard smoothing spline software. In the update of m̂1, . . . , m̂d the minimization
could be approximately solved by linearization.

4. Estimation of nonparametric neural network regression. In this section
we discuss rate optimal estimation of the nonparametric neural network model (2).
We assume that the response variables Yi are given by

Yi = m

[
L1∑

l1=1

ml1

{
L2∑

l2=1

ml1,l2[· · ·ml1,...,lp (X
l1,...,lp
i )]

}]
+ Ui,(16)

where the covariate vector Xi = (X
l1,...,lp
i : 1 ≤ lj ≤ Lj ,1 ≤ j ≤ p) may be

fixed in repeated samples or random. If the covariates are fixed, we assume that
the unobserved random variables U1, . . . ,Un are independently distributed with
E[Ui] = 0. If the covariates are random, we assume that the random variables
U1, . . . ,Un are conditionally independent and that E[Ui |Xi] = 0. The functions
(m,m1, . . . ,mL1,...,Lp) are assumed to be contained in a specified class M.

We estimate (m,m1, . . . ,mL1,...,Lp) by penalized least squares. The penalized
least squares estimator m̂, m̂1, . . . , m̂L1,...,Lp minimizes

1

n

n∑
i=1

{
Yi − m

[
L1∑

l1=1

ml1

{
L2∑

l2=1

ml1,l2[· · ·ml1,...,lp (X
l1,...,lp
i )]

}]}2

(17)
+ λ2

nJ (m)

over (m,m1, . . . ,mL1,...,Lp) ∈ M with

J (m) = [T 2
1 (m) + cT 2

k (m)]ν,
L1∑

l1=1

T 2
1 (ml1) + cl1T

2
k (ml1)

= · · · =
Lp∑

lp=1

T 2
1 (mL1,...,Lp−1,lp ) + cL1,...,Lp−1,lpT 2

k (mL1,...,Lp−1,lp ) = 1

and ν, c, c1, . . . , cL1,...,Lp > 0 constants. It suffices that (17) differs from its min-
imum by a term that is OP (n−2k/(2k+1)). In what follows, we assume that the
estimate is chosen so that this holds.

Our first result states that the regression function m can be estimated with rate
n−k/(2k+1), which is optimal for model (16).

THEOREM 4.1. Let (A1)–(A5) hold with k ≥ 2, X1
i , . . . ,X

d
i replaced by
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X
1,...,1
i , . . . ,X

L1,...,Lp

i and F,m1, . . . ,md replaced by m,m1, . . . ,mL1,...,Lp . Then

n−1
n∑

i=1

[
m̂

{
L1∑

l1=1

m̂l1[· · · m̂l1,...,lp (X
l1,...,lp
i )]

}
(18)

− m

{
L1∑

l1=1

ml1[· · ·ml1,...,lp (X
l1,...,lp
i )]

}]2

= Op

(
n−2k/(2k+1))

and

J (m̂) = Op(1).(19)

We now state a corollary of Theorem 4.1 for the case of random covariates.

THEOREM 4.2. Let (A1)–(A6) hold with k ≥ 2, random covariates X1
i , . . . ,

Xd
i replaced by X

1,...,1
i , . . . ,X

L1,...,Lp

i , and F,m1, . . . ,md replaced by m,m1, . . . ,

mL1,...,Lp . Then

∫ [
m̂

{
L1∑

l1=1

m̂l1[· · · m̂l1,...,lp (xl1,...,lp )]
}

(20)

− m

{
L1∑

l1=1

ml1[· · ·ml1,...,lp (xl1,...,lp )]
}]2

P(dx) = Op

(
n−2k/(2k+1)),

where P is the distribution of Xi . Furthermore, J (m̂) = Op(1).

We conjecture that all functional components can be estimated with the optimal
rate Op(n−k/(2k+1)) if (A7) and (A9) hold and m, . . . ,mL1,...,Lp−1 have derivatives
that are bounded away from 0 and, for all values of 1 ≤ l1 ≤ L1, . . . ,1 ≤ lp−1 ≤
Lp−1, at least two functions ml1,...,lp : 1 ≤ lp ≤ Lp are nonconstant. This would
be a result that is analogous to Theorem 3.2. Such a result would be less impor-
tant for neural networks than for generalized additive models. This is because in
neural networks one would like to permit two elements of X to be identical, which
violates (A7). For example, suppose the regression function is

m
[
m1[m1,1(x1) + m1,2(x2)] + m1[m2,1(x1) + m2,2(x3)]].

Arguing as in the proof of Theorem 3.2, one could consistently estimate the par-
tial derivatives g = m′m′

1m
′
1,1 + m′m′

2m
′
2,1, g2 = m′m′

1m
′
1,2 and g3 = m′m′

2m
′
2,2.

By backfitting, one could fit two functions h2(x1, x2) and h3(x1, x3) such
that g(x1, x2, x3) ≈ g2(x1, x2)h2(x1, x2) + g3(x1, x3)h3(x1, x3). This would re-
sult in estimates of m′

1,1/m′
1,2 and m′

2,1/m′
2,2. Solving, again by backfitting,

logh2(x1, x2) = h2,1(x1) + h2,2(x2) and logh3(x1, x3) = h3,1(x1) + h3,3(x3)
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would give consistent estimates of m′
1,1, m′

2,1, m′
1,2 and m′

2,2. It is clear that it
is very hard to establish the conditions under which this approach would result in
a consistent estimate. It would be even harder to show that this approach can be
used to get rate optimal estimates of the functions m, m1, m2, m1,1, m1,2, m2,1
and m2,2.

5. Regression quantiles. The estimation approach of this paper can be ex-
tended to M-functionals other than least squares. In this section we will discuss
quantile estimation. We consider again model (1) or (16), but now we choose
0 < α < 1 and we assume that the (conditional) α-quantile of Ui is equal to 0
(and not the conditional mean). We define uα(z) = αz − zI [z ≤ 0], where I is
the indicator function. Define penalized regression quantiles as the functions that
minimize [up to a term of order OP (n−2k/(2k+1))]

1

n

n∑
i=1

uα{Yi − F̂ [m̂1(X
1
i ) + · · · + m̂d(Xd

i )]} + λ2
nJ (F̂ , m̂1, . . . , m̂d)(21)

or

1

n

n∑
i=1

uα

[
Yi − m̂

{
L1∑

l1=1

m̂l1[· · · m̂l1,...,lp (X
l1,...,lp
i )]

}]
+ λ2

nJ (m̂).(22)

The penalty terms are as defined in Sections 2 and 4. Make the following assump-
tion.

(A4′) The function E[uα(Ui − μ)|X1, . . . ,Xn] almost surely has a unique min-
imum at μ = 0. Furthermore, for some ε > 0 and all 0 ≤ a ≤ ε, it holds
that

inf
1≤i≤n

P (0 ≤ Ui ≤ a) ≥ εa

and

inf
1≤i≤n

P (−a ≤ Ui ≤ 0) ≥ εa

almost surely.

THEOREM 5.1. Let the conditions of Theorem 2.1, Theorem 2.2, Theorem 3.2,
Theorem 4.1 or Theorem 4.2 hold with (A4′) in place of (A4). Then the conclusions
of the corresponding theorem hold for the estimators defined in (21) or (22).

6. Simulation results. We carried out a small simulation study with Y =
F [m1(X

1) + m2(X
2)] + U , where F is the identity function, m1(x) = sin(πx),

m2(x) = 
(3x), 
 is the standard normal distribution, and U ∼ N(0,1). The
values of (X1,X2) are the grid (i/(n1/2 + 1), j/(n1/2 + 1)), i, j = 1, . . . , n1/2,
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TABLE 1
Performance of m̂1, m̂2 and F̂ for different values of n and λ

n λ m̂1 m̂2 ̂F

400 0.05 0.030 0.029 0.0040
0.10 0.029 0.024 0.0039
0.15 0.026 0.029 0.0048

900 0.05 0.023 0.018 0.0030
0.10 0.017 0.015 0.0027
0.15 0.025 0.017 0.0036

where n is the sample size. The penalty term J is defined with ν1 = ν2 = 1. We
used the B-spline approach described in Section 3. The estimates of m1, m2 and F

are B-splines with four knots. There are 500 Monte Carlo replications in each sim-
ulation.

Table 1 shows the empirical integrated mean-square errors of m̂1, m̂2 and F̂ at
three different values of the penalty parameter, λ.

The simulation results with λ = 0.10 are shown graphically in Figures 1 and 2.
The wiggles in the estimates of m̂2 are due to variance, not bias. The 4-knot spline
fits the true m2 very well. In the simulations our estimators show a very reliable
performance.

7. Conclusions and extensions. In this paper we have proposed an estima-
tion approach for a general class of nested regression models. The basic idea is
to use the following property of compositions of functions belonging to certain
smoothness classes: if the same entropy rate applies for all smoothness classes,
then the same entropy rate also applies to the class of the composition of the func-
tions. In our setting, the function classes are subsets of additive Sobolev classes.
The results could be extended easily to other smoothness classes as long as en-
tropy rates with respect to the supremum norm are available. Examples are ad-
ditive Sobolev classes of functions with higher-dimensional arguments. Another
point that needs exploration is the case in which smoothness classes with different
entropy rates enter into the model. It would be interesting to check whether each
component’s convergence rate is the one corresponding to the entropy rate of its
smoothness class. In particular, for parametric components it would be important
to check whether the component can be estimated with rate n−1/2. Furthermore,
we conjecture that the resulting estimate is efficient. Such a result has been proved
in Mammen and van de Geer [27] for a partial linear model with a known link
function. There, penalized quasi-likelihood estimation is used for the nonparamet-
ric components. Another extension would be to apply our results for other classes
of M estimators.
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FIG. 1. Performance of m̂1 (upper plot), m̂2 (middle plot) and F̂ (lower plot) with n = 400. The
solid line is the true function; the dashed line is average of 500 estimates; circles, squares and
triangles, respectively, denote the estimates at the 25th, 50th and 75th percentiles of the IMSE.
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FIG. 2. As Figure 1 but with n = 900.

8. Proofs.

PROOF OF THEOREM 2.1. For a constant c > 0 consider the class of
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functions

G =
{
F [m1(x1) + · · · + md(xd)] : |F(z)| ≤ c for |z| ≤ d,mj (0) = 0

for j = 1, . . . , d,

d∑
j=1

∫ 1

0
m

(k)
j (x)2 dx +

d∑
j=1

∫ 1

0
m′

j (x)2 dx = 1,

J (F,m1, . . . ,md) ≤ 1

}
.

First we will argue that, for a constant CK ,

HB(δ,G,‖ · ‖∞) ≤ Ckδ
−1/k(23)

for δ > 0. Here, ‖ ·‖∞ denotes the supremum norm. Furthermore, HB(δ,G,‖ ·‖∞)

denotes the δ-entropy with bracketing for the class G w.r.t. the sup norm ‖ · ‖∞.
This means that exp(HB) is the smallest number N for which there exist pairs of
functions (gL

1 , gU
1 ), . . . , (gL

N,gU
N) in G with the following property. For each g ∈ G

there exists 1 ≤ j ≤ N with gL
j ≤ g ≤ gU

j and ‖gU
j − gL

j ‖∞ ≤ δ. Such a set of
tuples is also called a δ-cover with bracketing.

This entropy bound follows from the following classical entropy bound on
Sobolev classes (see Birman and Solomjak [3] and van de Geer [40]):

HB

(
δ,

{
g : [0,1] → R :‖g‖∞ ≤ 1,

(24) ∫
g(k)(x)2 dx ≤ 1

}
,‖ · ‖∞

)
≤ Cδ−1/k

for a constant C > 0. We now show how (23) follows from (24). From (24) one
gets for the class of additive functions

Gadd =
{
m1(x1) + · · · + md(xd) :

d∑
j=1

∫ 1

0
m

(k)
j (x)2 dx +

d∑
j=1

∫ 1

0
m′

j (x)2 dx ≤ 1,

mj (0) = 0

}
with a constant C′ > 0

HB(δ,Gadd,‖ · ‖∞) ≤ C ′δ−1/k.(25)

We use here that
∫ 1

0 m′
j (x)2 dx ≤ 1 and mj(0) = 0 implies that ‖mj‖∞ ≤ 1.

Consider now a function F [m1(x1) + · · · + md(xd)] that is an element of G.
Suppose that m1, . . . ,md are chosen such that mj(0) = 0 for j = 1, . . . , d

and
∑d

j=1
∫ 1

0 m
(k)
j (x)2 dx + ∑d

j=1
∫ 1

0 m′
j (x)2 dx = 1. For such a representation
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J (F,m1, . . . ,md) ≤ 1 implies
∫

F (k)(z)2 dz ≤ 1. Because |F(z)| ≤ c for |z| ≤ d ,
this implies |F ′(z)| ≤ C′ for |z| ≤ d with a constant C′. This can be seen, for exam-
ple, by application of the interpolation inequality; see (42). Consider now a δ-cover
with bracketing (gL

1 , gU
1 ), . . . , (gL

N,gU
N) of Gadd. Consider a fixed function F with

0 ≤ |F ′| ≤ C′. Then [F(gL
1 ) − C′δ,F (gL

1 ) + C′δ], . . . , [F(gL
N) − C′δ,F (gU

L ) +
C′δ] is a (2C′δ)-cover with bracketing of F(Gadd). By a slight extension of this
argument, we get (23).

We now apply Theorem 10.2 in van de Geer [40] with the modifications dis-
cussed before the theorem. This theorem implies (11) and (12). We now verify the
assumptions of Theorem 10.2 in van de Geer [40]. We have to check for ε > 0 that,
with probability larger than 1−ε, the function Ĥ (x) = F̂ ∗[m̂1(x1)+· · ·+m̂d(xd)]
is an element of G if c is chosen large enough. Here the function F̂ ∗ is defined as
F̂ ∗(z) = F̂ (z) /(1 + J (F̂ , m̂1, . . . , m̂d)). W.l.o.g. we can assume that

d∑
j=1

∫
m̂

(k)
j (x)2 dx +

∫
m̂′

j (x)2 dx = 1,(26)

m̂j (0) = 0 for 1 ≤ j ≤ d.(27)

It can be easily checked that J (F̂ ∗, m̂1, . . . , m̂d) ≤ 1. Thus, for the proof of Ĥ ∈ G,
it remains to check that

sup
|z|≤d

|F̂ ∗(z)| = OP (1).(28)

We now show (28). Equations (26) and (27) imply that

sup
0≤x1,...,xd≤1

|m̂1(x1) + · · · + m̂d(xd)| ≤ d.

Furthermore, because of J (F̂ ∗, m̂1, . . . , m̂d) ≤ 1, these equations imply that∫
F̂ ∗′

(z)2 dz ≤ 1. This shows that

sup
|z|,|z′|≤d

|F̂ ∗(z′) − F̂ ∗(z)| ≤ 2d.

We now show that

inf|z|≤d
|F̂ ∗(z)| = OP (1).(29)

The last two bounds imply (28). Thus, it remains to show (29). For the proof of
(29), note first that by definition of F̂ , m̂1, . . . , m̂d the following inequality holds
with F̃ (z) ≡ Y = n−1 ∑n

i=1 Yi and Zi = m̂1(X
1
i ) + · · · + m̂d(Xd

i ):

1

n

n∑
i=1

{Yi − F̂ [Zi]}2 ≤ 1

n

n∑
i=1

{Yi − F̂ [Zi]}2 + λ2
nJ (F̂ , m̂1, . . . , m̂d)

≤ 1

n

n∑
i=1

{Yi − F̃ [Zi]}2 + λ2
nJ (F̃ , m̂1, . . . , m̂d)
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= 1

n

n∑
i=1

{Yi − Y }2

= OP (1).

This implies inf|z|≤d |F̂ (z)| = OP (1) because of∣∣∣∣∣Y − 1

n

n∑
i=1

F̂ (Zi)

∣∣∣∣∣
2

=
∣∣∣∣∣1

n

n∑
i=1

Yi − F̂ (Zi)

∣∣∣∣∣
2

≤ 1

n

n∑
i=1

{Yi − F̂ [Zi]}2.

Claim (29) now follows because of |F̂ ∗| ≤ |F̂ |. �

PROOF OF THEOREM 2.2. For the proof of Theorem 2.2, it remains to
show (13). This claim immediately follows from Lemma 5.16 in van de Geer [40].

�

PROOF OF PROPOSITION 3.1. Without loss of generality, we assume that the
functions m1 and m2 are nonconstant. Then there exist x∗

1 ∈ A1 and x∗
2 ∈ A2

with m′
1(x

∗
1 ) �= 0 and m′

2(x
∗
2 ) �= 0. For H(x) = F [m1(x1) + · · · + md(xd)] =

G[μ1(x1) + · · · + μd(xd)], we get that ∂
∂x1

H(x) �= 0 if x1 = x∗
1 and ∂

∂x2
H(x) �= 0

if x2 = x∗
2 . For x1 ∈ A1, . . . , xd ∈ Ad , put x∗ = (x∗

1 , x2, . . . , xd)′ and x∗∗ =
(x1, x

∗
2 , x3, . . . , xd)′. Then for 2 ≤ j ≤ d ,

m′
j (xj )

m′
1(x

∗
1 )

=
∂

∂xj
H(x∗)

∂
∂x1

H(x∗)
= μ′

j (xj )

μ′
1(x

∗
1 )

.

Because of
∫
Aj

mj (xj ) dxj = ∫
Aj

μj (xj ) dxj = 0, this gives for 2 ≤ j ≤ d

mj (xj )

m′
1(x

∗
1 )

= μj(xj )

μ′
1(x

∗
1 )

.(30)

Using partial derivatives of H at x = x∗∗, we get

m1(x1)

m′
2(x

∗
2 )

= μ1(x1)

μ′
2(x

∗
2 )

.(31)

Equation (31) implies that m′
1(x

∗
1 )/m′

2(x
∗
2 ) = μ′

1(x
∗
1 )/μ′

2(x
∗
2 ). This shows that (30)

holds for 1 ≤ j ≤ d . Because of
∑d

j=1
∫
Aj

mj (xj )
2 dxj = ∑d

j=1
∫
Aj

μj (xj )
2 dxj ,

this implies the statements of the proposition. �

PROOF OF THEOREM 3.2. We first show (14). Put Ĥ (x1, . . . , xd) =
F̂ [m̂1(x1) + · · · + m̂d(xd)] and H(x1, . . . , xd) = F [m1(x1) + · · · + md(xd)]. We
write Hj = ∂xj

H , Ĥj = ∂xj
Ĥ , Hi,j = ∂xj

∂xi
H and Ĥi,j = ∂xj

∂xi
Ĥ for the partial

derivatives of H and Ĥ .
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For 1 ≤ j ≤ d , define m̃j (xj ) = γ̂ −1[m̂j (xj ) − m̂j (0)] with γ̂ 2 =∑d
j=1

∫
m̂

(k)
j (x)2 dx + ∫

m̂′
j (x)2 dx. Furthermore, choose F̃ so that F̃ [m̃1(x1) +

· · · + m̃d(xd)] = F̂ [m̂1(x1) + · · · + m̂d(xd)].
Then m̃1, . . . , m̃d satisfy (26) and (27) with m̂j replaced by m̃j and we have

that ∫ 1

0
m̃j (xj )

2 dxj = OP (1),(32) ∫ 1

0
m̃

(k)
j (xj )

2 dxj = OP (1)(33)

for j = 1, . . . , d . Note also that m̃j (0) = 0 by definition.
By Sobolev embedding results (see, e.g., Section VI.7 in Yosida [42] or Oden

and Reddy [32]), the bounds (32) and (33) give

sup
xj∈[0,1]

∣∣m̃(l)
j (xj )

∣∣ = OP (1)(34)

for j = 1, . . . , d and 0 ≤ l ≤ k − 1. We now derive a similar bound for the link
function F .

From (29) and (12) one gets that inf|z|≤d |F̃ (z)| = OP (1). From Theorem 2.1
we get that ∫

F̃ (k)(z)2 dz = OP (1).(35)

By application of the Sobolev embedding, this shows that

sup
|z|≤d

∣∣F̃ (l)(z)
∣∣ = OP (1)(36)

for 0 ≤ l ≤ k − 1.
The rest of the proof is divided into several steps.

STEP 1. In this step we argue that∫
[0,1]d

Ĥ ∗(x)2 dx = OP (1),(37)

where Ĥ ∗ is a partial derivative of Ĥ of order k. The integral
∫

Ĥ ∗(x)2 dx can be
easily bounded by a sum of integrals over products of derivatives of F̃ , m̃1 or . . .
or m̃d , respectively. Most summands can be easily bounded by using (33)–(36).
One summand needs a little bit more care, namely,∫

[0,1]d
F̃ (k)(m̃1(x1) + · · · + m̃d(xd)

)2
m̃′

i1
(xi1)

2 · · · · · m̃′
ik
(xik )

2 dx.

This term arises when H ∗ is a partial derivative w.r.t. xi1, . . . , xik . Up to a factor
that is stochastically bounded, this integral is equal to∫

[0,1]d
F̃ (k)(m̃1(x1) + · · · + m̃d(xd)

)2
m̃′

i1
(xi1)

2 dx;(38)
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see also (34). We now apply that for two functions g : [0,1] → [a, b], f : [a, b] →
R with a < b the following inequality holds:∫ 1

0
f [g(y)]2g′(y)2 dy ≤ 2

[∫ 1

0
g′′(y)2 dy

]1/2 ∫ b

a
f (z)2 dz.(39)

By using (39) with f = F̃ (k) and g = m̃1 + const., one can easily check that the
integral in (38) is bounded by

OP (1) ·
∫ d

−d
F̃ (k)(z)2 dz.

This quantity is stochastically bounded because of (35). For the proof of (37), it
remains to prove (39). For the proof of this inequality, we denote for u < v by
k(u, v) the number of crossings of the interval [u, v] by the function g′. It can be
easily checked that ∫

Iu,v

|g′′(y)|dy ≥ (v − u)k(u, v),

where

Iu,v = {y ∈ [0,1] :u < g′(y) ≤ v}.
Choose now ci = 2−i . The claim (39) now follows from∫ 1

0
f [g(y)]2g′(y)2 dy =

∫
{y:g′(y) �=0}

f [g(y)]2g′(y)2 dy

=
∞∑

i=−∞

∫
Ici ,ci−1

f [g(y)]2g′(y)2 dy

+
∞∑

i=−∞

∫
I−ci−1,−ci

f [g(y)]2g′(y)2 dy

≤
∞∑

i=−∞
[k(ci, ci−1) + k(−ci−1,−ci)]ci−1

∫ b

a
f (z)2 dz

≤
∞∑

i=−∞

ci−1

ci−1 − ci

∫
Ici ,ci−1∪I−ci−1,−ci

|g′′(y)|dy

∫ b

a
f (z)2 dz

≤ 2
∫ 1

0
|g′′(y)|dy

∫ b

a
f (z)2 dz

≤ 2
[∫ 1

0
g′′(y)2 dy

]1/2 ∫ b

a
f (z)2 dz.
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STEP 2. We now show that∫
[Ĥj (x1, . . . , xd) − Hj(x1, . . . , xd)]2 dx = OP

(
n−2(k−1)/(2k+1)),(40) ∫

[Ĥi,j (x1, . . . , xd) − Hi,j (x1, . . . , xd)]2 dx = OP

(
n−2(k−2)/(2k+1))(41)

for 1 ≤ i, j ≤ d .
For the proof of these claims, we make use of the interpolation inequality of

Agmon [2]; see also van de Geer ([40], Lemma 10.8) and Mammen and Thomas-
Agnan [26]. This inequality states that for a function g : R → R and a real number
θ > 0 it holds that∫

g(l)(x)2 dx ≤ cθ−2l
∫

g(x)2 dx + cθ2(k−l)
∫

g(k)(x)2 dx(42)

for a constant c and 1 ≤ l ≤ k. The claims (40) and (41) follow from the bound on
Ĥ − H in Theorem 2.1, (37) and the interpolation inequality.

STEP 3. According to (A7), two additive functions are not constant. W.l.o.g.
we assume that this is the case for the first two functions. Then there exist constants
0 ≤ a1 < b1 ≤ 1 and 0 ≤ a2 < b2 ≤ 1 with

inf
aj≤xj≤bj

|m′
j (xj )| > 0 for j = 1,2.

In this step we show that uniformly for 0 ≤ x1 ≤ 1 it holds that

ρ̂m̃′
1(x1) = ρm′

1(x1) + oP (1),(43)

where

ρ̂ =
∫ b1

a1

1

m̃′
1(x1)

dx1,

ρ =
∫ b1

a1

1

m′
1(x1)

dx1.

For the proof of (43) note first that (40)–(41) imply that there exist random 0 ≤
x∗

3 , . . . , x∗
d ≤ 1, a2 ≤ x∗

2 ≤ b2 with∫
[Ĥj (x1, x

∗
2 , . . . , x∗

d ) − Hj(x1, x
∗
2 , . . . , x∗

d )]2 dx1

(44)
= OP

(
n−2(k−1)/(2k+1)),∫

[Ĥj,1(x1, x
∗
2 , . . . , x∗

d ) − Hj,1(x1, x
∗
2 , . . . , x∗

d )]2 dx1

(45)
= OP

(
n−2(k−2)/(2k+1))

for j = 1 and j = 2. We now argue that for a (random) function � : [0,1] → R

the following implication holds. If
∫

�′(u)2 du = OP (1) and
∫

�(u)2 du = oP (1),
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then it holds that sup |�(u)| = oP (1). This implication can be easily verified by
using that

∫
�′(u)2du = OP (1) implies that

sup
0≤u,v≤1

|�(u) − �(v)|
|u − v|1/2 = OP (1).

The latter implication follows by application of an embedding theorem (see
Adams [1], page 97) or directly by a simple calculation.

We now apply this result for j = 1 and j = 2 with �(x1) = Ĥj (x1, x
∗
2 , . . . ,

x∗
d ) − Hj(x1, x

∗
2 , . . . , x∗

d ). This gives

sup
0≤x1≤1

|Ĥj (x1, x
∗
2 , . . . , x∗

d ) − Hj(x1, x
∗
2 , . . . , x∗

d )| = oP (1).

We now apply this expansion and make use of the fact that |m′
1|(u) for (u ∈

[a1, b1]), |m′
2|(u) for (u ∈ [a2, b2]) and F ′ are bounded away from zero and from

infinity. We get the following expansions that hold uniformly for 0 ≤ x1 ≤ 1 and
a1 ≤ x′

1 ≤ b1:

m̃′
2(x

∗
2 )

m̃′
1(x

′
1)

= Ĥ2(x
′
1, x

∗
2 , . . . , x∗

d )

Ĥ1(x
′
1, x

∗
2 , . . . , x∗

d )

= H2(x
′
1, x

∗
2 , . . . , x∗

d )

H1(x
′
1, x

∗
2 , . . . , x∗

d )
+ oP (1)

= m′
2(x

∗
2 )

m′
1(x

′
1)

+ oP (1),

m̃′
1(x1)

m̃′
2(x

∗
2 )

= m′
1(x1)

m′
2(x

∗
2 )

+ oP (1).

This implies that uniformly for 0 ≤ x1 ≤ 1 and a1 ≤ x′
1 ≤ b1,

m̃′
1(x1)

m̃′
1(x

′
1)

= m′
1(x1)

m′
1(x

′
1)

+ oP (1).

Claim (43) now follows by integrating both sides of the last equality w.r.t. x′
1.

STEP 4. In this step we show that for 2 ≤ j ≤ d and for random sequen-
ces δj,n,∫ 1

0
|m̃j (xj ) − ρ̂−1ρ[mj(xj ) − mj(0)] − δj,n|2 dxj = OP

(
n−2k/(2k+1)).(46)

For the proof we note first that (40) and the bound on Ĥ −H in Theorem 2.1 imply
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that there exist random numbers 0 ≤ x∗
2 , . . . , x∗

j−1, x
∗
j+1, . . . , x

∗
d ≤ 1 with∫

[Ĥ − H ]2(x1, x
∗
2 , . . . , x∗

j−1, xj , x
∗
j+1, . . . , x

∗
d ) dx1 dxj

(47)
= OP

(
n−2k/(2k+1)),∫

[Ĥ1 − H1]2(x1, x
∗
2 , . . . , x∗

j−1, xj , x
∗
j+1, . . . , x

∗
d ) dx1 dxj

(48)
= OP

(
n−2(k−1)/(2k+1)),∫

[Ĥj − Hj ]2(x1, x
∗
2 , . . . , x∗

j−1, xj , x
∗
j+1, . . . , x

∗
d ) dx1 dxj

(49)
= OP

(
n−2(k−1)/(2k+1)).

In the following calculations of this step we fix the random vector (x∗
2 , . . . , x∗

j−1,

x∗
j+1, . . . , x

∗
d ) and, for simplicity of notation, we write f (x1, xj ) instead of

f (x1, x
∗
2 , . . . , x∗

j−1, xj , x
∗
j+1, . . . , x

∗
d ) for the functions f = H,H1,Hj , Ĥ , Ĥ1

or Ĥj , respectively. We now use that∫ xj

0
duj

∫ b1

a1

dx1
Ĥj (x1, uj )

Ĥ1(x1, uj )
=

∫ b1

a1

1

m̃′
1(x1)

dx1[m̃j (xj ) − m̃j (0)]
(50)

= ρ̂m̃j (xj )

and that ∫ xj

0
duj

∫ b1

a1

dx1
Hj(x1, uj )

H1(x1, uj )

=
∫ b1

a1

1

m′
1(x1)

dx1[mj(xj ) − mj(0)](51)

= ρ[mj(xj ) − mj(0)].
Furthermore, we make use of the expansion

1

Ĥ1
= 1

H1
− Ĥ1 − H1

H 2
1

+ (Ĥ1 − H1)
2 1

H 2
1 Ĥ1

.

This gives the expansion

m̃j (xj ) − ρ̂−1ρ[mj(xj ) − mj(0)]

= ρ̂−1
∫ xj

0
duj

∫ b1

a1

dx1

[
Ĥj (x1, uj )

Ĥ1(x1, uj )
− Hj(x1, uj )

H1(x1, uj )

]
(52)

= ρ̂−1
∫ xj

0
duj

∫ b1

a1

dx1

[
Ĥj − Hj

H1
− (Ĥ1 − H1)(Ĥj − Hj)

H 2
1

− Hj

Ĥ1 − H1

H 2
1

+ Ĥj (Ĥ1 − H1)
2 1

H 2
1 Ĥ1

]
(x1, uj ).
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Because of (34), it holds that ρ̂−1 = OP (1). This bound together with (48)–(49)
implies for the second term in (52) the bound

ρ̂−1
∫ xj

0
duj

∫ b1

a1

dx1

[
(Ĥ1 − H1)(Ĥj − Hj)

H 2
1

]
(x1, uj )

= OP

(
n−(2k−2)/(2k+1))(53)

= OP

(
n−k/(2k+1)).

For estimating the last term in (52), we use that

sup
a1≤x1≤b1,0≤xj≤1

∣∣∣∣ρ̂−1 Ĥj

Ĥ1
(x1, xj )

∣∣∣∣ = sup
a1≤x1≤b1,0≤xj≤1

∣∣∣∣ρ̂−1
m̃′

j (xj )

m̃′
1(x1)

∣∣∣∣ = OP (1),

because of (40) and because infa1≤x1≤b1 |ρ̂m̃′
1(x1)| > c with probability tending to

one for a constant c > 0 small enough. The latter fact follows directly from (43)
and (A6). With this bound, we get for the last term in (52)

ρ̂−1
∫ xj

0
duj

∫ b1

a1

dx1

[
Ĥj (Ĥ1 − H1)

2 1

H 2
1 Ĥ1

]
(x1, uj )

= OP (1)

∫ xj

0
duj

∫ b1

a1

dx1(Ĥ1 − H1)
2(x1, uj )(54)

= OP

(
n−k/(2k+1)),

where again (48) was applied. Using (52)–(54), we get uniformly for 0 ≤ xj ≤ 1
that

m̃j (xj ) − ρ̂−1ρ[mj(xj ) − mj(0)]

= ρ̂−1
∫ xj

0
duj

∫ b1

a1

dx1

[
Ĥj − Hj

H1

]
(x1, uj )

− ρ̂−1
∫ xj

0
duj

∫ b1

a1

dx1Hj

[
Ĥ1 − H1

H 2
1

]
(x1, uj ) + OP

(
n−k/(2k+1))

= T1(xj ) + T2(xj ) + OP

(
n−k/(2k+1)).

We now apply partial integration for the first term. This gives

T1(xj ) = ρ̂−1
∫ b1

a1

dx1

[
1

H1(x1, uj )
{Ĥ (x1, uj ) − H(x1, uj )}

]uj=xj

uj=0

+ ρ̂−1
∫ b1

a1

dx1

∫ xj

0
duj

[
H1,j (x1, uj )

H1(x1, uj )2 {Ĥ (x1, uj ) − H(x1, uj )}
]

= −ρ̂−1
∫ b1

a1

dx1

[
1

H1(x1,0)
{Ĥ (x1,0) − H(x1,0)}

]
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+ ρ̂−1
∫ b1

a1

dx1

[
1

H1(x1, xj )
{Ĥ (x1, xj ) − H(x1, xj )}

]

+ ρ̂−1
∫ b1

a1

dx1

∫ xj

0
duj

[
H1,2(x1, uj )

H1(x1, uj )2 {Ĥ (x1, uj ) − H(x1, uj )}
]

= δj,1,n + gj,1,n(xj ) + gj,2,n(xj ),

with a real random sequence δj,1,n. The random functions gj,1,n and gj,2,n satisfy∫
gj,1,n(xj )

2 dxj = OP

(
n−2k/(2k+1)),∫

gj,2,n(xj )
2 dxj = OP

(
n−2k/(2k+1)).

Similarly, we get that

T2(xj ) = δj,2,n + gj,3,n(xj ) + gj,4,n(xj )

with a real random sequence δj,2,n and random functions gj,3,n and gj,4,n that
satisfy ∫

gj,3,n(xj )
2 dxj = OP

(
n−2k/(2k+1)),∫

gj,4,n(xj )
2 dxj = OP

(
n−2k/(2k+1)).

This shows that, for 2 ≤ j ≤ d ,∫ 1

0

∣∣m̃j (xj ) − ρ̂−1ρ[mj(xj ) − mj(0)] − δj,1,n − δj,2,n

∣∣2 dxj = OP

(
n−2k/(2k+1)).

This implies (46).

STEP 5. In this step we show that there exists a random sequence δ1,n such
that ∫ 1

0
|m̃1(x1) − ρ̂−1ρ[m1(x1) − m1(0)] − δ1,n|2 dx1 = OP

(
n−2k/(2k+1)).(55)

For this purpose we choose a function s : [0,1] → R that has a continuous
derivative and satisfies s(0) = s(1) = 0 and

∫
s(x2)m

′
2(x2) dx2 = 1. Put w(x2) =

s(x2)m
′
2(x2)m̃

′
2(x2). One can easily check that

m̃1(x1) =
∫ x1

0
du1

∫ 1

0
dx2 w(x2)

Ĥ1(u1, x2)

Ĥ2(u1, x2)
,

where Ĥ is defined as in the last step for j = 2. We define

m∗
1(x1) =

∫ x1

0
du1

∫ 1

0
dx2 w(x2)

H1(u1, x2)

H2(u1, x2)
.
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Proceeding as above, one can show that there exists a random sequence δ1,n such
that ∫ 1

0
|m̃1(x1) − m∗

1(x1) − δ1,n|2 dx1 = OP

(
n−2k/(2k+1)).

In particular, the proof makes use of the following facts: supx2
|w(x2)| = OP (1),

supx1,...,xd
|w(x2)[Ĥ1/Ĥ2](x1, x2, . . . , xd)| = OP (1) and

∫
w′(x2)

2 dx2 = OP (1).
For the proof of (55), it remains to show that∫ 1

0
|m∗

1(x1) − ρ̂−1ρ[m1(x1) − m1(0)]|2 dx1 = OP

(
n−2k/(2k+1)).

Because of

m∗
1(x1) = [m1(x1) − m1(0)]

∫ 1

0
s(x2)m̃

′
2(x2) dx2,

this follows from∫ 1

0
s(x2)m̃

′
2(x2) dx2

= s(x2)m̃2(x2)|10 −
∫ 1

0
s′(x2)m̃2(x2) dx2

= −
∫ 1

0
s′(x2)ρ̂

−1ρm2(x2) dx2 + OP

(
n−k/(2k+1))

=
∫ 1

0
s(x2)ρ̂

−1ρm′
2(x2) dx2 + OP

(
n−k/(2k+1))

= ρ̂−1ρ + OP

(
n−k/(2k+1)).

Here, (46) for j = 2 was used. Thus, (55) is proved.

STEP 6. In this step we show that

ρ̂ = OP (1).(56)

Arguing as above, we find x∗
2 , . . . , x∗

d such that

sup
0≤x1≤1

|H(x1, x
∗
2 , . . . , x∗

d ) − Ĥ (x1, x
∗
2 , . . . , x∗

d )| = oP (1).

The claim now directly follows from

0 < inf
z

F ′(z)|m1(b1) − m1(a1)|
≤ |F [m1(b1) + m2(x

∗
2 ) + · · · + md(x∗

d )]
− F [m1(a1) + m2(x

∗
2 ) + · · · + md(x∗

d )]|
= |F̃ [m̃1(b1) + m̃2(x

∗
2 ) + · · · + m̃d(x∗

d )]
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− F̃ [m̃1(a1) + m̃2(x
∗
2 ) + · · · + m̃d(x∗

d )]| + oP (1)

≤ sup
z

F̃ ′(z)|m̃1(b1) − m̃1(a1)| + oP (1)

= OP (1)ρ̂−1ρ|m1(b1) − m1(a1)| + oP (1).

STEP 7. In this step we show claim (14).
Using

∫
mj(xj ) dxj = ∫

m̂j (xj ) dxj = 0, the definition of m̃j , (46) and (55),
we get for 1 ≤ j ≤ d∫ 1

0
|γ̂ −1m̂j (xj ) − ρ̂−1ρmj(xj )|2 dxj = OP

(
n−2k/(2k+1)).(57)

Here we have used that for a function w it holds that
∫ [w(x) − ∫

w(u)du]2 dx ≤∫
w(x)2 dx.
We now use that for a constant α > 0 and for two functions w1 and w2

with
∫

w1(x)2 dx = ∫
w2(x)2 dx = 1, it holds that

∫ [αw1(x) − α−1w2(x)]2 dx ≤∫ [w1(x) − w2(x)]2 dx. This shows

γ̂ −1ρ̂−1ρ

d∑
j=1

∫ 1

0
|m̂j (xj ) − mj(xj )|2 dxj

≤ γ̂ −1ρ̂−1ρ

d∑
j=1

∫ 1

0

∣∣∣∣√γ̂ −1ρ̂ρ−1m̂j (xj ) − 1√
γ̂ −1ρ̂ρ−1

mj(xj )

∣∣∣∣2 dxj

= OP

(
n−2k/(2k+1)).

Furthermore, because of (56) and (34), we have ρ̂ρ−1 = OP (1) and ρ̂−1ρ =
OP (1). With (57), this gives γ̂ −2 = ρ̂−2ρ2 + oP (1) and, thus, γ̂ = OP (1). There-
fore, the last inequality implies (14).

STEP 8. It remains to show (15). From (36) with l = 1 and (57), we get

sup
|z|≤d

|F̂ ′(z)| = OP (1).(58)

Claim (15) immediately follows from (14), (58) and Theorem 2.2. �

PROOF OF THEOREM 3.3. We give a proof of part (i). Part (ii) follows by sim-
ilar arguments. Suppose that (F̃ , m̃1, . . . , m̃d) is an approximate minimizer of (4)
over M with m̃j0 not necessarily a natural spline. Define m̄j0 as minimizer of∫

μ(k)(u)2 du under the constraint μ(X
j0
i ) = m̃j0(X

j0
i ) for 1 ≤ i ≤ n. The func-

tion m̄j0 is a natural spline of order 2k with knots X
j0
1 , . . . ,X

j0
n ; see, for example,

Eubank [8]. We show that ∫
m̄′

j0
(u)2 du = OP (1).(59)
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This immediately shows that (F̃ , m̃1, . . . , m̃j0−1, m̄j0, m̃j0+1, . . . , m̃d) is an ap-
proximate minimizer of (4) over M and, thus, it implies the statement of Theo-
rem 3.2(i). It remains to show (59). This follows from∫

�̂′(u)2 du = OP (1),(60)

with �̂(u) = m̃j0(u) − m̄j0(u). For the proof of (60) note that, by the Sobolev
embedding theorem, one can write �̂(z) = �̂1(z) + �̂2(z) with

�̂1(z) =
k∑

j=1

β̂j z
j−1,

and |�̂2(z)| ≤ [∫ �̂(k)(z)2 dz]1/2 = OP (1); see, for example, Oden and
Reddy [32]. Because of �̂(X

j0
i ) = 0 for 1 ≤ i ≤ n, we get that β̂1, . . . , β̂k =

OP (1). This implies
∫

�̂(u)2 du = OP (1). Now (60) follows from the interpo-
lation inequality (42). �

PROOF OF THEOREMS 4.1 AND 4.2. The theorems follow by similar argu-
ments as in the proofs of Theorems 2.1 and 2.2. �

PROOF OF THEOREM 5.1. The proof of the quantile version of Theorem 2.1
and Theorem 4.1 follows along the same lines as in the old proofs. For the neces-
sary modifications to apply empirical process theory, see van de Geer [39] and
Chapter 12 in van de Geer [40]. Note, for example, that (for α = 1/2) condi-
tion (A4′) restates (12.22) and (12.23) in van de Geer [40]. Compare also Exer-
cise 12.4 in van de Geer [40]. The quantile versions of Theorem 2.2, Theorem 3.2
and Theorem 4.2 directly follow from the new versions of Theorem 2.1 and Theo-
rem 4.1 by the same arguments as in the proofs of their old versions. �
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