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MULTIVARIATE BAYESIAN FUNCTION ESTIMATION1

BY JEAN-FRANÇOIS ANGERS AND PETER T. KIM

Université de Montréal and University of Guelph

Bayesian methods are developed for the multivariate nonparametric re-
gression problem where the domain is taken to be a compact Riemannian
manifold. In terms of the latter, the underlying geometry of the manifold in-
duces certain symmetries on the multivariate nonparametric regression func-
tion. The Bayesian approach then allows one to incorporate hierarchical
Bayesian methods directly into the spectral structure, thus providing a
symmetry-adaptive multivariate Bayesian function estimator. One can also
diffuse away some prior information in which the limiting case is a smooth-
ing spline on the manifold. This, together with the result that the smoothing
spline solution obtains the minimax rate of convergence in the multivariate
nonparametric regression problem, provides good frequentist properties for
the Bayes estimators. An application to astronomy is included.

1. Introduction. This paper develops Bayesian function estimation for the
multivariate nonparametric regression problem where the domain is taken to be a
compact Riemannian manifold. The approach is to incorporate multivariate hier-
archical Bayesian methods into the spectral structure of the Riemannian manifold,
allowing one to explicitly capture any prior information about possible invariance
or symmetry in the data. In particular, a symmetry-adaptive multivariate Bayes es-
timator is proposed. This approach is a very natural way of modeling symmetries
and presents a superior alternative to a frequentist approach. We now discuss this
below.

The sample space is usually taken as Euclidean. However, there has been inter-
est in non-Euclidean sample spaces, with the main example being the unit sphere
in various dimensions. Without going into a discussion of the history of directional
statistics, for that one can consult a very modern account of the subject in [32], let
us provide some details as to the general interest in the subject of a Riemannian
sample space, that is, the sample space being a Riemannian manifold, along with
the statistical study of certain symmetries inherent in the manifold. In some appli-
cations these symmetries often arise due to certain physical constraints imposed
by laws of motion.
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The greatest number of investigations into the statistical study of symmetries
on a Riemannian sample space involves testing. An early paper by Beran [4] in-
vestigates testing for uniformity on compact homogeneous spaces, followed by
generalizations to compact Riemannian manifolds in [16] and investigation into
the two-sample problem on Riemannian manifolds by Wellner [48]. Extensions
to specific but more general manifolds have been documented in [8], Chapter 6,
which include the case of Grassmann and Stiefel manifolds. Recently, Chikuse and
Jupp [9] consider tests of uniformity on shape space. Now one can consider testing
for uniformity on a Riemannian manifold as the ultimate form of symmetry. How-
ever, “partial” symmetries, such as rotational invariance around a particular axis
on a unit sphere, can be of even greater interest in certain physical applications.
Starting within the framework of Giné [16], Jupp and Spurr [23] examine testing
for symmetries that are not necessarily the full symmetry of uniformity, but only
partial symmetries. In more technical terms, which will be made precise below,
testing for uniformity can be associated with studying invariance with respect to
the full group of isometries on the manifold, whereas partial symmetries can be
associated with studying invariance with respect to proper subgroups of the full
isometry group.

For multivariate function estimation on Riemannian manifolds, there are some
investigations where the primary approach is frequentist. There are a number of
works on multivariate function estimation on a unit sphere, see [5, 19, 18, 25, 26,
28, 41, 44–46]; on Stiefel manifolds, see [29] and [8], Chapter 10; on Lie groups,
see [24, 27]; and, on general compact manifolds, see [20, 27]. Other, more ex-
otic analyses have been done in [46], Chapter 2, where multivariate functions are
estimated on submanifolds of the tangent bundle manifold of a sphere. There is
also some work involving fitting smooth curves on a manifold; see [17, 21, 36].
In some remarkable engineering applications to polymers and robotics, Chirikjian
and Kyatkin ([10], Chapters 12 and 17) examine multivariate function estimation
on the Euclidean motion group. In computer vision and pattern representation, the
sample space is taken to be a certain space of complex matrices, with a pattern
being defined through symmetries on this manifold; see [42, 43]. Thus, one can
see that there is interest in multivariate function estimation on sample spaces be-
yond the Euclidean space, and together with current computing capabilities, it is
foreseeable that the demand for statistical techniques that go beyond the traditional
Euclidean sample space will increase.

The statistical interest in testing for symmetry, partial or full, and in frequentist
function estimation on Riemannian manifolds is, nevertheless, disjoint, although
it is conceivable that there would be advantages to combining them if possible.
Indeed, a frequentist approach would involve one of the following options: assume
symmetry (whatever form) is present in the data; ignore any symmetry altogether;
or initially test for any symmetries using the methods established in [23], followed
by function estimation depending on the outcome of the test. One can see that
the above three frequentist approaches have certain difficulties. The first approach
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runs into the difficulty that symmetry may not really be present, while the sec-
ond approach has the difficulty that symmetry may be present. The third approach
has difficulties in interpreting mean squared error calculations since one is con-
ditioning on that part of the sample space that rejects (or accepts) the symmetry
in question. Thus, one can see there are some shortcomings in the frequentist ap-
proach. Alternatively, a Bayesian approach to multivariate function estimation on
manifolds appears to be a superior solution in that the Bayesian approach allows
one to exploit any invariance or symmetry in the data directly, by eliciting very spe-
cific prior information on the possible symmetries in question through the spectral
structure on the Riemannian manifold. It is in this way that we mean (mentioned
in the opening paragraph) that the Bayesian approach is natural for this class of
problems and is the subject of this paper.

We now provide a summary of what is to come. In Section 2 notation and some
geometric preliminaries are provided. As well, some explicit descriptions of the
manifolds discussed above are presented. In Section 3 we initiate a frequentist
approach to the multivariate nonparametric regression function estimation prob-
lem. This defines the minimization problem in a reproducing kernel Hilbert space;
see [46], Chapters 1 and 2. We show that a unique solution defines what may
be termed a spline on a manifold which, in turn, confirms a conjecture raised by
Wahba [45]. It is shown that the spline solution attains the minimax rate of con-
vergence. As a precursor to the next section, we generalize a result which shows
that the spline solution has Bayesian connections when diffuse priors are used.
In Section 4 we formally embark upon the task at hand by incorporating initial
prior information into the model. We treat the model as involving both a symmet-
ric and nonsymmetric part, assume normality on the first stage finite-dimensional
priors and treat the infinite-dimensional part of the model as a nuisance parameter.
We can then control the amount of symmetry by controlling the variance terms
and employ hyperpriors to deal with the prior parameters. This leads to symmetry-
adaptive hierarchical Bayesian function estimators. Bayes factors are subsequently
used to determine the truncation level. As for dealing with the nuisance parame-
ters, we can diffuse some of them away and in so doing, we can obtain as limits
the smoothing spline solutions on manifolds. This suggests that the hierarchical
Bayes estimator has good frequentist properties, which are discussed in Section 5.
In Section 6 we go through a detailed analysis for the 2-sphere, as well as present
some numerical work on long period cometary orbits. It is here that we see the
benefits of incorporating prior symmetries into the model. This extends an earlier
study of this data set; see [23]. Section 7 contains the proofs and an appendix is
included for further needed technical details.

2. Notation. Let M be a compact connected orientable Riemannian manifold.
Consider the Riemannian structure {g(p) :p ∈ M} and let dx be the normalized
volume element of M associated with this structure. For each fixed p ∈ M, we can
associate with g(p) a matrix (gij (p)) called the metric tensor. We will, in addition,
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assume that the manifold is without boundary, although we could generalize the
following arguments to certain boundary conditions.

Let C∞(M) be the space of real-valued infinitely differentiable continuous
functions on M. Denote by

�= − 1√|g(p)|
∑
j,k

∂j
(
gjk(p)

√
|g(p)|∂k)

the Laplace–Beltrami operator on M, where ∂j denotes the partial derivative with
respect to the j th component, (gij (p)) is the inverse of (gij (p)) the metric tensor
and |g(p)| is the determinant of the matrix (gij (p)). We note that � is an elliptic
self-adjoint second-order differential operator on C∞(M) for which the eigenfunc-
tions of � are a complete orthonormal basis for L2(M), the space of real-valued
square integrable functions.

Let λ be an eigenvalue of �. The collection of all eigenvalues for a given M

is countably infinite, hence, letting N0 = {0,1,2, . . .}, we can enumerate the
eigenvalues by λk ≥ 0, k ∈ N0, with no upper bound. Furthermore, we will use
the convention that λ0 = 0 and that λk ≤ λk+1 for k ∈ N0. For each k, let φkj
be an eigenfunction so that �φkj = λkφkj , for j = 1, . . . ,Lk , and denote by
Ek = sp{φkj : j = 1, . . . ,Lk}, where sp(·) stands for the span of the object in ques-
tion. Then dimEk = Lk <∞, k ∈ N0, where dim(·) denotes the dimension of the
object in question.

Let φk = (φk1, . . . , φk dimEk )
′, where superscript “′” denotes transpose and let

〈·, ·〉k denote the dot product on R
dimEk , with ‖ · ‖k the induced norm, k ∈ N0. For

h ∈ L2(M), the eigenfunction expansion will be defined by

h=
∞∑
k=0

〈ĥk, φk〉k where ĥk =
∫

M

hφk,(2.1)

for k ∈ N0, where integration over M is defined piecewise using the usual partition
of unity argument; see (A.1) in the Appendix.

We can consider subspaces of L2(M) in the following way. First, on the
space C∞(M) of infinitely continuous differentiable functions on M, consider
the Sobolev norm ‖ · ‖Hs of order s defined accordingly. For any function h =∑
k〈ĥk, φk〉k , let

‖h‖2
Hs

= ∑
λk>0

λsk‖ĥk‖2
k.(2.2)

One can verify that (2.2) is indeed a norm. Denote byHs(M)⊂ L2(M) the (vector-
space) completion of C∞(M) with respect to (2.2). This will be called the Sobolev
space of order s > dim M/2. In addition, we will also consider Sobolev ellipsoids
defined by

Hs(M,M)=
{
u ∈Hs(M) :

∑
k

λsk‖ûk‖2
k ≤M

}
,
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for M > 0 and s > dim M/2.
Often M is equipped with certain symmetries. A Riemannian manifold is ho-

mogeneous if its group of isometries G acts transitively on M, where by the lat-
ter we mean that for every p,q ∈ M there exists an h ∈ G such that p = hq ,
where multiplication denotes the group action G × M → M. For every p ∈ M, let
G
p = {h ∈ G :hp = p} denote the isotropy subgroup of p. It is well known that

if M is a homogeneous compact connected Riemannian manifold, then, for every
p ∈ M, G

p is a closed subgroup of G and there exists a diffeomorphism between
the quotient space G/Gp and M. A differentiable function f : M → R is called a
zonal function with respect to the action of the isotropy subgroup G

p , p ∈ M, if it
is constant on the isotropy subgroup G

p .
New manifolds can be created by taking products of existing manifolds, as well

as by taking quotients as in the case of a homogeneous space. For concreteness,
let us consider specific examples that will be used for illustration throughout the
paper, as well as those mentioned in Section 1.

EXAMPLE 2.1 (Sphere). The sphere Sp−1 ⊂ R
p is the set of unit vectors in

p-dimensional Euclidean space. In the case where p = 3, we note that any point
on S2 can almost surely be represented by

ω= (cosϕ sinϑ, sinϕ sinϑ, cosϑ)′,(2.3)

where ϕ ∈ [0,2π), ϑ ∈ [0, π) and superscript “′” denotes transpose.

EXAMPLE 2.2 (Orthogonal and special orthogonal group). The orthogonal
group O(p) consists of the space of p × p real orthogonal matrices. However,
this group is not connected. The connected component consisting of those real
orthogonal matrices having determinant equal to unity, SO(p), is called the special
orthogonal group. Again, in the case of p = 3, SO(3) can be represented in the
following way. Let

u(ϕ)=
 cosϕ −sinϕ 0

sinϕ cosϕ 0
0 0 1

 , a(ϑ)=
 cosϑ 0 sinϑ

0 1 0
−sinϑ 0 cosϑ

 ,
where ϕ ∈ [0,2π), ϑ ∈ [0, π). The well-known Euler angle decomposition says
any element of SO(3) can almost surely be uniquely written as

g = u(ϕ1)a(ϑ)u(ϕ2),

where ϕ1 ∈ [0,2π), ϕ2 ∈ [0,2π), ϑ ∈ [0, π).
New manifolds can be created from products and quotients of these examples. In

fact, it turns out that SO(3) is the transitive group of isometries on S2. Furthermore,
the subgroup

SO(2)= {u(ϕ) :ϕ ∈ [0,2π)}
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of SO(3) is the isotropy subgroup of (0,0,1)′ ∈ S2. Thus, we can identify S2 with
the quotient space SO(3)/SO(2); hence, S2 is a homogeneous space. Throughout
the paper we will use the sphere S2, as well as its transitive group of isometries,
SO(3), for illustrative purposes leading up to the application in Section 6.

Some of the other manifolds previously mentioned include the Stiefel manifold,
Vk(R

p)=O(p)/O(p − k), the Grassmann manifold, Gk(Rp)=O(p)/(O(p)×
O(p− k)), and shape space, Sp(k−1)−1/SO(p). Of the more exotic constructions,
the collection of all tangent spaces on a manifold is called the tangent bundle and is
itself a manifold. The Euclidean motion group is defined to be SO(p)� R

p , where
� denotes a semi-direct product. In computer vision, the sample space is taken
to be SL(2,C)/O(2), where SL(2,C) denotes the space of 2 × 2 complex matri-
ces of determinant 1. We note that the last two examples are that of noncompact
manifolds.

As for orthonormal bases, we have the following example.

EXAMPLE 2.3 (Spherical harmonics). Let

Ykq(ω)=



√
2

√
(2k + 1)(k − q)!

4π(k + q)! P kq (cosϑ) cos(qϕ), q = 1, . . . , k,√
(2k + 1)

4π
P k0 (cosϑ), q = 0,

√
2

√
(2k + 1)(k − |q|)!

4π(k + |q|)! P k|q|(cosϑ) sin(|q|ϕ),
q = −1, . . . ,−k,

(2.4)

where ϕ ∈ [0,2π), ϑ ∈ [0, π) and P kq are the Legendre functions, −k ≤ q ≤ k and
k ∈ N0. We note that we can think of (2.4) as the vector entries to the (2k + 1)-
vector

Yk(ω)= (Ykq(ω)),
|q| ≤ k and k ∈ N0. In this situation {Ykq : |q| ≤ k, k ∈ N0} are the eigenfunctions
of the Laplace–Beltrami operator on S2 with eigenvalues λk = k(k + 1), k ∈ N0,
and, hence, form a complete orthonormal basis over L2(S2).

Some further technical properties are provided in the Appendix. In addition,
the following asymptotic notation will be used. Let {an} and {bn} denote two real
sequences of numbers. We write an � bn to mean an ≤ Cbn for some C > 0 as
n→ ∞, the Vinogradov notation. This notation is more convenient than the “big
oh” Landau notation since expressions that are within an order of magnitude can
be long and, furthermore, can create confusion with the notation for the orthogo-
nal group. We will, however, use the notation an = o(bn) to mean an/bn → 0 as
n→ ∞. Furthermore, an 
 bn whenever an � bn and bn � an, and an ∼ bn when
an/bn → 1 as n→ ∞.
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3. Nonparametric regression and splines on manifolds. Let f ∈ L2(M).
Its eigenfunction expansion, as defined in (2.1), is

f (x)=
∞∑
k=0

〈γk,φk(x)〉k,(3.1)

for x ∈ M and where

γk =
∫

M

f (x)φk(x) dx, φk ∈ Ek,(3.2)

for k = 0,1, . . . . If we observe (3.1) at the points x1, . . . , xn ∈ M, then our obser-
vations are

yi = f (xi)+ εi for i = 1, . . . , n,(3.3)

where we assume ε = (ε1, . . . , εn)
′ ∼N(0, σ 2I ), σ 2 > 0, and we are interested in

estimating f , a real-valued function on M. We note that the Fourier coefficients in
(3.1) and (3.2) are denoted by γk and not f̂k , k ∈ N0, as was done in Section 2. The
purpose for this departure is due to the fact that the Bayesian framework will later
treat the coefficients as random quantities.

For any fixed value of K > 0, called the truncation level, (3.1) can be written as

f (x)= fK(x)+ η(x),(3.4)

where

fK(x)=
K∑
k=0

〈γk,φk(x)〉k and η(x)=
∞∑

k=K+1

〈γk,φk(x)〉k.(3.5)

Then we can write the regression problem (3.3) as

y =
γ + η+ ε,(3.6)

where y = (y1, . . . , yn)
′, η = (η(x1), . . . , η(xn))

′, γ = (γ1, . . . , γκ)
′, κ =∑K

k=0 dimEk , ε = (ε1, . . . , εn)
′ and
= (φk(xi)) for k = 0,1, . . . ,K , i = 1, . . . , n.

3.1. Splines on manifolds. We will need the following notation. Let x1, . . . , xn,
x ∈ M, and define

Qλ
(
xi1, xi2

)= ∑
k≥K+1

λ−s
k

〈
φk
(
xi1
)
, φk

(
xi2
)〉
k.

Define the n× n matrix

Qλn,ξ = [
Qλ

(
xi1, xi2

)]+ nξIn,
where xi1, xi2 ∈ M, i1, i2 = 1, . . . , n, ξ ≥ 0 and In is the n × n identity matrix.
Furthermore, define the κ × 1 vector φ(x)= (φk(x)), and define the n× 1 vector
q(x) = [Qλ(x1, x), . . . ,Q

λ(xn, x)]′. The following generalizes earlier multivari-
ate spline smoothing methods of Wahba [45], Cox [11] and Taijeron, Gibson and
Chandler [41].
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THEOREM 3.1. Let M be a compact connected orientable Riemannian mani-
fold. Assume x1, . . . , xn are distinct points on M, x ∈ M, and consider the follow-
ing smoothing problem:

min
u∈Hs(M)

1

n

n∑
i=1

(
u(xi)− yi)2 + ξ

∫
M

|�s/2u(x)|2 dx,

where ξ > 0, s > dim(M)/2 and yi ∈ R for i = 1, . . . , n. Define

f nξ (x)= φ(x)′d + q(x)′c,
where the n× 1 vector c and the κ × 1 vector d are defined by

c = [Qλn,ξ ]−1(In −
(
′[Qλn,ξ ]−1
)−1
′[Qλn,ξ ]−1)y,
d = (
′[Qλn,ξ ]−1
)−1
′[Qλn,ξ ]−1y,

with y = (y1, . . . , yn)
′. Then f nξ (x) for ξ > 0 is the unique solution to the smooth-

ing problem.

REMARK 3.2. The practical choice of the smoothing parameter ξ > 0 can be
determined by using generalized cross-validation similar to that outlined for the
Euclidean case in, for example, [46], Chapter 4.

REMARK 3.3. As stated in Section 1, one can always create new manifolds
by taking products of existing ones. This leads to tensor splines as the multivari-
ate functions to be estimated over product manifolds. Such is the approach taken
in [31], which is a special case of the more general tensor spline construction;
see [46], Chapter 10. In particular, one can freely construct any number of prod-
ucts of compact manifolds since the individual reproducing kernels can be amal-
gamated into one. Thus, for example, one can take products of various spheres,
rotation matrices, Stiefel and Grassmann manifolds.

3.2. Minimaxity. In terms of assessing the spline estimator of Theorem 3.1,
we are led to ask about the type of frequentist properties they possess. De-
tails of minimaxity for spline estimators have been investigated in the univariate
case by Speckman [40], along with an extension to a multivariate framework by
Cox [11, 12].

We first state the following sharp lower bound result which is directly related to
Theorem 1 of [35] and is stated as Theorem 2.1 of [14].

THEOREM 3.4 (Pinsker and Efromovich). Let M be a compact connected ori-
entable manifold without boundary. Then

inf
f̃

sup
f∈Hs(M,M)

E‖f̃ − f ‖2

≥ (MW2s/dim M)dim M/(2s+dim M)℘n−2s/(2s+dimM)(1 + o(1))
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as n→ ∞, where the infimum is taken over all estimators, s > dim M/2,

W = W(M)= vol M

(2
√
π )dim M�(1 + dim M/2)

,

℘ = ℘(s,dim M)

=
(

2s

2s + 2 dim M

)2s/(2s+dim M)(2s + dim M

dim M

)dim M/(2s+dim M)

,

vol(·) denotes volume and �(·) denotes the gamma function.

REMARK 3.5. We emphasize that this lower bound is over all estimators. The
constant W is a geometric invariant associated with asymptotic calculations per-
formed by Hermann Weyl; see (A.2) in the Appendix. The constant ℘ is associated
with asymptotic calculations performed by Pinsker [35].

The existence of the spline solution only requires the design points x1, . . . ,

xn ∈ M to be distinct. More, however, will be required in order to calculate the
integrated mean squared error. In the Euclidean univariate case, Speckman ([40],
page 972) states the necessary condition on the design needed to achieve the min-
imax lower bound. For the multivariate case, the assumptions are listed in [11],
pages 791 and 792. In both of the above univariate and multivariate cases, the do-
main in question is embedded in a Euclidean space of the same dimension. This,
however, is not possible for a general compact manifold; hence, the assumptions
necessary on the design points x1, . . . , xn ∈ M must satisfy local versions of the
assumptions of Cox ([11], page 791).

Let us state the four assumptions for the Euclidean case. Assumption 1 is just
the statement of the nonparametric regression model (3.3). For U ⊂ R

d , a bounded
open set, consider the points t = (t1, . . . , td)′, tk = (tk1, . . . , tkd)

′ ∈ U ⊂ R
d , k =

1, . . . , n. Define the empirical distribution function in the usual way,

Fn(t)=
∑
tkj≤tj

n−1,

where summation occurs over every coordinate, j = 1, . . . , d and k = 1, . . . , n. Let
F(t) denote the cumulative distribution function for t1, . . . , tn and define

bn = sup
t

|Fn(t)− F(t)|.
Assumption 2 states that the smoothing parameter, ξ > 0, must satisfy

ξ ∈ [ξn,�n], ξn ≤�n, lim
n→∞bnξ

−5 dim M/(4s)
n = lim

n→∞�n = 0.

Furthermore, assumption 3 says that the density of F(t) must be bounded away
from 0 and infinity, while assumption 4 requires the open set U ⊂ R

d to be
bounded simply connected with a smooth boundary.
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The local version of assumptions 2, 3 and 4 can go as follows. By the definition
of a manifold, for every point p ∈ M, there exist an open set Oα ⊂ M, a local
diffeomorphism ψα :Oα → ψα(Oα) ⊂ R

dim M and p ∈ Oα . The pair (Oα,ψα) is
called a chart, and the collection of all charts is called an atlas if it covers M. The
atlas is defined in greater detail in the Appendix. The local version of assumptions
2 and 3 of [11], page 791, is, therefore, that these assumptions take place on every
chart. Integration on M requires a partition of unity P = {δα :α ∈ A}, subordinate
to the atlas where δα : M → [0,1] with the support, supp δα ⊂ Oα , α ∈ A; see the
Appendix. The local version of Cox’s assumption 4 is that the boundary of supp δα
is smooth. To give these three assumptions a name, we will say that x1, . . . , xn ∈ M

locally satisfies the Cox assumptions. We have the following result.

THEOREM 3.6. Suppose x1, . . . , xn ∈ M locally satisfies the Cox assump-
tions. If ξ 
 n−2s/(2s+dim M), then

E‖f nξ − f ‖2 � n−2s/(2s+dim M)

as n→ ∞, where f ∈ Hs(M,M) for some M > 0 and s > (dim M)(5 dim M −
2)/4.

Thus, in terms of the rate of convergence, the spline estimator of Theorem 3.1,
with stronger order of smoothness, achieves the lower bound. We suspect that the
required order of smoothness can substantially be reduced and this will be pursued
elsewhere.

3.3. Splines as Bayes estimators with diffuse priors. Although smoothing
splines are a general computational method for function fitting, there is, however,
a Bayesian interpretation. This Bayesian approach to smoothing splines on the unit
interval is discussed in [46], Chapter 1. In the following we adapt that approach
for M partly to generalize Theorem 1.5.3 of [46], but mainly because subsequent
hierarchical modeling builds from this earlier work.

To generalize Theorem 1.5.3 of [46], we need to consider the concept of a ran-
dom field X on M. In general, the random field can be expanded in terms of the
eigenfunctions so that

X(p)=∑
k

〈Zk,φk(p)〉k, p ∈ M,

where Zk is a sequence of independent, mean zero, dimEk-dimensional random
vectors, with each coordinate having variance σ 2

k , k ∈ N0. If, in addition, each
Zk , k ∈ N0, is normally distributed, we say that the process X is Gaussian with
covariance kernel

EX(p)X(q)= ∑
k≥0

σ 2
k 〈φk(q),φk(p)〉k,

for p,q ∈ M and σk ≥ 0, k ∈ N0. We have the following result.
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THEOREM 3.7. Let X(x) be a mean zero real-valued Gaussian random field
defined on M with covariance kernel

Qλ(x1, x2)=
∞∑

k=K+1

λ−s
k 〈φk(x1), φk(x2)〉k,

for x1, x2 ∈ M, for some K > 0 and s > dim M/2. Consider

f (x)=
K∑
k=0

〈γk,φk(x)〉k + τX(x) for x ∈ M and τ > 0,

and suppose we observe f at the points x1, . . . , xn ∈ M. Let our observations be

yi = f (xi)+ εi for i = 1, . . . , n,

where ε = (ε1, . . . , εn)
′ ∼ N(0, σ 2I ), σ 2 known. Suppose γk|τ 2 ∼ N(0,

τ 2νIdimEk ), τ
2 and ν known, for k = 0,1, . . . ,K . Consider the Bayes solution

f̃ν(x)= E
(
f (x)|y1, . . . , yn

)
and suppose f nξ (x) is the solution to the smoothing problem with ξ = σ 2/(nτ 2).
Then for each fixed x ∈ M,

lim
ν→∞ f̃ν(x)= f

n
ξ (x).

4. Symmetry and Bayesian modeling. A Riemannian manifold can exhibit
symmetries which we want to directly capture in the modeling process. Indeed,
as in [23], let G

0 be a subgroup of the isometry group of M; see Section 2. We
say that f ∈ L2(M) is invariant under the action of G

0 if f (gx) = f (x) for all
g ∈ G

0 and x ∈ M. In terms of the eigenstructure, for any k ∈ N0 the eigenspace
Ek decomposes into two orthogonal subspaces. Denote by E0

k the eigenfunctions in
Ek that are invariant with respect to G

0, which will be referred to below as having
G

0-invariance and E1
k , its orthogonal complement in Ek , which will be referred to

below as non-G0-invariance. This allows us to write

Ek = E0
k ⊕ E1

k ,(4.1)

and inner products to be written as

〈·, ·〉k = 〈·, ·〉0
k + 〈·, ·〉1

k

for k ∈ N0.
Let f ∈ L2(M). Thus, to exhibit this G

0-invariance let us rewrite (3.1) as

f (x)=
∞∑
k=0

{〈γ 0
k , φk(x)〉0

k + 〈γ 1
k , φk(x)〉1

k},(4.2)

for x ∈ M and where

γ
j
k =

∫
M

f (x)φk(x) dx, φk ∈ E
j
k ,

for j = 0,1, k ∈ N0.
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REMARK 4.1. We would like to remark that the splitting up of the sums in
terms of the G

0-invariant part allows us to later incorporate explicit prior assump-
tions of G

0-invariance. We note that if one assumes that G
0 is the trivial subgroup,

then E0
k = Ek , hence E1

k = {0} for all k ∈ N0.

EXAMPLE 4.2. In terms of S2, we can consider the subgroup to be SO(2) of
the full transitive group SO(3). Thus, for a function f :S2 → R, SO(2)-invariance
would mean that f is a zonal function and thus only depends on ϑ ∈ [0, π). In
terms of (4.1), by looking at the definition of (2.4), one can see that, for L2(S2),
SO(2)-invariance would mean

E0
k = {Yk0} and E1

k = {Ykq : 1 ≤ |q| ≤ k}(4.3)

for each k ∈ N0.

There are two approaches for dealing with the parameters γk for k ≥K+1. One
can engage in eliciting very informative prior information in order to estimate the
ηi’s; see [1, 2]. Alternatively, one can adopt an approach wherein ηi are combined
with the measurement errors εi for i = 1, . . . , n; see [3]. The latter approach is
truly Bayesian, but at the inference stage we can treat these ηi as nuisance quan-
tities and eliminate them by integrating out (rather than estimating or diffusing)
the corresponding parameters. In this section we will deal with the latter approach.
The former approach will be discussed in Section 5 since this method of analysis
allows one to make direct comparisons with splines.

4.1. Eliciting prior information. Our prior belief in the G
0-invariance of (3.1)

under the subgroup G
0, which is explicitly invoked in (4.2), can be captured using

a mixture normal model, that is,

γ
j
k |τ 2 ∼ pN(0, τ 2�

j0
k )+ (1 − p)N(0, τ 2�

j1
k ),(4.4)

for some τ 2 > 0, where �jrk = diag(βjrk� ), � = 1, . . . ,dimEk , k ∈ N0, j = 0,1,
r = 0,1, and p models our prior belief that the G

0-invariance assumption is true.
The G

0-invariance assumption is also taken into account by having smaller vari-
ances. Indeed, the components of the variance of γ 1

k will be smaller than that
of the components of the variance of γ 0

k . In addition, we would like to have fi-
nite variance for the ηi’s. All of these properties can be obtained by assuming
β11
k� ≤ β01

k� and β10
k� ≡ 0 for �= 1, . . . ,dimEk , k = 1, . . . ,K . Furthermore, assume

β
j0
k� , β

j1
k� ≤ λ−s

k for k =K + 1, . . . , j = 0,1, where the λk’s are the eigenvalues of
the Laplace–Beltrami operator � on M defined in Section 2.

Once a joint prior distribution is specified for σ 2 and (the hyperparameter) τ 2,
the prior model is complete. Note further that, since later we assign a second stage
prior on the variance factor τ 2, their marginal prior distribution will no longer be
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normal, but a heavier tailed distribution ensuring a certain degree of prior robust-
ness to our estimator (cf. [6], Chapter 4).

Consider the κ × 1 vector γ = (γ jk ) for k = 0,1, . . . ,K and j = 0,1. The prior
specified above indicates that

γ |τ 2 ∼ pN(0, τ 2�0)+ (1 − p)N(0, τ 2�1),

where the κ × κ covariance matrices

�r =⊕
j,k

�
jr
k ,

where r = 0,1, with the direct sums being taken over k = 0,1, . . . ,K and j = 0,1.
For the remainder term, write

ηj (x)=
∞∑

k=K+1

〈γ jk , φk(x)〉jk ,

for x ∈ M, j = 0,1. Now

(η
j
1, . . . , η

j
n)

′|τ 2 ∼ pN(0, τ 2Q�j0
n )+ (1 − p)N(0, τ 2Q�j1

n ),

where Q�jrn = (Q�jr(xi1, xi2)), and

Q�jr
(
xi1, xi2

)= ∞∑
k=K+1

〈
φk
(
xi1
)
,�

jr
k φk

(
xi2
)〉r
k,(4.5)

where �jrk = diag(βjrk� ), � = 1, . . . ,dimE
j
k , k = K + 1, . . . , j = 0,1, r = 0,1,

xi1, xi2 ∈ M and i1, i2 = 1, . . . , n . We have the following result.

LEMMA 4.3. Suppose 0 ≤ β
jr
k� ≤ λ−s

k , for r = 0,1, j = 0,1, � = 1, . . . ,

dimE
j
k , k = K + 1, . . . , and s > dim(M)/2, where the λk’s are the eigenvalues

of the Laplace–Beltrami operator � on M. Then∣∣Cov
(
η
j
i1
, η
j
i2

)∣∣≤ τ 2C(M, s),

for i1, i2 = 1, . . . , n, j = 0,1, where C(M, s) <∞ is a constant depending only
on M and s > dim(M)/2.

4.2. The posterior. Consider the n× κ design matrix


= (φrk(xi)),
where k = 0,1, . . . ,K , r = 0,1 and i = 1, . . . , n. Then we obtain the following
structure. Given γ , σ 2 and τ 2, we have the following linear model for the obser-
vations y = (y1, . . . , yn)

′:

y =
γ + u,(4.6)
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where u ∼ N(0,�) with � = σ 2In + τ 2Q�n (p), where Q�n (p) = p(Q�00
n ⊕

Q�10
n )+ (1 − p)(Q�01

n ⊕Q�11
n ). This follows from the fact that

y|γ, η, σ 2, τ 2 ∼N(
γ,σ 2In) and η|τ 2 ∼N(0, τ 2Q�n (p)
)
.

From (4.6) and using standard hierarchical Bayes techniques (cf. [30]) and ma-
trix identities (cf. [39], page 151), it follows that

y|σ 2, τ 2 ∼ pN(0, σ 2In + τ 2(
�0
′ +Q�n (p)
))

(4.7) + (1 − p)N(0, σ 2In + τ 2(
�1
′ +Q�n (p)
))
,

γ |y,σ 2, τ 2 ∼ p∗N(A0y,B0)+ (1 − p∗)N(A1y,B1),(4.8)

where

p∗ = pm0(y)

pm0(y)+ (1 − p)m1(y)
,

Ar = τ 2�r
′(σ 2In + τ 2(
�r
′ +Q�n (p)
))−1

,(4.9)

Br = τ 2�r − τ 4�r
′(σ 2In + τ 2(
�r
′ +Q�n (p)
))−1


�r,

where r = 0,1 and m0(y), m1(y) denote, respectively, the normal density with
mean vector 0 and covariance matrices σ 2In + τ 2(
�0
′ +Q�n (p)) and σ 2In +
τ 2(
�1
′ +Q�n (p)).

At this point (4.8) allows us to produce an estimator of (3.4) once the hyper-
parameters in A0 and A1 are set. Two possible ways of handling this are the fol-
lowing: first, to use diffuse prior parameters; or, second, treat the current priors
as first stage priors and add additional hyperprior assumptions. The first approach
produces generalized Bayes estimators. In the following section we will use the
hyperprior approach.

4.3. Hierarchical Bayesian modeling. In order to proceed to the second stage
calculations, some algebraic simplifications are needed (cf. [1]). Spectral decom-
position yields 
�r
′ +Q�n (p) = HrDrHr ′, where Dr = diag(dr1, d

r
2, . . . , d

r
n)

is the matrix of eigenvalues and Hr the orthogonal matrix of eigenvectors for
r = 0,1. Thus,

σ 2In + τ 2(
�r
′ +Q�n (p)
)=Hr(σ 2In + τ 2Dr)Hr

′

= τ 2Hr(vIn +Dr)Hr ′,
where r = 0,1 and v = σ 2/τ 2. Using this spectral decomposition, the marginal
density of y given τ 2 and v can be written as

m(y|τ 2, v)= pm0(y|τ 2, v)+ (1 − p)m1(y|τ 2, v),
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where

mr(y|τ 2v)= (2πτ 2)−n/2 det(vIn +Dr)−1/2

× exp
{
− 1

2τ 2 y
′Hr(vIn +Dr)−1Hr

′
y

}

= (2πτ 2)−n/2
{
n∏
i=1

(v + dri )−1/2

}
exp

{
− 1

2τ 2

n∑
i=1

(wri )
2

v + dri

}
,

(4.10)

where wr = (wr1, . . . ,wrn)′ =Hr ′y for r = 0,1.

EXAMPLE 4.4. In the case of S2, using the spherical harmonics (2.4) and
invoking SO(2)-invariance on L2(S2), we can decompose the eigenspace as
in (4.3). Thus, dimE0

k = 1 and dimE1
k = 2k for k = K + 1, . . . . Furthermore,

κ =∑K
k=0(dimE0

k + dimE1
k )=

∑K
k=0(2k+ 1)= (K + 1)2. This type of symmetry

is often observed in directional data.
Fix

ν
j1
k� = [(k + 1/2)(k + 1)(k + 2)(k + 3)]−1

for all j = 0,1, |�| ≤ k, k =K + 1, . . . and

ν
j0
k� =

{
ν
j1
k� , if j = 0,

0, otherwise.
Then

Q�01(ω1,ω2)

= (2π)−1

[(1
2q2(ω

′
1ω2)− 1

6

)
(4.11)

−
K∑
k=1

(
(k + 1/2)(k + 1)(k + 2)(k + 3)

)−1
Pk(ω

′
1ω2)

]
,

where ω1,ω2 ∈ S2,

q2(w)= 1

2

{
ln

(
1 +

√
2

1 −w
)[

12
(

1 −w
2

)2

− 4
(

1 −w
2

)]
(4.12)

− 12
(

1 −w
2

)3/2

+ 6
(

1 −w
2

)
+ 1

}
for |w| ≤ 1 and Pk is the kth Legendre polynomial, k ∈ N0. Similarly,

Q�00(ω, ν)=
∞∑

k=K+1

Pk(ω
′
1ω2)

(k + 1/2)(k + 1)(k + 2)(k + 3)
.
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4.4. Second stage prior and estimation. To derive the function estimator, all
that is now needed is to eliminate the hyper and nuisance parameters from the first
stage posterior distribution, by integrating out these variables with respect to their
second stage prior. Since it is well known (cf. [6], Chapter 4) that the final Bayes
estimator does not depend crucially on the second and higher stage hyperpriors,
these priors can be chosen to simplify computations. Accordingly, the priors on τ 2

and v can be chosen as π2,1(τ
2)∝ (τ 2)−c; see [3]. With this choice of prior on τ 2,

the marginal prior on γ has the form

π(γ )∝ p
(
K∑
k=0

1∑
j=0

dimE
j
k∑

�=1

(γ
j
k�)

2

β
j0
k�

)−0.5(κ+2c−2)

+ (1 − p)
(
K∑
k=0

1∑
j=0

dimE
j
k∑

�=1

(γ
j
k�)

2

β
j1
k�

)−0.5(κ+2c−2)

.

This prior density corresponds to the limiting case of a multivariate Student-t den-
sity (which has heavier tails than the likelihood function). The prior on v is chosen
to be an F -distribution with a and b degrees of freedom satisfying the following
conditions:

• the prior variance of v (= 2b2(a+b−2)
a(b−4)(b−2)2

) is infinite;

• the Fisher information number (= a2(b+2)(b+6)
2(a−4)(a+b+2) ) is minimum;

• the prior mode (= b(a−2)
a(b+2) ) is greater than 0.

This can be done by choosing 2 < b ≤ 4 and a = 8(b + 2)/(b − 2). Let π22(v)

denote the resulting prior density.
Once the second stage priors are specified, using (4.10) and taking the expecta-

tion with respect to τ 2, the Bayesian estimator of γ under G
0-invariance (r = 0)

or non-G0-invariance (r = 1) is given by

γ̃ r = �r
′HrEr [(vIn +Dr)−1|y]Hr ′y,(4.13)

and the expectation is taken with respect to

πr22(v|y)∝
va/2−1

(b+ av)(a+b)/2
(
n∏
i=1

(v + dri )
)−1/2( n∑

i=1

(wri )
2

v + dri

)−(n+2c−2)/2

,(4.14)

for r = 0,1. Note that in order for πr22(v|y), r = 0,1, to be proper densities,
c should be chosen such that c < b/2. Hence, under the mixture prior (4.4) and
squared error loss, the Bayes estimator for γ is given by

γ̃ = p∗γ̃ 0 + (1 − p∗)γ̃ 1.(4.15)
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Again, using (4.10), the posterior expected squared error loss of γ can be written
as

Var(γ |y)= p∗ Var0(γ |y)+(1−p∗)Var1(γ |y)+2p∗(1−p∗)(γ̃ 0 − γ̃ 1)(γ̃ 0 − γ̃ 1)′,

where

Varr (γ |y)= 1

n+ 2c− 4
E
r

[
n∑
i=1

(wri )
2

v + di
∣∣∣ y]

− 1

n+ 2c− 4
�r
′HrEr

[(
n∑
i=1

(wri )
2

v + dri

)
(vIn +Dr)−1

∣∣∣y]Hr′
�r
+ E

r [γ̃ r (v)γ̃ r (v)′|y],
r = 0,1. Since these expectations involve only one-dimensional integrals, they can
be computed easily using one of the several standard techniques, such as Gauss
quadrature, Monte Carlo or Laplace approximation.

Finally, the function estimatorf̃ of f is

f̃ (x)= p∗f̃ 0(x)+ (1 − p∗)f̃ 1(x),

where

f̃ 0(x)=
K∑
k=0

〈γ̃ 0, φk(x)〉0
k(4.16)

and

f̃ 1(x)=
K∑
k=0

〈γ̃ 1, φk(x)〉1
k,(4.17)

for x ∈ M. Note that equation (4.16) corresponds to the Bayes estimator of f if
one believes that the G

0-invariance assumption is true, that is, if p = 1, and (4.17)
is the Bayes estimator of f under the non-G0-invariance assumption.

4.5. Bayes factor and choice of K . We now describe how the optimal level
of truncation K is to be determined. As indicated above in (3.4), the choice of
K provides a model for the observations through the choice of the correspond-
ing regression function. Denote the maximum truncation level by Kmax, so that∑Kmax
k=0 [dimE0

k + dimE1
k ]< n (cf. Section 3).

Let MK denote the model arising from (3.4), (3.5) corresponding to the trunca-
tion level K . Our task is to pick the best model for the given data from the set of
models

MK, K = 1,2, . . . ,Kmax.
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The well-accepted method (cf. [37], Section 7.2.2) for deciding between two
possible models is to compute their associated Bayes factor. As a basis of compar-
ison, the larger model MKmax will be used. Hence, we have to compute

BK = m(y|MK)

m(y|MKmax)
,(4.18)

where m(y|MK) denotes the marginal density of y under the model MK , K =
1, . . . ,Kmax. (Note that BKmax = 1.) From (4.7) it follows that, under MK ,

y|σ 2, τ 2 ∼ pN(0, σ 2In + τ 2(
K�0
K


′
K +Q�n,K(p)

))
+ (1 − p)N(0, σ 2In + τ 2(
K�1

K

′
K +Q�n,K(p)

))
,

where we have shown the dependence of 
, �0, �1 and Q�n on K explicitly with
subscripts. It follows then that

m(y|MK)=
∫
m(y|MK,σ

2, τ 2) dπ(σ 2, τ 2),

where π(σ 2, τ 2) is the joint prior distribution on σ 2 and τ 2.
As in the previous section, consider the spectral decomposition of 
K�rK


′
K +

Q�n,K(p), for r = 0,1. Let DrK and HrK be such that 
K�rK

′
K + Q�n,K(p) =

HrKD
r
KH

r
K

′ for r = 0,1. Also, let drK,i be the ith diagonal element of DrK and
let wrK =HrKy = (wrK,1, . . . ,wrK,n)′ for r = 0,1. Then, using (4.14), the marginal
density of y under MK can be expressed as

m(y|Mk)= p
∫
m0(y|Mk, σ

2, τ 2) dπ(σ 2, τ 2)

+ (1 − p)
∫
m1(y|Mk, σ

2, τ 2) dπ(σ 2, τ 2),

where

mr(y|Mk)=
∫ ∞

0

va/2−1

(b+ av)(a+b)/2

×
(
n∏
i=1

(v + drK,i)
)−1/2( n∑

i=1

(wrK,i)
2

v + drK,i

)−(n+2c−2)/2

dv,

for r = 0,1. Consequently, to choose the best model MK , one needs to compute
m(y|MK) for K = 1, . . . ,Kmax. Then the best value of K (equivalently, the best
model MK ) is the one for which BK is maximum.

An alternative to the Bayes factor is to use Schwarz’s criterion (cf. [38] and [37],
Section 7.2.3) which can be viewed as an approximation to the logarithm of the
Bayes factor. Since M1 ⊂ M2 ⊂ · · · ⊂ MKmax , Schwarz’s criterion can be written
as

Sij = −logLn + πj − πi
2

log(n),(4.19)
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where Ln denotes the ratio of the likelihood functions under Mi and Mj eval-
uated at the maximum likelihood estimator of γ under both models and πi (πj )
corresponds to the number of parameters in model Mi (Mj ). The model Mi is
preferred to the model Mj if Sij > 0.

5. Frequentist properties of the hierarchical Bayes estimator. We may
wish to model the nuisance parameter directly as in [1, 2]. One of the advantages
of this approach is that it allows one to make a direct comparison with the smooth-
ing spline approach of Section 3.1. Although we can approach this by imposing
G

0-invariance priors as done previously, in order to ease the notation we will not
impose G

0-invariance conditions, or, equivalently, as stated in Remark 4.1, we will
assume invariance with respect to the trivial subgroup.

5.1. Modeling the nuisance parameter directly. We begin by rewriting (3.6)
as

y =ϒψ + ε,
where ϒ = [
,I ], ψ = (γ ′, η′)′. Following Angers and Delampady [1], we as-
sume a multivariate normal prior

ψ ∼N(ψ0, τ
2�), �=

[
� 0
0 Q�n

]
,

where Q�n = (Q�(xi, xj )) for i, j = 1, . . . , n as defined in (4.5) with the r sup-
pressed to save notation.

By imposing a second stage prior as in Section 4.3 (see also [1]) on ψ0, a hier-
archical Bayes estimator of ψ can be written as

ψhb =�ϒ ′HE[(vIn +D)−1]H ′y,(5.1)

where H and D are such that ϒ�ϒ ′ = HDH ′, H is an orthogonal matrix and
D is a diagonal matrix.

Hence, using Corollary 2 of [1], a hierarchical Bayes estimator of f is

fhb(x)= (
φ(x)′, q(x)′

)
ψhb,(5.2)

where φ(x) and q(x) are defined in Section 3.1, x ∈ M.

5.2. Hierarchical Bayes estimator as a shrinkage estimator. Let ψls be the
least squares estimator, that is, the solution of the normal equation ϒ ′ϒψ =ϒ ′y.
We have the following, which shows that the hierarchical Bayes estimator (5.1) is
a shrinkage estimator of the least squares solution.

LEMMA 5.1.

ψhb = (
I − E[v(v�−1 +ϒ ′ϒ)−1])ψls.
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Substituting Lemma 5.1 into (5.2), we have

fhb(x)= (
φ(x)′, q(x)′

)(
I − E[v(v�−1 +ϒ ′ϒ)−1])ψls,

for x ∈ M.

5.3. Splines as limits of hierarchical Bayes estimators. In this section let us
compare the hierarchical Bayes estimator (5.2) with the spline estimator of Theo-
rem 3.1. Let us begin by writing

ψhb(v)= (d ′
hb, c

′
hb),

where dhb = �1/2
′
�(Q

�
n,v + 
�


′
�)

−1y, chb = (Q�n,v + 
�

′
�)

−1y, 
� =

�1/2 and Q�n,v = vI +Q�n . Thus, we can rewrite (5.2) as

fhb(x)= φ(x)′dhb + q(x)′chb

for x ∈ M.
The comparison with the spline estimator of Theorem 3.1 comes from setting

v = nξ and diffusing the parameter �. We use the notation ‖ · ‖op to denote the
usual operator norm. We have the following result.

THEOREM 5.2. Suppose x1, . . . , xn ∈ M locally satisfies the Cox assump-
tions. If v = nξ , ξ 
 n−2s/(2s+dim M) and ‖�‖−1

op → 0, then

E‖fhb − f ‖2 � n−2s/(2s+dim M)

as n→ ∞, where f ∈Hs(M,M), M > 0 and s > (dim M)(5 dim M − 2)/4.

6. Application to long period cometary orbits. Let us illustrate the proce-
dure in the case of the 2-sphere, S2. The data considered in this application consist
of directed unit normals of the 658 single-apparition long period cometary orbits
found in the catalogue of [33]. The object of interest is the distribution of the di-
rected normals on S2.

This is a well-known directional data set and has been previously ana-
lyzed in various ways by Jupp and Spurr [23], Watson [47], Fisher, Lewis and
Embleton [15], Wiegert and Tremaine [49] and Mardia and Jupp [32]. Recently,
a thorough data analysis is performed in [22], where the reader can obtain more
background about this data set. The main conclusions reached in [22] are the
following: the data is SO(2)-invariant around the North Pole, (0,0,1)′, or, longi-
tudinally invariant; and, that the data is observed with considerable selection bias
whose direct impact is the rejection of spherical uniformity. Indeed, astronomers
believe that the intrinsic distribution of the unit directed normals of the long
period cometary orbit is spherically uniform and until the Jupp, Kim, Koo and
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Wiegert [22] paper, it was never really understood why standard directional statis-
tical tests rejected spherical uniformity. It was found that the data has considerable
selection bias and when that selection bias is accounted for, Jupp, Kim, Koo and
Wiegert [22] show that one can no longer statistically reject null spherical uni-
formity. In addition to the above findings, with the techniques developed in this
paper, we are now able to estimate a longitudinally invariant adaptive estimator of
the density of the unit normal vectors to the cometary orbits, that is, the probability
density of the observed data with selection bias.

We will do so by using histosplines on S2, since these allow one to calculate
densities as a regression problem; see [13]. This is done in the following way. Let

Sj1j2 =
[
π(j1 − 1)

m
,
πj1

m

)
×
[

2π(j2 − 1)

m
,

2πj2

m

)
for j1, j2 = 1, . . . ,m. This partitions S2 (with the exception of the South Pole)
using (2.3). Thus, we seek the solution to u ∈Hs(S2) that minimizes

m∑
j1=1

m∑
j2=1

(
yj1j2 −Lj1,j2u

)2 + ξ
∫
S2

|�s/2u(ω)|2 dω,(6.1)

where yj1j2 is the relative frequency of the data in Sj1j2 and

Lj1,j2u= 1

volSj1j2

∫
Sj1j2

u(ω)dω,

for j1, j2 = 1, . . . ,m. Other than some very minor modifications, the theory would
go through exactly as presented in the paper. This is line with what may be called
the general spline smoothing problem; see [46], page 10.

The solution to the above general minimization problem (6.1) is

uξ (x)= φ(x)′d̆ + q̆(x)′c̆,
where


̆= (
Lj1,j2Ykq

)
,

φ(x)= (Ykq(x)),
Q̆ι
m2ξ

= [
Li1i2Lj1j2Q

ι]+m2ξIm2,

d̆ = (
̆′[Q̆ι
m2,ξ

]−1
̆)−1
̆′[Q̆ι
m2,ξ

]−1y,

c̆ = [Q̆ι
m2,ξ

]−1(Im2 − 
̆(
̆′[Q̆ι
m2,ξ

]−1
̆)−1
̆′[Q̆ι
m2,ξ

]−1)y,
Qι(ω1,ω2)=

∞∑
k=K+1

ιk

k∑
q=−k

Ykq(ω1)Ykq(ω2),
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i1, i2, j1, j2 = 1, . . . ,m, |q| ≤ k, k = 0,1, . . . ,K , x,ω1,ω2 ∈ S2. Furthermore,
ιk = [(k+1/2)(k+1)(k+2)(k+3)]1/2 replaces λk = k(k+1), which are asymp-
totically equivalent as k → ∞. This allows us to compute Qι(ω1,ω2) in closed
form, see (4.11) and (4.12), and is the usual way one approaches splines on S2 (cf.
[45] and [46], Chapter 2 and [31]).

The above represents the spline solution without any adjustment for SO(2)-
invariance. If we want to invoke SO(2)-invariance together with the hierarchical
Bayesian structure, we would need to use the previous SO(2)-invariance formu-
lation of Examples 4.2 and 4.4. Thus, all of our parameters are established and,
therefore, we can employ the SO(2)-invariant adaptive hierarchical Bayes estima-
tor (4.15).

6.1. Numerical results. We compute the Bayes estimator, (4.15), for the comet
data for several values of p ∈ (0,1), K = 1,2, . . . ,10 and m = 25. The Bayes
factor (4.18) and Schwarz’s criterion (4.19) are given in Table 1 along with the
“best” value of p that maximizes the Bayes factor for each value of K . We notice
that the Bayes factor BK is highest at K = 6, while Schwarz’s criterion SK is
highest at K = 4. The two models are very similar and below we compute the
Bayes estimator with K = 6 and p = 0.995. The update value, (4.9), is p∗ = 1 −
1 × 10−10, consequently it can be assumed that p∗ = 1, that is, a posteriori the
Bayes model puts all its weight on the SO(2)-invariance model and therefore has
adapted to the invariance. An explanation of SO(2)-invariance for the comet data
is given in [22].

In Figure 1 we provide perspective and contour plots of the hierarchical Bayes
estimator (with p∗ = 1 and K = 6). The top two panels are the perspective plots,
while the bottom two panels are the contour plots. In both sets of plots the do-
main is taken to be the equal area projection of S2 viewed from the “North Pole”
(left panels) and the “South Pole” (right panels). In particular, for each point

TABLE 1
Choice of K

K p BK SK

1 0.8 0.0000 170.8492
2 0.9 0.0000 232.3569
3 0.8 0.0000 239.0247
4 0.995 49.4024 324.4495
5 0.995 6.0496 278.4142
6 0.995 90.0171 234.6898
7 0.995 7.3810 156.4761
8 0.995 3.3201 143.0733
9 0.995 3.0042 75.3813
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(ϕ,ϑ) ∈ S2, where ϕ ∈ [0,2π) and ϑ ∈ [0, π), Lambert’s equal area projection
is defined by

(x, y)= 2 sin
ϑ

2
(cosϕ, sinϕ).

By varying ϑ ∈ [0, π), the 2-sphere is mapped onto a disk of radius 2 with the ori-
gin being the “North Pole.” The northern hemisphere is thus mapped onto the disk
of radius

√
2, while the southern hemisphere is mapped onto an annulus of inner

radius
√

2 and outer radius 2. In Figure 1 the left panels take the domain where
ϑ ∈ [0, π/2], so that we are viewing the northern hemisphere of the 2-sphere. We

FIG. 1. Perspective and contour plots of the hierarchical Bayes estimator. The left panels, (a), (c),
have the “North Pole” as the origin with just the northern hemisphere as the domain, which is a
disk of radius

√
2, while the right panels, (b), (d), have the “South Pole” as the origin with just the

southern hemisphere as the domain, which is a disk of radius
√

2.
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can also reverse the figures so that the South Pole is at the origin with the roles of
the southern and northern hemispheres reversed by using

(x, y)= 2 sin
(π − ϑ)

2
(cosϕ, sinϕ).

Indeed, the right panels of Figure 1 are such that one is viewing the “South Pole”
at the origin along with just the southern hemisphere. We note that both of these
projections preserve area in the sense that dx dy = sinϑ dϕ dϑ . In [22] a thorough
discussion is given with regard to the equal area projection for the comet data.

As a comparison, in Figure 2 we also plot in a similar way the spline solution

FIG. 2. Perspective and contour plots of the spline estimator. The left panels, (a), (c), have the
“North Pole” as the origin with just the northern hemisphere as the domain, which is a disk of
radius

√
2, while the right panels, (b), (d), have the “South Pole” as the origin with just the southern

hemisphere as the domain, which is a disk of radius
√

2.
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where the value of ξ has been chosen by cross-validation; see Remark 3.2.
From Figure 1 one can see that the hierarchical Bayes estimator (4.15) adapts

to the SO(2)-invariance. In fact, since for K = 6, p∗ ≈ 1, we have that γ̃ ≈ γ̃ 0

given by (4.13). Furthermore, the highest concentration of the data is at the North
and South Poles which is indicative of the cometary orbits having their orbital
planes near the ecliptic plane. The SO(2)-invariance is represented by the circular
contours. This then represents the estimated probability density of the unit nor-
mal vectors of the cometary orbits in the presence of selection bias as explained
in [22]. We note that the spline method (see Figure 2) without any adjustment is
picking up the peaks at the North and South Poles; however, SO(2)-invariance is
not particularly distinguishable since the contours do not appear very circular.

7. Proofs. In this section we provide the proofs to all of the results in this
paper.

7.1. Proof of Theorem 3.1. The proof to Theorem 3.1 essentially follows from
exhibiting linear independence. For this we need the following result.

LEMMA 7.1. On a compact connected Riemannian manifold M let

Q(xi, x)= φ(xi)′φ(x)+Qλ(xi, x),
where x1, . . . , xn ∈ M are distinct and x ∈ M. Then {Q(xi, x) : i = 1, . . . , n} is a
linearly independent set in Hs(M) for s > dim M.

PROOF. We first need to regularize the problem as in Lemma 2.3 in [41]. For
p ∈ M, let (Op,ψp) be a chart; see the Appendix. Now define

fε,p(x)

=
{

exp{−ρ(p, x)/[ε − ρ(p, x)]}, if ρ(p, x)≤ ε, {ρ(p, x)≤ ε} ⊂ Op,
0, otherwise,

where ρ(·, ·) is the Riemannian metric; see the Appendix. Notice that we can
shrink the compact support of fε,p around the compact closure of a small open
neighborhood around p ∈ M just as we would do in the Euclidean case. This will
enable us to regularize data.

Consider x1, . . . , xn distinct points in M and choose ε such that

0< ε < min
i1 �=i2

ρ
(
xi1, xi2

)
/2,

for i1, i2 = 1, . . . , n.
Define

ui(x)= fε,xi (x),
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where ui ∈ C∞(M) and ui ∈ L2(M) for i = 1, . . . , n and x ∈M . We note that
ui(xj )= δij , where δij denotes the Kronecker delta for i, j = 1, . . . , n.

Suppose that

n∑
i=1

αiQ(xi, ·)= 0.(7.1)

For g,h ∈Hs(M) let

〈g,h〉 =
K∑
k=0

〈ĝk, ĥk〉k +
∞∑

k=K+1

λ−s
k 〈ĝk, ĥk〉k

for s > dim(M)/2 and K > 0. We note that

〈Q(xj , ·), ui(·)〉 = ui(xj )(7.2)

for i, j = 1, . . . , n. By applying (7.2) to (7.1), we get

0 =
n∑
j=1

αj 〈Q(xj , ·), ui(·)〉 =
n∑
j=1

αjui(xj )= αi

for i = 1, . . . , n. Thus, the lemma follows. �

PROOF OF THEOREM 3.1. We note that the n×nmatrixQλn = (Qλ(xi1, xi2))
is positive definite and invertible. Thus, the n × n matrix Qλn,ξ is invertible for
all ξ ≥ 0. Now 
 has rank κ ≤ n and by Lemma 7.1, for ξ > 0 we can apply
Theorem 1.3.1 from [46]. The result is the solution to the smoothing problem. �

7.2. Proof of Theorem 3.6. The construction of the proof is to localize the
arguments over an atlas, do the calculations locally within each chart by applying
Theorem 6.2 of Cox [11], and piece together the final argument by using a partition
of unity argument; see the Appendix for the technical terms.

Let O = {(Oα,ψα) :α ∈ A} be an atlas and consider P = {δα :α ∈ A}, a parti-
tion of unity subordinate to the open sets of the atlas. For a fixed δα , let nα equal
the number of xj ∈ supp δα , j = 1, . . . , n, where the overline in this case means
closure. Thus, let zαji =ψα(xji ) for i = 1, . . . , nα .

By the local version of Assumption 3, we can, without loss of generality, assume
that the design x1, . . . , xn ∈ M is a random sample from the uniform distribution
on M. This means that zαji , i = 1, . . . , nα , has distribution |∂ψ−1

α (z)|dz, where

|∂ψ−1
α (z)| is the Jacobian of the transformation ψα(x)= z. Since we are assuming

that assumptions 2, 3 and 4 of [11] are locally satisfied, hence, are satisfied on the
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chart in question, it follows from Theorem 6.2 of [11] that

E

∫
Oα

|δα(f nξ − f )(x)|2 dx

= E

∫
ψα(Oα)

|δα(f nξ − f ) ◦ψ−1
α (z)|2|∂ψ−1

α (z)|dz

� ξ + n−1
α ξ

−dim M/(2s).

Now the assumption that there exist constants 0 < c ≤ |∂ψ−1
α (z)| ≤ C <∞, for

all z ∈ψα(supp δα), allows us to assume

sup
t

∣∣ nα(t)− α(t)∣∣
 n−1/dim M
α ,

where the supremum is taken over ψα(supp δα),  nα is the empirical distribution
function of zαji , i = 1, . . . , nα , and  α(dt)= |∂ψ−1

α (t)|dt . Thus, as stated in [11],
page 810, in order to satisfy assumption 2 we need

s > (dim M)(5 dim M − 2)/4

in order to be able to choose ξ 
 n−2s/(2s+dim M)
α so that, over the chart (Oα,ψα),

we get the asymptotic minimax rate of n−2s/(2s+dim M)
α as nα → ∞, α ∈ A.

The final argument is to use the partition of unity argument to piece together the
integration over all of M. Indeed,

E

∫
M

|f nξ (x)− f (x)|2 dx = ∑
α∈A

E

∫
Oα

|δα(f nξ − f )(x)|2 dx

= ∑
α∈A

E

∫
ψα(Oα)

|δα(f nξ − f ) ◦ψ−1
α (z)|2|∂ψ−1

α (z)|dz

� ∑
α∈A

n−2s/(2s+dim M)
α

�
(∑
α∈A

nα

)−2s/(2s+dim M)

≤ n−2s/(2s+dim M),

where we are using the fact that A can be taken to be finite, because M is compact
and by the fact that

∑
α∈A nα ≥ n.

7.3. Proof of Theorem 3.7. The proof is argued along the lines used in [46],
Chapter 1. From the Gaussian assumption, we note that

Ef̃ν(x)y = ντ 2φ(x)+ τ 2q(x),
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where

q(x)= (
Qλ(x1, x), . . . ,Q

λ(xn, x)
)′
,

x ∈ M. Furthermore,

Eyy′ = ντ 2

′ + τ 2Qλn + σ 2In.

Setting ξ = σ 2/nτ 2, we have

E
(
f̃ν(x)|y1, . . . , yn

)= φ(x)′ν
′(ν

′ +Qλn,ξ )−1y + q(x)′(ν

′ +Qλn,ξ )−1y

for x ∈ M. Note that

ν
′(ν

′ +Qλn,ξ )−1 → (
′[Qλn,ξ ]−1
)−1
′[Qλn,ξ ]−1

and

(ν

′ +Qλn,ξ )−1 → [Qλn,ξ ]−1(In −
(
′[Qλn,ξ ]−1
)−1
′[Qλn,ξ ]−1)
as ν→ ∞.

7.4. Proof of Lemma 4.3. Now

Cov
(
η
j
i1
, η
j
i2

)= p2τ 2
∞∑

k=K+1

〈
φk
(
xi1
)
,�

j0
k φk

(
xi2
)〉0
k

+ (1 − p)2τ 2
∞∑

k=K+1

〈
φk
(
xi1
)
,�

j1
k φk

(
xi2
)〉1
k

for j = 0,1. Since �jrk = diag(νjrk� ) and νjrk� ≤ λ−s
k , � = 1, . . . ,dimE rk , k = K +

1, . . . , j, r = 0,1, we have that

∣∣Cov
(
η
j
i1
, η
j
i2

)∣∣≤ τ 2

∣∣∣∣∣
∞∑

k=K+1

λ−s
k

〈
φk
(
xi1
)
, φk

(
xi2
)〉
k

∣∣∣∣∣
≤ τ 2

( ∞∑
k=K+1

λ−s
k

∥∥φk(xi1)∥∥2
k

)1/2( ∞∑
k=K+1

λ−s
k

∥∥φk(xi2)∥∥2
k

)1/2

≤ τ 2
√
Z
(
xi1, s

)
Z
(
xi2, s

)
,

where Z(x, s) = ∑
k>0 λ

−s
k ‖φk(x)‖2

k is the zeta function of �. It is known that
Z(x, s) is a continuous function of x for fixed s > dim(M)/2 [34]. Since M is com-
pact, there exists a constant C(M, s) <∞ depending only on M and s such that
supx∈MZ(x, s)≤ C(M, s). Hence, (Qαn)i,j ≤ C(M, s) for all i, j = 1,2, . . . , n.
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7.5. Proof of Lemma 5.1. Using a standard matrix identity (cf. [39], page 151)
and omitting the expectation to ease notation, we can write (5.1) as

ψhb =�ϒ ′H [(vIn +D)−1]H ′y

=�ϒ ′(vHInH ′ +HDH ′)−1y

=�ϒ ′(vIn +ϒ�ϒ ′)−1y

= [v−1�]ϒ(I +ϒ[v−1�]ϒ ′)−1y

= (v�−1 +ϒ ′ϒ)−1ϒ ′y

= (v�−1 +ϒ ′ϒ)−1(ϒ ′ϒ)ψls

= (v�−1 +ϒ ′ϒ)−1([v�−1 +ϒ ′ϒ] − v�−1)ψls

= (
I − v(v�−1 +ϒ ′ϒ)−1)ψls.

7.6. Proof of Theorem 5.2. Again, we will omit the expectation to ease nota-
tion. Now

ψhb(v)=�ϒ ′H(vIn +D)−1H ′y

=�ϒ ′(vHInH ′ +HDH ′)−1y

=�ϒ ′(vIn +ϒ�ϒ ′)−1y

=
(
� 0
0 Q�n

)(

′
I

)
(vIn +Q�n +
�
′)−1y

=
(
�
′
Q�n

)
(vI +Q�n +
�1/2�1/2
′)−1y

=
(
�
′
Q�n

)
(Q�n,v +
�
′

�)
−1y,

whereQ�v = vI +Q�n and 
� =
�1/2. Hence, the first κ components of ψhb(v)

are given by

�
′(Q�n,v +
�
′
�)

−1y = �1/2[
�1/2]′(Q�n,v +
�
′
�)

−1y

= �1/2
′
�(Q

�
n,v +
�
′

�)
−1y,

and the last n ones are

Q�n,v(Q
�
n,v +
�
′

�)
−1y.
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Using Angers and Delampady [1], the hierarchical Bayesian equivalent of d of
Theorem 3.1 is then

dhb = �1/2
′
�(Q

�
n,v +
�
′

�)
−1y

= �1/2[(Q�n,v +
�
′
�)

−1
�]′y
= �1/2[(I +
′

�(Q
�
n,v)

−1
�
)

′
�(Q

�
n,v)

−1]y
= �1/2(I + �1/2
′
�1/2)−1�1/2
′(Q�n,v)−1y

= (
�−1 +
′(Q�n,v)−1


)−1

′(Q�n,v)−1y

→ d

if ‖�‖−1
op → 0 and v = nξ . Similarly, the hierarchical Bayesian equivalent of c of

Theorem 3.1 is given by

chb = [Q�n ]−1Q�n (Q
�
n,v +
�
′

�)
−1y

= (Q�n,v +
�
′
�)

−1y

= (Q�n,v)
−1(I +
�
′

�(Q
�
n,v)

−1)−1
y

= (Q�n,v)
−1[I −
�
′

�

(
I + (Q�n,v)−1
�


′
�

)−1
(Q�n,v)

−1]y
= (Q�n,v)

−1[I −
�
′
�(Q

�
n,v +
�
′

�)
−1Q�n,v(Q

�
n,v)

−1]y
= (Q�n,v)

−1[I −
�1/2
′
�(Q

�
n,v +
�
′

�)
−1]y

= (Q�n,v)
−1[I −
(�−1 +
′(Q�n,v)−1


)−1

′(Q�n,v)−1]y

→ c

if ‖�‖−1
op → 0 and v = nξ .

Consequently, the spline estimator of Theorem 3.1 is a limiting case of the hi-
erarchical Bayes estimator (5.2)

fhb(x)→ f nξ (x),(7.3)

for x ∈ M, when v = nξ as ‖�‖−1
op → 0. Now we know that

E‖fhb − f ‖ ≤E‖fhb − f nξ ‖ +E‖f nξ − f ‖.
By (7.3), we know that E‖fhb − f nξ ‖ → 0 as ‖�‖−1

op → 0 for v = nξ . Thus, the
result follows.

APPENDIX

In this appendix we gather together some further technical discussions that con-
cern M and that are directly or indirectly used in the paper. Consider a smooth
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curve γ : [a, b] → M, with a < b, and let γ ′(t) denote its first derivative for some
t ∈ (a, b). Then the length of γ is defined through the Riemannian structure as

l(γ )=
∫ b

a
gγ (t)

(
γ ′(t), γ ′(t)

)1/2
dt.

Since we are assuming that M is connected, hence, for any two points p,q ∈ M,
we can find a curve in M that joins them in M, we can define a metric on M by

ρ(p, q)= inf{l(γ ) :γ joining p and q},
p, q ∈ M. This metric is called the Riemannian distance or metric which makes
(M, ρ) a metric space ([7], page 39).

For p ∈ M, let (Oα,ψα) be a chart, that is, Oα ⊂ M is an open set with p ∈ Oα
and ψα :Oα → ψα(Oα) ⊂ R

dim M is a diffeomorphism. A collection of charts
{(Oα,ψα) :α ∈ A} is called an atlas if

⋃
αOα = M. Since M is assumed to be

compact, we can take A to be a finite set. Thus, the open sets of an atlas form
a finite open cover of M. Consider a collection P of nonnegative functions δα
whose support is contained in Oα and that has the property that 1 = ∑

α δα . We
call such a collection a partition of unity subordinate to the open cover, and for
some integrable functions f,g : M → R, integration is defined by∫

M

f (x)g(x) dx = ∑
α∈A

∫
ψα(Oα)

f ◦ψ−1
α (z)(δαg) ◦ψ−1

α (z) dz.(A.1)

We note that this definition is well defined, hence, is independent of the choice of
open cover ([7], page 6).

A famous formula due to Hermann Weyl states

lim
k→∞

λk

(
∑k
j=0 dimEj )2/dim M

= W−2/dim M

where

W = vol M

(2
√
π )dim M�(1 + dim M/2)

(A.2)

([7], page 9). We note that the W appearing above is the same quantity which
appears in the minimax constant of Theorem 3.4.
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