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EMPIRICAL BAYES SELECTION OF WAVELET THRESHOLDS
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Stanford University and University of Oxford

This paper explores a class of empirical Bayes methods for level-
dependent threshold selection in wavelet shrinkage. The prior considered
for each wavelet coefficient is a mixture of an atom of probability at zero
and a heavy-tailed density. The mixing weight, or sparsity parameter, for
each level of the transform is chosen by marginal maximum likelihood.
If estimation is carried out using the posterior median, this is a random
thresholding procedure; the estimation can also be carried out using other
thresholding rules with the same threshold. Details of the calculations needed
for implementing the procedure are included. In practice, the estimates
are quick to compute and there is software available. Simulations on the
standard model functions show excellent performance, and applications to
data drawn from various fields of application are used to explore the practical
performance of the approach.

By using a general result on the risk of the corresponding marginal
maximum likelihood approach for a single sequence, overall bounds on
the risk of the method are found subject to membership of the unknown
function in one of a wide range of Besov classes, covering also the case
of f of bounded variation. The rates obtained are optimal for any value of
the parameterp in (0,∞], simultaneously for a wide range of loss functions,
each dominating theLq norm of theσ th derivative, withσ ≥ 0 and 0< q ≤ 2.

Attention is paid to the distinction between sampling the unknown
function within white noise and sampling at discrete points, and between
placing constraints on the function itself and on the discrete wavelet transform
of its sequence of values at the observation points. Results for all relevant
combinations of these scenarios are obtained. In some cases a key feature of
the theory is a particular boundary-corrected wavelet basis, details of which
are discussed.

Overall, the approach described seems so far unique in combining
the properties of fast computation, good theoretical properties and good
performance in simulations and in practice. A key feature appears to be that
the estimate of sparsity adapts to three different zones of estimation, first
where the signal is not sparse enough for thresholding to be of benefit, second
where an appropriately chosen threshold results in substantially improved
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estimation, and third where the signal is so sparse that the zero estimate gives
the optimum accuracy rate.

1. Introduction.

1.1. Background. Consider the nonparametric regression problem where we
have observations at 2J regularly spaced pointsti of some unknown functionf
subject to noise

Xi = f (ti) + εi,(1)

where theεi are independentN(0, σ 2
E) random variables. The standard wavelet-

based approaches to the estimation off proceed by taking the discrete wavelet
transform of the dataXi , processing the resulting coefficients to remove noise,
usually by some form of thresholding, and then transforming back to obtain the
estimate.

The underlying notion behind wavelet methods is that the unknown function
has an economical wavelet expression, in thatf is, or is well approximated by,
a function with a relatively small proportion of nonzero wavelet coefficients. The
quality of estimation is quite sensitive to the choice of threshold, with the best
choice being dependent on the problem setting. In general terms, “sparse” signals
call for relatively high thresholds (3σE , 4σE or even higher), while “dense” signals
might demand choices of 2σE or even lower. Indeed, it is typical that the wavelet
coefficients of a true signal will be relatively more sparse at the fine resolution
scales than at the coarser scales. It is therefore desirable to develop threshold
selection methods that adapt the threshold level by level.

One would hope that such methods would estimate thresholds that stably reflect
the gradation from sparse to dense signals as the scale changes from fine to coarse.
It has proven elusive to construct threshold selectors that combine properties
such as these with good theoretical properties. The principal motivation for the
work reported in the present paper is to show that a simple empirical Bayesian
approach combines computational tractability with good theoretical and practical
performance. For software availability, see Section 1.8.

While the present paper is concerned with the nonparametric regression
model (1) and wavelet transforms, the same levelwise empirical Bayes approach
is, in principle, directly applicable to other direct and indirect transform shrinkage
settings with multiscale block structure, as briefly discussed in [28].

1.2. Bayesian approaches to wavelet regression. Within a Bayesian context,
the notion of sparsity is naturally modeled by a suitable prior distribution for
the wavelet coefficients off . Write djk for the elements of the discrete wavelet
transform (DWT) of the vector of valuesf (ti) andd∗

jk for the DWT of the observed

dataXi . Let N = 2J andθjk = N−1/2 djk .
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Clyde, Parmigiani and Vidakovic [13], Abramovich, Sapatinas and
Silverman [4] and Silverman [46] have considered a particular mixture prior for
this problem. Under this prior, thedjk are independently distributed with

djk ∼ (1− πj )δ(0) + πjN(0, τ2
j ),(2)

a mixture of an atom of probability at zero and a normal distribution with
varianceτ2

j . The parameters of the distribution (2) depend on the levelj of the
coefficient in the transform. A related prior was considered by Chipman, Kolaczyk
and McCulloch [11]; for a survey of work in this area, see [48]. See also [12, 38,
44, 50, 51] for a range of approaches to the modeling of the wavelet coefficients
underlying a function or image. [31] is an early version introducing the approach
of the present paper.

The most popular summary of the posterior distribution under the model (2)
has been the posterior mean, but Abramovich, Sapatinas and Silverman [4]
investigated the use of the posterior median ofdjk as a summary of the posterior
distribution. This is a true thresholding rule, in that for|d∗

jk| less than some
threshold, the point estimate ofdjk will be exactly zero. In the wavelet context, the
coefficient-wise posterior median corresponds to a point estimate of the posterior
distribution under a family of loss function equivalent toL1 norms on the function
and its derivatives. SuchL1 losses are in any case more natural if one wishes
to allow for the possibility of inhomogeneous functions, one of the aims of the
wavelet approach.

1.3. Choosing the parameters in the prior. How should the parameters in
the prior be chosen? In much of the existing literature, the parameters are either
chosen directly by reference to prior information aboutf , or by a combination of
prior information and data-based criteria. Though some of these, for example, the
BayesThresh approach of Abramovich, Sapatinas and Silverman [4], give good
results, they clearly invite the possibility of a more systematic approach to the
choice of the hyperparameters. In the present paper we take an empirical Bayes (or
marginal maximum likelihood) approach, which yields a completely data-based
method of choosing the prior parameters. Within the Bayesian formulation set
out above, wavelet regression at a single resolution levelj is a special case of a
single sequence Bayesian model selection problem considered, among others, by
George and Foster [24, 25]. This problem is considered in detail by Johnstone and
Silverman [33]; we review the basic method presented there and also give some
additional implementational details.

Suppose thatZ = (Z1, . . . ,Zn) are observations satisfying

Zi = µi + εi,(3)

where theεi are independentN(0,1) random variables. It is supposed that the
unknown coefficientsµi are mostly zero, but some of them may be nonzero,
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and, with this in mind, it is of interest to estimate theµi on the basis of the
observed data. In the model selection context, the nonzeroµi correspond to
parameters that actually enter the model. The connection with wavelet regression
is natural: theZi might be the sample wavelet coefficients (suitably renormalized)
at a particular level, and these are noisy observations of a sequence of population
wavelet coefficients which are mostly zero.

The parametersµi are modeled as having independent prior distributions each
given by the mixture

fprior(µ) = (1− w)δ0(µ) + wγ (µ).(4)

The nonzero part of the prior,γ , is assumed to be a fixed unimodal symmetric
density. In most of the previous wavelet work cited above, the densityγ is a
normal density, but we use a heavier-tailed prior, replacing theN(0, τ2

j ) part
of the mixture (2) by, for example, a double exponential distribution with a
scale parameter that may depend on the level of the coefficient in the transform.
Another possible prior, with still heavier tails, is introduced in Section 2. Apart
from the theoretical advantages of such an approach, Wainwright, Simoncelli and
Willsky [50] argue that the marginal distribution of the wavelet coefficients of
images arising in practice typically has tails heavier than Gaussian. In the Bayesian
setup, the noise(εi) is independent of the wavelet coefficients.

Let g = γ �ϕ, where� denotes convolution. To avoid confusion with the scaling
function of the wavelet family, we useϕ to denote the standard normal density. The
marginal density of the observationsZi will then be

(1− w)ϕ(z) + wg(z).

We define the marginal maximum likelihood estimatorŵ of w to be the maximizer
of the marginal log-likelihood


(w) =
n∑

i=1

log{(1− w)ϕ(Zi) + wg(Zi)},(5)

subject to the constraint onw that the threshold satisfiest (w) ≤ √
2 logn. This

upper limit on the threshold is theuniversal threshold, which has the property that
it is asymptotically the largest absolute value for observations obtained from a zero
signal, and can therefore be considered to be the appropriate limiting threshold as
w → 0.

Our basic approach is then to plug the valueŵ back into the prior and then
estimate the parametersµi by a Bayesian procedure using this value ofw. Suppose
µ has prior (4) and that we observeZ ∼ N(µ,1). Let µ̂(z;w) be the median
of the posterior distribution ofµ given Z = z and µ̃(z;w) its mean. If the
posterior median is used, thenµi will be estimated byµ̂i = µ̂(Zi, ŵ), while the
corresponding estimate using the posterior mean isµ̃i = µ̃(Zi; ŵ).
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For fixedw < 1, the functionµ̂(z;w) will be a monotonic function ofz with
the thresholding property, in that there existst (w) > 0 such thatµ̂(z;w) = 0 if
and only if |z| ≤ t (w). The estimated weight̂w thus yields an estimated threshold
t (ŵ) = t̂ , say. A simple extension of the method is to retain the thresholdt̂ but to
use a more general thresholding rule, for example, hard or soft thresholding. The
main emphasis of this paper is on the choice of the threshold, rather than on the
choice between different thresholding rules.

The posterior mean rulẽµ(z;w) fails to have the thresholding property, and,
hence, produces estimates in which, essentially, all the coefficients are nonzero.
Nevertheless, it has shrinkage properties that allow it to give good results. We shall
see that, both in theory and in simulation studies, the performance of the posterior
mean is good, but not quite as good as the posterior median.

The same approach can be used to estimate other parameters of the prior. In
particular, if a scale parametera is incorporated by considering a prior density
(1 − w)δ0(µ) + waγ (aµ), definega to be the convolution ofaγ (a·) with the
normal density. Then botha andw can be estimated by finding the maximum over
both parameters of


(w,a) =
n∑

i=1

log{(1− w)ϕ(Zi) + wga(Zi)}.

In the case where there is no scale parameter to be estimated,
′(w) is a monotonic
function ofw, so its root is very easily found numerically, provided the functiong

is tractable. If one is maximizing over bothw anda, then a package numerical
maximization routine that uses gradients has been found to be an acceptably
efficient way of maximizing
(w,a).

Details of relevant calculations for some particular priors are given in Sec-
tion 2.2. All these calculations are implemented in the authors’ package, Johnstone
and Silverman [34], and the documentation of that package gives further details
beyond those given in this paper.

1.4. Marginal maximum likelihood in the wavelet context. In the wavelet
context, the MML approach is applied to each level of the wavelet transform
separately, to yield values ofw and, if appropriate,a that depend on the level of
the transform. Letσ 2

j be the standard deviation of the noise at levelj . Assuming
that the original noise is independent, the varianceσ 2

j will be the same for allj
and can, as is conventional, be estimated from the median of the absolute values
of the coefficients at the highest level. More generally, for example, in the case
of stationary correlated noise, it may be appropriate to estimateσj separately for
each level, at least at the higher levels of the transform. In this paper we have not
considered the effect of sampling variability in the estimation of the noise variance,
but that would be an interesting topic for future research.
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At level j , define the sequenceZk = d∗
jk/σj , and apply the single sequence

MML approach to this sequence to obtainŵj and, if appropriate, estimates of any
other parameters of the prior. The estimated wavelet coefficients of the discrete
wavelet transform of the sequencef (ti) are then given by

d̂jk = σj µ̂(d∗
jk/σj ; ŵj ).(6)

Assuming, without loss of generality, that the functionf is defined on the interval
[0,1] and the valuesti = i/N , crude estimates of the wavelet coefficients of the
functionf are thenθ̂jk = N−1/2d̂jk , neglecting boundary issues for the moment.

Straightforward generalizations. Natural generalizations of (6) include the
inclusion of estimates of other parameters in the prior, as well as the use of the
posterior mean instead of the posterior median, or the use of a more general
thresholding rule than the posterior median, but still using the posterior median
thresholdt (ŵ). In addition, we consider two further generalizations.

Modified thresholds for the estimation of derivatives. When wavelet methods
are used to estimate derivatives, it was shown by Abramovich and Silverman [5]
that the appropriate universal threshold is not

√
2 logn, but is a multiple of

this quantity. We develop theory below using, for the estimation of derivatives,
a modified thresholdtA(w) given, for some appropriately chosenA > 0, by

tA(w) =
{

t (w), if t (w)2 ≤ 2 logn − 5 log logn,√
2(1+ A) logn, otherwise.

(7)

The translation-invariant wavelet transform. It is by now well recognized
that the translation-invariant wavelet transform [15], in general, gives much better
results than the conventional transform applied with a fixed origin. At each levelj ,
the translation-invariant transform gives a sequence of 2J values that are not
actually independent. Each subsequence obtained by regular selection at intervals
2J−j will be independent, and corresponds to the coefficients at levelj of the
standard wavelet expansion with a particular choice of origin.

One way of proceeding would be to apply the empirical Bayes method entirely
separately for each of these subsequences to obtain estimates of the relevant
coefficients in the translation-invariant wavelet transform. It is simpler and more
natural, however, to use the same estimates of the mixture hyperparameters for
every position of the time origin, thereby borrowing strength in the estimation
of the hyperparameters between the different positions of the origin. To obtain
a single estimate at each level, we maximize the average, over choice of origin,
of the marginal log-likelihood functions. This average is 2−(J−j) times the “as-
if-independent” log-likelihood function obtained by simply summing the log-
likelihoods for each of the 2J coefficients at levelj in the translation-invariant
transform.
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The estimates of the mixture parameters are then used to give individual
posterior medians of each of the coefficients of the translation-invariant transform,
and the estimated function is found by the average basis approach. Apart from the
combination of log-likelihoods involved in the estimation of the hyperparameters,
the translation-invariant method gives the result of applying the standard method
at every possible choice of time origin, and then averaging over the position of the
time origin.

Using an as-if-independent likelihood at each level to choose the hyperparame-
ters is reminiscent of theindependence estimating equation approach of Liang and
Zeger [35] to parameter fitting in the marginal distribution of a sequence of iden-
tically distributed but nonindependent observations. Their paper was concerned
with observations with generalized linear model dependence on the parameters
and covariates. Because, for different choices of origin, the prior distributions on
the coefficients are not, in general, generated from a single underlying prior model
for the curve, our translation-invariant procedure involves a separate modeling of
the prior information at each origin position, modulo 2J−j for the coefficients at
level j . Independence estimating equations, as we have used them, are a method
of combining the separate problems of choosing the prior into a single problem at
each level.

1.5. Theoretical approach and results. By now a classic way to study the
adaptivity of wavelet smoothing methods is through the study of the worst behavior
of a method when the wavelet coefficients of the functionf are constrained
to lie in a particular Besov sequence space, corresponding to Besov function
space membership of the function itself. Besov spaces are a flexible family that,
depending on their parameters, can allow for varying degrees of inhomogeneity,
as well as smoothness in the functions that they contain. Some relations between
Besov spaces and spaces defined byLp norms on function and their derivatives
are reviewed in Section 5.6. We shall show that the empirical Bayes method with
a suitable functionγ automatically achieves the best possible minimax rate over a
wide range of Besov spaces, including those with very low values of the parameter
p that allows for inhomogeneity in the unknown functionf .

A particular case of the theory we develop is as follows; fuller details of the
assumptions will be given later in the paper. Suppose that we have observations
Xi = f (ti)+εi of a functionf atN regularly spaced pointsti , with εi independent
N(0, σ 2

E) random variables. Letdjk = N1/2θjk be the coefficients of an orthogonal
discrete wavelet transform of the sequencef (ti), and letdj denote the vector with
elementsdjk ask varies.

Assume that the coarsest level to which the wavelet transform is carried out is a
fixed levelL ≥ 0. Denote bydL−1 the vector of scaling coefficient(s) at this level.
If periodic boundary conditions are being used andN is a power of 2, the vector
dj is of length 2j if j ≥ L and 2L if j = L − 1, andN = 2J , whereJ − 1 is the
finest level at which the sample coefficients are defined.
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To allow for discrete wavelet transforms based on other boundary conditions
and with values ofN that are other suitable multiples of powers of 2, we shall
make the milder assumptions thatdj is defined forL − 1 ≤ j < J , with L fixed
and J → ∞ as N → ∞, that the sum of the lengths of thedj is equal toN ,
and that the length of eachdj for j ≥ L is in the interval[2j−1,2j ]. The length
of the vectordL−1 of scaling coefficients is assumed to lie in[2L−1,2L], so that
2J−1 ≤ N ≤ 2J .

Estimate the coefficientsdjk for j ≥ L by the estimate in (6), applying an
empirical Bayes approach level by level, based on a mixture prior with a heavy-
tailed nonzero componentγ. The estimator can be either the posterior median or
some other thresholding rule using the same threshold (and obeying a bounded
shrinkage condition set out later). The scaling coefficientsdL−1 are estimated by
their observed valuesd∗

L−1. To obtain the estimateŝf (ti) of the function values

f (ti), apply the inverse discrete wavelet transform to the estimated arrayd̂jk .
For 0< p ≤ ∞ andα > 1

p
− 1

2, let a = α − 1
p

+ 1
2. Define the Besov sequence

spacebα
p,∞(C) to be the set of all coefficient arraysθ such that∑

k

|θjk|p < Cp2−apj for all j with L − 1 ≤ j < J.(8)

Our theory shows that, for some constantc, possibly depending onp andα but
not onN or C,

sup
θ∈bα

p,∞(C)

N−1E

N∑
i=1

{f̂ (ti) − f (ti)}2

(9)
≤ c

{
C2/(2α+1)N−2α/(2α+1) + N−1(logN)4}.

For fixed C, the second term in the bound (9) is negligible, and the rate
O(N−2α/(2α+1)) of decay of the mean square error is the best that can be attained
over the relevant function class. The result (9) thus shows that, apart from the
O(N−1 log4 N) term, our estimation method simultaneously attains the optimum
rate over a wide range of function classes, thus automatically adapting to the
regularity of the underlying function. Under conditions we shall discuss, the Besov
sequence space norm used in (8) is equivalent to a Besov function space norm onf

with the same parameters.
The main theorem of the paper goes considerably beyond (9), in the following

respects:

• It demonstrates the optimal rate of convergence for meanq-norm errors for all
0< q ≤ 2, not just the mean square error considered in (9).

• Beyond the posterior median, any thresholding method satisfying certain mild
conditions can be used, and, for 1< q ≤ 2, the results also hold for the posterior
mean.
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• If an appropriate modified threshold method is used, the optimality also extends
to the estimation of derivatives off .

Most of the existing statistical wavelet literature concentrates explicitly or
implicitly on the white noise model, where we assume that we have independent
observations of the wavelet coefficients of the function up to some resolution level.
Little attention has been paid to the errors possibly introduced by the discretization
of f . However, Donoho and Johnstone [20] discuss a form of discretization
somewhat different from simple sampling at discrete points. Another issue not
considered in detail in much of the present literature is the careful treatment
in a statistical context of boundary-corrected wavelet methods, such as those
introduced by Cohen, Daubechies and Vial [14]. In the current paper we do
consider the effects of discretization and of boundary correction, and we prove
theorems for both the white noise model and for a sampled data model.

In particular, suppose that the functionf is observed on[0,1] at a regular grid
of N = 2J points, subject to independentN(0, σ 2

E) noise. Proceeding as above, but
with an appropriate preconditioning of the data near the boundaries and treatment
of the boundary wavelet coefficients, construct an estimate off itself by setting
f̂ = ∑

k θ̂L−1,kφLk + ∑
L≤j<J

∑
k θ̂jkψjk, where φjk and ψjk are the scaling

functions and wavelets at scalej . LetF (C) be the class of functionsf whose true
wavelet coefficients fall inbα

p,∞(C). Under appropriate mild conditions, a special
case of our theory demonstrates that

sup
f ∈F (C)

E

∫ 1

0
{f̂ (t) − f (t)}2 ≤ cC2/(2α+1)N−2α/(2α+1) + o

(
N−2α/(2α+1)).(10)

Our results go far beyond mean integrated square error and consider accuracy of
estimation in Besov sequence norms on the wavelet coefficients that imply good
estimation of derivatives, as well as the function itself, and allow for losses in
q-norms for 0< q ≤ 2.

1.6. Alternative approaches and related bibliography. Finding a numerically
simple and stable adaptive method for threshold choice with good theoretical and
practical properties has proven to be elusive. A plethora of methods for choosing
thresholds has been proposed (see, e.g., [49], Chapter 6). Apart from empirical
Bayes methods, we note two other methods which have been accompanied by
some theoretical analysis of their properties and for which software can easily be
written. In both cases we setZk = Xk/σE , so that the thresholds are expressed on
a renormalized scale.

Stein’s Unbiased Risk Estimate (SURE) aims to minimize the mean squared
error of soft thresholding, and is another method intended to be adaptive to
different levels of sparsity. The thresholdt̂SURE is chosen as the minimizer (within
the range[0,

√
2 logn ]) of

Û (t) = n +
n∑

k=1

Z2
k ∧ t2 − 2

n∑
k=1

I {Z2
k ≤ t2}.(11)
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This does, indeed, have some good theoretical properties [19], but the same
theoretical analysis, combined with simulation and practical experience, shows
that the method can be unstable [19, 33] and that it does not choose thresholds
well in sparse cases.

The False Discovery Rate (FDR) method is derived from the principle of
controlling the false discovery rate in simultaneous hypothesis testing [7] and has
been studied in detail in the estimation setting [3]. Order the data by decreasing
magnitudes:|Z|(1) ≥ |Z|(2) ≥ · · · ≥ |Z|(n), and compare to aquantile boundary:
tk = z(q/2 · k/n), where the false discovery rate parameterq ∈ (0, 1

2]. Define a

crossing index̂kF = max{k : |Z|(k) ≥ tk}, and use this to set the thresholdt̂F = t
k̂F

.
Although FDR threshold selection adapts very well to sparse signals [3], it does
less well on dense signals of moderate size.

Overall, we shall see that empirical Bayes thresholding has some of the good
properties of both SURE and FDR thresholding and deals with the transition
between sparse and dense signals in a stable manner. A detailed discussion of
theoretical comparisons between the various estimators is provided in Section 5.7.

1.7. Structure of the paper. In Section 2 we discuss various aspects of the
mixture priors used later in the paper. The priors themselves are specified, and
details given of formulas needed for the Bayesian calculations in practice. We take
the opportunity to give additional practical details not included in [33]. In the next
two sections the practical performance of the proposed method is investigated,
by simulation in Section 3, and by applications to data sets arising in practice in
Section 4.

Section 5 contains the theoretical core of the paper for estimation of coefficient
arrays under Besov sequence norm constraints. First, a wide-ranging result,
Theorem 1, for the white noise model is stated. We then explore aspects of
the boundary wavelet construction, including ways of mapping data to scaling
function coefficients at the finest level. This allows for the definition of a boundary-
corrected empirical Bayes estimator for the sampled data problem on a finite
interval. The result we state about this estimator, Theorem 2, shows that it
essentially attains the same performance as the estimator for the white noise case.
Finally, the correspondences between Besov sequence and function norms are set
out, specifically addressing wavelets and functions on a bounded interval. For
0 < q ≤ 2, we relate risk measures expressed in terms of wavelet coefficients to
q-norms of appropriate derivatives.

Section 6 contains the proofs of the main theorems, starting by reviewing
theoretical results for the single sequence problem from [33], but cast into a form
relevant for the present paper. These results are used to prove the white noise
case theorem. The proof of the theorem for the sampled data case also makes
use of approximation results for appropriate boundary-corrected wavelets given by
Johnstone and Silverman [32]. Finally, Section 7 contains further technical details
and remarks, including a discussion of the importance of the bounded shrinkage
assumption and results for the posterior mean estimator.
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1.8. Software. The methods described in [33] and in the current paper
have been implemented as the EbayesThresh contributed package within the
R statistical language [45]. The package and documentation can be installed
from the CRAN archive accessible from http://www.R-project.org. Additional
description and implementational details are available in [34]. For a MATLAB
implementation, see [6].

2. Mixture priors and details of calculations. In this section we discuss
general aspects of the priors used in our procedure, and then review some theory
for the single sequence case. Throughout, we usec to denote generic strictly
positive constants, not necessarily the same at each use, even within a single
equation. When there is no confusion about the value of the prior weightw, it may
be suppressed in our notation. We write� for the standard normal cumulative, and
set�̃ = 1− �. It is assumed throughout that the model and the observed data are
renormalized so that the noise varianceσ 2

E = 1.

2.1. Priors with heavy tails. Particular heavy-tailed densities that we shall
consider for the nonzero part of the prior distribution are the Laplace density with
scale parametera > 0,

γa(u) = 1
2a exp(−a|u|),

and the mixture density given by

µ|� = ϑ ∼ N(0, ϑ−1 − 1) with � ∼ Beta
(1

2,1
)
.(12)

More explicitly, the latter density forµ has

γ (u) = (2π)−1/2{1− |u|�̃(|u|)/ϕ(u)}(13)

and has tails that decay asu−2, the same weight as those of the Cauchy distribution.
For this reason we refer to the density (13) as thequasi-Cauchy density.

We shall mostly consider functionsγ that satisfy the following conditions:

1. The functionγ is a symmetric unimodal density satisfying the condition

sup
u>0

∣∣∣∣ d

du
logγ (u)

∣∣∣∣ < ∞.(14)

2. The quantityu2γ (u) is bounded over allu.
3. For someκ ∈ [1,2],

y1−κγ (y)−1
∫ ∞
y

γ (u) du

is bounded above and below away from zero for sufficiently largey.
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The first of these conditions implies that the tails ofγ are exponential or heavier,
while the second rules out tail behavior heavier than Cauchy. The third condition
is a mild regularity condition. The conditions are satisfied ifγ is the Laplace or
quasi-Cauchy function, but not ifγ is a normal density.

For the normal, Laplace and quasi-Cauchy priors, the posterior distribution
of µ, given an observedZ, and the marginal distribution ofZ are tractable, so
that the choice ofw by marginal maximum likelihood, and the estimation ofµ

by posterior mean or median, can be performed in practice, as outlined in the
following paragraphs. We begin by setting out generic calculations for the relevant
quantities, and then give specific details for particular priors.

2.2. Generic calculations.

Posterior mean. In general, the posterior probabilitywpost(z) = P(µ �= 0|Z = z)

will satisfy

wpost(z) = wg(z)/{wg(z) + (1− w)ϕ(z)}.(15)

Define

f1(µ|Z = z) = f (µ|Z = z,µ �= 0),

so that the posterior density

fpost(µ|Z = z) = (1− wpost)δ0(µ) + wpostf1(µ|z).
Let µ1(z) be the mean of the densityf1(·|z). The posterior meañµ(z;w) is then
equal towpost(z)µ1(z).

Posterior median. To find the posterior median̂µ(z;w) of µ, givenZ = z, let

F̃1(µ|z) =
∫ ∞
µ

f1(u|z) du.

If z > 0, we can findµ̂(z,w) from the properties

µ̂(z;w) = 0 if wpost(z)F̃1(0|z) ≤ 1
2,

(16)
F̃1

(
µ̂(z;w)|z) = {2wpost(z)}−1 otherwise.

Note that ifwpost(z) ≤ 1
2, then the median is necessarily zero, and it is unnecessary

to evaluateF̃1(0|z). If z < 0, we use the antisymmetry propertŷµ(−z,w) =
−µ̂(z,w).
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Marginal maximum likelihood weight. The explicit expression for the function
g facilitates the computation of the maximum marginal likelihood weight in the
single sequence case. Define the score functionS(w) = 
′(w), and define

β(z,w) = g(z) − ϕ(z)

(1− w)ϕ(z) + wg(z)
.(17)

Thenβ(z,w) is a decreasing function ofw for eachz, and

S(w) =
n∑

i=1

β(Zi,w).(18)

Letting wn be the weight that satisfiest (wn) = √
2 logn, the estimated weight

ŵ maximizes
(w) over w in the range[wn,1]. It follows that, if S has a zero
in this range, thenS(ŵ) = 0. Furthermore, the smoothness and monotonicity of
S(w) make it possible to find̂w by a binary search, or an even faster algorithm.
The restriction on the range of̂w implies that the thresholdt (ŵ) ≤ √

2 logn.

Shrinkage rules. The posterior median and mean are examples of estimation
rules that yield an estimate ofµ, givenZ = z. In general, a family of estimation
rulesη(z, t), defined for allz and fort > 0, will be called athresholding rule if and
only if, for all t > 0, η(z, t) is an antisymmetric and increasing function ofz on
(−∞,∞) andη(z, t) = 0 if and only if |z| ≤ t . It will have thebounded shrinkage
property if and only if

z − (t + b0) ≤ η(z, t) ≤ z for all z > t(19)

for some constantb0 independent oft .
An immediate consequence of (19) is that|z − η(z, t)| ≤ t + b0 for all z andt .

For any given weightw, the posterior median will be a thresholding rule, with a
threshold we denote byt (w), and will have the bounded shrinkage property under
condition (14). More general thresholding rules may have advantages in some
cases. For example, the hard thresholding rule, with a suitably estimated threshold,
may have computational advantages and may preserve peak heights better, but we
have not investigated this aspect in detail. Indeed, the choice of shrinkage rule
and the choice of threshold are somewhat separate issues. The former is problem
dependent and this paper is devoted to the latter.

The posterior mean is not a thresholding rule, but has sufficient properties
in common with the posterior median to allow similar theoretical results to be
obtained, but under restrictions on the risk functions considered.

2.3. Calculations for specific priors. The calculations set out above show that
the key quantities are the marginal densityg, the mean functionµ1(z) and the tail
conditional probability functionF̃1. If γ is theN(0, τ2) density, theng will be
theN(0,1 + τ2) density, andµ1(z) = λx, whereλ = τ2/(1 + τ2). The function
F̃1(µ|x) will be the upper tail probability of theN(λx,λ) density.
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For the Laplace distribution prior, we have

g(z) = 1
2a exp

(1
2a2){e−az�(z − a) + eaz�̃(z + a)}

and

f1(µ|z)
(20)

=
{

eazϕ(µ − z − a)/{e−az�(z − a) + eaz�̃(z + a)}, if µ ≤ 0,

e−azϕ(µ − z + a)/{e−az�(z − a) + eaz�̃(z + a)}, if µ > 0,

which is a weighted sum of truncated normal distributions. Hence, it can be shown
that, forz > 0,

µ1(z) = z − a{e−az�(z − a) − eaz�̃(z + a)}
e−az�(z − a) + eaz�̃(z + a)

.(21)

Forµ ≥ 0, under the Laplace prior, we have

F̃1(µ|z) = e−az�̃(µ − z + a)

e−az�(z − a) + eaz�̃(z + a)
.

For the quasi-Cauchy distribution, we have

g(z) = (2π)−1/2z−2(1− e−z2/2)
and

µ1(z) = z
(
1− e−z2/2)−1 − 2z−1.

After some manipulation,

F̃1(µ|z) = (
1− e−z2/2)−1{

�̃(µ − z) − zϕ(µ − z) + (µz − 1)eµz−z2/2�̃(µ)
}
.

For the Laplace prior, the equatioñF1(µ̂(z;w)|z) = {2wpost}−1 in (16) can be
solved explicitly forµ̂(z;w), making use of the function�−1. In the case of the
quasi-Cauchy prior, the equation has to be solved numerically.

3. Some simulation results. A simulation study was carried out for the
regression models that are by now standard in the consideration of wavelet
methods and are given in [18]. Simulations from each of the four models were
carried out, for each of two noise levels. For “high noise,” the ratio of the standard
deviation of the noise to the standard deviation of the signal values is1

3. In the
“low noise” case the ratio is17. This complements the simulations for the single
sequence case reported in [33]. The S-PLUS code used to carry out the simulations
is available from the authors’ web sites, enabling the reader both to verify the
results and to conduct further experiments if desired.
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3.1. Results for the translation-invariant wavelet transform. In Table 1
various wavelet methods, all making use of the translation-invariant wavelet
transform, are compared. For each model and noise level, 100 replications were
generated. In each replication, the function was simulated at 1024 equally spaced
pointsti . The same normal noise variables were used for each of the models and
noise levels. The error reported for each method considered is

σ−2
E

1024∑
i=1

{f̂ (ti) − f (ti)}2,

whereσ 2
E is the noise variance in each case, and this explains why the results for

“low noise” are apparently inferior to those for “high noise.” The default choices of
wavelet, boundary corrections and so on, given in the S-PLUS Wavelets function
waveshrink, were used. For each realization, the noise variance is estimated
using the median absolute deviations of the wavelet coefficients at the highest level.
The default choice of boundary treatment is to use periodic boundary conditions,
and such boundary conditions have to be used for current implementations of
the translation-invariant wavelet transform. Detailed consideration of the use of
the idea of the translation-invariant transform, in combination with boundary
correction, is an interesting idea for future research.

For the Laplace priorγ , with both w and the scale parametera estimated
level-by-level by marginal maximum likelihood from the data, estimates were

TABLE 1
Average over 100replications of summed squared errors over 1024points for various models and

methods. All the wavelet-based estimators use the translation-invariant wavelet transform.
The standard error of each of the entries is at most 2% of the value reported

High noise Low noise

Method bmp blk dop hea bmp blk dop hea

Laplace (median) 171 176 93 41 212 164 109 57
Quasi-Cauchy (median) 177 185 97 40 221 169 115 56
Gaussian (median) 223 178 108 42 296 247 150 65
Laplace (mean) 181 182 100 45 214 175 115 62

SURE (4 levels) 243 205 140 73 299 255 181 95
SURE (6 levels) 237 199 123 45 296 252 167 71
Univ soft (6 levels) 701 417 229 67 997 749 386 110

FDR (q = 0.01) 170 198 97 43 223 164 109 56
FDR (q = 0.05) 169 173 93 39 223 163 110 53
FDR (q = 0.1) 177 168 93 39 235 174 116 53
FDR (q = 0.4) 264 212 127 50 353 273 181 72

Spline 1294 433 265 51 6417 1826 905 117
Tukey 545 330 286 246 1892 655 425 257
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constructed using both the posterior median and the posterior mean. For the quasi-
Cauchy prior, estimates using the posterior median were calculated. The posterior
median for the mixed Gaussian prior was also calculated; as for the Laplace prior,
bothw and the scale parameter were estimated from the data.

Three other methods based on the translation-invariant wavelet transform were
considered: SURE applied to 4 and 6 levels of the transform, universal soft
thresholding applied to 6 levels of the transform, and the false discovery rate
approach with various values of the parameterq. Whenever the false discovery
approach is used in the wavelet context, the method is applied separately at each
level, a method derived from [2]. The same parameterq is used at each level, but
the resulting estimated threshold may, of course, vary.

Comparisons are also included with two standard nonwavelet methods: cubic
smoothing splines using GCV (smooth.spline in S-PLUS) and Tukey’s
4(3RSR)2H method, running medians with twicing, the default S-PLUSsmooth.

The standard error of each of the entries in the table is at most 2% of the
value reported, so the values are correct to about 2 significant figures. The two
standard nonwavelet methods both perform badly. Not surprisingly, given that
it is specifically designed for smooth functions, the smoothing spline method
fails disastrously on discontinuous and spiky signals. Neither method is good
at separating signal from noise in the low noise case. The Tukey method is, to
some extent, competitive with universal thresholding for the more inhomogeneous
signals, but cannot adapt to the smoother behavior of the HeaviSine signal.

As for the methods based on the wavelet transform, the performance of the
posterior mean estimator with the Laplace prior is consistently slightly worse than
that of the posterior median. The universal thresholding method does not compare
well, and SURE also gives noticeably worse performance than the Laplace and
quasi-Cauchy empirical Bayes methods. The FDR method is competitive, provided
the parameter is chosen appropriately. For these signals and sample size,q = 0.05
and 0.1 give good performance, but the performance is worse in some cases if
q = 0.01 and considerably worse ifq = 0.4. We shall see in subsequent examples
that the choice of this parameter is crucial to the performance of the FDR method,
and that, in other situations, the relative performance of the FDR method is, in any
case, not quite as good.

Within the translation-invariant wavelet transform, the observed coefficients
are not independent. Benjamini and Yekutieli [8] propose a modification to the
FDR method to take account of dependence between observations, replacingq by
q/

∑M
k=1 k−1, whereM is the number of parameters under consideration. In the

translation-invariant wavelet transform, the number of coefficients at each level
is equal to the number of original observations, 1024 in the simulation example
considered, so the correction factor is

∑1024
1 k−1 ≈ 7.5. Therefore, the results

reported forq = 0.05 would correspond toq = 0.05 × 7.5 = 0.375 within the
Benjamini–Yekutieli procedure. Since we are choosing theq parameter arbitrarily
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TABLE 2
Difference in summed square errors between the methods indicated and the “Laplace (median)”

method, measured in terms of the standard error of the difference estimated from 100replications

High noise Low noise

Method bmp blk dop hea bmp blk dop hea

Quasi-Cauchy (median) 14 16 10 −2.9 16 12 15 −2.6
Laplace (mean) 15 6 9 9 2.7 16 11 9
SURE (6 levels) 49 19 26 6 45 60 46 16
Univ soft (6 levels) 101 124 81 35 100 97 77 74

FDR (q = 0.01) −1.6 17 5 5 13 −1.0 0.8 −0.9
FDR (q = 0.05) −3.0 −2.4 −1.1 −5 12 −1.7 2.7 −9
FDR (q = 0.1) 6 −6 −0.3 −6 15 8 10 −9
FDR (q = 0.4) 27 12 15 7 36 30 27 7

in any case, this recalibration of theq parameter does not affect our general
conclusions. However, it does mean that the precise numerical value ofq = 0.05
in the translation-invariant case cannot necessarily be translated directly to the
standard discrete wavelet transform.

The mixed Gaussian prior model does not fit the theoretical assumptions of
this paper and it can be seen that its performance is not as good as the heavy-
tailed priors. It is clear that the tail requirements onγ have some bearing on the
performance of the empirical Bayes approach. More detailed investigation of this
issue would be an interesting topic for further research.

Because the same noise values are used for each model, there is correlation
between the various values in Table 1. Comparisons of methods with the Laplace
(median) method on a paired-sample basis are given in Table 2. It can be seen that
the empirical Bayes method with the Laplace prior using the posterior median
decisively outperfoms the other methods, except for the HeaviSine function,
where the quasi-Cauchy prior performs very slightly better, but there is little to
choose between the Laplace and quasi-Cauchy priors. Of the four FDR methods,
the inferior performance forq = 0.01 and 0.4 is significant. Forq = 0.05 and
0.1, the results are more equivocal, but the cases for which the FDR method
underperforms are the ones with the most significant difference. Some further
comparisons between these FDR methods and the empirical Bayes methods will
be made below.

3.2. Results for the standard discrete wavelet transform. In order to evaluate
the advantage of the translation-invariant transform, the same simulated data
were also smoothed using methods based on the standard transform. The results
are shown in Table 3. Additional comparisons are included, with the two block
thresholding methods considered by Cai and Silverman [10], and with the QL
method of Efromovich [23]. The block thresholding methods choose thresholds
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TABLE 3
Average over 100replications of summed squared errors over 1024points for various models and

methods. In each case a standard wavelet transform was used. The two nonwavelet methods are not
included, because they give the same results as in Table 1. For comparison, the results for the
Laplace prior using the translation-invariant transform are repeated from Table 1, in italics

High noise Low noise

Method bmp blk dop hea bmp blk dop hea

Laplace (median)
translation-invariant 171 176 93 41 212 164 109 57

Laplace (median) 278 245 147 53 338 311 204 76
Quasi-Cauchy (median) 277 252 150 54 324 301 200 73
Gaussian (median) 328 252 158 56 400 361 241 87
Laplace (mean) 257 228 140 57 304 278 190 79

NeighBlock 462 406 148 67 436 485 207 125
NeighCoeff 324 320 145 60 316 345 207 91
QL 359 310 175 58 411 366 243 82

SURE (4 levels) 317 248 183 97 393 331 247 117
SURE (6 levels) 312 247 167 69 399 339 235 94
Univ soft (6 levels) 937 484 277 76 1444 931 534 121

FDR (q = 0.01) 331 307 169 60 387 382 231 83
FDR (q = 0.05) 299 278 163 57 347 334 216 78
FDR (q = 0.1) 301 271 162 60 356 330 221 81
FDR (q = 0.4) 395 333 221 97 477 420 310 130

by reference to information from neighboring coefficients within the transform.
In the case of NeighCoeff, only the two neighboring coefficients are used when
considering a particular coefficient, while, for NeighBlock the data are processed
in blocks and information is drawn from neighboring blocks. At coarse scales
the QL method uses a thresholding rule with threshold equal to the standard
deviation of the coefficients, while at finer levels the coefficients are thresholded
at a threshold that increases up to the universal threshold as the level increases,
but at the same time the proportion of coefficients allowed to be nonzero is also
controlled, more stringently the higher the level.

Several interesting conclusions can be drawn from this table. In this case,
the posterior mean generally yields superior estimates to the posterior median.
The NeighCoeff method is the better of the two block thresholding methods,
but generally underperforms the Laplace prior/posterior mean method. The QL
method performs well for the HeaviSine signal, but for the others is not so
competitive. In this context, the relative performance of the FDR method is not as
good as previously, but the importance of choosing the parameterq appropriately
remains. In general, it is clear how important is the use of a translation-invariant
transform. The empirical Bayes method with a Gaussian prior was also tried in this
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context, and the results were, again, somewhat inferior to those for the heavy-tailed
priors.

We can use Tables 1 and 3 to give another measure of performance. Let
rjk denote the value in cell(j, k) of the table, the error measure of methodj

applied in casek. Then define the overall performance of methodj by R(j) =
mink(min
 r
k/rjk). The ratio min
 r
k/rjk quantifies the relative performance of
methodj on casek, by comparing it with the best method for that case. The
minimum efficiency score R(j) then gives the loss of efficiency of estimatorj

on the most challenging case. For the translation-invariant transform, the Laplace
(median) case has a minimum efficiency score of 93%, while the FDR method
with q = 0.05 scores 95%. The quasi-Cauchy method scores 91% and the FDR
with q = 0.1 scores 90%.

However, if we turn to the standard transform, the results are more decisive,
with scores of about 90% for the empirical Bayes Laplace and quasi-Cauchy
median methods, but only 82% for the FDR withq = 0.05 and 84% for FDR
with q = 0.1. It should be noted that the scores of around 90% for the empirical
Bayes methods are only because the empirical Bayes method that is very best
varies slightly between cases considered. But to be specific, the Laplace (median)
method consistently outperforms all the FDR methods.

4. Comparisons on illustrative data sets. In this section the simulations are
complemented by the consideration of three illustrative examples drawn from
practical applications. Taking account of both the simulations and the practical
comparisons, the empirical Bayes method, using the Laplace prior and the
posterior median estimate, is fully automatic and, on each of the simulation studies
considered as a whole, and on the practical illustrations, performs either best or
nearly as well as the best method in each setting. The FDR method withq = 0.05 is
slightly superior on the first simulation study, but at the expense of more substantial
underperformance otherwise, at least on the cases we have considered.

4.1. Inductance plethysmography data. Our first practical comparison uses
the inductance plethysmography data described in [39]. The data were collected
by the Department of Anaesthesia, Bristol University, in an investigation of the
breathing of patients after general anaesthesia. For further details, and the data
themselves, see the help page for the ipd data in the WaveThresh package [40].

Plots of the original data and the curve estimate obtained using the Laplace
prior method are shown in Figure 1. The results for the Laplace and quasi-Cauchy
priors are virtually identical, so only the Laplace results are reported in detail
here. The aim of adaptive smoothing with data of this kind is to preserve features
such as peak heights as far as possible, while eliminating spurious rapid variation
elsewhere. Abramovich, Sapatinas and Silverman [4] found that their BayesThresh
method performed better in this regard than various other wavelet methods, but
that for best results a subjective adjustment of their parameterα from α = 0.5 to
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FIG. 1. Top panel:the inductance plethysmography data. Bottom panel:the effect of smoothing the
inductance plethysmography data with the Laplace prior method.

α = 2 gave preferable results. The MML approach gave virtually the same results
whether the quasi-Cauchy or Laplace prior is used.

The efficacy of the various methods in preserving peak heights is most simply
judged by the maximum of the various estimates, the height of the first peak in
the curve. The standard BayesThresh method (α = 0.5) yields a maximum of
0.836, while subjectively adjusting toα = 2 gives 0.845. The empirical Bayes
method gives 0.842. Overall, the empirical Bayes method gives results much closer
to the adjusted BayesThresh; the maximum distance from the empirical Bayes
curves to the adjusted BayesThresh curve is about one-third that from the original
BayesThresh estimate. The efficacy of the various methods in dealing with the
rapid variation near time 1300 can be best quantified by the range of the estimated
functions over a small interval near this point. The standard BayesThresh method
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has a “glitch” of range 0.08, while, for both the adjusted BayesThresh and the
empirical Bayes method, the corresponding figure is under 0.06, a substantial if
not dramatic improvement.

The FDR method with various parameters was also applied. As in the
simulations, the FDR approach is applied separately to each level, with the same
parameterq at each level. For all the FDRq parameters considered, the maximum
of the estimated curve is between 0.842 and 0.843, but the range of the estimated
curve near time 1300 is around 0.075. Thus, FDR competes well with empirical
Bayes on preserving the peak height, but at the cost of inferior treatment of
presumably spurious variation elsewhere.

Another comparison between the various methods can be made by considering
the threshold that they use at various levels of the transform. The threshold is not a
full description of the procedure, especially in the BayesThresh and Laplace prior
cases where there are two parameters in the prior, but the threshold is a useful
univariate summary of a method of processing wavelet coefficients. Figure 2 gives
the comparison for the various methods applied to these data. It can be seen that,
at the top four levels, the empirical Bayes methods track the adjusted BayesThresh
method quite closely. The standard BayesThresh uses very high thresholds, which
may be the reason why it smooths out the peak height somewhat. At the coarser
levels, the empirical Bayes methods automatically adjust to much lower thresholds,
reflecting a way in which the signal is less sparse at these levels, and thus allowing
variation at these scales to go through quite closely to the way it is observed. None
of the FDR parameter choices gives the degree of adaptivity of threshold to level
shown by the empirical Bayes methods.

To conclude the comparison between BayesThresh and the empirical Bayes
method, the subjectively adjusted BayesThresh method already yielded very good
results for these data, but the basic message of this discussion is that the empirical
Bayes method yields results virtually as good as those of the best BayesThresh
method, but without any need for subjective tinkering with the parameters. In
addition, the use of maximum likelihood to estimate the prior parameters is a less
ad hoc approach than the fitting method used by the BayesThresh approach.

4.2. Ion channel data. A comparison between empirical Bayes and SURE is
provided by considering a segment of the ion channel data discussed, for example,
by Johnstone and Silverman [30]. Because these are constructed data, the “true”
signal is known. See Figure 3. The thresholds chosen by SURE (dashed line) are
reasonable at the coarse scales 6, 7 and 8, but are too small at the fine scales 9 to 11
where the signal is sparse, show some instability in the way they vary, and lead to
insufficient noise removal in the reconstruction. By contrast, the empirical Bayes
threshold choices increase monotonically with scale in a reasonable manner. In
particular, the universal thresholds at levels 9 to 11 are found automatically. Two
reconstructions using the same EB thresholds are shown in panel (b): one using the
posterior median shrinkage rule, and the other using the hard thresholding rule.
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FIG. 2. Thresholds chosen for the top six levels of the wavelet transform of the inductance
plethysmography data by various methods. Upper figure: e:empirical Bayes, Laplace prior;
c: empirical Bayes, quasi-Cauchy prior; b: BayesThresh; t: BayesThresh, subjectively tinkered, with
α = 2. Lower figure:False Discovery Rate method with parameters q = 0.01,0.05,0.1 and 0.4.

The hard threshold choice tracks the true signal better. The choice of threshold
shrinkage rule is problem dependent, and beyond the scope of this paper. It is
somewhat separate from the issue of setting threshold values.

A systematic quantitative comparison is given in Table 4. For each method
considered, ten sequences of length 4096 drawn from the original data were
analyzed. The variances of the wavelet transform at the various levels were
estimated by separate consideration, imitating the effect of using a sequence of
observations with no signal to calibrate the method. For each method, the curve
estimated by the smoothing method was then rounded off to the nearest of zero
and one to give the final estimate. The figures given are the average percentage
error over the ten sequences considered.
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FIG. 3. Left panel:Estimated threshold t̂ plotted against level j ; dashed line: SURE thresholds,
solid line: EB thresholds. Right panel:Segment of the ion channel signal and three estimates. Both
solid lines use EB-thresholds, but one uses a hard thresholding rule and tracks the true signal better,
while the other uses posterior median shrinkage. The result of using SURE thresholds is plotted as
the dashed line, and the dotted line gives the true signal.
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TABLE 4
Percentage of errors in estimation of ion channel gating signal. The errors
are the average over ten separate sequences of length 4096drawn from the

data provided by Eisenberg and Levis. The variances of the wavelet
coefficients at each level were estimated separately

Decimated? N Y

Laplace (median) 2.4 3.0
Quasi-Cauchy (median) 2.7 3.5
Laplace (mean) 2.3 2.6

SURE (4 levels) 2.2 3.1
SURE (6 levels) 2.3 3.2
Univ soft (6 levels) 6.0 7.5

FDR (q = 0.01) 3.1 4.4
FDR (q = 0.05) 2.8 3.9
FDR (q = 0.1) 2.6 3.7
FDR (q = 0.4) 2.3 3.6

Spline 4.4
Tukey 11
AWS 6.2
Special 2.0

As an aside, we note that our theoretical results, of course, do not specifically
include this zero–one loss of the estimate rounded to the nearer of zero or one.
However, we do considerLq losses forq near zero, which catch something of the
flavor of discrete losses, in view of the fact that the limit asq → 0 of theqth power
of theLq norm is a zero–one loss.

Comparisons were made with the special-purpose method developed specifi-
cally for this problem by the originators of the data, and with standard smoothing
methods, including the AWS method of Polzehl and Spokoiny [43]. The special-
purpose method achieves an error rate of 2.0%; because of the specificity of this
method, it is perhaps not surprising that it cannot be beaten by the more general-
purpose methods we consider, but some of the translation-invariant wavelet meth-
ods come close. In this case the posterior mean slightly outperforms the posterior
median, and other good methods are SURE and FDR withq = 0.4. If we use the
parameter valuesq = 0.05 and 0.1 appropriate in our main simulation, then the
results are inferior, underlining the need to tune the FDR parameter to the problem
at hand.

4.3. An image example. Turning finally and briefly to images, Figure 4 shows
the effect of applying empirical Bayes thresholds to a standard image with
Gaussian noise added. The thresholds are estimated separately in each channel
in each level. Nine realizations were generated, and the signal to noise ratio of
the estimates (SNR= 20 log10(‖f̂ − f ‖2/‖f ‖2)) calculated for both thresholding
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FIG. 4. Translation invariant hard thresholding applied to a noisy version of the “peppers” image.
For original image and noisy version see, for example, [36], Figure 10.6. Left panel:fixed threshold
at 3σE . Right panel:Level and channel dependent EB thresholds as shown in the table. The image
obtained by fixed thresholds contains spurious high frequency effects that are largely obscured by
the printing process. For a clearer comparison, the reader is recommended to view the images in the
online version available from the authors’ web sites.

at 3σE and for the empirical Bayes thresholds. Smaller SNR corresponds to
poorer estimation, though, of course, this quantitative measure does not necessarily
correspond to visual perception of relative quality. The actual images shown
correspond to the median of the nine examples, ordered by the increase in SNR
between the 3σE threshold approach and the empirical Bayes approach.

For the example shown, the EB thresholds are displayed in the table below. They
increase monotonically as the scale becomes finer and yield SNR= 33.83. They
are somewhat smaller in the vertical channel, as the signal is stronger there in the
peppers image. Fixing the threshold at 3σE in all channels leads to small noise
artifacts at fine scales (SNR= 33.74), while fixing the threshold atσE

√
2 logn

(not shown) leads to a marked increase in squared error (i.e., reduced SNR).

Channel/Level 3 4 5 6 7

Horizontal 0 1.1 2.3 3.2 4.4
Vertical 0 0 2.0 3.0 4.4
Diagonal 0 1.7 2.7 4.1 4.4

5. Theoretical results. We now turn to the theoretical investigation of the
proposed empirical Bayes method for curve estimation using wavelets. In doing so
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we distinguish between various different models for observed wavelet coefficients
and for the theoretical coefficients of interest. Suppose throughout that levelJ is
such that the sum of the lengths of all the coefficient vectors below levelJ is equal
to N .

5.1. Models for the observed data. In the white noise model, it is assumed
that we have independent observationsYjk ∼ N(θjk,N

−1) of the wavelet
coefficients θjk themselves. Because of the orthonormality properties of the
wavelet decomposition, observations of this kind would be obtained by carrying
out a wavelet decomposition of the functionf (t) + N−1/2 dW(t), wheredW(t)

is a white noise process. In our main theory, we only use theYjk at levelsj < J ,
setting coefficients at higher levels to be zero.

The other model of practical relevance is thesampled data model, where
we assume that we have dataXi = f (i/N) + εi , where εi are independent
N(0,1) random variables. Let̃θ be the discrete wavelet transform of the sequence
N−1/2f (ti), andỸ that of the sequenceN−1/2X, so thatỸjk ∼ N(θ̃jk,N

−1). In
much of the current statistical literature, the distinction between the white noise
coefficientsYjk and the sampled-data coefficientsỸjk is often glossed over, as is
that between the function coefficientsθ and the time-sampled coefficientsθ̃ . The
theoretical framework within which we work is, generally, to assume that∑

k

|θjk|p ≤ Cp2−apj for all j ,(22)

corresponding to membership of the underlying functionf is a particular
smoothness class. The first case we shall consider is where we observeY and
estimateθ .

The other cases all make use of the sampled-data coefficientsỸ . If we retain
the constraint (22) on the underlying function, we can show that, provided the
wavelet basis is chosen appropriately, the discretization involved in the sampled-
data construction does not affect the order of magnitude of the accuracy of
the estimates. This is the case whether we consider the estimatesθ̂ (Ỹ ) of the
coefficients to be estimates of the wavelet coefficientsθ of the function itself,
or use the estimated coefficients to reconstruct an estimate of the sequence
f (i/N) via the discrete wavelet transform̃θ . Unless we impose periodic boundary
conditions, a key prerequisite for the consideration of the sampled data model
is the development of appropriate boundary-corrected bases with corresponding
preconditioning of the data near the boundaries, and we consider this aspect below.

A final model is the situation where it is the sequence of valuesf (i/N) that is
of primary interest, but we place the Besov array bounds on the discrete wavelet
transformθ̃ of this sequence rather than on the underlying function. We replace
(22) by the constraint∑

k

|θ̃jk|p ≤ Cp2−apj for all j < J .(23)
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In this case we only require orthonormality of the discrete wavelet transform, but
the condition (23) depends both on the functionf and on the particularN under
consideration. The asymptotic theorem should be thought of as a “triangular array”
result, rather than a limiting result for a particular functionf . The formalism of
the proof is identical to the white noise case, except there is no need to consider
terms forj ≥ J and this eliminates one of the error terms in the result.

5.2. Array results under Besov body constraints. Suppose thatθjk is a
coefficient array, defined forj = L − 1,L,L + 1, . . . and 0≤ k < Kj , for
Kj satisfying 2j−1 ≤ Kj ≤ 2j for j ≥ L and 2L−1 ≤ KL−1 ≤ 2L. Let N =∑

L−1≤j<J Kj for integersJ , and consider limits asJ → ∞. For given J ,
assume we have observationsYjk ∼ N(θjk,N

−1σ 2
E) for j = L − 1,L, . . . , J − 1,

0 ≤ k < Kj . The varianceσ 2
E is assumed to be fixed and known, and without loss

of generality we setσ 2
E = 1.

Let θj denote the vector(θjk : 0 ≤ k < Kj) and defineYj similarly. The
vector θL−1 is estimated byYL−1. For L ≤ j < J , each vectorθj is estimated
separately by the empirical Bayes method described above. Setµ = N1/2θj and
Z = N1/2Yj , and obtain an estimate ofµ using a possibly modified threshold
with parameterA ≥ 0. If A = 0, then the threshold is not modified, while if
A > 0, the threshold is as defined in (7). The threshold is that corresponding to
the posterior median function, but provided this value of the threshold is used,
the estimation can be carried out by any thresholding rule satisfying the bounded
shrinkage property (19). We then setθ̂j = N−1/2µ̂. For j ≥ J , finer scales than
the observations assumed available, we setθ̂j = 0.

The overall risk is defined to be

RN,q,s(θ) = E‖θ̂L−1 − θL−1‖q
q +

∞∑
j=L

2sqjE‖θ̂j − θj‖q
q .(24)

Under suitable conditions on the wavelet family, this norm dominates aq-norm
on theσ th derivative of the original function ifs = σ + 1

2 − 1
q
; see Section 5.6.

The constant by which the contribution of the scaling coefficients is multiplied is
somewhat arbitrary, and may be altered without affecting the overall method or
results. We can now state the main result, which demonstrates that the empirical
Bayes method attains the optimal rate of convergence of the meanqth-power error
for all values ofq andp down to 0.

The result also yields smoothness properties of the posterior estimate. It
demonstrates, for values ofσ andq satisfying the conditions of the theorem, that
the coefficient arraŷθ has finitebσ

q,q norm and, hence, under suitable conditions
on the wavelet hasσ th derivative bounded inq-norm.

THEOREM 1. Assume that 0 < p ≤ ∞ and 0 < q ≤ 2, and that α ≥ 1
p
.

Suppose that the coefficient array θ falls in a sequence Besov ball bα
p,∞(C) so
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that

‖θj‖p ≤ C2−aj for all j ,(25)

where a = α + 1
2 − 1

p
≥ 1

2. Let s = σ + 1
2 − 1

q
and set

r = (α − σ)/(2α + 1) and r ′ = (a − s)/2a.

Assume that σ ≥ 0 and that α − σ > max(0, 1
p

− 1
q
). Assume also that sq ≤ A.

Then, for some quantity c which does not depend on C or N (but may depend on
α,p,σ, q, as well as γ , A and the wavelet family), the overall q-norm risk satisfies

RN,q,s(θ) ≤ c
{
�(C,N) + CqN−r ′′q + N−q/2 logν N

}
,(26)

where

�(C,N) =




C(1−2r)qN−rq, if ap > sq,

C(1−2r ′)qN−r ′q logr ′q+1 N, if ap = sq,

C(1−2r ′)qN−r ′q logr ′q N, if ap < sq,

(27)

r ′′ = α − σ − ( 1
p

− 1
q
)+ and 0≤ ν ≤ 4.

REMARKS. If q ≤ p, then necessarilyap > sq since a > s. However, if
q > p, then the three cases in (27) correspond, respectively, to the “regular,”
“critical” and “logarithmic” zones described in [22].

Note first that, by elementary manipulations,

r ′ − r = ap − sq

apq(2α + 1)
,

so the cases in (27) could equally be specified in terms of the relative values of
r ′ andr . Also,a − s = α − σ − 1

p
+ 1

q
> 0, sor ′ > 0 andr ′′ = min{α − σ, a − s}.

The conditionsq ≤ A will be satisfied for allq in (0,2] if A ≥ 2σ. A particular
situation in which this will hold is the “standard” caseA = 0 andσ = 0.

The rates in (27) agree with the lower bounds to the minimax rates derived
in Theorem 1 of [22], and so the first term of (26) is a constant multiple of the
minimax dependence of the risk on the number of observationsN subject to the
Besov body constraints. For fixedC the other terms are of smaller order. The same
rates arise in [17], which demonstrates that suitable estimators, dependent onα,
attain these rates forq = 2.

First consider theN−r ′′q term. Using the conditionsa ≥ 1
2 andα > σ ≥ 0, we

havea − s = 2ar ′ ≥ r ′ andα − σ = (2α + 1)r > r , so thatr ′′ ≥ min{r, r ′}. If
a > 1

2, then the inequality is strict and theN−r ′′q term will be of lower polynomial
order than�(C,N) in every case. Ifa = 1

2 andr ′ ≤ r , we will haver ′′ = r ′, but,
for fixedC, �(C,N) will still dominate because of the logarithmic factor.

Since r < 1
2, the N−q/2 logν N term will always be of smaller order than

�(C,N). This term shows that, even if the Besov space constantC is allowed



1728 I. M. JOHNSTONE AND B. W. SILVERMAN

to decrease asN increases, or is zero, we have not shown that the risk can be
reduced below a term of sizeN−q/2, with an additional logarithmic term in certain
cases. The exact definition ofν is

ν =



0, if sq < A,

(q + 1)/2, if sq = A > 0,

3+ (q − p ∧ 2)/2, if sq = A = 0.

(28)

Truncating risk at fine scales. Consider the estimation of̃θ from the trans-
form Ỹ , subject to the discretized constraints (23). In this case there is no need to
consider levelsj ≥ J in the risk, and the conditiona ≥ 1

2 , equivalent toα ≥ 1/p,
can be relaxed toa > 0, equivalent toα > 1

p
− 1

2. Define

R̃N,q,s(f ) = E‖θ̂L−1(Ỹ ) − θ̃L−1‖q
q +

J−1∑
j=L

2sqjE‖θ̂j (Ỹ ) − θ̃j‖q
q .(29)

We then have the simpler result

R̃N,q,s(f ) ≤ c{�(C,N) + N−q/2 logν N}.(30)

Define f̂ (i/N) to be the sequence obtained by the inverse discrete wavelet
transform applied toN1/2θ̂ (Ỹ ). In the “standard” caseσ = A = 0 andq = 2, the
orthogonality of the wavelet transform allows us to deduce from (30) that, subject
to the constraint (23),

N−1
N∑

i=1

E{f̂ (i/N) − f (i/N)}2

≤ c
{
C2/(2α+1)N−2α/(2α+1) + N−1(logN)4−(1/2)(p∧2)},

which implies (9).

White noise model when fine scale observations are available. If we assume
that we have dataYjk for all levels, not just forj < J , then we can again relax the
lower bounda ≥ 1

2 to a > 0. For definiteness, estimateθ̂j from the data for levels
up toj = J 2, and set the estimate to zero for higher levels. Then we will have the
result

RN,q,s(θ) ≤ c{�(C,N) + Cq exp(−c′ log2 N) + N−q/2 log2ν N}(31)

for a suitablec′ > 0. The second term in (31) decays faster than polynomial rate
in N for any fixedC.

The proof of Theorem 1, together with the minor modifications required to
prove (30) and (31), is given in Section 6.2 below.
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5.3. Wavelets whose scaling functions have vanishing moments. Turn now to
the issue of developing theory for the sampled data case subject to retaining the
constraints on the functionf itself. Crucial to our theory are wavelets constructed
from a scaling functionφ with vanishing moments of order 1,2, . . . ,R − 1, and
R continuous derivatives, for some integerR. The corresponding mother wavelet
ψ is orthogonal to all polynomials of degreeR − 1 or less, and bothφ andψ

are supported on the interval[−S + 1, S] for some integerS > R. Coiflets, as
discussed in Chapter 8.2 of [16], are an example of wavelets constructed to satisfy
these properties. The zero moments of the scaling function are used to control
the discretization error involved when mapping observations to scaling function
coefficients at a fine scale. Note that many standard wavelet families have scaling
functions with nearly vanishing moments of orders 1 and 2; an issue for future
investigation is the tradeoff in finite samples between relaxing the condition of
exactly vanishing moments and using wavelets of narrower support than coiflets.

Unless we are happy to restrict attention to periodic boundary conditions, it
is necessary to modify the wavelets and scaling functions near the boundary, and,
hence, the filters used in the corresponding discrete wavelet transform. A construc-
tion following Section 5 of [14] can be used to perform this modification, while
maintaining orthonormality of the basis functions. We review the application of
the construction; for fuller details and properties see [32].

REMARKS. 1. If the restriction to (boundary modified) coiflets is needed for
our theory, why is inferior behavior not observed for other Daubechies wavelet
families in practice? In fact, it follows from [26] that if one recenters a Daubechies
scaling functionφ at its meanτ = ∫

xφ(x) dx, then the second moment necessarily
vanishes. Thus, up to a horizontal shiftτ , one obtains two vanishing moments “for
free.”

2. The approach to sampled data taken by Donoho and Johnstone [20] works
for a broad class of orthonormal scaling functions, by a less direct construction
relating white noise and sampled data models through multiscale Deslauriers–
Dubuc interpolation.

The construction is based on boundary scaling functionsφB
k for k = −R,

−R + 1, . . . ,R − 2,R − 1, and boundary waveletsψB
k for k = −S + 1,

−S +2, . . . , S −1, S −2. The support of these functions is contained in[0,2S −2]
for k ≥ 0 and in[−(2S − 2),0] for k < 0. We fix a coarse resolution levelL such
that 2S < 2L. At every levelj ≥ L, there are 2j − 2(S − R − 1) scaling functions,
defined by

φjk(x) = 2j/2φB
k (2j x), k ∈ 0 :(R − 1),

φjk(x) = 2j/2φ(2j x − k), k ∈ (S − 1) : (2j − S),

φjk(x) = 2j/2φB
k−2j

(
2j (x − 1)

)
, k ∈ (2j − R) : (2j − 1),
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and 2j wavelets

ψjk(x) = 2j/2ψB
k (2j x), k ∈ 0 :(S − 2),

ψjk(x) = 2j/2ψ(2j x − k), k ∈ (S − 1) : (2j − S),

ψjk(x) = 2j/2ψB
k−2j

(
2j (x − 1)

)
, k ∈ (2j − S + 1) : (2j − 1).

All these functions are supported within[0,1]. There are no scaling functions
defined forR ≤ k < S − 1 or for 2j − S < k < 2j − R, but there are no such gaps
in the definition of the wavelets. TheS − 1 wavelets at each end are boundary
wavelets, and have the same smoothness, on[0,1], and vanishing moments as the
original wavelets. The 2j − 2S interior wavelets are not affected by the boundary
construction, and depend only on the 2J −2S interior scaling functions at the finest
scale. At the coarsest levelL, there will be 2L − 2(S −R − 1) scaling coefficients;
denote byKL−1 the set of indices for which the scaling functionsφLk are defined.
At every levelj ≥ L, defineKB

j to be the set ofk for whichψjk is a scaled version

of a boundary wavelet, andKI
j to be the set ofk for whichψjk is a scaled version

of ψ itself.
Given a functionf on [0,1], we can now define the wavelet expansion off by

f = ∑
k∈KL−1

θL−1,kφL,k +
∞∑

j=L

2j−1∑
k=0

θjkψjk,(32)

where

θL−1,k =
∫ 1

0
f (t)φLk(t) dt for k in KL−1

and

θjk =
∫ 1

0
f (t)ψjk(t) dt for j ≥ L and 0≤ k < 2j .

Where there is a need to distinguish between the boundary and interior wavelet
coefficients, we writeθI for the coefficients withj ≥ L andk ∈ KI

j andθB for

the boundary coefficients, those withj ≥ L andk ∈ KB
j .

5.4. Constructing wavelet coefficients from discrete data. Suppose now that
we are given a vector of observations or of values of a function. In order to map
these to scaling function coefficients at a suitable level, it is necessary to construct
appropriate preconditioning matrices. In this section we define these matrices and
set out certain of their properties. For more details, see [32].

On the left boundary define theR × R matrixW and the(S − 1) × R matrixU

by

Wk
 =
∫ ∞

0
x
φB

k (x) dx, k = 1,2, . . . ,R;
 = 0,1, . . . ,R − 1,

Uj
 = j
, j = 1,2, . . . , S;
 = 0,1, . . . ,R − 1.
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BecauseU is of full rank, we can defineAL to be anR × (S − 1) matrix such that
ALU = W . Similarly, the matrixAR is constructed to satisfyARŪ = W̄ , where

W̄k
 =
∫ 0

−∞
x
φB−k(x) dx, k = 1,2, . . . ,R;
 = 0,1, . . . ,R − 1,

Ūj
 = (−1)
j
, j = 1,2, . . . , S;
 = 0,1, . . . ,R − 1.

Given a sequenceX0,X1, . . . ,XN−1 with N = 2J , define the preconditioned
sequencePJ X by

(PJ X)k =
S−2∑
i=0

AL
kiXi, k ∈ 0 :(R − 1),

(PJ X)k = Xk, k ∈ (S − 1) : (N − S),

(PJ X)k =
S−1∑
i=1

AR
N−k,iXN−i , k ∈ (N − R) : (N − 1).

If the Xi are uncorrelated with variance 1, then the variance matrix of the first
part ofPJ X is AL(AL)′, while that of the last part, with indices taken in reverse
order, isAR(AR)′.

There is some freedom in the choice ofAL and AR . For example, they can
be defined such that not quite all the original sequence is needed to evaluate
the preconditioned sequence. Specifically, to eliminate dependence on the first
or lastS − R − 1 values of the sequence, letU1 be the square invertible matrix
consisting of the lastR rows of U , and letAL = [0R×(S−R−1) :WU−1

1 ], and
AR correspondingly.

If, on the other hand, we have all the values in the sequence, then we have more
freedom to chooseAL andAR . A natural choice isAL = WU+ andAR = W̄ Ū+,
where the superscript+ denotes the Moore–Penrose generalized inverse. These
choices will minimize the traces of the matricesAL(AL)′ andAR(AR)′ and, hence,
the sum of the variances ofPJ X, if we suppose that theXi are uncorrelated with
unit variance.

In general, under the same assumption onX, let cA be the maximum of
the eigenvalues ofAL(AL)′ and AR(AR)′. Let Ỹ be the boundary-corrected
discrete wavelet transform of the sequenceN−1/2PJ X. Then the eigenvalues of
the variance matrix ofPJ X will be bounded bycA. Because of the orthogonality
of the boundary-corrected discrete wavelet transform, the variance of the elements
of Ỹ is bounded bycAN−1.

The arrayỸ I of interior coefficients(Ỹjk :L ≤ j < J,S − 1≤ k ≤ 2j − S) will
only depend onXi for S −1≤ i ≤ N −S, in other words, thoseXi left unchanged
by the preconditioning. Therefore,̃Y I will be an uncorrelated array of variables
with varianceN−1.
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The preconditioning also makes it possible to get very good approximations to
the wavelet coefficients of a smooth functiong from a sequencegJ of discrete
valuesgJ i = g(i2−J ). Define the vectorSJ g to be the preconditioned sequence
PJ gJ . For any smooth functiong, each 2−J/2SJkg is a good approximation to the
scaling coefficient

∫
gφJk of g at levelJ . To be precise, providedg is R times

continuous differentiable on[0,1], we have for eachk,∣∣∣∣SJkg − 2J/2
∫ 1

0
g(t)φJk(t) dt

∣∣∣∣ ≤ c2−JR sup
{∣∣g(R)(x)

∣∣ :x ∈ supp(φJk)
}
.(33)

The result (33) depends on the vanishing moment properties of the scaling
functions and on the construction of the preconditioning matrices. For full details,
see Proposition 3 of [32].

5.5. The boundary-corrected empirical Bayes estimator. In this section we set
out a detailed definition of a boundary corrected version of the empirical Bayes
estimator, and prove that it has attractive theoretical properties. Assume throughout
that a boundary corrected basis is in use.

Assume that forN = 2J we have sufficient observations

Xi = f (i/N) + εi, εi independentN(0,1)

to evaluate the preconditioned sequencePJ Y . Let Ỹ denote the boundary corrected
discrete wavelet transform ofN−1/2PJ X.

Define the estimated coefficient arrayθ̂ as follows:

• Estimate the coarse scaling coefficients by their observed values, so set

θ̂L−1 = ỸL−1.

• Estimate the interior coefficientŝθI by applying the empirical Bayes method
level-by-level to the observed arraỹY I .

• Threshold the boundary coefficients separately. At levelj , use a hard threshold
of τA(j/N)1/2, whereτ2

A ≥ 2(1+ A)cA log2, so that for eachk ∈ KB
j

θ̂jk = ỸjkI [|Ỹjk > τA(j/N)1/2|].
• For unobserved levelsj ≥ L, setθ̂jk = 0.

In our main theoretical discussion, we measure the risk of this estimate as an
estimate of the wavelet expansion of the function itself by

R∗
N,q,s(θ) = E‖θ̂L−1 − θL−1‖q

q +
∞∑

j=L

2sqjE‖θ̂j − θj‖q
q .(34)

If we useθ̂ as an estimate of the discrete wavelet transform arrayθ̂ , then the natural
measure of accuracy is the risk̃R as defined in (29). However, it should be noted
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that because of the preconditioning, the arrayθ̂ only specifies uniquely the values
of the sequencef (i/N) away from the boundaries.

The main result of this section demonstrates that the estimate has optimal-rate
risk behavior overq andp down to zero.

THEOREM 2. Assume that the scaling function φ and the mother wavelet ψ

have R continuous derivatives and support [−S+1, S] for some integer S, and that∫
xmφ(x) dx = 0 for m = 1,2, . . . ,R − 1. Assume that the wavelets and scaling

functions are modified by the boundary construction described above, and that the
thresholding is carried out by a modified threshold method with A ≥ 0. Assume
that the available data and the construction of the estimator are as set out above.

Assume that α > σ , a > s, α < R, and sq ≤ A. Assume either that α > 1
p

or that
α = p = 1. Assume that 0< p ≤ ∞ and 0 < q < 2. Let r = (α − σ)/(2α + 1) and
r ′ = (a − s)/(2a). Let F (C) be the set of functions f whose wavelet coefficients
fall in bα

p,∞(C). Then there is a constant c independent of C such that, for
suitable r ′′′ and suitable λ and λ′,

sup
f ∈F (C)

R∗
N,q,s(f ) ≤ c

{
�(C,N) + CqN−r ′′′q logλ′

N + N−q/2 logλ N
}
,(35)

where �(C,N) is as defined in (27) in Theorem 1, and, for all fixed C,
N−r ′′′q logλ′

N is of smaller order than �(C,N).

The general correspondence between Besov sequence and function norms is
discussed in Section 5.6. The caseα = p = 1 is included because the space defined
by membership of the Besov sequence spaceb1

1,∞(C) is well known to include the
space of functions with appropriately bounded total variation.

If our only concern is for the accuracy of estimation of the arrayθ̃ , then we have
the bound

sup
f ∈F (C)

R̃N,q,s(f ) ≤ c{�(C,N) + N−q/2 logλ N}.(36)

5.6. Besov array norms and function norms. Our theory gives minimax risk
bounds over functions whose array of wavelet coefficients fall inbα

p,∞(C) Besov
sequence balls. Under appropriate assumptions on the wavelet basis, these Besov
sequence norms on the wavelet coefficients are equivalent to the corresponding
Besov function norms on the functions themselves. Relevant results for the specific
case of boundary-corrected wavelets on a bounded interval are considered in detail
in Appendix D of [29]. The equivalence will certainly hold for the wavelets with
bounded support and vanishing moments up to orderR−1, providedp ≥ 1,R ≥ 2,
R > α andα > max(0, 1

p
− 1

2). See also [19, 20] and further literature referenced
there.

The Bα
p,∞ Besov function norm is not very easy to grasp intuitively, and for

integersm it is helpful to compare the Sobolev spaceWm
p , which has norm
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(
∫ |f |p +|f (m)|p)1/p. Our minimax results hold over balls inBm

p,∞ Besov spaces;
for p ≥ 1, the standard result thatWm

p is embedded in the spaceBm
p,∞ shows that

the results will hold for minimax rates over balls in the Sobolev spaceWm
p .

Turn now to the error measure. Suppose thatf is a function with wavelet
expansion given as in (32) above. Given anyσ ≥ 0 and 0< q ≤ 2, define

rq,σ (f ) = ‖θL−1‖q
q +

∞∑
j=L

2sqj‖θj‖q
q,

whereσ = s − 1
2 + 1

q
. This corresponds to the risk measure (24) relative to which

our theoretical bounds are obtained. We state and prove a proposition showing
that the error norm dominates various function seminorms. It follows from the
proposition that, forσ ≥ 0 and forq in (0,2], the bounds on estimation error
proved for the Besov body error measurerq,σ (f ) hold a fortiori for error measured
by the integratedqth power of the derivatives up to orderσ , provided that the
wavelet satisfies appropriate regularity conditions. Note that the lower bounds on
σ andq are zero, rather than the larger bounds onα andp required for full Besov
norm equivalence.

PROPOSITION1. Suppose 0 ≤ σ < R. For any integer r such that 0 ≤ r ≤ σ ,
and q in (0,2], ∫ 1

0

∣∣f (r)(t)
∣∣q dt ≤ crq,σ (f ).

REMARK. The one-sided bound leaves open the possibility that the Sobolev
norm might be much smaller than the BesovBσ

q,q norm on the right-hand side.
However, for 1< q ≤ 2 there is a reverse inequality,

c1‖f ‖Bσ
q,2

≤ ‖f ‖Wσ
q
,

in terms of a Besov norm on the spaceBσ
q,2 (defined, e.g., in [47]). Since the

minimax rate of convergence is the same for theBσ
q,2 and theBσ

q,q error norms on
regular and logarithmic zones [22], it can be said that we are capturing the situation
for the Sobolev norm without too much loss.

5.7. Comparisons. In this section we compare the theoretical results for
empirical Bayes estimators established in Theorems 1 and 2 in this paper with
those known for some other existing thresholds.

The universal thresholdσE

√
2 logN of [21] leads to rates of convergence that

are suboptimal by logarithmic terms in the regular case and some critical cases;
see the detailed discussion in [22], Section 12.1. For example, using the notation
of (26) and (27), the bound on the rate in the regular caseap > sq would be
�(C,N) = C(1−2r)q((logN)/N)rq . The reason that the universal threshold is
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suboptimal in this way is essentially that, in dense cases, thresholds should be
set at a bounded (and small) number of standard deviations, rather than being of
order

√
2 logN .

For the SURE threshold recalled in Section 1.6, Donoho and Johnstone [19] and
Johnstone [27] establish asymptotic optimality results under the special conditions
of squared error loss (q = 2) for estimating the function (σ = 0) over Besov bodies
with p ≥ 1. Since the SURE estimate chooses thresholds to optimize an unbiased
estimate of mean squared error, it is possible with these restrictions to obtain not
only optimal rates, but also to show that the limiting MSE is minimax optimal even
at the level of constants among threshold estimators. By the same token, it is less
clear that one could expect better than optimal rates for other loss functions (say
q < 2)—and even the rate issue remains to be formally investigated.

A more serious restriction of SURE is reflected in the constraintp ≥ 1. As is
discussed in [3] and [33], and illustrated in Figure 5, the SURE criterionÛ (t)

in (11) is far from smooth int . The asymptotic oracle inequality for SURE in
Theorem 4 of [19] contains an error term of crude ordern−1/2, and this term
has prevented any optimality conclusions from being drawn whenp < 1. The
instability shown in Figure 5 seems to derive from the derivative discontinuity
created by the threshold zone: similar plots were obtained when applying the
SURE criterion to the posterior median rule to estimate thresholds.

Related to this is another deficiency of the SURE threshold choice. While SURE
adapts to squared error loss well on “dense” signals, the criterion does not reliably
propose high thresholds for sparse signals. In order to obtain the theoretical results
just cited, it was necessary to introduce a hybrid version of SURE containing a
pretest for sparsity, which if detected, switched to a

√
2 logn threshold. Thus,

the hybrid version creates a grossly discontinuous transition in thresholds which,
while sufficient for the theoretical result, is unattractive in practice. Indeed, the
simulations in [33] found the hybrid modification to be counterproductive in the
examples considered.

Turn now to the levelwise FDR as applied in the wavelet context. While there
has been extensive analysis of the exact adaptive minimax optimality of FDR in
the sparse single sequence model [3] over
p balls and
q losses for 0< p,q ≤ 2,
there has been no published analysis of rates of convergence for a levelwise FDR
estimate in the wavelet shrinkage setting. In unpublished work, IMJ combined
the optimality properties of FDR for sparse signals with the advantages of SURE
for dense signals using an improved pretest for sparsity. Adaptive optimality of
rates of convergence was obtained under the conditions of Theorem 1 in the case
q = 2, σ = 0. However, this work was abandoned in favor of the present empirical
Bayes approach, due to the latter’s smoother transition in threshold choice between
sparse and dense regimes, reflected in better performance in actual examples.

Birgé and Massart [9] investigate a complexity-penalized model selection
approach for Gaussian estimation and give a nonasymptotic risk bound for squared
error loss (the caseq = 2, σ = 0 here). When applied to our setting, their approach
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FIG. 5. Instability of the SURE criterion compared to stability of the MML criterion. Three

replications for Zk
ind∼ N(µk,1) with µk = 7 for k = 1 :5, zero for k = 6 :1000. Top panels

show the SURE criterion Û(t) of (11) (solid ) and its expectation (dashed ). Bottom panels show
the quasi-Cauchy score function (18) (solid ) and its expectation (dashed ) as a function of the
(quasi-)threshold t (w) defined by solving β(t,0) = 1/w. (Johnstone and Silverman [33] has more
on the quasi-threshold.)

yields estimators that are minimax up to constants. The connection between the
kind of “2 log(n/k) per parameter” penalties used by Birgé and Massart [9]
and Abramovich, Benjamini, Donoho and Johnstone [3] and FDR estimation is
discussed further in the introduction to the latter paper. Finally, Paul [41] obtains
optimal rates of convergence in certain inverse problems, again forq = 2, σ = 0,
which in the direct estimation case would reduce to Theorem 1.

There has also been recent work on the optimality of Bayesian wavelet
estimators based on mixture priors, though not from the adaptive estimation
perspective: see, for example, [1, 42].

6. Proofs of main results. The proofs of the main theorems make use of
results of Johnstone and Silverman [33] for the maximum marginal likelihood
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procedure in the single sequence case (3). In Section 6.1 we review these results,
in a form recast to be useful for the multilevel problems raised in the current paper.
In Section 6.2 we begin by giving an intuitive overview of the proof of our main
result. This demonstrates the way that different kinds of error bounds are needed
for different levels of the array; implicit in the proof is the way that the level-
dependent empirical Bayes approach automatically adapts between these. After
our intuitive discussion, the formal proof of Theorem 1 is given. The proof of
Theorem 2 follows in Section 6.3; this makes use of approximation properties of
the boundary-corrected bases and preconditioning operators defined in Sections
5.3 and 5.4 above.

6.1. Results for the single sequence problem. For a vectorθ ∈ R
n, and 0<

q ≤ 2, suppose we have observationsZ ∼ Nn(θ, ε2In). Estimateθ by applying
the marginal maximum likelihood approach to the dataε−1Z and then multiply
the result byε to obtain an estimate ofθ . Assume that we are using a mixture
prior (4) with γ satisfying the assumptions set out in Section 2.1, and a family of
thresholding rules with the bounded shrinkage property. We may use a modified
thresholding method withA > 0, as defined in (7). By convention, letA = 0 denote
the unmodified case. Define

s∗
A(n) =

{
log2+(q−p∧2)/2 n, if A = 0,

n−A(logn)(q−1)/2, if A > 0.
(37)

Then, by making appropriate substitutions into Theorem 2 of [33], we obtain
the following result. The rates of convergence achieved by the leading terms in the
various bounds are the minimax rates for the various parameter classes considered;
see [33] for more details.

THEOREM 3. Suppose that the above assumptions hold and that 0 < p ≤ ∞
and 0< q ≤ 2. Then the estimate θ̂ satisfies the following risk bounds.

(a) (Robustness.)There exists a constant c such that

E‖θ̂ − θ‖q
q ≤ cnεq for all θ .(38)

(b) (Adaptivity for moderately sparse signals.)There exist constants c and
η0 such that, for sufficiently large n, provided C

p
0 < nεpη

p
0 , setting ε1 =

ε

√
log(nεpC

−p
0 ),

sup
‖θ‖p≤C0

E‖θ̂ − θ‖q
q ≤

{
c
{
n1−(q/p)C

q
0 + εqs∗

A(n)
}
, if p ≥ q,

c{Cp
0 ε

q−p
1 + εqs∗

A(n)}, if p < q.
(39)

(c) (Adaptivity for very sparse signals.)For q > p > 0 and A > 0, we also
have, for sufficiently large n,

sup
‖θ‖p≤C0

E‖θ̂ − θ‖q
q ≤ c{Cq

0 + εqs∗
A(n)} for C0 < ε(logn)1/2.(40)
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If q ∈ (1,2], these results also hold if the estimation is carried out with
the posterior mean function for the weight estimated by the marginal maximum
likelihood procedure.

In order to get an intuitive understanding of the way this result will be used
in the multilevel setting, focus attention on the caseq > p and ignore the error
termεqs∗

A(n). The three results in Theorem 3 allow us to consider three zones of
behavior of the underlying signal.

The first zone has large signal-to-noise ratioC0/ε > n1/pη0. Here the best
bound we have is a risk of ordernεq , corresponding to the global risk of the
maximum likelihood estimator̂θMLE(Z) = Z.

In the second zone, the signal-to-noise ratio is smaller and, sinceq > p, the risk
can be substantially reduced by thresholding. A hard threshold rule with threshold
ε1 applied to theZ will typically make an error in any individual coordinate of
at mostε1. A least favorable configuration satisfying the constraint‖θ‖p ≤ C0
would occur with(C0/ε1)

p coordinates of size (a little less than)ε1 each, and the
rest being zero. This leads to a total error of order(C0/ε1)

pε
q
1.

In the third zone, the region described by (40), the signal-to-noise ratio is so
small that there is no benefit to attempting estimation at all, andθ̂0(Z) = 0 is the
natural estimator. This incurs risk‖θ‖q

q ≤ ‖θ‖q
p ≤ C

q
0 .

The discussion forq ≤ p is similar and simpler, involving only two zones, in
the first of which the performance of the estimator is similar to that ofθ̂MLE and in
the second to the zero estimatorθ0. The impact of the theorem is that the empirical
Bayes estimator adaptively achieves, roughly speaking, the best possible behavior
whichever zone the signal actually falls in, without having to specifyp or q or C0
in advance.

We remark that, while Johnstone and Silverman [33] assumed 0< p ≤ 2, we
have subsequently checked that the results extend top ≤ ∞ and we use this
broader range in this paper.

6.2. Proof of Theorem 1.

Heuristic introduction. Before the formal proof, we continue the intuitive
discussion in order to give a heuristic explanation of where the rates of convergence
and the phase change in the proof come from. In addition, we can gain an
understanding of which kinds of estimators and bounds are needed (and, indeed,
are imitated by our empirical Bayes method) at which levels of the transform. The
discussion is inspired by the “modulus of continuity” point of view of Donoho,
Johnstone, Kerkyacharian and Picard [22], but is adapted to the present setting. In
the heuristic discussion, we ignore constants, error terms and so forth.

We apply the bounds of Theorem 3 level by level, with noise levelε = N−1/2.

The multiresolution index structure and Besov body constraints imply that, at
level j , we haven = Kj � 2j and C0 = 2−ajC. In the heuristic discussion
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approximateε1 by (logN/N)1/2 for simplicity, but in the actual proof this
approximation is not used. With these substitutions, in the caseq > p the zones of
Theorem 3 translate to

sup
θ∈bα

p,∞(C)

2sqjE‖θ̂j − θj‖q
q

(41)
≈




2(sq+1)jN−q/2, CN1/22−(a+1/p)j > 1,

2−(ap−sq)jCp

(
N

logN

)−q/2

, CN1/22−(a+1/p)j ≤ 1

andC

(
N

logN

)1/2

2−aj > 1,

2−(a−s)qjCq, C

(
N

logN

)1/2

2−aj < 1.

The first zone corresponds to the coarsest scales; the transition to the middle
zone occurs at scalej1 defined by 2(α+1/2)j1 = CN1/2, and the third bound applies
at scales above the finer indexj2 defined by 2aj2 = C(N/ logN)1/2. The risk
bounds increase geometrically asj rises toj1 and fall off geometrically asj
increases abovej2. The key to the behavior of the overall risk isap − sq, because
this determines the way the risk behaves in the zone betweenj1 andj2.

If ap > sq, then the least favorable index isj1, and with geometric decay
of risks away from this level, the rate is determined by 2(sq+1)j1N−q/2 =
C1−2rN−rq .

If ap < sq, the least favorable index isj2 and the rate is given by 2(s−a)qj2Cq =
C1−2r ′

(logN/N)r
′q. Because of the extra logarithmic terms, this set of values of

(α, σ,p, q) is referred to as the “logarithmic zone.” Compare Figure 6.

FIG. 6. Schematic of risk contributions (41) by level j in the “ logarithmic” phase where ap < sq.
In the setting Z ∼ Nn(θ, ε2In) of Section 6.1,set RSS

p,q(C,n) = inf
θ̂

sup‖θ‖p≤C E‖θ̂ − θ‖q
q .
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If ap = sq, then each level betweenj1 and j2 contributes (in our heuristic
approximation) an amount equal to the maximum in the caseap < sq. There are
O(logN) such levels, leading to an extra logN factor.

We now give the formal proof, following this overall strategy.

Formal proof : division of the risk. We split the sum in (24) into parts
corresponding to the scaling coefficient, large-scale, fine-scale and very fine-scale
parts of the risk. Definen0 andη0 so that (39) is satisfied. Letj1 be the smallest
integer for whichj ≥ max(L, log2 n0) and 21/p × 2−(a+1/p)(j+1)CN1/2 < η0. We
will then be able to apply the bound (39) at levelsj > j1. From the second property
of j1,

2−j1 ≤ c(C2N)−p/{2(1+ap)} = c(C2N)−1/(2α+1).(42)

Also, j1 must satisfy either 2j1 ≤ n0 ∨ 2L or 2(α+1/2)j1 ≤ 21/pη−1
0 CN1/2, so

2j1 ≤ c max
{
1, (C2N)1/(2α+1)}.(43)

Now write

RN,q,s(θ) = E‖θ̂L−1 − θL−1‖q
q + Rlo + Rmid + Rhi,(44)

where

Rlo =
j1∧(J−1)∑

j=L

2sqjE‖θ̂j − θj‖q,

Rmid = ∑
j1<j<J

2sqjE‖θ̂j − θj‖q,

Rhi =
∞∑

j=J

2sqj‖θj‖q
q .

If C2N ≤ 1, then in each case the last term in (26) will dominate the first.
Therefore, we can assume throughout, without loss of generality, thatC > N−1/2,

since there is no point in proving the result for any smaller values ofC. It then
follows from (42) and (43) that 2j1 � (C2N)1/(2α+1).

Scaling function risk. Let bq be theqth absolute moment of a standard normal
random variable. Then

E‖θ̂L−1 − θL−1‖q
q ≤ KL−1bqN−q/2 = cN−q/2.(45)

Note that this holds regardless of the size of the scaling coefficients, and that the
proof of Theorem 1 only uses the bound (25) forj ≥ L.
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Risk at coarse scales. To boundRlo, use the result (38) and the property
sq + 1= q(σ + 1

2) ≥ 1
2q > 0 to give

Rlo ≤ cN−q/2
∑

L≤j≤j1

2(sq+1)j ≤ cN−q/22(1+sq)j1.(46)

Therefore, since(1+ sq)/(2α + 1) = (1
2 − r)q,

Rlo ≤ cN−q/2(C2N)(1/2−r)q ≤ cC(1−2r)qN−rq .(47)

In the caseap > sq, this is exactly of the magnitude required in (26). Ifap ≤ sq,
becauser ≥ r ′ andC2N > 1, the bound (47) will be smaller than the first term
in (26).

Risk at fine scales. As noted previously, by the definition ofj1, the bound (39)
can be applied for the terms in the sum forRmid. If j1 ≥ J −1 there are no terms in
the sum andRmid = 0. Otherwise, setδ = (q −1)/2 if A > 0 and 2+ (q −p∧2)/2
if A = 0 and define

S2 = N−q/2
∑

j1<j<J

2sqj s∗
A(Kj )

(48)
≤ N−q/2

∑
j1<j<J

2−(A−sq)j j δ ≤ cN−q/2(logN)ν,

in every case, using the definition (28) ofν.
Since at levelj we haveC0 = C2−aj , considering the two terms in (39) now

yields

Rmid ≤ c(S1 + S2),(49)

where

S1 =




Cq
∑

j1<j<J

2sqj2(1−q/p)j2−aqj , if p ≥ q,

CpN−(q−p)/2
∑

j1<j<J

2−(ap−sq)j {
log

(
2(2α+1)jN−1C−2)}(q−p)/2

,

if q > p.

We consider four cases forS1 and show that in every caseS1 ≤ c�(C,N).
Combining with the bound (48) forS2 allows us to conclude, in all cases, that

Rmid ≤ c{�(C,N) + N−q/2(logN)ν}.(50)

Case 1a, q ≤ p. In this case we necessarily haveap > sq sincea > s. If
p ≥ q, the exponent in the defining sum forS1 is (sq + 1 − q/p − aq)j =
−(α − σ)qj , and, hence, is geometrically decreasing. Therefore,

S1 ≤ cCq2−(α−σ)qj1 ≤ cCq(C2N)−rq = cC(1−2r)qN−rq .(51)
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Case 1b,q > p and ap > sq . The sum inS1 is now geometrically decreasing
apart from a log term, and so, using the property that 2(2α+1)j1 � C2N ,

S1 ≤ cCpN−(q−p)/22−(ap−sq)j1
{
log

{
2(2α+1)j1N−1C−2)}(q−p)/2

(52)
≤ cCpN−(q−p)/22−(ap−sq)j1 ≤ cC(1−2r)qN−rq .

Case 2a,q > p and sq > ap. In this case, necessarilys > 0 and, therefore,
A > 0 since we requiresq ≤ A. Definej2 by

2aj2 = C(N/ logN)1/2.

We now split the bounding sum forS1 into the two zones(j1, j2) and[j2, J ). In
the lower zone, sinceC2N > 1, we can bound

log
(
2(2α+1)jN−1C−2) ≤ (2α + 1)j2 log 2≤ c logN for j ≤ j2.(53)

In the upper zone we use the bound (40).
The two sums obtained are set out in the following display. Since the terms in the

first sum are geometrically increasing, and in the second geometrically decreasing,
both sums are dominated by a multiple of their value atj = j2:

S1 ≤ cCp(N−1 logN)(q−p)/2
∑

j1<j<min(j2,J )

2(sq−ap)j + cCq
∑
j≥j2

2sqj2−aqj(54)

≤ cCpN−(q−p)/2(logN)(q−p)/22(sq−ap)j2 + cCq2−(a−s)j2

≤ cC(1−2r ′)qN−r ′q(logN)r
′q,(55)

after some algebra, substituting the definition ofj2.

Case 2b, q > p and ap = sq . Argue as in Case 2a, but now the first sum
in (54) is no longer geometric but is bounded byj2 ≤ c logN . Carrying the extra
logN factor through the argument yields

S1 ≤ cC(1−2r ′)q(N/ logN)−r ′q logN = c�(C,N).(56)

Risk at very fine scales. Define� = ( 1
q

− 1
p
)+, so thatr ′′ = a − s − � and,

whatever the relative values ofp andq, ‖θj‖q ≤ 2�j‖θj‖p for eachj . Then

Rhi =
∞∑

j=J

2sqj‖θj‖q
q ≤

∞∑
j=J

2sqj2�qj‖θj‖q
p

(57)

≤ Cq
∞∑

j=J

2−(a−s−�)qj = cCqN−r ′′q.
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Conclusion of proof and consideration of related results. Combining the
bounds (45), (47), (50) and (57) now completes the proof of Theorem 1.

To obtain (30) subject to the constraints (23), we follow exactly the same
argument, noting that there are no coefficients to estimate forj ≥ J , and so there
is no term corresponding to (57).

To prove the result (31), where observations at all scales are available, modify
the limits of summation where necessary. In the calculations forRmid, the sums
are extended toj = J 2 where appropriate. None of the bounds forS1 is affected,
but forS2 the calculation in (48) becomes

S2 ≤ N−q/2
∑

j1<j<J 2

2−(A−sq)j j δ ≤ cN−q/2(J 2)ν = cN−q/2 log2ν N.

On the other hand, the sum in (57) now starts atj = J 2, leading to a bound

Rhi ≤ cCq2−r ′′qJ 2 = cCq exp(−c log2 N).

Incorporating these two changes into the main argument leads to the result (31).

6.3. Proof of Theorem 2.

Remarks and preliminaries. In the estimation problem considered, the se-
quenceSJ f is the vector of expected values of the preconditioned dataPJ X.
Define θ̃ to be the boundary-corrected discrete wavelet transform ofN−1/2SJ f .
Our procedure uses what is essentially an estimate ofθ̃ to estimate the true coef-
ficientsθ . The conditions of Theorem 2 allow the difference between these two
arrays to be bounded; by Proposition 4 of [32] we have

2aj‖θj − θ̃j‖p ≤ cC2−ᾱ(J−j) for all j with L − 1≤ j < J ,(58)

where ᾱ = α − ( 1
p

− 1)+ > 1
2. An immediate corollary is that, for some fixed

constantc,

‖θ̃j‖p ≤ cC2−aj for L − 1≤ j < J .(59)

Therefore, the “discretized” coefficient arrayθ̃ obeys (up to a constant) the same
Besov sequence bounds as the “true” coefficient arrayθ .

The precise value of the constantr ′′′ in the theorem is min{a − s, α − σ, ᾱ} =
min{r ′′, ᾱ}, with λ′ = 1 if ᾱ = min(a − s, α −σ) and 0 otherwise. We have already
noted in the remarks following Theorem 1 thatN−r ′′q is always of lower order than
�(C,N) for fixed C. The same is true ofN−r ′′′q logλ′

N sinceᾱ > 1
2 and the log

term can only be present ifr ′′′ > 1
2.
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Main component of error. Use the convention thatI refers to the interior
coefficients andB to the boundary coefficients. ThẽYjk each have expected
valueθ̃jk , and for the interior coefficients are independent normals with variance 1.
Because of the bound (59), we can argue exactly as in Theorem 1 to obtain

J−1∑
j=L

2sqjE‖θ̂ I
j − θ̃ I

j ‖q
q + ∑

j>J

2sqj‖θj‖q
q

(60)
≤ c

{
�(C,N) + CqN−r ′′q + N−q/2 logν N

}
,

whereν is as defined in (28).
Equation (60) gives the main part of the risk bound in Theorem 2, and the

remainder of the proof consists in controlling all the other contributing errors.

Coarse scale error. Consider first the coarse level scaling coefficientsθL−1.
Since the variance of each element ofθ̂L−1 = ỸL−1 is bounded byN−1cA we have

E‖θ̂L−1 − θ̃L−1‖q
q ≤ cN−q/2c

q/2
A 2L ≤ cN−q/2.(61)

Boundary coefficients. The contribution of the estimates of the boundary
coefficients is considered in the following proposition.

PROPOSITION2. Under the assumptions of Theorem 2, uniformly over F (C)

as J → ∞,

J−1∑
j=L

2sqjE‖θ̂B
j − θ̃B

j ‖q
q ≤ c

{
C(1−2r ′)q(N/ logN)−r ′q + N−q/2}.(62)

PROOF. DefineRboundaryto be the sum on the left-hand side of (62). The array
θB has the same number of coefficients at every levelj ≥ L, and the elements
of the arrayỸ B are normally distributed with expected valuesθ̃B , and variances
bounded bycAN−1. We obtain theθ̂B

jk by individually hard thresholding thẽYB
jk

with thresholdτA(j/N)1/2, so by standard properties ofq-norms and thresholding,

E|θ̂jk − θ̃jk|q ≤ c(E|θ̂jk − Ỹjk|q + E|Ỹjk − θ̃jk|q)
≤ c(jq/22−qJ/2 + 2−qJ/2)(63)

≤ cjq/22−qJ/2.

If s < 0, use the bound (63) to give

Rboundary≤ c2−Jq/2
J−1∑
j=L

jq/22sqj ≤ cN−q/2.(64)
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For s ≥ 0, definej2 by 2aj2 = C(N/ logN)1/2 and split the risk into two
parts. LettingRlo be the risk for boundary coefficients at levels below min(j2, J ),
arguing as in (64),

Rlo ≤ cN−q/2
j2∧(J−1)∑

j=L

jq/22sqj

≤ c(N/ logN)−q/22sqj2(65)

≤ cC(1−2r ′)q(N/ logN)−r ′q .

Let Rhi be the contribution toRboundary from levels j ≥ j2. For j ≥ j2, by
Proposition 1 of [33], taking account of the boundcA on the variance of thẽYjk ,

E|θ̂jk − θ̃jk|q ≤ c
{|θ̃jk|q + c

−1/2
A j(q−1)/2N−q/2ϕ(c

−1/2
A τAj1/2)

}
(66)

≤ c
{|θ̃jk|q + j (q−1)/2N−q/22−(1+A)j}

.

Substituting the bound (66) and using the propertysq ≤ A gives

Rhi ≤ c
∑

j2≤j<J

2jsq‖θ̃B
j ‖q

q + cN−q/2
∑
j≥j2

j (q−1)/22−j .(67)

Since the vector̃θB
j is the same length for allj , for some constantc independent

of j we have‖θ̃B
j ‖q ≤ c‖θ̃B

j ‖p ≤ cC2−aj by the bound (59). Therefore,

Rhi ≤ c
∑
j≥j2

2jsq2−jaqCq + cN−q/2

≤ cCq2−(a−s)qj2 + cN−q/2(68)

≤ cC(1−2r ′)qN−r ′q logr ′q N + cN−q/2.

To complete the proof, combine the bounds in (64), (65) and (68).�

Discretization bias. The risks (60), (61) and (62) all quantify errors around
the discretized coefficients̃θ . To control the difference in the risk norm between
these coefficients and the true coefficientsθ , define� = ( 1

q
− 1

p
)+ as in the proof

of (57). Using the bound (58) and the propertyr ′′ = a − s − �, it follows that

J−1∑
j=L−1

2sqj‖θ̃j − θj‖q
q ≤

J−1∑
j=L−1

2(s+�)qj‖θ̃j − θj‖q
p

(69)

≤ cCq2−ᾱqJ
J−1∑

j=L−1

2(ᾱ−r ′′)qj .
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If ᾱ ≤ r ′′, the expression is bounded bycCqJ λ′
2−ᾱqJ sinceλ′ = 1 if and only if

ᾱ = r ′′. On the other hand, if̄α > r ′′, the sum in (69) is geometrically increasing,
and so the expression is of ordercCq2−r ′′qJ . Sincer ′′′ = min(r ′′, ᾱ), all cases are
combined in the bound

J−1∑
j=L−1

2sqj‖θ̃j − θj‖q
q ≤ cCqN−r ′′′q(logN)λ

′
.(70)

Completing the proof. To complete the proof of Theorem 2, we combine the
bounds (60), (61), (62) and (70). Forr ′ ≤ r , this gives the required result, with
λ = ν.

For r ′ > r , we have an additional term from (62), proportional toC(1−2r ′)q ×
(N/ logN)−r ′q . By elementary manipulation, we have

C(1−2r ′)(N/ logN)−r ′

≤
{

C(1−2r)N−r , if (C2N)r
′−r ≥ (logN)r

′
,

N−1/2(logN)(1/2)r ′(1−2r)/(r ′−r), if (C2N)r
′−r < (logN)r

′
.

It follows that the bound (35) holds for this case also, settingλ = max{ν, 1
2qr ′ ×

(1− 2r)/(r ′ − r)}. This completes the proof of Theorem 2.
The corresponding theorem with periodic boundary conditions on the functions

and the wavelet decompositions is also true, and can be proved by a simplified
version of the same approach, without any need for preconditioning or for the
consideration of boundary coefficients.

To prove the result (36), we use exactly the same argument as above, but there is
no need to include the discretization error or the error due to levels of the transform
with j ≥ J .

7. Further proofs and remarks.

7.1. Proof of Proposition 1. Note first that, forq > 1 and values of the other
parameters such thatrq,σ can be shown to be equivalent to the corresponding
function Besov norm, the result follows from the embedding of the Besov space
B

σ,q
q in the Sobolev spaceWr

q consequent on results in Section 3.2 of [47].
However, to deal explicitly with all parameter values and with our boundary
construction, we give an argument that does not use this embedding.

If q ≤ 1, the functionψ
(r)
jk has support of length at most(2S − 1)2−j/2 and

maximum absolute value bounded byc2j/22rj . Therefore, for allj andk,∫ ∣∣ψ(r)
jk

∣∣q ≤ c2−j/22jq/22rjq ≤ c2sjq .
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A direct calculation using the property|x + y|q ≤ |x|q + |y|q now shows that∫ 1

0

∣∣f (r)(t)
∣∣q dt

≤ ∑
k∈KL−1

∣∣θL−1,k

∣∣q ∫ 1

0

∣∣φ(r)
L,k

∣∣q +
∞∑

j=L

2j−1∑
k=0

|θjk|q
∫ 1

0

∣∣ψ(r)
jk

∣∣q
(71)

≤ c‖θL−1‖q
q + c

∞∑
j=L

2sjq‖θj‖q
q

≤ crq,σ (f ).

For 1< q ≤ 2, we consider the interior and boundary cofficients off separately.
Define

fL = ∑
k∈KL−1

θL−1,kφLk, fI =
∞∑

j=L

∑
k∈KI

j

θjkψjk, fB =
∞∑

j=L

∑
k∈KB

j

θjkψjk.

We have, first,∫ 1

0

∣∣f (r)
L (t)

∣∣q dt ≤ sup
t

∣∣f (r)
L (t)

∣∣q

≤ ‖θL−1‖q∞ sup
t

( ∑
k∈KL−1

∣∣φ(r)
Lk (t)

∣∣)q

(72)

≤ c‖θL−1‖q
q .

Now consider fI . Let χjk(x) be the indicator function of the interval
[2−j k,2−j (k +1)]. By Theorem 2 of Chapter 6 of [37], using the fact that1

2q ≤ 1,

∫ 1

0

∣∣f (r)
I (t)

∣∣q dt ≤ c

∫ 1

0

∣∣∣∣∣
∞∑

j=L

∑
k∈KI

j

2j22jrθ2
jkχjk(x)

∣∣∣∣∣
q/2

dx

≤ c

∞∑
j=L

∑
k∈KI

j

∫ 1

0
|2j22jrθ2

jkχjk(x)|q/2 dx(73)

= c

∞∑
j=L

2qj/22qjr2−j‖θj‖q
q

≤ c

∞∑
j=L

2sqj‖θj‖q
q.



1748 I. M. JOHNSTONE AND B. W. SILVERMAN

Finally, we consider the contribution from the boundary wavelets. LetSj be the
union of the supports of the boundary wavelets at levelj . DefineTj = Sj \ Sj+1

andaj = 2(r+1/2)j‖θj‖q . Then∑
k∈KB

j

∣∣θjkψ
(r)
jk

∣∣ ≤ max

∈KB

j

|θj
|
∑

k∈KB
j

∣∣ψ(r)
jk (t)

∣∣
(74)

≤ c‖θj‖q2(r+1/2)j I [Sj ] = caj I [Sj ].
Using (74), the nesting properties of theSj , and the property that|T
| = c2−
,

we obtain, applying Hölder’s inequality,

∫
T


∣∣f (r)
B (t)

∣∣q dt ≤ c

∫
T


( ∞∑
j=L

aj I [Sj ]
)q

= c

∫
T


(

∑

j=L

aj

)q

(75)

= c2−


(

∑

j=L

aj

)q

≤ c2−
/2

∑

j=L

2−j/2a
q
j .

Using the bound (75) for each term, we can now conclude that
∫ 1

0

∣∣f (r)
B (t)

∣∣q dt =
∞∑


=L

∫
T


∣∣f (r)
B (t)

∣∣q dt

≤ c

∞∑

=L

{
2−
/2


∑
j=L

2−j/2a
q
j

}

(76)

= c

∞∑
j=L

(
2−j/2a

q
j

∞∑

=j

2−
/2

)

= c

∞∑
j=L

2−j a
q
j ≤ c

∞∑
j=L

2sqj‖θj‖q
q.

Using the bounds (72), (73) and (76), we can conclude that∫ 1

0

∣∣f (r)(t)
∣∣q dt ≤ c

(∫ ∣∣f (r)
L

∣∣q +
∫ ∣∣f (r)

I

∣∣q +
∫ ∣∣f (r)

B

∣∣q)
≤ crq,σ (f ),

completing the proof.

7.2. How much is lost without bounded shrinkage? The Besov space adap-
tivity result Theorem 1 provides a context within which the importance of the
bounded shrinkage property can be assessed. Construct a coefficient arrayθ by
settingθ3,0 = C2−3a and all otherθjk = 0. Then for anyp, ρ andα, θ will be a
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member of the Besov sequence spacebα
p,ρ(C). (Obviously the choice of level 3

to have a single nonzero element is arbitrary, and any other fixed position can be
used.)

Let Z = N1/2Y3,0 andµ = N1/2θ3,0. Use the mixture prior(1 − w)δ0 + wγ

for µ, settingγ to be the normalN(0, τ2) density. Whatever the value ofw, the
posterior median function then has the property

|µ̂(z,w)| ≤ λτ |z| whereλτ = τ2/(1+ τ2),

and the same inequality holds for the posterior mean. Sinceµ > 0, whetherw is a
fixed or random weight, we have

E(µ̂ − µ)2 ≥ E(µ̂ − µ)2I [Z < µ] ≥ 1
2(1− λτ )

2µ2.(77)

Multiplying both sides of (77) byN−1 shows that the the mean square error risk
satisfies

RN,2,0(θ) ≥ E(θ̂3,0 − θ3,0)
2 ≥ 1

2(1− λτ )
2θ2

3,0 = 1
2(1− λτ )

22−6aC2,

which does not tend to zero asN → ∞. Hence, the maximum risk over any Besov
sequence class does not diminish asN increases, and no adaptivity result of the
type given in Theorem 1 can be proved.

In the case whereγ has tails asymptotic to exp(−c|t |λ) for someλ ∈ (1,2),

it can be shown that, at least for largeµ, |µ̂ − µ| ≥ cµλ−1. Consideration of the
same counterexample as above then demonstrates that, again, however the weight
is chosen, the maximum risk over the Besov sequence space is bounded below
by a multiple ofN−2+λ. For largeα this will dominate the rate in Theorem 1,
and thus the assumption thatγ has tails at least as heavy as exponential cannot
essentially be relaxed without restricting or removing the adaptivity demonstrated
by the theorem.

7.3. Results for the posterior mean. If the estimation is conducted using the
posterior mean rather than a strict thresholding rule, the results of Theorems
1 and 2 still hold for 1< q ≤ 2, since the bounds of Theorem 3 apply in this case.
For smaller values ofq in the single sequence case, Johnstone and Silverman [33]
show that the failure of the posterior mean to be a strict thresholding rule has
a substantive effect on the overall risk. However, their counterexample does not
unequivocally settle the question of the behavior of the posterior mean estimator
in the wavelet case. The possible extension or modification of the theorems for the
posterior mean estimator forq ≤ 1 is a topic for future investigation.
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