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MAJORIZATION FRAMEWORK FOR BALANCED
LATTICE DESIGNS
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University and Bank of America

This paper aims to generalize and unify classical criteria for compar-
isons of balanced lattice designs, including fractional factorial designs, su-
persaturated designs and uniform designs. We present a general majorization
framework for assessing designs, which includes a stringent criterion of ma-
jorization via pairwise coincidences and flexible surrogates via convex func-
tions. Classical orthogonality, aberration and uniformity criteria are unified
by choosing combinatorial and exponential kernels. A construction method
is also sketched out.

1. Introduction. We consider three types of balanced lattice designs in-
cluding the fractional factorial design (FFD) [5], the supersaturated design
(SSD) [1, 16] and the uniform design (UD) [10]. These have been widely used
in agriculture, industry, scientific investigations and computer experiments, since
a good design cannot only reduce experimental cost but also provide more effi-
cient parameter estimation. Among many criteria for optimum factor assignment,
minimum aberration [12, 17, 24, 26] considers the confounding situation between
treatment effects under ANOVA decomposition; E(s2) [1] and Ave(χ2) [27] mea-
sure two-factor orthogonality combinatorially; the discrepancy [14] considers the
estimation of the overall mean from a multivariate quadrature perspective. The
criteria are derived from different principles, which may confuse users seeking to
choose a suitable criterion for a specific experiment. Two natural questions are
whether these individual criteria are connected and further, whether they can be
unified into a single framework.

This paper aims to establish such a framework using majorization techniques.
Majorization theory is appealing not only for its simplicity in concept, but its use-
fulness in many diverse fields; see [19] for a complete account. It was used as a
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tool in the early study of Kiefer’s optimality criteria for optimal designs by con-
sidering eigenvalues of the Fisher information matrix; see [2, 22] and references
therein. However, there has been little application to lattice designs, until the recent
work of Cheng and Mukerjee [3] and Cheng, Steinberg and Sun [4] on estimation
capacity, as well as that of Fang and Zhang [11] on projection aberration. In this
paper we apply majorization theory to pairwise coincidences of experimental runs
in order to study minimum aberration, discrepancy and some supersaturated design
criteria. The lower bounds of these criteria will be provided in a unified way.

The paper is organized as follows. In Section 2 the majorization framework
is proposed for balanced lattice designs, together with a two-stage investigation
scheme through an illustrative example. Section 3 is devoted to unifying classical
criteria surveyed above. In Section 4 an algorithm will be sketched out for con-
structing designs under the new framework. Technical proofs are given in the Ap-
pendix. Throughout this paper we use |u| to denote the cardinality of a set u. The
function

(x
j

) = 0 if x < j and 1
j !x(x − 1) · · · (x − j + 1) otherwise. The Kronecker

delta δ(x, y) = 1 if x = y and is 0 otherwise.

2. Majorization framework. Consider experiments of s factors each having
q levels. A lattice design with n runs is a set of n points chosen from the lattice
space L(qs), the s-fold tensor product of the integer set {0,1, . . . , q − 1}. Each
coordinate of L(qs) corresponds to a factor. It is balanced (or U -type) when the q

levels appear equally often for each factor. The set of balanced designs is written
as U (n, qs). Either the fractional factorial design with resolution-(t + 1) or the
orthogonal array OA(n, s, q, t) lies in U (n, qs), provided that, for any t columns,
all the possible level combinations appear equally often. The uniform designs are
constructed from U (n, qs). The orthogonal designs have strength t ≥ 2 and they
are saturated if n = 1 + s(q − 1); otherwise, the orthogonality is not attainable,
as in supersaturated designs. For design selection, let D(n, qs) denote the space
of competing designs, which is restricted in this paper to be either U (n, qs) or its
subset.

Of our primary interest is the coincidence measurement between lattice points,
which, together with its counterpart Hamming distance, plays an important role
in the studies of designs and codes. For any x,w ∈ L(qs), the coincidence
β(x,w) := ∑s

j=1 δxj ,wj
in terms of the Kronecker delta. It follows that β(x,x) = s

and β(x,w) = β(w,x). For a lattice design X(n, qs), written as an n × s matrix
with entries xij from {0,1, . . . , q − 1}, define its pairwise coincidence (PC) vec-
tor β(X) := (β1, β2, . . . , βm)′ by collecting β(xi ,xk) for 1 ≤ i < k ≤ n consec-
utively, where m ≡ n(n − 1)/2 and β(xi ,xk) ≡ βn(i−1)+k−i(i+1)/2. We call two
lattice designs PC-different if their PC-vectors cannot be exchanged by permuta-
tion. For isomorphic designs that are equivalent after reordering runs, permuting
coordinates or switching levels, they hold the same increasing order statistic of
PC-vector. The PC-different designs are nonisomorphic. The PC-sum

∑m
r=1 βr :=
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i<k

∑s
j=1 δxij ,xkj

remains invariant in both isomorphic and nonisomorphic bal-
anced designs, by observing that 1 + ∑

k �=i δxij ,xkj
= n/q for any i, j .

LEMMA 1. For any X ∈ U (n, qs), its PC-sum is ns
2 ( n

q
− 1).

Let us now briefly review the majorization theory of Marshall and Olkin [19].
For a nonnegative vector x ∈ R

m+, denote its increasing order statistic by x[1] ≤
x[2] ≤ · · · ≤ x[m]. We say x is majorized by y and write x � y if

k∑
r=1

x[r] ≥
k∑

r=1

y[r], k = 1,2, . . . ,m − 1 and
m∑

r=1

xr =
m∑

r=1

yr .(2.1)

If there exists at least one strict inequality
∑k

r=1 x[r] >
∑k

r=1 y[r] for some k, we
write x ≺ y strictly. A real-valued function � : Rm+ → R is called Schur-convex if
�(x) ≤ �(y) for every pair x,y ∈ R

m+ with x � y. Necessarily, �(x) is symmet-
ric in its arguments, that is, invariant under permuting x1, . . . , xm. We are mainly
interested in the following separable convex class of Schur-convex functions:

�(x) =
m∑

r=1

ψ(xr), ψ is convex on R+,

as well as their monotonic mapping g(�(x)) for some g. Hardy, Littlewood and
Pólya (HLP) [13] derived the following equivalent condition; or see page 108
of [19].

LEMMA 2 (HLP). The inequality �(x) ≤ �(y) holds for all separable convex
functions � : Rm → R if and only if x � y.

Consider the PC-mean of any balanced design X(n, qs), which is a constant
β̄ = s(n−q)

q(n−1)
by Lemma 1. For integer-valued β(X) with length m, let

β ≡ (β̄, . . . , β̄︸ ︷︷ ︸
m

)′ and β̃ ≡ (θ, . . . , θ︸ ︷︷ ︸
m(1−f )

, θ + 1, . . . , θ + 1︸ ︷︷ ︸
mf

)′,

where θ and f are the integral part and fractional part of β̄ , respectively. It is clear
that β � β̃ � β(X), where β̃ reduces to β when f = 0. By Lemma 2 we have a
generalized version of Lemma 5.2.1 of Dey and Mukerjee [5].

LEMMA 3. For integers β1, . . . , βm with mean β̄ , any separable convex func-
tion

∑m
r=1 ψ(βr) has a tight lower bound m(1 − f )ψ(θ) + mf ψ(θ + 1), where θ

and f are the integral part and fractional part of β̄ , respectively.

Based on decision theory and majorization theory, we propose a general frame-
work for balanced designs via their PC measurements.
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DEFINTION 1 (Majorization framework). In the space D ⊆ U (n, qs) of com-
peting designs, we define the following:

1. X is inadmissible if there exists X′ s.t. their PC-vectors satisfy β(X′) ≺ β(X);
2. X is majorant if β(X) � β(X′) for all X′ ∈ D ;
3. X is Schur-ψ optimal if �(X;ψ) ≤ �(X′;ψ) for all X′ ∈ D , where

Schur-ψ criterion �(X;ψ) :=
m∑

r=1

ψ(βr(X))

is determined by a specified convex kernel function ψ : R+ → R.

The three parts in Definition 1 can be divided hierarchically into two stages
of investigation, namely, stringent majorization check and flexible Schur-convex
comparison. At the first stage, for competing designs in D(n, qs), compute their
PC-vectors with elements sorted in increasing order. Compare the cumulative sum-
mations in the sense of the majorization ordering (2.1). By Definition 1.1, any in-
admissible design should be prohibited for experimentation; by Definition 1.2, the
majorant design(s) if it exists is the winner and absolutely recommended; other-
wise, we need Definition 1.3 and go to the second stage for comparing admissible
designs. The first stage is stringent since majorization requires strong conditions
between PC-vectors. At the second stage, specify a convex kernel and compute
the Schur-ψ value for each admissible design. Since the above Schur-ψ criterion is
single-valued, all the designs are pairwise comparable and able to be rank-ordered.
For different specific purposes, it is very flexible to predefine kernels, as long as
they are convex functions. In the next section we shall discuss how to choose suit-
able kernels for investigating the orthogonality, aberration and uniformity prop-
erties of designs. Now let us illustrate the ideas with an example and some toy
convex kernels.

EXAMPLE 1. For the purpose of illustration, consider the following scenario:
an experiment of 27 runs with 8 factors each having 3 levels. The experimenter
chooses a uniform design tabulated in Table 1, which was obtained by Fang, Ma
and Winker [8]. The experimenter has some prior knowledge: among the 8 factors,
4 factors may have potential impact on the output, while the other 4 have little
impact; he is interested in including all of them in the study. To incorporate such
prior information into the design of the experiment, he wants to choose a sub-
design consisting of 27 runs with 4 factors for the 4 potential factors. This leads
us to study the following problem: how to choose the 4-factor sub-design from
Table 1?

There are in total
(8
4

) = 70 choices of sub-designs from this table, which are all
balanced and form the design space D(27,34) of this study. For demonstration,
4 sub-designs from the design space D are chosen through X1 = {A,C,G,H },
X2 = {B,C,G,H }, X3 = {A,B,D,F } and X4 = {A,D,E,F } labels of factors.
Let us make a two-stage investigation of D under the majorization framework:
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TABLE 1
Example of 27-run three-level design, transposed X(27,38). Each row represents a factor, for which

each level appears nine times. The 70 4-factor sub-designs are of interest

U(27,38) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

A 1 2 0 2 0 0 0 1 2 1 0 2 2 1 0 2 0 2 0 1 1 1 2 1 1 0 2
B 1 2 0 0 0 2 2 2 1 0 2 1 2 0 1 0 1 1 1 1 2 2 2 1 0 0 0
C 2 2 1 1 1 1 0 1 0 0 2 1 0 0 0 2 2 1 0 1 2 1 0 2 0 2 2
D 1 1 2 0 1 2 1 0 2 1 0 2 2 2 0 1 0 1 1 0 2 1 0 2 0 2 0
E 1 2 1 1 2 2 0 0 2 0 2 0 1 2 2 2 0 0 1 2 1 1 1 0 0 0 1
F 0 0 0 1 0 2 1 0 1 2 1 1 0 1 0 2 2 2 2 2 2 1 2 0 0 1 1
G 1 2 2 2 0 1 2 0 0 0 0 0 1 2 1 1 2 1 0 2 0 1 2 2 1 1 0
H 2 0 2 0 1 1 2 0 1 2 2 2 2 0 0 2 1 0 0 2 0 1 1 1 1 0 1

• Stage 1: stringent majorization check.
For each sub-design, its PC-vector has length 351 and sum 972. By majoriza-
tion ordering, not all 70 sub-designs can be compared. There exists no majorant
design in the given D . For X1 to X4, we have

β(X1) ≺ β(X3) ≺ β(X4), β(X2) ≺ β(X3) ≺ β(X4),

where both X3 and X4 are inadmissible (even though X3 overwhelms X4), but
the admissible X1 and X2 are not distinguishable at this stage.

• Stage 2: Schur-convex comparison.
Let us choose three toy kernels for comparisons, namely, a variance kernel
ψ1(x) = m−1(x − x̄)2, a π th-power kernel ψ2(x) = xπ and an exponential ker-

nel based on the golden ratio ψ3(x) = (1+√
5

2 )x . Numerical results of 4 sub-
designs are shown in Table 2. Their Schur-ψ values are rank-ordered as

�(X1;ψj) ≤ �(X2;ψj) < �(X3;ψj) < �(X4;ψj) for j = 1,2,3,

where the equality holds only for ψ1. It is shown that inadmissible X3,X4 al-
ways have large Schur-ψ values no matter what convex kernel is used.

TABLE 2
Numerical results of Schur-convex comparison for X1 to X4 from D(27,34). The lower bounds in

the last column are derived from Theorem 1 (where
∑

denotes
∑m

r=1)

Convex kernel �(X;ψ) X1 X2 X3 X4 Lower bound

Variance 1
m

∑
(βr − β̄)2 0.6391 0.6391 0.6732 0.6789 0.1775

Power
∑

βπ
r 1658.7 1724.5 1765.5 1790.4 984.8

Exponential
∑

( 1+√
5

2 )βr 683.4 685.6 687.9 688.5 648.9
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Under the classical criteria, both X1 and X2 are orthogonal designs of resolu-
tion 3; their (generalized) word-length patterns are given by

GWP(X1) = (0,0,10/9,8/9), GWP(X2) = (0,0,46/27,20/27)

and the wrap-around L2-discrepancy values are given by WL2(X1) = 0.4242 and
WL2(X2) = 0.4245. We find that in the complete pool D(27,34) of 70 competing
designs, X1 is not only an FFD with minimum aberration but also a UD with
minimum WL2-discrepancy.

The above example demonstrates both stringency and flexibility of the majoriza-
tion framework for assessing designs. The kernel selection problem at stage 2 is
discussed in some detail by Zhang [28], who also explains why X1 and X2 are not
distinguishable under the variance kernel. Formally, we have the following main
theorem to characterize the necessary and sufficient conditions between majorant
designs and Schur-ψ optimum designs, according to Lemma 2. We also employ
Lemma 3 to derive the lower bounds for specific Schur-ψ criteria.

THEOREM 1. A balanced lattice design is majorant if and only if it is Schur-ψ
optimum w.r.t. every convex kernel. For any well-defined Schur-ψ criterion, it has
a lower bound m(1 − f )ψ(θ) + mf ψ(θ + 1).

The lower bound is presented for general PC-mean β̄ , either integer-valued
or not. Obviously, if s(n−q)

q(n−1)
is a positive integer, f = 0 and the lower bound re-

duces to mψ(β̄). This bound is attainable if there exists an equidistant design X
in U (n, qs) such that all the Hamming distances between distinct runs are iden-
tical, that is, PC(X) = β . Equidistant designs are a typical type of majorant de-
sign, and examples are two-level SSDs constructed by the half-fraction Hadamard
method [16], multi-level SSDs constructed from resolvable balanced incomplete
block designs [6] and saturated OA(n, s, q,2) designs whose β(xi ,xk) ≡ s − n/q

for any i �= k [20]. If s(n−q)
q(n−1)

returns a noninteger, the lower bound by Theorem 1

can be achieved by weak equidistant designs with β̃ whose elements differ at most
by 1. Examples can be obtained by either adding a balanced factor to or removing
a factor from saturated designs. Note that the bound is tight in some cases but not
generally tight under all parameter (n, s, q) settings.

3. Unification of classical criteria. The design criteria for FFD, SSD and
UD are discussed in this section. The majorization framework and, in particular,
the flexible Schur-ψ criteria based on combinatorial and exponential kernels are
used to unify the criteria of minimum aberration and discrepancy. By Theorem 1,
their lower bounds are generated automatically. Throughout this section θ is the
integral part of β̄ [in particular, β̄ = s(n−q)

q(n−1)
for X(n, qs)] and f = β̄ − θ .
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3.1. Fractional factorial designs. FFD is an important experimental strategy
and usually measured by the minimum aberration criterion originally proposed by
Fries and Hunter [12] for regular designs. We rely on its generalization by Xu and
Wu [26] for both two- and multi-level, both regular and nonregular designs. Based
on the ANOVA decomposition model, define for X(n, qs)

Aj (X) := 1

n2 ‖Gj‖2
F ≡ 1

n2 trace(GH
j Gj ), j = 1, . . . , s,(3.1)

where Gj is the matrix consisting of all j -factor contrast coefficients (‖·‖F : Frobe-
nius norm; H : conjugate transpose). The (generalized) word-length pattern (GWP)
is defined by (A1, . . . ,As), in which A1 ≡ 0 for balanced designs. For two such
patterns x,y ∈ R

s+, define a partial ordering |= as follows. We write x 
 y if the
first nonzero element of x − y is negative, and write x |= y if x 
 y or x = y. An
FFD has minimum aberration if its GWP achieves the minimum under |=. Ma and
Fang [17] and Xu and Wu [26] connected word-length pattern with MacWilliams’
transform of distance distribution in coding theory,

Aj(X) = 1

n

s∑
l=0

El(X)Pj (l; s, q), j = 1, . . . , s,(3.2)

where El(X) = n−1|{(xi ,xk) : β(xi ,xk) = s − l, i, k = 1, . . . , n}| for l = 0, . . . , s

and

Pj (x; s, q) =
j∑

w=0

(−1)w(q − 1)j−w

(
x

w

)(
s − x

j − w

)
are Krawtchouk polynomials ([18], Section 5.7). Clearly, Aj(X) can be expressed

as 2
n2

∑m
r=1 Pj (s −βr; s, q)+ (q−1)j

n

(s
j

)
. To unify the minimum aberration through

Schur-ψ criterion, a direct idea is to use Krawtchouk polynomials, P2(s − x; s, q)

to Ps(s − x; s, q). However, the function Pj (s − x; s, q) is not generally convex
except for j = 2, which implies that it is trivial to unify A2 and find its lower
bound, but nontrivial for higher-order Aj ’s.

Let us make an indirect approach by a series of combinatorial functions. For
X(n, qs), define the Schur-combinatorial criterion of affine form,

�C(X; j) := 2
m∑

r=1

(
βr

j

)
−

(
s

j

)(
n2

qj
− n

)
, j = 1, . . . , s,(3.3)

which are all separable convex on R
m+. The criterion can be interpreted statisti-

cally as follows. Consider �C(X; s) first. Randomly on L(qs), each x has uniform
probability n/qs of entering the n-point design. Let Nx be its true occurrences
in X(n, qs). The value (Nx − n/qs)2 measures the variation of the design center-
ing x. For qs different points, the total variation

∑
x∈L(qs)(Nx −n/qs)2 is therefore

a measure of uniform covering, which equals �C(X; s). Formally, we have:
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THEOREM 2. For X(n, qs) and S = {1, . . . , s}, the Schur-combinatorial cri-
terion

�C(X; j) = ∑
u⊆S,|u|=j

∑
x∈L(qj )

(
N(u)

x − n

qj

)2
for j = 1, . . . , s,(3.4)

where N
(u)
x counts the runs whose u-coordinates take level-combination x. Fur-

ther, the design X has orthogonal strength t if and only if �C(X; j) = 0 for
j = 1, . . . , t .

Projection properties are taken into account in Theorem 2. Let Xu denote
the u-coordinate sub-design. Thus, �C(X; j) = ∑

|u|=j �C(Xu; j) sums up the
measurements at all j -dimensional sub-spaces. Besides the geometrical meaning,
�C(X; j) measures the variation from the j -factor orthogonal strength. From (3.4),
�C(X; j) ≥ 0, where equality holds if N

(u)
x ≡ n/qj , which occurs if and only if X

is an orthogonal array of strength j .
To use a relatively simple notation, define for X(n, qs) the root-mean-squared

deviation criterion,

Bs(X) :=
√√√√ 1

qs

∑
x∈L(qs)

(Nx − n/qs)2 ≡
√

1

qs
�C(X; s),(3.5)

as well as Bj(X) :=
√

1
qj �C(X; j) for j < s. Let us call (B1, . . . ,Bs) a deviation

pattern, which reduces to the projection V -criterion for two-level designs [23].
Note that Bt = 0 implies that Bj = 0 for j < t . Analogous to the word-length
pattern, A1 = B1 = 0 for balanced lattice designs, and At = Dt = 0, At+1 > 0,
Bt+1 > 0 for resolution-(t + 1) orthogonal designs.

THEOREM 3. For design X ∈ U (n, qs), the deviation pattern and word-
length pattern are linearly related by

B2
j (X) = n2

q2j

j∑
k=1

(
s − k

j − k

)
Ak(X) for j = 1, . . . , s.(3.6a)

Their benchmarks are given by (0,A∗
2, . . . ,A

∗
s ) and (0,B∗

2 , . . . ,B∗
s ), in which

A∗
j =

(
1 − 1

n

)(
(1 − f )Pj (s − θ; s, q) + f Pj (s − θ − 1; s, q)

)
(3.6b)

+ (q − 1)j

n

(
s

j

)
,

B∗
j =

√
n(n − 1)

qj

((
θ

j

)
+ f

(
θ

j − 1

))
−

(
s

j

)(
n2

q2j
− n

qj

)
,(3.6c)

for j = 2, . . . , s, in the sense that (0,A∗
2, . . . ,A

∗
s ) |= (0,A2(X), . . . ,As(X)) while

B∗
j ≤ Bj(X) for all j simultaneously.
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Checking the simplest case for balanced designs with integer-valued
PC-mean β̄ , we get A2(X(n, qs)) ≥ s(q−1)(qs−s−n+1)

2(n−1)
, which is consistent with

Fang, Ge, Liu and Qin [6] and Xu [25] for investigating supersaturated designs.

3.2. Supersaturated designs. In the recent decade, SSDs, in most cases 2-level
factorials, have drawn much attention in screening experimentation due to their
economic run size. Nonorthogonality criteria like E(s2) and Ave(χ2) are used to
evaluate/construct SSDs, as their orthogonal property is violated. For X(n,2s), let
x(j) with (−1,1) entries represent the j th factor. Booth and Cox [1] originally

defined E(s2) by the mean inner-product 2
s(s−1)

∑
1≤j<l≤s xT

(j)x(l). Let N
(j,l)
τ1,τ2 be

the number of runs whose (j, l) factors take level-combination (τ1, τ2). Then we
observe that xT

(j)x(l) = 4
∑2

τ1,τ2=1(N
(j,l)
τ1,τ2 − n/4)2. For multi-level X(n, qs), define

Ave(χ2) := 2

s(s − 1)

∑
1≤j<l≤s

q∑
τ1,τ2=1

(
N(j,l)

τ1,τ2
− n/q2)2

,

which reduces to E(s2) when q = 2 (after being multiplied by 4) and reduces to
Yamada and Lin’s [27] Ave(χ2) when q = 3 (after being multiplied by 9/n).

By Theorem 2, we find that there is a natural link between Ave(χ2) and
�C(X;2) based on the combinatorial kernel, as well as the deviation measure B2
on the 2D sub-space. For simplicity, we give a unification scheme through the
quadratic kernel ψ(β) = β2 and the associated Schur-ψ criterion �(X;β2) :=∑m

r=1 β2
r , which is equivalent to �C(X;2) for balanced designs.

THEOREM 4. The nonorthogonality criterion Ave(χ2) for SSD X ∈ U (n, qs)

satisfies

Ave(χ2) = 2

s(s − 1)
�(X;β2) + a ≥ n(n − 1)

s(s − 1)
(θ2 + 2θf + f ) + a,

where the constant a = q2ns+n2(1−s−q)

q2(s−1)
.

The lower bound follows directly Theorem 1. When the PC-mean β̄ is an inte-
ger,

E(s2) ≥ n2(s − n + 1)

(s − 1)(n − 1)
, Ave(χ2) ≥ n2(q − 1)((q − 1)s − n − 1)

q2(s − 1)(n − 1)
,

where the lower bounds can be attained by optimum SSDs constructed from partial
saturated designs, resolvable BIBDs or an algorithmic approach [6, 16, 21, 27].

3.3. Uniform designs. UD is of space filling type and becomes more and more
important for computer experiments. For n design points scattered into the lattice
space, Fang and Wang [10] suggested using the star discrepancy as the unifor-
mity measure, which corresponds to the famous Kolmogorov–Smirnov statistic for
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goodness-of-fit testing between Fn(x), the empirical distribution of the design, and
F∗(x), the uniform distribution. A discrepancy defined in quasi-Monte Carlo meth-
ods can be viewed as a norm ‖Fn(x) − F∗(x)‖ of some reproducing kernel Hilbert
space [14]. For assessing qualitative factorial assignment, Hickernell and Liu [15]
proposed the discrete discrepancy, which is a special case (when µ = 0) of the
categorical discrepancy below.

DEFINTION 2 (Categorical discrepancy). On the lattice space L(qs) and the
set S = {1, . . . , s}, for each nonempty u ⊆ S, any x,w ∈ L(qs) and any design
X with points x1, . . . ,xn ∈ L(qs), define the categorical type of hat reproducing
kernel function and hat discrepancy

K̂u(x,w) = ∏
j∈u

(
b + (a − b)δxj ,wj

)
,

Du(X; K̂u) =
(
−µ|u| + 1

n2

n∑
i,k=1

K̂u(xi ,xk)

)1/2

,

where a is a given positive constant (a < q − 1), b is chosen from [− a
q−1 , a) and

µ = 1
q
(a + (q − 1)b). Define the categorical discrepancy pattern (D1, . . . ,Ds) and

the categorical discrepancy D(X;a ∨ b), respectively, by

Dj(X;a ∨ b) =
√ ∑

|u|=j

D2
u(X; K̂u)

and

D(X;a ∨ b) =
√√√√ s∑

j=1

D2
j (X;a ∨ b),

where a ∨ b denotes categorical assignments to the hat kernel K̂u.

The parameter constraints a > 0 and − a
q−1 ≤ b < a are set to ensure that the

bivariate K̂u is nonnegative definite. For j = 1, . . . , s, Dj(X;a ∨ b) sums up
the hat discrepancies of all possible j -factor projection designs. Hickernell and
Liu [15] showed that when the parameters satisfy a + (q − 1)b = 0, the categor-
ical discrepancy pattern under partial ordering |= is equivalent to the minimum
aberration criterion. For X(n, qs) under our majorization framework, by using the
kernel ψ(β) = ρβ with base ρ > 1, we can define the Schur-exponential criterion
�E(X;ρ) := ∑m

r=1 ρβr .

THEOREM 5. For any lattice design X ∈ U (n, qs), the squared categorical
discrepancy is equivalent to the Schur-exponential criterion,

D2(X;a ∨ b) = 2�E(X;ρ)

n2 + (1 + a)s

n
− (1 + µ)s,(3.7)
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where the exponential base ρ = (1 + a)/(1 + b). It has lower bound

D2(X;a ∨ b) ≥ 1

n

(
(n − 1)(1 − f + ρf )ρθ + (1 + a)s

) − (1 + µ)s.

The centered L2-discrepancy (CL2) and wrap-around L2-discrepancy (WL2)
are popular uniformity measures for quantitative experiments; see [14] and [8] for
the details. For modest-level designs, CL2- and WL2-discrepancies have similar
properties to categorical discrepancy, that is, the reproducing kernel values be-
tween distinct runs are determined by coincidence measurement. They correspond
to the Schur-exponential criteria under different bases.

COROLLARY 1. For X ∈ U (n, qs), the Schur-exponential criterion can cover

q = 2 : CL2
2(X) − a1 = 2�E(X;1.25)

n2 ≥ (n − 1)(4 + f )

4n

(
5

4

)θ

,

q = 2 : WL2
2(X) − a2 = 2�E(X;1.2)

n2

(
5

4

)s

≥ (n − 1)(5 + f )

5n

(
5

4

)s(6

5

)θ

,

q = 3 : WL2
2(X) − a2 = 2�E(X;27/23)

n2

(
23

18

)s

≥ (n − 1)(23 + 4f )

23n

(
23

18

)s(27

23

)θ

,

where a1 = 1
n
(5

4)s + (13
12)s − 2(35

32)s and a2 = 1
n
(3

2)s − (4
3)s .

The lower bounds derived above for CL2-discrepancy and WL2-discrepancy are
tighter than [9] and [6].

4. Algorithmic construction. In our framework, majorization on pairwise
coincidences is conceptually simple. From a geometric point of view, it enforces
pairwise coincidences spread as equally as possible, which is universally applica-
ble to various criteria discussed above. By the majorization idea, an optimization
approach with heuristic searches is in development. Although this paper addresses
mainly theoretical aspects of design criteria, we briefly sketch out our algorithmic
construction method, in particular, its basic operation of Robin Hood swap. The
swapping algorithm aims to take one unit from the β-large pair of coincident runs
and give it to the β-small pair, analogous to the legend of Robin Hood.

ALGORITHM 1 (Robin Hood swap pseudo-code). Given a convex kernel func-
tion ψ : R+ → R and a balanced lattice design X ∈ U (n, qs):

Step 1: Compute the coincidence matrix M and find its maximal entry (entries);
for each such pairwise coincidence βik of runs (xi ,xk), do steps 2 and 3.
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Step 2: Find the run(s) that has minimal coincidence from xi . For each such run xt ,
find the coordinates C such that xij = xkj , while xtj �= xij for j ∈ C .

Step 3: For each coordinate j ∈ C , find Ri ,Rt such that xwj = xij , ∀w ∈ Ri and
xwj = xtj ,∀w ∈ Rt , respectively (i /∈ Ri , t /∈ Rt ). Compute the delta,


j = ∑
w∈Ri

(
ψ(βiw − 1) + ψ(βtw + 1)

)
+ ∑

w∈Rt

(
ψ(βtw − 1) + ψ(βiw + 1)

)
− ∑

w∈Ri∪Rt

(
ψ(βiw) + ψ(βtw)

)
.

Find the local minimum 

(i,t)∗ for j ∈ C . Record {i, t, j∗;
(i,t)∗ } if



(i,t)∗ < 0.

Step 4: Find from the record the global minimum 
∗ and output {i∗, t∗, j∗}.

The algorithm works on a specific kernel function. For example, consider
the quadratic kernel ψ(x) = x2 and the randomly generated balanced design
X ∈ U (8,26) shown in Table 3 (left). Indicated by its coincidence matrix shown
in Table 3 (center), the Robin Hood algorithm finally decides to swap the levels
in the 4th factor between the first and last runs, in order to equalize pairwise co-
incidences. By such a single swap operation, we find that the PC-vector of the
swapped design is majorized by the original PC-vector; see Figure 1 for the cu-
mulative plots of sorted PC-vectors in the sense of (2.1).

In Figure 1 the benchmark by Theorem 1 is also plotted, which has two
slopes (corresponding to θ and θ + 1) rather than the dashed straight line, since
β̄ = 2.5714 for U (8,26). Note that the benchmark can be attained by any 6-factor
sub-design of the 8-run Hadamard design. The Robin Hood swap algorithm makes
the random design move toward the benchmark. Iterative swapping can make it

TABLE 3
Robin Hood swap on X(8,26): at j∗ = 4, swap the levels between rows i∗ = 1 and t∗ = 8;

only 12 entries (boldfaced ) are updated in the coincidence matrix
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FIG. 1. Robin Hood swap of a randomly generated X ∈ U (8,26) under kernel ψ(x) = x2.

move closer. However, the above deterministic procedure often gets into the lo-
cal optimum. Advanced stochastic optimization methods are therefore called for.
Based on a similar column-wise swap, Fang, Lu and Winker [7] used the threshold
accepting heuristic for constructing uniform designs. Our group is currently devel-
oping a similar heuristic based on Robin Hood swaps, which is beyond the scope
of this paper.

APPENDIX

PROOF OF THEOREM 2. Let us write the sum notation
∑

u⊆S,|u|=j ,
∑

x∈L(qj )

as
∑

u and
∑

x in short, respectively. Let δ
(u)
ik = 1 if the u-coordinate sub-tuples of

xi ,xk take the same level combination and 0 otherwise. It can be verified that∑
u

δ
(u)
ik =

(
β(xi ,xj )

j

)
,

n∑
i,k=1

δ
(u)
ik = ∑

x

(
N(u)

x
)2

,
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and the Schur-combinatorial criterion (3.3) can be expressed as

�C(X; j) + n2

qj

(
s

j

)
= 2

m∑
r=1

(
βr

j

)
+ n

(
s

j

)

=
n∑

i,k=1

(
β(xi ,xj )

j

)

=
n∑

i,k=1

∑
u

δ
(u)
ik = ∑

u

∑
x

(
N(u)

x
)2

.

By the method of variance decomposition, the right-hand side of (3.4) is given by

∑
u

∑
x

(
N(u)

x − n

qj

)2

= ∑
u

∑
x

((
N(u)

x
)2 − 2n

qj
N(u)

x + n2

q2j

)

= ∑
u

∑
x

(
N(u)

x
)2 − n2

qj

(
s

j

)
,

which equals the left-hand side �C(X; j). �

PROOF OF THEOREM 3. For the j -factor sub-design Xu(n, qj ) with
u-coordinate factors, the word-length pattern (3.1) for 1 ≤ k ≤ j can be written
as

Ak(Xu) = 1

n2

∑
wt(v)=k

|χv(Xu)|2,

where {χv,v ∈ L(qj )} are given orthonormal contrasts and wt(v) is the number
of nonzero elements of v [26]. Consider the deviation (3.5) of sub-design Xu,

B2
j (Xu) = 1

qj

∑n
i,k=1

(β(u)
ik
j

) − n2

q2j , where β
(u)
ik measures the coincidence be-

tween u-coordinate sub-tuples of xi ,xk and it cannot exceed j . So B2
j (Xu) =

n
qj E0(Xu) − n2

q2j , where E0(Xu) is defined in (3.2). Since it is true that

E0(Xu) = n

qs

(
1 +

j∑
k=1

Ak(Xu)

)
(A.1)

(verified at the end), it follows that B2
j (Xu) = n2

q2j

∑j
k=1 Ak(Xu).

For X(n, qs) itself, Bj(X) =
√∑

|u|=j B2
j (Xu). Via {χv,v ∈ L(qj )},

B2
j (X) = n2

q2j

∑
|u|=j

j∑
k=1

Ak(Xu) = 1

q2j

∑
|u|=j

j∑
k=1

∑
wt(v)=k

|χv(Xu)|2.
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Note that each contrast χv(Xu) of the sub-design Xu is also a contrast χw(X) of
X(n, qs), where w coincides with v at u-coordinates and has null elements else-
where. Denote by �u the set of such w’s. Then we have

B2
j (X) = 1

q2j

j∑
k=1

∑
|u|=j

∑
w∈�u

|χw(X)|2

= 1

q2j

j∑
k=1

(
s − j

j − k

) ∑
wt(w)=k

|χw(X)|2.

By writing 1
n2

∑
wt(w)=k |χw(X)|2 back to Ak(X), (3.6a) is proved. The bench-

mark of deviation pattern follows from Theorem 1 directly. Since the word-length
patterns are linearly related through (3.6a) with positive pivoting coefficients, both
patterns are equivalent under |=. We can therefore use β̃ that determines the bench-
mark of deviation pattern to derive the benchmark for the word-length pattern.

Let us now verify (A.1) for X(n, qs) through Krawtchouk polynomials. For an
integer l (0 ≤ l ≤ s) and any real number y, Krawtchouk polynomials Pj (l; s, q)

have the following property:
∑s

j=0 Pj (l; s, q)yj = [1 + (q − 1)y]s−l(1 − y)l

([18], Section 5.7). By setting y = 1, we have
∑s

j=0 Pj (0; s, q) = qs and∑s
j=0 Pj (l; s, q) = 0, for l = 1, . . . , s. By P0(l; s, q) = 1 and

∑s
l=0 E0(X) = n,

n

(
1 +

s∑
j=1

Aj(X)

)
= n +

s∑
j=1

s∑
l=0

El(X)Pj (l; s, q)

= n +
s∑

l=0

El(X)

(
s∑

j=0

Pj (l; s, q) − 1

)

= n + qsE0(X) −
s∑

l=0

El(X) = qsE0(X).
�

PROOF OF THEOREM 5. In Definition 2, there is no risk in letting K̂∅ = 1
and D∅(ξ ; K̂∅) = 0. By the expansion of tensor products and coincidence mea-
surements,

D2(X;a ∨ b) = − ∑
∅⊆u⊆S

µ|u| + 1

n2

∑
∅⊆u⊆S

n∑
i,k=1

∏
j∈u

[
b + (a − b)δxij ,xkj

]
= −(1 + µ)s + 1

n2

n∑
i,k=1

s∏
j=1

[
1 + b + (a − b)δxij ,xkj

]
= −(1 + µ)s + 1

n2

n∑
i,k=1

(1 + a)β(xi ,xk)(1 + b)s−β(xi ,xk)

= 2

n2

m∑
r=1

(
1 + a

1 + b

)βr

+ (1 + a)s

n
− (1 + µ)s.
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By letting ρ = (1 + a)/(1 + b), the identity (3.7) follows. Provided that b < a and
a < q − 1, and the exponential base 1 < ρ < ∞, we can use Theorem 1 to get the
lower bound for categorical discrepancy. �
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