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EMPIRICAL BAYES SELECTION OF WAVELET THRESHOLDS

BY IAIN M. JOHNSTONE' AND BERNARD W. SILVERMAN ?
Sanford University and University of Oxford

This paper explores a class of empirical Bayes methods for level-
dependent threshold selection in wavelet shrinkage. The prior considered
for each wavelet coefficient is a mixture of an atom of probability at zero
and a heavy-tailed density. The mixing weight, or sparsity parameter, for
each level of the transform is chosen by marginal maximum likelihood.
If estimation is carried out using the posterior median, this is a random
thresholding procedure; the estimation can also be carried out using other
thresholding rules with the same threshold. Details of the calculations needed
for implementing the procedure are included. In practice, the estimates
are quick to compute and there is software available. Simulations on the
standard model functions show excellent performance, and applications to
data drawn from various fields of application are used to explore the practical
performance of the approach.

By using a general result on the risk of the corresponding marginal
maximum likelihood approach for a single sequence, overall bounds on
the risk of the method are found subject to membership of the unknown
function in one of a wide range of Besov classes, covering also the case
of f of bounded variation. The rates obtained are optimal for any value of
the parametep in (0, co], simultaneously for a wide range of loss functions,
each dominating the, norm of thesth derivative, witho > 0and 0< ¢ < 2.

Attention is paid to the distinction between sampling the unknown
function within white noise and sampling at discrete points, and between
placing constraints on the function itself and on the discrete wavelet transform
of its sequence of values at the observation points. Results for all relevant
combinations of these scenarios are obtained. In some cases a key feature of
the theory is a particular boundary-corrected wavelet basis, details of which
are discussed.

Overall, the approach described seems so far unique in combining
the properties of fast computation, good theoretical properties and good
performance in simulations and in practice. A key feature appears to be that
the estimate of sparsity adapts to three different zones of estimation, first
where the signal is not sparse enough for thresholding to be of benefit, second
where an appropriately chosen threshold results in substantially improved
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estimation, and third where the signal is so sparse that the zero estimate gives
the optimum accuracy rate.

1. Introduction.

1.1. Background. Consider the nonparametric regression problem where we
have observations at’ 2egularly spaced points of some unknown functiorf
subject to noise

(1) Xi=f)+ei,

where theg; are independen¥ (O, a,%) random variables. The standard wavelet-
based approaches to the estimationfoproceed by taking the discrete wavelet
transform of the dat&;, processing the resulting coefficients to remove noise,
usually by some form of thresholding, and then transforming back to obtain the
estimate.

The underlying notion behind wavelet methods is that the unknown function
has an economical wavelet expression, in tfids, or is well approximated by,

a function with a relatively small proportion of nonzero wavelet coefficients. The
quality of estimation is quite sensitive to the choice of threshold, with the best
choice being dependent on the problem setting. In general terms, “sparse” signals
call for relatively high thresholds 63, 40 or even higher), while “dense” signals
might demand choices ob2 or even lower. Indeed, it is typical that the wavelet
coefficients of a true signal will be relatively more sparse at the fine resolution
scales than at the coarser scales. It is therefore desirable to develop threshold
selection methods that adapt the threshold level by level.

One would hope that such methods would estimate thresholds that stably reflect
the gradation from sparse to dense signals as the scale changes from fine to coarse.
It has proven elusive to construct threshold selectors that combine properties
such as these with good theoretical properties. The principal motivation for the
work reported in the present paper is to show that a simple empirical Bayesian
approach combines computational tractability with good theoretical and practical
performance. For software availability, see Section 1.8.

While the present paper is concerned with the nonparametric regression
model (1) and wavelet transforms, the same levelwise empirical Bayes approach
is, in principle, directly applicable to other direct and indirect transform shrinkage
settings with multiscale block structure, as briefly discussed in [28].

1.2. Bayesian approaches to wavelet regression.  Within a Bayesian context,
the notion of sparsity is naturally modeled by a suitable prior distribution for
the wavelet coefficients of . Write 4 for the elements of the discrete wavelet
transform (DWT) of the vector of valugs(s;) andd’, for the DWT of the observed

dataX;. LetN =2/ andfy = N~Y2d .
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Clyde, Parmigiani and Vidakovic [13], Abramovich, Sapatinas and
Silverman [4] and Silverman [46] have considered a particular mixture prior for
this problem. Under this prior, the;;, are independently distributed with

) djr ~ (1—7)8(0) +7;N(O, 7)),

a mixture of an atom of probability at zero and a normal distribution with
variancerjz. The parameters of the distribution (2) depend on the lgved the
coefficient in the transform. A related prior was considered by Chipman, Kolaczyk
and McCulloch [11]; for a survey of work in this area, see [48]. See also [12, 38,
44, 50, 51] for a range of approaches to the modeling of the wavelet coefficients
underlying a function or image. [31] is an early version introducing the approach
of the present paper.

The most popular summary of the posterior distribution under the model (2)
has been the posterior mean, but Abramovich, Sapatinas and Silverman [4]
investigated the use of the posterior media gf as a summary of the posterior
distribution. This is a true thresholding rule, in that fmjk| less than some
threshold, the point estimate @f; will be exactly zero. In the wavelet context, the
coefficient-wise posterior median corresponds to a point estimate of the posterior
distribution under a family of loss function equivalenttd norms on the function
and its derivatives. Such! losses are in any case more natural if one wishes
to allow for the possibility of inhomogeneous functions, one of the aims of the
wavelet approach.

1.3. Choosing the parameters in the prior. How should the parameters in
the prior be chosen? In much of the existing literature, the parameters are either
chosen directly by reference to prior information abgubr by a combination of
prior information and data-based criteria. Though some of these, for example, the
BayesThresh approach of Abramovich, Sapatinas and Silverman [4], give good
results, they clearly invite the possibility of a more systematic approach to the
choice of the hyperparameters. In the present paper we take an empirical Bayes (or
marginal maximum likelihood) approach, which yields a completely data-based
method of choosing the prior parameters. Within the Bayesian formulation set
out above, wavelet regression at a single resolution Igusla special case of a
single sequence Bayesian model selection problem considered, among others, by
George and Foster [24, 25]. This problem is considered in detail by Johnstone and
Silverman [33]; we review the basic method presented there and also give some
additional implementational details.

Suppose thaZ = (71, ..., Z,) are observations satisfying

(3) Zi = ui +¢i,

where theg; are independend¥ (0, 1) random variables. It is supposed that the
unknown coefficientsu; are mostly zero, but some of them may be nonzero,
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and, with this in mind, it is of interest to estimate the on the basis of the
observed data. In the model selection context, the nongeroorrespond to
parameters that actually enter the model. The connection with wavelet regression
is natural: theZ; might be the sample wavelet coefficients (suitably renormalized)
at a particular level, and these are noisy observations of a sequence of population
wavelet coefficients which are mostly zero.

The parameterg; are modeled as having independent prior distributions each
given by the mixture

(4) Sprior(t) = (1 — w)do(p) + wy (u).

The nonzero part of the prioy, is assumed to be a fixed unimodal symmetric
density. In most of the previous wavelet work cited above, the density a
normal density, but we use a heavier-tailed prior, replacing Ni6, rjz) part
of the mixture (2) by, for example, a double exponential distribution with a
scale parameter that may depend on the level of the coefficient in the transform.
Another possible prior, with still heavier tails, is introduced in Section 2. Apart
from the theoretical advantages of such an approach, Wainwright, Simoncelli and
Willsky [50] argue that the marginal distribution of the wavelet coefficients of
images arising in practice typically has tails heavier than Gaussian. In the Bayesian
setup, the noisés;) is independent of the wavelet coefficients.

Let g = y ¢, wherex denotes convolution. To avoid confusion with the scaling
function of the wavelet family, we ugeto denote the standard normal density. The
marginal density of the observatio#s will then be

1—w)p(z) + wg(z).

We define the marginal maximum likelihood estimafoof w to be the maximizer
of the marginal log-likelihood

(5) L(w) = log{(1—w)e(Z;) +wg(Z)},
i=1

subject to the constraint om that the threshold satisfiesw) < ./2logn. This
upper limit on the threshold is theiversal threshold, which has the property that
itis asymptotically the largest absolute value for observations obtained from a zero
signal, and can therefore be considered to be the appropriate limiting threshold as
w— 0.

Our basic approach is then to plug the valueback into the prior and then
estimate the parameteus by a Bayesian procedure using this valuevoSuppose
w has prior (4) and that we obsen®~ N(u,1). Let fi(z; w) be the median
of the posterior distribution ofx given Z = z and fi(z; w) its mean. If the
posterior median is used, then will be estimated byi; = 1 (Z;, w), while the
corresponding estimate using the posterior mean is (i (Z;; w).
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For fixedw < 1, the function/i(z; w) will be a monotonic function of with
the thresholding property, in that there exist®) > 0 such thati(z; w) =0 if
and only if|z| < ¢ (w). The estimated weighb thus yields an estimated threshold
t(w) =1, say. A simple extension of the method is to retain the threshbist to
use a more general thresholding rule, for example, hard or soft thresholding. The
main emphasis of this paper is on the choice of the threshold, rather than on the
choice between different thresholding rules.

The posterior mean rulg(z; w) fails to have the thresholding property, and,
hence, produces estimates in which, essentially, all the coefficients are nonzero.
Nevertheless, it has shrinkage properties that allow it to give good results. We shall
see that, both in theory and in simulation studies, the performance of the posterior
mean is good, but not quite as good as the posterior median.

The same approach can be used to estimate other parameters of the prior. In
particular, if a scale parameteris incorporated by considering a prior density
(1 — w)do(n) + way(awn), defineg, to be the convolution ofiy (a-) with the
normal density. Then botthhandw can be estimated by finding the maximum over
both parameters of

t(w,a) =) _1og{(1 — w)¢(Z:) + wga(Zi)}.
i=1

In the case where there is no scale parameter to be estinddtedljs a monotonic
function ofw, so its root is very easily found numerically, provided the funcgon

is tractable. If one is maximizing over both anda, then a package numerical
maximization routine that uses gradients has been found to be an acceptably
efficient way of maximizing(w, a).

Details of relevant calculations for some particular priors are given in Sec-
tion 2.2. All these calculations are implemented in the authors’ package, Johnstone
and Silverman [34], and the documentation of that package gives further details
beyond those given in this paper.

1.4. Marginal maximum likelihood in the wavelet context. In the wavelet
context, the MML approach is applied to each level of the wavelet transform
separately, to yield values af and, if appropriateqg that depend on the level of
the transform. Letrj2 be the standard deviation of the noise at leeAssuming
that the original noise is independent, the varias¢ewill be the same for allj
and can, as is conventional, be estimated from the median of the absolute values
of the coefficients at the highest level. More generally, for example, in the case
of stationary correlated noise, it may be appropriate to estimateparately for
each level, at least at the higher levels of the transform. In this paper we have not
considered the effect of sampling variability in the estimation of the noise variance,
but that would be an interesting topic for future research.
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At level j, define the sequencg;, = d;‘fk/oj, and apply the single sequence
MML approach to this sequence to obtain and, if appropriate, estimates of any
other parameters of the prior. The estimated wavelet coefficients of the discrete
wavelet transform of the sequengér;) are then given by

(6) djx =0 (d} /o) )).

Assuming, without loss of generality, that the functifis defined on the interval
[0, 1] and the valueg; = i/N, crude estimates of the wavelet coefficients of the
function f are therg;; = N—l/zdjk, neglecting boundary issues for the moment.

Straightforward generalizations. Natural generalizations of (6) include the
inclusion of estimates of other parameters in the prior, as well as the use of the
posterior mean instead of the posterior median, or the use of a more general
thresholding rule than the posterior median, but still using the posterior median
thresholds (w). In addition, we consider two further generalizations.

Modified thresholds for the estimation of derivatives. When wavelet methods
are used to estimate derivatives, it was shown by Abramovich and Silverman [5]
that the appropriate universal threshold is rg2logn, but is a multiple of
this quantity. We develop theory below using, for the estimation of derivatives,
a modified threshold, (w) given, for some appropriately chosdn> 0, by

t(w), if #(w)? < 2logn — 5loglogn,
21+ A)logn, otherwise.

The translation-invariant wavelet transform. It is by now well recognized
that the translation-invariant wavelet transform [15], in general, gives much better
results than the conventional transform applied with a fixed origin. At each jevel
the translation-invariant transform gives a sequence ‘ofvélues that are not
actually independent. Each subsequence obtained by regular selection at intervals
2/=J will be independent, and corresponds to the coefficients at jewélthe
standard wavelet expansion with a particular choice of origin.

One way of proceeding would be to apply the empirical Bayes method entirely
separately for each of these subsequences to obtain estimates of the relevant
coefficients in the translation-invariant wavelet transform. It is simpler and more
natural, however, to use the same estimates of the mixture hyperparameters for
every position of the time origin, thereby borrowing strength in the estimation
of the hyperparameters between the different positions of the origin. To obtain
a single estimate at each level, we maximize the average, over choice of origin,
of the marginal log-likelihood functions. This average is2/) times the “as-
if-independent” log-likelihood function obtained by simply summing the log-
likelihoods for each of the 2 coefficients at levelj in the translation-invariant
transform.

(7) ta(w) =
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The estimates of the mixture parameters are then used to give individual
posterior medians of each of the coefficients of the translation-invariant transform,
and the estimated function is found by the average basis approach. Apart from the
combination of log-likelihoods involved in the estimation of the hyperparameters,
the translation-invariant method gives the result of applying the standard method
at every possible choice of time origin, and then averaging over the position of the
time origin.

Using an as-if-independent likelihood at each level to choose the hyperparame-
ters is reminiscent of thimdependence estimating equation approach of Liang and
Zeger [35] to parameter fitting in the marginal distribution of a sequence of iden-
tically distributed but nonindependent observations. Their paper was concerned
with observations with generalized linear model dependence on the parameters
and covariates. Because, for different choices of origin, the prior distributions on
the coefficients are not, in general, generated from a single underlying prior model
for the curve, our translation-invariant procedure involves a separate modeling of
the prior information at each origin position, modulé=2 for the coefficients at
level j. Independence estimating equations, as we have used them, are a method
of combining the separate problems of choosing the prior into a single problem at
each level.

1.5. Theoretical approach and results. By now a classic way to study the
adaptivity of wavelet smoothing methods is through the study of the worst behavior
of a method when the wavelet coefficients of the functiprare constrained
to lie in a particular Besov sequence space, corresponding to Besov function
space membership of the function itself. Besov spaces are a flexible family that,
depending on their parameters, can allow for varying degrees of inhomogeneity,
as well as smoothness in the functions that they contain. Some relations between
Besov spaces and spaces defined.ynorms on function and their derivatives
are reviewed in Section 5.6. We shall show that the empirical Bayes method with
a suitable functiory automatically achieves the best possible minimax rate over a
wide range of Besov spaces, including those with very low values of the parameter
p that allows for inhomogeneity in the unknown functign

A particular case of the theory we develop is as follows; fuller details of the
assumptions will be given later in the paper. Suppose that we have observations
X; = f(t;)+¢; ofafunctionf at N regularly spaced pointg, with ¢; independent
N (O, ag) random variables. Let;; = Nl/ze‘,-k be the coefficients of an orthogonal
discrete wavelet transform of the sequerfcg ), and letd; denote the vector with
elementsi;; ask varies.

Assume that the coarsest level to which the wavelet transform is carried out is a
fixed level L > 0. Denote byd; 1 the vector of scaling coefficient(s) at this level.

If periodic boundary conditions are being used anhas a power of 2, the vector
djisoflength 2 if j > L and 2 if j =L —1, andN =2/, whereJ — 1 is the
finest level at which the sample coefficients are defined.
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To allow for discrete wavelet transforms based on other boundary conditions
and with values ofV that are other suitable multiples of powers of 2, we shall
make the milder assumptions thtis defined forL — 1 < j < J, with L fixed
andJ — oo as N — oo, that the sum of the lengths of thg is equal toN,
and that the length of eacly for j > L is in the interval[2/~1, 2/1. The length
of the vectord; _1 of scaling coefficients is assumed to lie[RF 1, 2], so that
2/ 1< N <2/,

Estimate the coefficientd;; for j > L by the estimate in (6), applying an
empirical Bayes approach level by level, based on a mixture prior with a heavy-
tailed nonzero componemt The estimator can be either the posterior median or
some other thresholding rule using the same threshold (and obeying a bounded
shrinkage condition set out later). The scaling coefficieits; are estimated by
their observed valued; _;. To obtain the estimateﬁ(ti) of the function values

f (), apply the inverse discrete wavelet transform to the estimated éjr[ay
For O< p < o0 anda > % —Lleta=a— % + 1. Define the Besov sequence
spaceb . (C) to be the set of all coefficient arragssuch that

(8) Y 10jlP <cP27Pl forall jwith L —1<j <.
k

Our theory shows that, for some constanpossibly depending op anda but
notonN or C,

N
sup NPED(f) — fan))?

thg,oc(C) i=1
< C{CZ/(ZIX+1)N—2(¥/(20!+1) + N‘l(log N)4}

For fixed C, the second term in the bound (9) is negligible, and the rate
O (N—2/(22+1)y of decay of the mean square error is the best that can be attained
over the relevant function class. The result (9) thus shows that, apart from the
O(N~llog* N) term, our estimation method simultaneously attains the optimum
rate over a wide range of function classes, thus automatically adapting to the
regularity of the underlying function. Under conditions we shall discuss, the Besov
sequence space norm used in (8) is equivalent to a Besov function space nfrm on
with the same parameters.

The main theorem of the paper goes considerably beyond (9), in the following
respects:

(9)

e It demonstrates the optimal rate of convergence for mgeanrm errors for all
0 < ¢ < 2, not just the mean square error considered in (9).

e Beyond the posterior median, any thresholding method satisfying certain mild
conditions can be used, and, foxlg < 2, the results also hold for the posterior
mean.
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o If an appropriate modified threshold method is used, the optimality also extends
to the estimation of derivatives gf.

Most of the existing statistical wavelet literature concentrates explicitly or
implicitly on the white noise model, where we assume that we have independent
observations of the wavelet coefficients of the function up to some resolution level.
Little attention has been paid to the errors possibly introduced by the discretization
of f. However, Donoho and Johnstone [20] discuss a form of discretization
somewhat different from simple sampling at discrete points. Another issue not
considered in detail in much of the present literature is the careful treatment
in a statistical context of boundary-corrected wavelet methods, such as those
introduced by Cohen, Daubechies and Vial [14]. In the current paper we do
consider the effects of discretization and of boundary correction, and we prove
theorems for both the white noise model and for a sampled data model.

In particular, suppose that the functighis observed of0, 1] at a regular grid
of N = 2/ points, subject to independeNt0, ag) noise. Proceeding as above, but
with an appropriate preconditioning of the data near the boundaries and treatment
of the boundary wavelet coefficients, construct an estimatg¢ ivéelf by setting
f= Yk 6 LhPLi + Dr<jey 2k kajk, where ¢, and v, are the scaling
functions and wavelets at scgleLet £ (C) be the class of functiong whose true
wavelet coefficients fall i . (C). Under appropriate mild conditions, a special
case of our theory demonstrates that

(10) sup E {f(t) — F(1))? < cC¥FD) 20/ 2utD) +0(N—2a/(2a+1))‘
feF@) JO

Our results go far beyond mean integrated square error and consider accuracy of

estimation in Besov sequence norms on the wavelet coefficients that imply good

estimation of derivatives, as well as the function itself, and allow for losses in

g-norms for 0< g < 2.

1.6. Alternative approaches and related bibliography. Finding a numerically
simple and stable adaptive method for threshold choice with good theoretical and
practical properties has proven to be elusive. A plethora of methods for choosing
thresholds has been proposed (see, e.g., [49], Chapter 6). Apart from empirical
Bayes methods, we note two other methods which have been accompanied by
some theoretical analysis of their properties and for which software can easily be
written. In both cases we s&j, = Xi/og, S0 that the thresholds are expressed on
a renormalized scale.

Stein’s Unbiased Risk Estimate (SURE) aims to minimize the mean squared
error of soft thresholding, and is another method intended to be adaptive to
different levels of sparsity. The threshalglreis chosen as the minimizer (within

the rangg0, v/2logn ]) of

(12) Uty=n+Y ZFAt? =23 I{ZZ <1?).
k=1 k=1
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This does, indeed, have some good theoretical properties [19], but the same
theoretical analysis, combined with simulation and practical experience, shows
that the method can be unstable [19, 33] and that it does not choose thresholds
well in sparse cases.

The False Discovery Rate (FDR) method is derived from the principle of
controlling the false discovery rate in simultaneous hypothesis testing [7] and has
been studied in detail in the estimation setting [3]. Order the data by decreasing
magnitudesiZ|1) > |Z|@2) = --- = | Z|»), and compare to guantile boundary:
tr = z(q/2 - k/n), where the false discovery rate parametesr (0, %]. Define a

crossing index r = max(k : | Z| ) > 1}, and use this to set the threshojd= Ty
Although FDR threshold selection adapts very well to sparse signals [3], it does
less well on dense signals of moderate size.

Overall, we shall see that empirical Bayes thresholding has some of the good
properties of both SURE and FDR thresholding and deals with the transition
between sparse and dense sighals in a stable manner. A detailed discussion of
theoretical comparisons between the various estimators is provided in Section 5.7.

1.7. Structure of the paper. In Section 2 we discuss various aspects of the
mixture priors used later in the paper. The priors themselves are specified, and
details given of formulas needed for the Bayesian calculations in practice. We take
the opportunity to give additional practical details not included in [33]. In the next
two sections the practical performance of the proposed method is investigated,
by simulation in Section 3, and by applications to data sets arising in practice in
Section 4.

Section 5 contains the theoretical core of the paper for estimation of coefficient
arrays under Besov sequence norm constraints. First, a wide-ranging result,
Theorem 1, for the white noise model is stated. We then explore aspects of
the boundary wavelet construction, including ways of mapping data to scaling
function coefficients at the finest level. This allows for the definition of a boundary-
corrected empirical Bayes estimator for the sampled data problem on a finite
interval. The result we state about this estimator, Theorem 2, shows that it
essentially attains the same performance as the estimator for the white noise case.
Finally, the correspondences between Besov sequence and function norms are set
out, specifically addressing wavelets and functions on a bounded interval. For
0 < g < 2, we relate risk measures expressed in terms of wavelet coefficients to
g-norms of appropriate derivatives.

Section 6 contains the proofs of the main theorems, starting by reviewing
theoretical results for the single sequence problem from [33], but cast into a form
relevant for the present paper. These results are used to prove the white noise
case theorem. The proof of the theorem for the sampled data case also makes
use of approximation results for appropriate boundary-corrected wavelets given by
Johnstone and Silverman [32]. Finally, Section 7 contains further technical details
and remarks, including a discussion of the importance of the bounded shrinkage
assumption and results for the posterior mean estimator.
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1.8. Software.  The methods described in [33] and in the current paper
have been implemented as the EbayesThresh contributed package within the
R statistical language [45]. The package and documentation can be installed
from the CRAN archive accessible from http://www.R-project.org. Additional
description and implementational details are available in [34]. For a MATLAB
implementation, see [6].

2. Mixture priors and details of calculations. In this section we discuss
general aspects of the priors used in our procedure, and then review some theory
for the single sequence case. Throughout, we cu$e denote generic strictly
positive constants, not necessarily the same at each use, even within a single
equation. When there is no confusion about the value of the prior waighmay
be suppressed in our notation. We wrdtdor the standard normal cumulative, and
setd = 1 — . Itis assumed throughout that the model and the observed data are
renormalized so that the noise variarge= 1.

2.1. Priors with heavy tails. Particular heavy-tailed densities that we shall
consider for the nonzero part of the prior distribution are the Laplace density with
scale parameter > 0,

Ya(u) = 3a exp(—alul),
and the mixture density given by
(12) wO=v~N©O9 -1  with® ~Beta3,1).
More explicitly, the latter density for has
(13) y () = )21 — |u| S (ul) /o @)

and has tails that decay @32, the same weight as those of the Cauchy distribution.
For this reason we refer to the density (13) asdiesi-Cauchy density.
We shall mostly consider functionsthat satisfy the following conditions:

1. The functiony is a symmetric unimodal density satisfying the condition

(24) sup < 00.

u>0

ii—lo (u)
1, 109y (u

2. The quantityy (1) is bounded over alk.
3. Forsomex € [1, 2],

1—« 1 [ J
y vy () /} y(u)du

is bounded above and below away from zero for sufficiently large



EMPIRICAL BAYES SELECTION OF WAVELET THRESHOLDS 1711

The first of these conditions implies that the tailsyoére exponential or heavier,
while the second rules out tail behavior heavier than Cauchy. The third condition
is a mild regularity condition. The conditions are satisfiegt ifs the Laplace or
guasi-Cauchy function, but notjf is a normal density.

For the normal, Laplace and quasi-Cauchy priors, the posterior distribution
of u, given an observed, and the marginal distribution of are tractable, so
that the choice ofv by marginal maximum likelihood, and the estimation of
by posterior mean or median, can be performed in practice, as outlined in the
following paragraphs. We begin by setting out generic calculations for the relevant
guantities, and then give specific details for particular priors.

2.2. Generic calculations.

Posterior mean. In general, the posterior probabilityposi(z) = P( # 0|Z = z)
will satisfy

(15) wpost(2) = wg(2)/{wg(2) + (1 — w)e(2)}.
Define
AWlZ=2)=f(ulZ==z,n#0),
so that the posterior density
Spostit|Z = z) = (1 — wposhdo() + wpost/1(1|2).

Let 11(z) be the mean of the densitff (-|z). The posterior meap(z; w) is then
equal towpost(z) 11(2).

Posterior median. To find the posterior mediafa(z; w) of u, givenZ = z, let
~ o0
Al = [ Al du.
"

If z > 0, we can findi(z, w) from the properties

(16) a(z;w)=0 if wpost(Z)ﬁ1(0|z) < %’
F1(fu(z; w)|z) = {2wpost(z)} ~* otherwise.

to evaluateF;(0|z). If z < 0, we use the antisymmetry propenfy(—z, w) =
—[i(z, w).

Note that ifwposi(z) < % then the median is necessarily zero, and it is unnecessary
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Marginal maximumlikelihood weight. The explicit expression for the function
g facilitates the computation of the maximum marginal likelihood weight in the
single sequence case. Define the score fundiar = ¢'(w), and define
8(z) —o(2)
17 (z, w) = .
a7 P (1-w)e(z) + wg(z)

Theng(z, w) is a decreasing function af for eachz, and

(18) S(w) =) B(Zi, w).
i=1

Letting w, be the weight that satisfiesw, ) = /2logn, the estimated weight
w Mmaximizesf(w) over w in the rangelw,, 1]. It follows that, if S has a zero
in this range, thers(w) = 0. Furthermore, the smoothness and monotonicity of
S(w) make it possible to findv by a binary search, or an even faster algorithm.
The restriction on the range @f implies that the thresholdw) < /2logn.

Shrinkage rules. The posterior median and mean are examples of estimation
rules that yield an estimate of, given Z = z. In general, a family of estimation
rulesn(z, t), defined for alk and fors > 0, will be called ahresholding ruleif and
only if, for all ¢+ > 0, n(z, ¢) is an antisymmetric and increasing functionzoén
(—o0, 00) andn(z, 1) = 0 if and only if |z| < r. It will have thebounded shrinkage
property if and only if

(19) z—(t+bo) <n(z,t)<z forall z > ¢

for some constartip independent of.

An immediate consequence of (19) is that- n(z, t)| <t + bo for all z andr.
For any given weightv, the posterior median will be a thresholding rule, with a
threshold we denote by(w), and will have the bounded shrinkage property under
condition (14). More general thresholding rules may have advantages in some
cases. For example, the hard thresholding rule, with a suitably estimated threshold,
may have computational advantages and may preserve peak heights better, but we
have not investigated this aspect in detail. Indeed, the choice of shrinkage rule
and the choice of threshold are somewhat separate issues. The former is problem
dependent and this paper is devoted to the latter.

The posterior mean is not a thresholding rule, but has sufficient properties
in common with the posterior median to allow similar theoretical results to be
obtained, but under restrictions on the risk functions considered.

2.3. Calculations for specific priors. The calculations set out above show that
the key quantities are the marginal dengitythe mean functiom1(z) and the tail
conditional probability function?y. If y is the N(0, t2) density, theng will be
the N (0, 1 + t2) density, andu1(z) = Ax, wherex = t2/(1 + t2). The function
F1(1]x) will be the upper tail probability of th&/ (x, 1) density.
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For the Laplace distribution prior, we have
g(z) = %a eXp(%az){e_“ZCD(z —a) +e“P(z+a)}
and

S1(ulz)
(20) etz @)/l @ —a) + =BG ), i u<0,
e_azgo(,u—Z—I—a)/{e_azcb(z—a)—{—eazci)(z—}—a)}, if u>0,

which is a weighted sum of truncated normal distributions. Hence, it can be shown
that, forz > 0,

ale™ d(z — a) — e ®(z +a)}
e Ud(z —a) + e D(z+a)
For i > 0, under the Laplace prior, we have

(21) ni(z) =z —

e_”ZCT)(M —z+4+a)

Fi(ulz) = I '
1(ul2) 2D (7 — a) + 42D (z + a)

For the quasi-Cauchy distribution, we have
g = (27'[)_1/22_2(1 — 8—12/2)
and
_ —z2/2y~-1 -1
pi(z) =z(1—e *74) " =227
After some manipulation,
Fa(uls) = (1— e =) Yo — 2) — 201 — 2) + (uz — e 2d ()},

For the Laplace prior, the equatidfy(fi(z; w)|z) = {prost}_l in (16) can be
solved explicitly for/i(z; w), making use of the functio® 1. In the case of the
guasi-Cauchy prior, the equation has to be solved numerically.

3. Some simulation results. A simulation study was carried out for the
regression models that are by now standard in the consideration of wavelet
methods and are given in [18]. Simulations from each of the four models were
carried out, for each of two noise levels. For “high noise,” the ratio of the standard
deviation of the noise to the standard deviation of the signal valuéslis the

“low noise” case the ratio i%. This complements the simulations for the single
sequence case reported in [33]. The S-PLUS code used to carry out the simulations
is available from the authors’ web sites, enabling the reader both to verify the
results and to conduct further experiments if desired.
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3.1. Results for the trandation-invariant wavelet transform. In Table 1
various wavelet methods, all making use of the translation-invariant wavelet
transform, are compared. For each model and noise level, 100 replications were
generated. In each replication, the function was simulated at 1024 equally spaced
pointsz;. The same normal noise variables were used for each of the models and
noise levels. The error reported for each method considered is

1024
o2 Y {f @) — fu,

i=1
whereaé is the noise variance in each case, and this explains why the results for
“low noise” are apparently inferior to those for “high noise.” The default choices of
wavelet, boundary corrections and so on, given in the S-PLUS Wavelets function
waveshri nk, were used. For each realization, the noise variance is estimated
using the median absolute deviations of the wavelet coefficients at the highest level.
The default choice of boundary treatment is to use periodic boundary conditions,
and such boundary conditions have to be used for current implementations of
the translation-invariant wavelet transform. Detailed consideration of the use of
the idea of the translation-invariant transform, in combination with boundary
correction, is an interesting idea for future research.

For the Laplace prioy, with both w and the scale parameterestimated

level-by-level by marginal maximum likelihood from the data, estimates were

TABLE 1
Average over 100replications of summed squared errors over 1024 points for various models and
methods. All the wavel et-based estimators use the trandation-invariant wavelet transform.
The standard error of each of the entriesis at most 2% of the value reported

High noise L ow noise
Method bmp blk dop hea bmp blk dop hea
Laplace (median) 171 176 93 41 212 164 109 57
221 169 115 56

Quasi-Cauchy (median) 177 185 97 40
223 178 108 42 296 247 150 65

Gaussian (median)
182 100 45 214 175 115 62

Laplace (mean) 181

SURE (4 levels) 243 205 140 73 299 255 181 95
SURE (6 levels) 237 199 123 45 296 252 167 71
Univ soft (6 levels) 701 417 229 67 997 749 386 110
FDR (g =0.01) 170 198 97 43 223 164 109 56
FDR (g = 0.05) 169 173 93 39 223 163 110 53
FDR (g =0.1) 177 168 93 39 235 174 116 53
FDR (g =0.4) 264 212 127 50 353 273 181 72
Spline 1294 433 265 51 6417 1826 905 117

Tukey 545 330 286 246 1892 655 425 257
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constructed using both the posterior median and the posterior mean. For the quasi-
Cauchy prior, estimates using the posterior median were calculated. The posterior
median for the mixed Gaussian prior was also calculated; as for the Laplace prior,
bothw and the scale parameter were estimated from the data.

Three other methods based on the translation-invariant wavelet transform were
considered: SURE applied to 4 and 6 levels of the transform, universal soft
thresholding applied to 6 levels of the transform, and the false discovery rate
approach with various values of the parameteiVhenever the false discovery
approach is used in the wavelet context, the method is applied separately at each
level, a method derived from [2]. The same parametey used at each level, but
the resulting estimated threshold may, of course, vary.

Comparisons are also included with two standard nonwavelet methods: cubic
smoothing splines using GCVsioot h. spli ne in S-PLUS) and Tukey’s
4(3RSR)2H method, running medians with twicing, the default S-Ps&ot h.

The standard error of each of the entries in the table is at most 2% of the
value reported, so the values are correct to about 2 significant figures. The two
standard nonwavelet methods both perform badly. Not surprisingly, given that
it is specifically designed for smooth functions, the smoothing spline method
fails disastrously on discontinuous and spiky signals. Neither method is good
at separating signal from noise in the low noise case. The Tukey method is, to
some extent, competitive with universal thresholding for the more inhomogeneous
signals, but cannot adapt to the smoother behavior of the HeaviSine signal.

As for the methods based on the wavelet transform, the performance of the
posterior mean estimator with the Laplace prior is consistently slightly worse than
that of the posterior median. The universal thresholding method does not compare
well, and SURE also gives noticeably worse performance than the Laplace and
guasi-Cauchy empirical Bayes methods. The FDR method is competitive, provided
the parameter is chosen appropriately. For these signals and sample=si2€)5
and Q1 give good performance, but the performance is worse in some cases if
g = 0.01 and considerably worsegf= 0.4. We shall see in subsequent examples
that the choice of this parameter is crucial to the performance of the FDR method,
and that, in other situations, the relative performance of the FDR method is, in any
case, not quite as good.

Within the translation-invariant wavelet transform, the observed coefficients
are not independent. Benjamini and Yekutieli [8] propose a modification to the
FDR method to take account of dependence between observations, regléging
q/ Z,i”:lk‘l, where M is the number of parameters under consideration. In the
translation-invariant wavelet transform, the number of coefficients at each level
is equal to the number of original observations, 1024 in the simulation example
considered, so the correction factor Y1924k~ ~ 7.5. Therefore, the results
reported forg = 0.05 would correspond tg = 0.05 x 7.5 = 0.375 within the
Benjamini—Yekutieli procedure. Since we are choosinggtiparameter arbitrarily



1716 I. M. JOHNSTONE AND B. W. SILVERMAN

TABLE 2
Difference in summed square errors between the methods indicated and the “Laplace (median)”
method, measured in terms of the standard error of the difference estimated from 100replications

High noise Low noise

Method bmp blk dop hea bmp blk dop hea
Quasi-Cauchy (median) 14 16 10 -29 16 12 15 —26
Laplace (mean) 15 6 9 9 2 16 11 9
SURE (6 levels) 49 19 26 6 45 60 46 16
Univ soft (6 levels) 101 124 81 35 100 97 77 74
FDR (g =0.01) -16 17 5 5 13 -1.0 08 -09
FDR (g = 0.05) -30 -24 -11 -5 12 -17 27 -9
FDR (g =0.1) 6 —6 -03 -6 15 8 10 -9
FDR (g =0.4) 27 12 15 7 36 30 27 7

in any case, this recalibration of the parameter does not affect our general
conclusions. However, it does mean that the precise numerical valpe-@f.05

in the translation-invariant case cannot necessarily be translated directly to the
standard discrete wavelet transform.

The mixed Gaussian prior model does not fit the theoretical assumptions of
this paper and it can be seen that its performance is not as good as the heavy-
tailed priors. It is clear that the tail requirementspmave some bearing on the
performance of the empirical Bayes approach. More detailed investigation of this
issue would be an interesting topic for further research.

Because the same noise values are used for each model, there is correlation
between the various values in Table 1. Comparisons of methods with the Laplace
(median) method on a paired-sample basis are given in Table 2. It can be seen that
the empirical Bayes method with the Laplace prior using the posterior median
decisively outperfoms the other methods, except for the HeaviSine function,
where the quasi-Cauchy prior performs very slightly better, but there is little to
choose between the Laplace and quasi-Cauchy priors. Of the four FDR methods,
the inferior performance fog = 0.01 and 0.4 is significant. Foy = 0.05 and
0.1, the results are more equivocal, but the cases for which the FDR method
underperforms are the ones with the most significant difference. Some further
comparisons between these FDR methods and the empirical Bayes methods will
be made below.

3.2. Resullts for the standard discrete wavelet transform.  In order to evaluate
the advantage of the translation-invariant transform, the same simulated data
were also smoothed using methods based on the standard transform. The results
are shown in Table 3. Additional comparisons are included, with the two block
thresholding methods considered by Cai and Silverman [10], and with the QL
method of Efromovich [23]. The block thresholding methods choose thresholds
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TABLE 3
Average over 100replications of summed squared errors over 1024 points for various models and
methods. In each case a standard wavel et transform was used. The two nonwavel et methods are not
included, because they give the same results asin Table 1. For comparison, the results for the
Laplace prior using the translation-invariant transform are repeated from Table 1, initalics

1717

High noise L ow noise
Method bmp blk dop hea bmp blk dop hea
Laplace (median)
trandation-invariant 171 176 93 41 212 164 109 57
Laplace (median) 278 245 147 53 338 311 204 76
Quasi-Cauchy (median) 277 252 150 54 324 301 200 73
Gaussian (median) 328 252 158 56 400 361 241 87
Laplace (mean) 257 228 140 57 304 278 190 79
NeighBlock 462 406 148 67 436 485 207 125
NeighCoeff 324 320 145 60 316 345 207 91
QL 359 310 175 58 411 366 243 82
SURE (4 levels) 317 248 183 97 393 331 247 117
SURE (6 levels) 312 247 167 69 399 339 235 94
Univ soft (6 levels) 937 484 277 76 1444 931 534 121
FDR (¢ =0.01) 331 307 169 60 387 382 231 83
FDR (g = 0.05) 299 278 163 57 347 334 216 78
FDR (g =0.1) 301 271 162 60 356 330 221 81
FDR (¢ =0.4) 395 333 221 97 477 420 310 130

by reference to information from neighboring coefficients within the transform.

In the case of NeighCoeff, only the two neighboring coefficients are used when
considering a particular coefficient, while, for NeighBlock the data are processed
in blocks and information is drawn from neighboring blocks. At coarse scales

the QL method uses a thresholding rule with threshold equal to the standard
deviation of the coefficients, while at finer levels the coefficients are thresholded
at a threshold that increases up to the universal threshold as the level increases,
but at the same time the proportion of coefficients allowed to be nonzero is also
controlled, more stringently the higher the level.

Several interesting conclusions can be drawn from this table. In this case,
the posterior mean generally yields superior estimates to the posterior median.
The NeighCoeff method is the better of the two block thresholding methods,
but generally underperforms the Laplace prior/posterior mean method. The QL
method performs well for the HeaviSine signal, but for the others is not so
competitive. In this context, the relative performance of the FDR method is not as
good as previously, but the importance of choosing the parametppropriately
remains. In general, it is clear how important is the use of a translation-invariant
transform. The empirical Bayes method with a Gaussian prior was also tried in this
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context, and the results were, again, somewhat inferior to those for the heavy-tailed
priors.

We can use Tables 1 and 3 to give another measure of performance. Let
rjr denote the value in cellj, k) of the table, the error measure of methpd
applied in casé&. Then define the overall performance of methobly R(j) =
ming (Ming rex /7). The ratio min rec /r ;1 quantifies the relative performance of
method j on casek, by comparing it with the best method for that case. The
minimum efficiency score R(j) then gives the loss of efficiency of estimatpr
on the most challenging case. For the translation-invariant transform, the Laplace
(median) case has a minimum efficiency score of 93%, while the FDR method
with ¢ = 0.05 scores 95%. The quasi-Cauchy method scores 91% and the FDR
with ¢ = 0.1 scores 90%.

However, if we turn to the standard transform, the results are more decisive,
with scores of about 90% for the empirical Bayes Laplace and quasi-Cauchy
median methods, but only 82% for the FDR wigh= 0.05 and 84% for FDR
with ¢ = 0.1. It should be noted that the scores of around 90% for the empirical
Bayes methods are only because the empirical Bayes method that is very best
varies slightly between cases considered. But to be specific, the Laplace (median)
method consistently outperforms all the FDR methods.

4. Comparisonson illustrative data sets. In this section the simulations are
complemented by the consideration of three illustrative examples drawn from
practical applications. Taking account of both the simulations and the practical
comparisons, the empirical Bayes method, using the Laplace prior and the
posterior median estimate, is fully automatic and, on each of the simulation studies
considered as a whole, and on the practical illustrations, performs either best or
nearly as well as the best method in each setting. The FDR methog with05 is
slightly superior on the first simulation study, but at the expense of more substantial
underperformance otherwise, at least on the cases we have considered.

4.1. Inductance plethysmography data. Our first practical comparison uses
the inductance plethysmography data described in [39]. The data were collected
by the Department of Anaesthesia, Bristol University, in an investigation of the
breathing of patients after general anaesthesia. For further details, and the data
themselves, see the help page for the ipd data in the WaveThresh package [40].

Plots of the original data and the curve estimate obtained using the Laplace
prior method are shown in Figure 1. The results for the Laplace and quasi-Cauchy
priors are virtually identical, so only the Laplace results are reported in detail
here. The aim of adaptive smoothing with data of this kind is to preserve features
such as peak heights as far as possible, while eliminating spurious rapid variation
elsewhere. Abramovich, Sapatinas and Silverman [4] found that their BayesThresh
method performed better in this regard than various other wavelet methods, but
that for best results a subjective adjustment of their parameterm « = 0.5 to



EMPIRICAL BAYES SELECTION OF WAVELET THRESHOLDS 1719

0.8

0.6

Voltage
0.4

0.2

0.0

1240 1260 1280 1300

Time (secs)

Voltage
04 06 08

0.2

0.0

1240 1260 1280 1300

Time (secs)

Fic. 1. Top paneltheinductance plethysmography data. Bottom panelthe effect of smoothing the
inductance plethysmography data with the Laplace prior method.

a = 2 gave preferable results. The MML approach gave virtually the same results
whether the quasi-Cauchy or Laplace prior is used.

The efficacy of the various methods in preserving peak heights is most simply
judged by the maximum of the various estimates, the height of the first peak in
the curve. The standard BayesThresh method=(0.5) yields a maximum of
0.836, while subjectively adjusting i@ = 2 gives 0.845. The empirical Bayes
method gives 0.842. Overall, the empirical Bayes method gives results much closer
to the adjusted BayesThresh; the maximum distance from the empirical Bayes
curves to the adjusted BayesThresh curve is about one-third that from the original
BayesThresh estimate. The efficacy of the various methods in dealing with the
rapid variation near time 1300 can be best quantified by the range of the estimated
functions over a small interval near this point. The standard BayesThresh method
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has a “glitch” of range 0.08, while, for both the adjusted BayesThresh and the
empirical Bayes method, the corresponding figure is under 0.06, a substantial if
not dramatic improvement.

The FDR method with various parameters was also applied. As in the
simulations, the FDR approach is applied separately to each level, with the same
parameteg at each level. For all the FDR parameters considered, the maximum
of the estimated curve is between 0.842 and 0.843, but the range of the estimated
curve near time 1300 is around 0.075. Thus, FDR competes well with empirical
Bayes on preserving the peak height, but at the cost of inferior treatment of
presumably spurious variation elsewhere.

Another comparison between the various methods can be made by considering
the threshold that they use at various levels of the transform. The threshold is not a
full description of the procedure, especially in the BayesThresh and Laplace prior
cases where there are two parameters in the prior, but the threshold is a useful
univariate summary of a method of processing wavelet coefficients. Figure 2 gives
the comparison for the various methods applied to these data. It can be seen that,
at the top four levels, the empirical Bayes methods track the adjusted BayesThresh
method quite closely. The standard BayesThresh uses very high thresholds, which
may be the reason why it smooths out the peak height somewhat. At the coarser
levels, the empirical Bayes methods automatically adjust to much lower thresholds,
reflecting a way in which the signal is less sparse at these levels, and thus allowing
variation at these scales to go through quite closely to the way it is observed. None
of the FDR parameter choices gives the degree of adaptivity of threshold to level
shown by the empirical Bayes methods.

To conclude the comparison between BayesThresh and the empirical Bayes
method, the subjectively adjusted BayesThresh method already yielded very good
results for these data, but the basic message of this discussion is that the empirical
Bayes method yields results virtually as good as those of the best BayesThresh
method, but without any need for subjective tinkering with the parameters. In
addition, the use of maximum likelihood to estimate the prior parameters is a less
ad hoc approach than the fitting method used by the BayesThresh approach.

4.2. lon channel data. A comparison between empirical Bayes and SURE is
provided by considering a segment of the ion channel data discussed, for example,
by Johnstone and Silverman [30]. Because these are constructed data, the “true”
signal is known. See Figure 3. The thresholds chosen by SURE (dashed line) are
reasonable at the coarse scales 6, 7 and 8, but are too small at the fine scales 9to 11
where the signal is sparse, show some instability in the way they vary, and lead to
insufficient noise removal in the reconstruction. By contrast, the empirical Bayes
threshold choices increase monotonically with scale in a reasonable manner. In
particular, the universal thresholds at levels 9 to 11 are found automatically. Two
reconstructions using the same EB thresholds are shown in panel (b): one using the
posterior median shrinkage rule, and the other using the hard thresholding rule.
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FIG. 2. Thresholds chosen for the top six levels of the wavelet transform of the inductance
plethysmography data by various methods. Upper figure: e:empirical Bayes, Laplace prior;
c: empirical Bayes, quasi-Cauchy prior; b: BayesThresh; t: BayesThresh, subjectively tinkered, with
o = 2. Lower figure:False Discovery Rate method with parameters ¢ = 0.01, 0.05, 0.1 and 0.4.

The hard threshold choice tracks the true signal better. The choice of threshold
shrinkage rule is problem dependent, and beyond the scope of this paper. It is
somewhat separate from the issue of setting threshold values.

A systematic quantitative comparison is given in Table 4. For each method
considered, ten sequences of length 4096 drawn from the original data were
analyzed. The variances of the wavelet transform at the various levels were
estimated by separate consideration, imitating the effect of using a sequence of
observations with no signal to calibrate the method. For each method, the curve
estimated by the smoothing method was then rounded off to the nearest of zero
and one to give the final estimate. The figures given are the average percentage
error over the ten sequences considered.
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Fic. 3. Left panel:Estimated threshold 7 plotted against level j; dashed line: SURE thresholds,
solid line: EB thresholds. Right panel:Segment of the ion channel signal and three estimates. Both
solid lines use EB-thresholds, but one uses a hard thresholding rule and tracks the true signal better,
while the other uses posterior median shrinkage. The result of using SURE thresholds is plotted as
the dashed line, and the dotted line gives the true signal.
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TABLE 4
Percentage of errorsin estimation of ion channel gating signal. The errors
are the average over ten separate sequences of length 4096drawn from the
data provided by Eisenberg and Levis. The variances of the wavelet
coefficients at each level were estimated separately

Decimated? N Y
Laplace (median) 2.4 3.0
Quasi-Cauchy (median) 2.7 3.5
Laplace (mean) 2.3 2.6
SURE (4 levels) 2.2 3.1
SURE (6 levels) 2.3 3.2
Univ soft (6 levels) 6.0 7.5
FDR (g = 0.01) 3.1 4.4
FDR (g = 0.05) 2.8 3.9
FDR (g =0.1) 2.6 3.7
FDR (g =0.4) 2.3 3.6
Spline 4.4

Tukey 11

AWS 6.2

Special 2.0

As an aside, we note that our theoretical results, of course, do not specifically
include this zero—one loss of the estimate rounded to the nearer of zero or one.
However, we do considél, losses foly near zero, which catch something of the
flavor of discrete losses, in view of the fact that the limigas- 0 of thegth power
of the L, norm is a zero—one loss.

Comparisons were made with the special-purpose method developed specifi-
cally for this problem by the originators of the data, and with standard smoothing
methods, including the AWS method of Polzehl and Spokoiny [43]. The special-
purpose method achieves an error rate of 2.0%; because of the specificity of this
method, it is perhaps not surprising that it cannot be beaten by the more general-
purpose methods we consider, but some of the translation-invariant wavelet meth-
ods come close. In this case the posterior mean slightly outperforms the posterior
median, and other good methods are SURE and FDR gvith0.4. If we use the
parameter valueg = 0.05 and 0.1 appropriate in our main simulation, then the
results are inferior, underlining the need to tune the FDR parameter to the problem

at hand.

4.3. Animage example. Turning finally and briefly to images, Figure 4 shows
the effect of applying empirical Bayes thresholds to a standard image with
Gaussian noise added. The thresholds are estimated separately in each channel
in each level. Nine realizations were generated, and the signal to noise ratio of
the estimates (SNR 20Ioglo(||f — flI2/11 fl2)) calculated for both thresholding
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FIG. 4. Trandation invariant hard thresholding applied to a noisy version of the “peppers’ image.
For original image and noisy version see, for example, [36], Figure 10.6. Left panelfixed threshold
at 3o . Right panellLevel and channel dependent EB thresholds as shown in the table. The image
obtained by fixed thresholds contains spurious high frequency effects that are largely obscured by
the printing process. For a clearer comparison, the reader is recommended to view the images in the
online version available from the authors' web sites.

at I and for the empirical Bayes thresholds. Smaller SNR corresponds to
poorer estimation, though, of course, this quantitative measure does not necessarily
correspond to visual perception of relative quality. The actual images shown
correspond to the median of the nine examples, ordered by the increase in SNR
between the 8¢ threshold approach and the empirical Bayes approach.

For the example shown, the EB thresholds are displayed in the table below. They
increase monotonically as the scale becomes finer and yield=SBI&83. They
are somewhat smaller in the vertical channel, as the signal is stronger there in the
peppers image. Fixing the threshold atz3in all channels leads to small noise
artifacts at fine scales (SNR 33.74), while fixing the threshold atg./2Togn
(not shown) leads to a marked increase in squared error (i.e., reduced SNR).

Channel/Level 3 4 5 6 7

Horizontal 0 11 23 32 44
Vertical 0 0 20 30 44
Diagonal 0 17 27 41 44

5. Theoretical results. We now turn to the theoretical investigation of the
proposed empirical Bayes method for curve estimation using wavelets. In doing so
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we distinguish between various different models for observed wavelet coefficients
and for the theoretical coefficients of interest. Suppose throughout that/lésel
such that the sum of the lengths of all the coefficient vectors below Jeieebqual

toN.

5.1. Moddls for the observed data. In the white noise model, it is assumed
that we have independent observatiokis, ~ N(@x, N~1) of the wavelet
coefficients 6, themselves. Because of the orthonormality properties of the
wavelet decomposition, observations of this kind would be obtained by carrying
out a wavelet decomposition of the functigitr) + N~2dW (r), whered W (1)
is a white noise process. In our main theory, we only use/'theat levels; < J,
setting coefficients at higher levels to be zero.

The other model of practical relevance is tbmmpled data model, where
we assume that we have da¥ = f(i/N) + ¢;, whereeg; are independent
N (0, 1) random variables. Lt be the discrete wavelet transform of the sequence
N~Y2f(;), andY that of the sequenc¥ ~1/2X, so that¥;x ~ N(@x, N~1). In
much of the current statistical literature, the distinction between the white noise
coefficientsY ;; and the sampled-data coefficierts, is often glossed over, as is
that between the function coefficieritsand the time-sampled coefficierits The
theoretical framework within which we work is, generally, to assume that

(22) > 10jkl? < cP2mPi forall j,
k

corresponding to membership of the underlying functignis a particular
smoothness class. The first case we shall consider is where we obsanve
estimate).
The other cases all make use of the sampled-data coeffidierifave retain
the constraint (22) on the underlying function, we can show that, provided the
wavelet basis is chosen appropriately, the discretization involved in the sampled-
data construction does not affect the order of magnitude of the accuracy of
the estimates. This is the case whether we consider the estif@teof the
coefficients to be estimates of the wavelet coefficiehtsf the function itself,
or use the estimated coefficients to reconstruct an estimate of the sequence
f(i/N) via the discrete wavelet transfodmUnless we impose periodic boundary
conditions, a key prerequisite for the consideration of the sampled data model
is the development of appropriate boundary-corrected bases with corresponding
preconditioning of the data near the boundaries, and we consider this aspect below.
A final model is the situation where it is the sequence of valtiggN) that is
of primary interest, but we place the Besov array bounds on the discrete wavelet
transformé of this sequence rather than on the underlying function. We replace
(22) by the constraint

(23) > 10pl? <cr27ePl forall j < J.
k
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In this case we only require orthonormality of the discrete wavelet transform, but
the condition (23) depends both on the functiprand on the particulav under
consideration. The asymptotic theorem should be thought of as a “triangular array”
result, rather than a limiting result for a particular functibnThe formalism of

the proof is identical to the white noise case, except there is no need to consider
terms forj > J and this eliminates one of the error terms in the result.

5.2. Array results under Besov body constraints. Suppose tha®;; is a
coefficient array, defined foj =L — 1, L,L +1,... and 0< k < K;, for
K; satisfying 271 < K; <2/ for j > L and 271 < K;_1 <2L. Let N =
> 1-1<j<y K; for integers J, and consider limits ag — oo. For given J,
assume we have observatiang ~ N @k, N"1o2)for j=L—-1,L,...,J —1,
0<k < K. The variancer2 is assumed to be fixed and known, and without loss
of generality we setr2 = 1.

Let 6; denote the vectofd;; : 0 < k < K;) and defineY; similarly. The
vectoré; _; is estimated byY; ;. For L < j < J, each vectop; is estimated
separately by the empirical Bayes method described above: Sewv1/29 ; and
Z = N1/2Yj, and obtain an estimate @f using a possibly modified threshold
with parameterA > 0. If A = 0, then the threshold is not modified, while if
A > 0, the threshold is as defined in (7). The threshold is that corresponding to
the posterior median function, but provided this value of the threshold is used,
the estimation can be carried out by any thresholding rule satisfying the bounded
shrinkage property (19). We then sgt= N~%2/1. For j > J, finer scales than
the observations assumed available, weé;e-t 0.

The overall risk is defined to be

o
(24) Ry.gsO)=E|6L-1—60r-1l+ D 22V E|6; —6;1l3.

j=L
Under suitable conditions on the wavelet family, this norm dominatgesharm
on theoth derivative of the original function if = o + % — ql; see Section 5.6.
The constant by which the contribution of the scaling coefficients is multiplied is
somewhat arbitrary, and may be altered without affecting the overall method or
results. We can now state the main result, which demonstrates that the empirical
Bayes method attains the optimal rate of convergence of the gtegrower error
for all values ofg and p down to 0.

The result also yields smoothness properties of the posterior estimate. It
demonstrates, for values efandg satisfying the conditions of the theorem, that
the coefficient array has finiteby . norm and, hence, under suitable conditions
on the wavelet hasth derivative bounded in-norm.

THEOREM 1. Assumethat0<p§ooand0<q§2,andthataz%.

Suppose that the coefficient array 6 falls in a sequence Besov ball b7 (C) so
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that

(25) 61, <c27%  forall j,

Wherea=a+%—%z%.Lets=a+%—§andset
r=(@—-0)/2x+1) and r'=(a—s)/2a.

Assumethat o > 0 and that « — o > max(, % — %). Assume also that sqg < A.
Then, for some quantity ¢ which does not depend on C or N (but may depend on
a, p,o,q,aswell asy, A and the wavelet family), the overall g-normrisk satisfies

(26) Ry.4.5(0) < c{A(C,N)+CINT"9 4 N~9/2|og" N},
where
c=2aN=ra, ifap > sq,
(27) A(C,N)=1{ c@-2)qN-r'q Iogr/‘”l N, ifap = sq,
cA=2"q N1 |Ogr/q N, ifap < sq,

r=a—o—(;-1;and0<v <4

REMARKS. If ¢ < p, then necessarily;p > sq sincea > s. However, if
g > p, then the three cases in (27) correspond, respectively, to the “regular,’
“critical” and “logarithmic” zones described in [22].

Note first that, by elementary manipulations,

. _ap—sq
apqa+1)’

so the cases in (27) could equally be specified in terms of the relative values of
v andr. Also,a —s=o — 0 — E+ ql > 0, sor’ > 0 andr” =min{a — o, a — s}.

The conditionsqg < A will be satisfied for ally in (0, 2] if A > 20. A particular
situation in which this will hold is the “standard” cage= 0 ando = 0.

The rates in (27) agree with the lower bounds to the minimax rates derived
in Theorem 1 of [22], and so the first term of (26) is a constant multiple of the
minimax dependence of the risk on the number of observaiéssibject to the
Besov body constraints. For fix€tthe other terms are of smaller order. The same
rates arise in [17], which demonstrates that suitable estimators, dependent on
attain these rates fgr= 2.

First consider thev—""4 term. Using the conditiong > % anda > o >0, we
havea — s =2ar’ > ' ando — o0 = 2o + L)r > r, so thatr” > min{r, r'}. If
a > 3, then the inequality is strict and thé~""7 term will be of lower polynomial
order thanA(C, N) in every case. Ii = % andr’ < r, we will haver” =/, but,
for fixed C, A(C, N) will still dominate because of the logarithmic factor.

Sincer < % the N~4/2log” N term will always be of smaller order than
A(C, N). This term shows that, even if the Besov space constai#t allowed
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to decrease ad/ increases, or is zero, we have not shown that the risk can be
reduced below a term of siZé~4/2, with an additional logarithmic term in certain
cases. The exact definition ofis

0, if sq <A,
(28) v=1(@+1/2 if sg=A>0,

3+(g—pAr2)/2 if sg=A=0.

Truncating risk at fine scales. Consider the estimation @t from the trans-
form Y, subject to the discretized constraints (23). In this case there is no need to
consider levelg > J in the risk, and the conditiom > % , equivalent tax > 1/p,

can be relaxed ta > 0, equivalent tar > % — 1. Define

J-1

(29)  Ry.qs(f)=El0-1(Y) — 1] + Y 2V E|0;(¥Y) — ;1|4
j=L

We then have the simpler result

(30) Ry.q.5(f) <c(A(C,N) + N~%%log’ N}.

Define f(i/N) to be the sequence obtained by the inverse discrete wavelet
transform applied tav1/24(Y). In the “standard” case = A = 0 andg = 2, the
orthogonality of the wavelet transform allows us to deduce from (30) that, subject
to the constraint (23),

N
NI E{f(i/N) — f(i/N)}?
i=1
S c{cZ/(2a+1)N—2a/(2(¥+1) + N—l(log N)4—(1/2)(p/\2)},

which implies (9).

White noise model when fine scale observations are available. If we assume
that we have dat#;; for all levels, not just forj < J, then we can again relax the
lower bounda > 3 toa > 0. For definiteness, estimaiig from the data for levels
up to j = J2, and set the estimate to zero for higher levels. Then we will have the
result

(31)  Rw.4.s(0) <c{A(C,N)+ C9exp(—c'log? N) + N~9/2log® N}

for a suitablec’ > 0. The second term in (31) decays faster than polynomial rate
in N for any fixedC.

The proof of Theorem 1, together with the minor modifications required to
prove (30) and (31), is given in Section 6.2 below.
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5.3. Wavel ets whose scaling functions have vanishing moments.  Turn now to
the issue of developing theory for the sampled data case subject to retaining the
constraints on the functioyi itself. Crucial to our theory are wavelets constructed
from a scaling functior with vanishing moments of order,2,..., R — 1, and
R continuous derivatives, for some integer The corresponding mother wavelet
Y is orthogonal to all polynomials of degree — 1 or less, and botkp and
are supported on the intervgt-S + 1, S] for some integer§ > R. Coiflets, as
discussed in Chapter 8.2 of [16], are an example of wavelets constructed to satisfy
these properties. The zero moments of the scaling function are used to control
the discretization error involved when mapping observations to scaling function
coefficients at a fine scale. Note that many standard wavelet families have scaling
functions with nearly vanishing moments of orders 1 and 2; an issue for future
investigation is the tradeoff in finite samples between relaxing the condition of
exactly vanishing moments and using wavelets of narrower support than coiflets.
Unless we are happy to restrict attention to periodic boundary conditions, it
is necessary to modify the wavelets and scaling functions near the boundary, and,
hence, the filters used in the corresponding discrete wavelet transform. A construc-
tion following Section 5 of [14] can be used to perform this modification, while
maintaining orthonormality of the basis functions. We review the application of
the construction; for fuller details and properties see [32].

REMARKS. 1. If the restriction to (boundary modified) coiflets is needed for
our theory, why is inferior behavior not observed for other Daubechies wavelet
families in practice? In fact, it follows from [26] that if one recenters a Daubechies
scaling functionp atits mearr = [ x¢(x) dx, then the second moment necessarily
vanishes. Thus, up to a horizontal shiftone obtains two vanishing moments “for
free.”

2. The approach to sampled data taken by Donoho and Johnstone [20] works
for a broad class of orthonormal scaling functions, by a less direct construction
relating white noise and sampled data models through multiscale Deslauriers—
Dubuc interpolation.

The construction is based on boundary scaling functipfisfor k = —R,
—~R+1,...,R—2,R — 1, and boundary waveletg'? for k = —S + 1,
—S+2,...,5—1, 5—2. The support of these functions is containefir2s — 2]
for k > 0 and in[—(2S — 2), 0] for k < 0. We fix a coarse resolution levél such
that 25 < 2&. At every levelj > L, there are 2— 2(S — R — 1) scaling functions,
defined by

pix(x) =2/2¢f (2 x), keO:(R—1),
dj(x) = 212920 x — k), ke(S—1):(2 —8),
o) =21%pf (21 (x - 1),  ke@ -R):(2 -1,
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and 2 wavelets
Yk (x) =22y (2 x), ke0:(S—2),
Yir(x) =212y (21 x — k), ke(S—1):(2 -9,
Yi) =212y B L (2(x-1),  ke@ -S+1:(2 -D.

All these functions are supported withi@, 1]. There are no scaling functions
definedforR <k <S—1orfor2 — S <k <2/ — R, but there are no such gaps
in the definition of the wavelets. Thg — 1 wavelets at each end are boundary
wavelets, and have the same smoothnes§Qali, and vanishing moments as the
original wavelets. The2— 2§ interior wavelets are not affected by the boundary
construction, and depend only on thke-22S interior scaling functions at the finest
scale. At the coarsest leve| there will be 2 — 2(S — R — 1) scaling coefficients;

denote byX; _1 the set of indices for which the scaling functiafig, are defined.
Ateverylevelj > L, defineJC]}.9 to be the set ot for which v, is a scaled version

of a boundary wavelet, anﬁt; to be the set ot for which v is a scaled version
of y itself.
Given a functionf on[0, 1], we can now define the wavelet expansiorydy

0o 2/-1
(32) f= > Or-1idri+ Y. D> OV
keXp-1 j=L k=0
where
1
OL—1,k :/o f@)oLi()dt forkin Kp_1
and

1
ejk:/ FOYji(t)de forj>L and O<k<2/.
0

Where there is a need to distinguish between the boundary and interior wavelet
coefficients, we writ@)! for the coefficients withj > L andk e J{jI ande?® for

the boundary coefficients, those with= L andk < ch.

5.4. Constructing wavelet coefficients from discrete data. Suppose now that
we are given a vector of observations or of values of a function. In order to map
these to scaling function coefficients at a suitable level, it is necessary to construct
appropriate preconditioning matrices. In this section we define these matrices and
set out certain of their properties. For more details, see [32].

On the left boundary define the x R matrix W and the(S — 1) x R matrix U

by
o0
Wkg=/ x‘pB (x)dx, k=1,2,...,R;¢=0,1,...,R—1,
0

Ujgzje’ j=1,2,...,S;£=0,1,...,R—1.
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Becausé/ is of full rank, we can defind” to be anR x (S — 1) matrix such that
ALU = W. Similarly, the matrixA® is constructed to satistg*U = W, where

_ 0
Wkg=/ xtoB (x)dx, k=12...,R;£=0,1,...,R—1,
—0oQ

Uje = (=D, j=12...,8¢=01...,R-1

Given a sequenc&g, X1, ..., Xy_1 with N = 2/, define the preconditioned
sequenceP; X by

§-2

(PyX)= ) AGXi, keO:(R—1),
i=0

(PyX)r = Xk, ke(S—1):(N—-S),
S—1

(PyX)=Y AR _ i Xn—i, ke(N—-R):(N-1.

i=1

If the X; are uncorrelated with variance 1, then the variance matrix of the first
part of P; X is AL (ALY, while that of the last part, with indices taken in reverse
order, isAR(ARY.

There is some freedom in the choice 4f and AR. For example, they can
be defined such that not quite all the original sequence is needed to evaluate
the preconditioned sequence. Specifically, to eliminate dependence on the first
or lastS — R — 1 values of the sequence, [Ei be the square invertible matrix
consisting of the lasR rows of U, and letAL = [ORX(S,R,l):WUl‘l], and
AR correspondingly.

If, on the other hand, we have all the values in the sequence, then we have more
freedom to choosd” andAR. A natural choice isA” = WUt andAR = wU+,
where the superscript denotes the Moore—Penrose generalized inverse. These
choices will minimize the traces of the matricé8(AL) andAR (AR)’ and, hence,
the sum of the variances &f; X, if we suppose that th&; are uncorrelated with
unit variance.

In general, under the same assumption Xnlet c4 be the maximum of
the eigenvalues ofAL(AL) and AR(AR). Let Y be the boundary-corrected
discrete wavelet transform of the seque¢e!2P; X. Then the eigenvalues of
the variance matrix oP; X will be bounded by 4. Because of the orthogonality
of the boundary-corrected discrete wavelet transform, the variance of the elements
of ¥ is bounded by 4 N 1.

The arrayY’ of interior coefficientsY;x:L < j < J,S —1<k <2/ — ) wil
only depend orX; for S —1<i < N — S, in other words, thos&; left unchanged
by the preconditioning. Therefor&,! will be an uncorrelated array of variables
with varianceN —1.
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The preconditioning also makes it possible to get very good approximations to
the wavelet coefficients of a smooth functignirom a sequenceg; of discrete
valuesg;; = g(i2~’). Define the vectolS; g to be the preconditioned sequence
P;g,. For any smooth functiop, each 2//25,,¢ is a good approximation to the
scaling coefficient/ g¢ . of g at level J. To be precise, provided is R times
continuous differentiable of®, 1], we have for each,

1
(33) |Sjkg—2'/? fo g(r)qb]k(r)dr' <c27 'R sup(|g® (x)] 1 x € suppdsp)}-

The result (33) depends on the vanishing moment properties of the scaling
functions and on the construction of the preconditioning matrices. For full details,
see Proposition 3 of [32].

5.5. The boundary-corrected empirical Bayes estimator. In this section we set
out a detailed definition of a boundary corrected version of the empirical Bayes
estimator, and prove that it has attractive theoretical properties. Assume throughout
that a boundary corrected basis is in use.

Assume that fotv = 2/ we have sufficient observations

X;=f(/N)+ ¢, ¢; independentvV (0, 1)

to evaluate the preconditioned sequeRg# . LetY denote the boundary corrected
discrete wavelet transform of ~+/2p; X
Define the estimated coefficient arr@gs follows:

e Estimate the coarse scaling coefficients by their observed values, so set
OL—1="Yr 1.

e Estimate the interior coefficient’ by applying the empirical Bayes method
level-by-level to the observed array .

e Threshold the boundary coefficients separately. At lgyelse a hard threshold
of T4(j/N)Y?, wheret2 > 2(1+ A)c, log 2, so that for each e JCJB

éjk =Y I[|Yjx > A G/NY2).
e For unobserved levels> L, setd;; = 0.
In our main theoretical discussion, we measure the risk of this estimate as an
estimate of the wavelet expansion of the function itself by
A oo . A
(34) Ry 5@ =El6L1—0. 11+ > 2V E|0; —6;]2.
j=L

If we used as an estimate of the discrete wavelet transform dréhyen the natural
measure of accuracy is the rigkas defined in (29). However, it should be noted
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that because of the preconditioning, the afaynly specifies uniquely the values
of the sequence¢ (i /N) away from the boundaries.

The main result of this section demonstrates that the estimate has optimal-rate
risk behavior overy and p down to zero.

THEOREM 2. Assume that the scaling function ¢ and the mother wavelet v
have R continuous derivatives and support [—S + 1, S] for someinteger S, and that
[x"Pp(x)dx =0form=1,2,..., R — 1. Assume that the wavelets and scaling
functions are maodified by the boundary construction described above, and that the
thresholding is carried out by a modified threshold method with A > 0. Assume
that the available data and the construction of the estimator are as set out above.

Assumethata > 0,a > s,a < R,andsg < A. Assumeeither that o > % or that
oe_p 1. AssumethatO< p<occandO<gqg < 2.Letr = (o — o) /(20 + 1) and
r'=(a —s)/(2a). Let F(C) be the set of functions f whose wavelet coefficients
faII in b3 00 (C). Then there is a constant ¢ independent of C such that, for
suitable r”” and suitable A and A,

(35)  sup Ry,.(f)<c{A(C,N)+CIN""7log" N+ N~9?log" N},
feF(C)

where A(C, N) is as defined in (27) in Theorem 1, and, for all fixed C,

N~""4log" N isof smaller order than A(C, N).

The general correspondence between Besov sequence and function norms is
discussed in Section 5.6. The case p = 1 is included because the space defined
by membership of the Besov sequence sﬂégg(C) is well known to include the
space of functions with appropriately bounded total variation.

If our only concern is for the accuracy of estimation of the aéahen we have
the bound

(36) SUp Ry .4.s(f) <c{A(C,N)+ N~9?log" N}.
feF(C)

5.6. Besov array norms and function norms. Our theory gives minimax risk
bounds over functions whose array of wavelet coefficients fd}P‘lgo(C) Besov
sequence balls. Under appropriate assumptions on the wavelet basis, these Besov
sequence norms on the wavelet coefficients are equivalent to the corresponding
Besov function norms on the functions themselves. Relevant results for the specific
case of boundary-corrected wavelets on a bounded interval are considered in detalil
in Appendix D of [29]. The equivalence will certainly hold for the wavelets with
bounded support and vanishing moments up to oRded,, providedp > 1, R > 2,

R>a anda > max(O =+ — —) See also [19, 20] and further literature referenced
there.

The B}, Besov function norm is not very easy to grasp intuitively, and for
mtegerSm |t is helpful to compare the Sobolev spa®€, which has norm
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(S 1£17 41 £ |7)¥ 7. Our minimax results hold over balls Br" ., Besov spaces;
for p > 1, the standard result théit,' is embedded in the spa%’oo shows that
the results will hold for minimax rates over balls in the Sobolev spéfe

Turn now to the error measure. Suppose tliats a function with wavelet
expansion given as in (32) above. Given any 0 and O< ¢ < 2, define

o
rg.o (F) =61l + > 229 116,112,
j=L

whereo = s — 3 + 7. This corresponds to the risk measure (24) relative to which
our theoretical bounds are obtained. We state and prove a proposition showing
that the error norm dominates various function seminorms. It follows from the
proposition that, foro > 0 and forg in (0, 2], the bounds on estimation error
proved for the Besov body error measuye ( f) hold a fortiori for error measured

by the integrated;th power of the derivatives up to order, provided that the
wavelet satisfies appropriate regularity conditions. Note that the lower bounds on
o andgq are zero, rather than the larger boundsxcand p required for full Besov
norm equivalence.

PROPOSITIONL. Suppose0 <o < R. For anyinteger r suchthat0<r <o,
and g in (0, 2],

1
[ 10w ar = eryo ().

REMARK. The one-sided bound leaves open the possibility that the Sobolev
norm might be much smaller than the BesBy , norm on the right-hand side.
However, for 1< g < 2 there is a reverse mequallty,

call fllsg, < I fllwg

in terms of a Besov norm on the spaBg2 (defined, e.g., in [47]). Since the
minimax rate of convergence is the same for ##fe, and theB7 , error norms on
regular and logarithmic zones [22], it can be said that we are capturing the situation
for the Sobolev norm without too much loss.

5.7. Comparisons. In this section we compare the theoretical results for
empirical Bayes estimators established in Theorems 1 and 2 in this paper with
those known for some other existing thresholds.

The universal thresholdz./2logN of [21] leads to rates of convergence that
are suboptimal by logarithmic terms in the regular case and some critical cases;
see the detailed discussion in [22], Section 12.1. For example, using the notation
of (26) and (27), the bound on the rate in the regular egse- sq would be
A(C,N) = c3=2)4((logN)/N)™. The reason that the universal threshold is
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suboptimal in this way is essentially that, in dense cases, thresholds should be
set at a bounded (and small) number of standard deviations, rather than being of
order,/2logN.

For the SURE threshold recalled in Section 1.6, Donoho and Johnstone [19] and
Johnstone [27] establish asymptotic optimality results under the special conditions
of squared error losg (= 2) for estimating the functiors(= 0) over Besov bodies
with p > 1. Since the SURE estimate chooses thresholds to optimize an unbiased
estimate of mean squared error, it is possible with these restrictions to obtain not
only optimal rates, but also to show that the limiting MSE is minimax optimal even
at the level of constants among threshold estimators. By the same token, it is less
clear that one could expect better than optimal rates for other loss functions (say
q < 2)—and even the rate issue remains to be formally investigated.

A more serious restriction of SURE is reflected in the constrainpt1. As is
discussed in [3] and [33], and illustrated in Figure 5, the SURE criteticn
in (11) is far from smooth irr. The asymptotic oracle inequality for SURE in
Theorem 4 of [19] contains an error term of crude ordet/2, and this term
has prevented any optimality conclusions from being drawn whenl. The
instability shown in Figure 5 seems to derive from the derivative discontinuity
created by the threshold zone: similar plots were obtained when applying the
SURE criterion to the posterior median rule to estimate thresholds.

Related to this is another deficiency of the SURE threshold choice. While SURE
adapts to squared error loss well on “dense” signals, the criterion does not reliably
propose high thresholds for sparse signals. In order to obtain the theoretical results
just cited, it was necessary to introduce a hybrid version of SURE containing a
pretest for sparsity, which if detected, switched tq/2logn threshold. Thus,
the hybrid version creates a grossly discontinuous transition in thresholds which,
while sufficient for the theoretical result, is unattractive in practice. Indeed, the
simulations in [33] found the hybrid modification to be counterproductive in the
examples considered.

Turn now to the levelwise FDR as applied in the wavelet context. While there
has been extensive analysis of the exact adaptive minimax optimality of FDR in
the sparse single sequence model [3] dyeballs and¢, losses for O< p, g < 2,
there has been no published analysis of rates of convergence for a levelwise FDR
estimate in the wavelet shrinkage setting. In unpublished work, IMJ combined
the optimality properties of FDR for sparse signals with the advantages of SURE
for dense signals using an improved pretest for sparsity. Adaptive optimality of
rates of convergence was obtained under the conditions of Theorem 1 in the case
q = 2,0 =0. However, this work was abandoned in favor of the present empirical
Bayes approach, due to the latter's smoother transition in threshold choice between
sparse and dense regimes, reflected in better performance in actual examples.

Birgé and Massart [9] investigate a complexity-penalized model selection
approach for Gaussian estimation and give a nonasymptotic risk bound for squared
error loss (the casg= 2, o = 0 here). When applied to our setting, their approach
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FiG. 5. Instability of the SURE criterion compared to stability of the MML criterion. Three

replications for Zj ind N(ug,1) with up =7 for k = 1:5, zero for k = 6:1000. Top panels
show the SURE criterion U(¢) of (11) (solid) and its expectation (dashed). Bottom panels show
the quasi-Cauchy score function (18) (solid) and its expectation (dashed) as a function of the
(quasi-)threshold ¢ (w) defined by solving (¢, 0) = 1/w. (Johnstone and Slverman [33] has more
on the quasi-threshold.)

yields estimators that are minimax up to constants. The connection between the
kind of “2log(n/k) per parameter” penalties used by Birgé and Massart [9]
and Abramovich, Benjamini, Donoho and Johnstone [3] and FDR estimation is
discussed further in the introduction to the latter paper. Finally, Paul [41] obtains
optimal rates of convergence in certain inverse problems, again$o2, o0 =0,
which in the direct estimation case would reduce to Theorem 1.

There has also been recent work on the optimality of Bayesian wavelet
estimators based on mixture priors, though not from the adaptive estimation
perspective: see, for example, [1, 42].

6. Proofs of main results. The proofs of the main theorems make use of
results of Johnstone and Silverman [33] for the maximum marginal likelihood
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procedure in the single sequence case (3). In Section 6.1 we review these results,
in a form recast to be useful for the multilevel problems raised in the current paper.
In Section 6.2 we begin by giving an intuitive overview of the proof of our main
result. This demonstrates the way that different kinds of error bounds are needed
for different levels of the array; implicit in the proof is the way that the level-
dependent empirical Bayes approach automatically adapts between these. After
our intuitive discussion, the formal proof of Theorem 1 is given. The proof of
Theorem 2 follows in Section 6.3; this makes use of approximation properties of
the boundary-corrected bases and preconditioning operators defined in Sections
5.3 and 5.4 above.

6.1. Results for the single sequence problem. For a vectord € R”?, and O<
g < 2, suppose we have observatiafis~ N, (8, £21,). Estimated by applying
the marginal maximum likelihood approach to the datdZ and then multiply
the result bys to obtain an estimate a@f. Assume that we are using a mixture
prior (4) with y satisfying the assumptions set out in Section 2.1, and a family of
thresholding rules with the bounded shrinkage property. We may use a modified
thresholding method witlh > 0, as defined in (7). By convention, lét= O denote
the unmodified case. Define

log?+@—prd/2p if A=0,
(37) iy =19
n~4(logn)4—b/2, if A> 0.
Then, by making appropriate substitutions into Theorem 2 of [33], we obtain
the following result. The rates of convergence achieved by the leading terms in the

various bounds are the minimax rates for the various parameter classes considered;
see [33] for more details.

THEOREM 3. Suppose that the above assumptions hold and that 0 < p < oo
and 0 < ¢ < 2. Then the estimate 6 satisfies the following risk bounds.

(a) (Robustnesslhere exists a constant ¢ such that
(38) E|6 — 6|4 <cne?  forall 6.

(b) (Adaptivity for moderately sparse signal3here exist constants ¢ and
no such that, for sufficiently large n, provided C{ < nePn{, setting 1 =

&,/log(nerCqy "),

39)  sup E[6-0)¢<

{c{nl_(q/p)cg + &ls% (n)}, if p>gq,
61l ,=Co

cACEel™P + g5k (n)}, if p<gq.

(c) (Adaptivity for very sparse signalsbor ¢ > p > 0 and A > 0, we also
have, for sufficiently large n,

(40) sup E|6 — 018 <c{C{+elsim)}  for Co < e(logn)?/2.
I61,<Co
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If ¢ € (1,2], these results also hold if the estimation is carried out with
the posterior mean function for the weight estimated by the marginal maximum
likelihood procedure.

In order to get an intuitive understanding of the way this result will be used
in the multilevel setting, focus attention on the cgse p and ignore the error
terme?s’ (n). The three results in Theorem 3 allow us to consider three zones of
behavior of the underlying signal.

The first zone has large signal-to-noise rafig/e > n'/Png. Here the best
bound we have is a risk of ordefc?, corresponding to the global risk of the
maximum likelihood estimatdiy g (Z) = Z.

In the second zone, the signal-to-noise ratio is smaller and, giscg, the risk
can be substantially reduced by thresholding. A hard threshold rule with threshold
g1 applied to theZ will typically make an error in any individual coordinate of
at moste;. A least favorable configuration satisfying the constrd#l, < Co
would occur with(Co/e1)? coordinates of size (a little less than)each, and the
rest being zero. This leads to a total error of or(técr/el)l’ei.

In the third zone, the region described by (40), the signal-to-noise ratio is so
small that there is no benefit to attempting estimation at all,dgad) = O is the
natural estimator. This incurs rigk |7 < 11615 < C{.

The discussion fog < p is similar and simpler, involving only two zones, in
the first of which the performance of the estimator is similar to thaipk and in
the second to the zero estimasigr The impact of the theorem is that the empirical
Bayes estimator adaptively achieves, roughly speaking, the best possible behavior
whichever zone the signal actually falls in, without having to spegityr ¢ or Co
in advance.

We remark that, while Johnstone and Silverman [33] assumeg (< 2, we
have subsequently checked that the results extend tooc and we use this
broader range in this paper.

6.2. Proof of Theorem 1.

Heuristic introduction. Before the formal proof, we continue the intuitive
discussion in order to give a heuristic explanation of where the rates of convergence
and the phase change in the proof come from. In addition, we can gain an
understanding of which kinds of estimators and bounds are needed (and, indeed,
are imitated by our empirical Bayes method) at which levels of the transform. The
discussion is inspired by the “modulus of continuity” point of view of Donoho,
Johnstone, Kerkyacharian and Picard [22], but is adapted to the present setting. In
the heuristic discussion, we ignore constants, error terms and so forth.

We apply the bounds of Theorem 3 level by level, with noise levelN ~%/2,

The multiresolution index structure and Besov body constraints imply that, at
level j, we haven = K; < 2/ and Cop = 279/ C. In the heuristic discussion
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approximatee; by (logN/N)Y? for simplicity, but in the actual proof this
approximation is not used. With these substitutions, in the gase the zones of
Theorem 3 translate to

sup 2YE|H; —0;|

febs o (C)
2(sq+1)jN—q/2’ CNY29—(a+1/p)j < 1,
—q/2
a 2—(ap—sq)jcl?<| NN) T NV < 1
0g
~ N \Y2__ .
andC(—> 279 > 1,
logN
1/2
2—(a=5)qj 4, C(L) 274 < 1.
logN

The first zone corresponds to the coarsest scales; the transition to the middle
zone occurs at scalg defined by 2+1/271 = ¢ N¥/?, and the third bound applies
at scales above the finer indgx defined by 22 = C(N/logN)¥2. The risk
bounds increase geometrically gsrises to j; and fall off geometrically ag
increases above. The key to the behavior of the overall riskdp — sg, because
this determines the way the risk behaves in the zone betyiieamd ;.

If ap > sq, then the least favorable index jg, and with geometric decay
of risks away from this level, the rate is determined by?PLiinN—4/2 =
Cl—ZrN—rq‘

If ap < sq, the least favorable index js and the rate is given by 4424 =
C1-2"(logN/N)"'1. Because of the extra logarithmic terms, this set of values of
(o, 0, p, q) is referred to as the “logarithmic zone.” Compare Figure 6.

A

sqj PSS 1/26-aj oj
2°U RES(ON/2g T )

25 PICP(N/logN)
o(sa+1)j pra/2

resolution

j1 j2 level -7

FiG. 6. Schematic of risk contributions (41) by level j inthe “logarithmic” phase where ap < sq.
Inthe setting Z ~ N,, (0, £21,,) of Section 6.1, set RS5,(C,n) =inf, SURg |, <c ENI6 — ol
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If ap = sq, then each level betweefy and j> contributes (in our heuristic
approximation) an amount equal to the maximum in the egse sq. There are
O (log N) such levels, leading to an extra Itfgfactor.

We now give the formal proof, following this overall strategy.

Formal proof: division of the risk. We split the sum in (24) into parts
corresponding to the scaling coefficient, large-scale, fine-scale and very fine-scale
parts of the risk. Defineg andng so that (39) is satisfied. Lgt be the smallest
integer for whichj > max(L, log, no) and 2/7 x 2-@+1/»U+DcNY2 < 5. We
will then be able to apply the bound (39) at levgls j;. From the second property
of j1,

(42) 2771 < ¢(C?N)~P/12A+ap)} — (2 N) =L/ RetD),

Also, ji must satisfy either 2 < ng v 2L or 20124 < 24y Lo N2 so

(43) 211 < cmax{1, (C2N)Y@+D),
Now write
(44) Ry.q.s0)=E|0.-1—0.-1]% + Rio + Rmid + Rni.
where
AN =1) L
Ro= ) 2%YE|0; -6,
j=L
Rmig= ) 2VE|6; 6,1,
<j<J
w .
Rni= ) 2V|6;l1.
j=J

If C2N < 1, then in each case the last term in (26) will dominate the first.
Therefore, we can assume throughout, without loss of generalityCthaN —1/2,
since there is no point in proving the result for any smaller value§.dt then
follows from (42) and (43) that/2 < (C2N)Y/(x+D)

Scaling functionrisk.  Let b, be thegth absolute moment of a standard normal
random variable. Then
(45) Ebp-1—0r-1l§ < Kp-1bgN ™42 =cN 172,

Note that this holds regardless of the size of the scaling coefficients, and that the
proof of Theorem 1 only uses the bound (25) jor L.
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Risk at coarse scales. To bound Rj, use the result (38) and the property
sq+l=q(o*+%) > %q > 0 to give

< oN"4/2 (sq+D)j < ~N—1/290+sq) 1
(46) Rio <cN > 2 <cN™%2 :
L=j<j1
Therefore, sincél +sq)/(2a + 1) = (3 — r)q,
< oN—49/2¢c2N\1/2-1)q  (A=2r)q pj—rq
(47) Rio <cN (C°N) <cC N1,

In the caseip > sq, this is exactly of the magnitude required in (26)alf < sq,
because > r’ and C2N > 1, the bound (47) will be smaller than the first term
in (26).

Risk at finescales. As noted previously, by the definition ¢f, the bound (39)
can be applied for the terms in the sum Ryig. If j1 > J — 1 there are no terms in
the sum andR g = 0. Otherwise, sei = (¢ —1)/2if A>0and 2+ (g —pA2)/2
if A=0 and define

So=N"92 3" 2Usi(K))
n<j<J

< N_q/z Z 2—(A—S¢])jj8 < CN_Q/Z(IOgN)U7

i<j<J

(48)

in every case, using the definition (28)of
Since at levelj we haveCo = C2~%, considering the two terms in (39) now
yields

(49) Rmid < c(S1+ 52),
where
c4 Z 284i 9(1=a/p)j p—aqj if p>gq,
<i<J
S1=4cPN——P)/2 Z 2—(ap—sq)j{|og(2(2a+1)jN—1C—2)}(q—p)/z,
Ji<j<J

if g > p.
We consider four cases fdf; and show that in every cas® < ¢cA(C, N).
Combining with the bound (48) fa$ allows us to conclude, in all cases, that

(50) Rmid < ¢{A(C, N) + N~4/%(logN)"}.
Case la,g < p. In this case we necessarily hagp > sq sincea > s. If

p > ¢q, the exponent in the defining sum fé% is (s¢q +1—g/p —aq)j =
—(x —o0)gqj, and, hence, is geometrically decreasing. Therefore,

(51) S1<cCI27@= 4 < cC1(C?N) "4 = cCL2VINT4,



1742 I. M. JOHNSTONE AND B. W. SILVERMAN
Caselb,q > pandap > sq. The sum inS1 is now geometrically decreasing
apart from a log term, and so, using the property th&t'2/1 < C2N,
Sy < CCpr(qu)/sz(apfsq)jl{|Og{2(2a+l)j1NflC72)}(Q—P)/Z

(52) ‘
< cCPN——p)/2p—(ap=sqjr < (cA=2)q N—7q,

Case 2a,¢q > p and sq > ap. In this case, necessarily> 0 and, therefore,
A > 0 since we requireg < A. Define j, by
292 = C(N/log N)Y2.

We now split the bounding sum fd#; into the two zoneg 1, j2) and[j»2, J). In
the lower zone, sinc€2N > 1, we can bound

(53) log(2®*ViN=1Cc72) < (2a + 1) jolog2<clogN  for j < jo.

In the upper zone we use the bound (40).

The two sums obtained are set out in the following display. Since the terms in the
first sum are geometrically increasing, and in the second geometrically decreasing,
both sums are dominated by a multiple of their valug &t j»:

(54) S1< cCp(Nfl log N)(qu)/2 Z 26a—ap)j 4 -4 Z 254j p—aqj

Jji<j<min(jz,J) izJj2
<cCPN~U=P2(logN)@—P)/2p6a=ap)j2 4 cap~(@=5)]2
(55) <cCA VN9 (logN)"e,
after some algebra, substituting the definitioryaf
Case 2b, g > p and ap = sq. Argue as in Case 2a, but now the first sum

in (54) is no longer geometric but is bounded py< clogN. Carrying the extra
log N factor through the argument yields

(56) S1 <cCA2 (N /logN) "9 logN = cA(C, N).
Risk at very fine scales. DefineA = (q1 — %)Jr, so that” =a — s — A and,

whatever the relative values pfandg, |16, |, < 248 161l , for eachj. Then

o0 oo
Roi = 2910;li§ = >_ 297254 6,113
j=J j=J
(57)

o0
< Z o—(a=s=2)qj _ .canN—""4
j=J
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Conclusion of proof and consideration of related results. Combining the
bounds (45), (47), (50) and (57) now completes the proof of Theorem 1.

To obtain (30) subject to the constraints (23), we follow exactly the same
argument, noting that there are no coefficients to estimatg for/, and so there
is no term corresponding to (57).

To prove the result (31), where observations at all scales are available, modify
the limits of summation where necessary. In the calculation®Rfqg, the sums
are extended tg = J2 where appropriate. None of the bounds $aris affected,
but for S the calculation in (48) becomes

Sp<N79/2 N 2m (AT j5 < o NT4/2(J2)” = N9/ log? N.
ji<j<J?

On the other hand, the sum in (57) now startg at /2, leading to a bound
Rhi < cCa27"1? — o cd exp(—clog® N).

Incorporating these two changes into the main argument leads to the result (31).
6.3. Proof of Theorem 2.

Remarks and preliminaries. In the estimation problem considered, the se-
guenceS; f is the vector of expected values of the preconditioned dgta.
Defined to be the boundary-corrected discrete wavelet transformi of'2S; f.

Our procedure uses what is essentially an estimatetofestimate the true coef-
ficients6. The conditions of Theorem 2 allow the difference between these two
arrays to be bounded; by Proposition 4 of [32] we have

(58)  2Y0; —6jll, <cC27*V forall jwith L —1<j < J,

wherea =« — (3 — 1); > 3. An immediate corollary is that, for some fixed
constant,

(59) 16;ll, <cC2™%  forL—1<j<J.

Therefore, the “discretized” coefficient arréyobeys (up to a constant) the same
Besov sequence bounds as the “true” coefficient afray

The precise value of the constarit in the theorem is mifu — s, — o, a} =
min{r”, a}, with A’ =1 if @ = min(a — s, « — o) and 0 otherwise. We have already
noted in the remarks following Theorem 1 thét” "¢ is always of lower order than
A(C, N) for fixed C. The same is true aF ~""7log*’ N sincea > 1 and the log
term can only be presentiif’ > %



1744 I. M. JOHNSTONE AND B. W. SILVERMAN

Main component of error. Use the convention thak refers to the interior
coefficients andB to the boundary coefficients. Théjk each have expected
valued ;, and for the interior coefficients are independent normals with variance 1.
Because of the bound (59), we can argue exactly as in Theorem 1 to obtain

J-1
> 2VEN0] - 0715 + 3 216,11
j=L j>J

(60) ,
<c{A(C,N)+ CINT"9 4+ N~9/2log" N},

wherev is as defined in (28).
Equation (60) gives the main part of the risk bound in Theorem 2, and the
remainder of the proof consists in controlling all the other contributing errors.

Coarse scale error. - Consider first the coarse level scaling coefficiefis.
Since the variance of each elemendpf 1 = ¥; _1 is bounded by ¢4 we have

(61) Ellfp-1—0p-1]8 < cN~9/24/%2L < cN9/2,

Boundary coefficients. The contribution of the estimates of the boundary
coefficients is considered in the following proposition.

PrROPOSITION2. Under the assumptions of Theorem 2, uniformly over # (C)
asJ — oo,

J—1
62) Y. 2YEIGE - 689 <c[cT2DIN/logN) T + N2,
j=L

PROOF  DefineRhoundaryto be the sum on the left-hand side of (62). The array
6% has the same number of coefficients at every lgvel L, and the elements
of the arrayY # are normally distributed with expected valu#®, and variances
bounded by 4 N 1. We obtain the§jBk by individually hard thresholding thi‘ﬁ

with thresholdr4 (j/N)¥/2, so by standard propertiesgfnorms and thresholding,
Elfjk — 0|1 < c(EBjk — Yirl? + E|Y ji — 0jx|7)
(63) < C(jq/22—q1/2 + 2—qJ/2)
< ch/22—q1/2.
If s <0, use the bound (63) to give

J-1
(64) Rboundary= c2 742 Z jq/22sqj =< eN™1/2,
Jj=L



EMPIRICAL BAYES SELECTION OF WAVELET THRESHOLDS 1745

For s > 0, define j» by 292 = C(N/logN)¥? and split the risk into two
parts. LettingR|, be the risk for boundary coefficients at levels below @inJ),
arguing as in (64),

J2A(J—1) .
Rio <cN~9/2 Z jq/22sqj
Jj=L

(65) < c¢(N/logN)~9/%2%72
<cCT20 (N /logN) 4.

Let Rni be the contribution taRpoundary from levels j > jo. For j > jo, by
Proposition 1 of [33], taking account of the bouson the variance of théfjk,

A ~ ~ —-1/2 .(g— _ —1/2 .
Eldj —0xl9 < c{1fjil? + ¢ 24 V2N=92p(c M or, jY?))

(66) 3 .
< C{|9jk|q + j(q—l)/ZN—KJ/ZZ—(l-FA)J }

Substituting the bound (66) and using the propegty< A gives
(67) Rhi<c Y 2008|194 cN4/2 " jla=Dizp=],
Je=j<J J=J2
Since the vecto@f is the same length for afl, for some constantindependent
of j we havel|6#|l, < cll6F |, < cC274 by the bound (59). Therefore,

Rhi<c )y 2/%127i%4¢Cq 4 cN~1/2
izJj2
(68) < cCi12-@=9)aj2 4 o N—4/2
<cCc2Nan—r"q |Ogr/q N +cN™9/2,

To complete the proof, combine the bounds in (64), (65) and (€8).

Discretization bias. The risks (60), (61) and (62) all quantify errors around
the discretized coefficients. To control the difference in the risk norm between
these coefficients and the true coefficieftslefineA = (ql — %)Jr as in the proof

of (57). Using the bound (58) and the propetty=a — s — A, it follows that

J-1 o J-1 o
D 2UN6;—6g < Do 20TAUN6; — 651
j=L-1 j=L-1

(69) J-1

< cC927947 Z 2@—r")qj
j=L-1
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If @ < r”, the expression is bounded bg? J* 2-%4/ since)’ = 1 if and only if
a =r". On the other hand, i > r”, the sum in (69) is geometrically increasing,
and so the expression is of oraeri2—""47  Sincer” = min(r”, &), all cases are
combined in the bound

J—1
(70) > 29§ — 6|9 < cCIN~""(logN)*"
j=L-1

Completing the proof. To complete the proof of Theorem 2, we combine the
bounds (60), (61), (62) and (70). Fer< r, this gives the required result, with
A=v.

For ' > r, we have an additional term from (62), proportionaltt—2"4 x
(N/logN)~"'4. By elementary manipulation, we have

c=2(N/logN)™"

B C(l—Zr)N—r, if (CZN)r’—r > (lOg N)r’,
= | N¥2(10g N)L/Dr'(1=20)/ (' =r) if (C2N)"'—" < (IogN)".

It follows that the bound (35) holds for this case also, settisgmax{v, %qr/ X
(1—2r)/(r' — r)}. This completes the proof of Theorem 2.

The corresponding theorem with periodic boundary conditions on the functions
and the wavelet decompositions is also true, and can be proved by a simplified
version of the same approach, without any need for preconditioning or for the
consideration of boundary coefficients.

To prove the result (36), we use exactly the same argument as above, but there is
no need to include the discretization error or the error due to levels of the transform
with j > J.

7. Further proofsand remarks.

7.1. Proof of Proposition 1. Note first that, foy > 1 and values of the other
parameters such thag , can be shown to be equivalent to the corresponding
function Besov norm, the result follows from the embedding of the Besov space
By in the Sobolev spacéV, consequent on results in Section 3.2 of [47].
However, to deal explicitly with all parameter values and with our boundary
construction, we give an argument that does not use this embedding.

If ¢ <1, the functiompj(.? has support of length at mo&S — 1)2-//2 and
maximum absolute value bounded &8//22"/ . Therefore, for allj andk,

/ |w§2)|q < 2 i/2pial2gria < psid.
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A direct calculation using the property + y|9 < |x|? + |y|9 now shows that

1
/ |f(r)(t)‘q dt
0

oo 2/—

< > |or- 1k‘qf ‘¢>(r) T+ > |9,k|q/ W(r)
keX1_1 j=L k=0
(71)

0
<cllor-alld +c ) 27916,
Jj=L

<crq,s(f).

For 1< g < 2, we consider the interior and boundary cofficientg separately.
Define

> Or-1xdrx. 1= Ok, 5= Y 0uvir

keXp-1 J=L kex; J=L kech

We have, first,

/ I/ (’)(t)}"dt<sup| ()|

q
(72) < 10211 su 3> r¢(’><r>r)

keKp_1

< cllp-alg-

Now consider f;. Let x;i(x) be the indicator function of the interval
[2=7k, 277 (k+1)]. By Theorem 2 of Chapter 6 of [37], using the fact that=< 1,

1 1
(r) q
/o |f1 (t)| dtfc/o

(73) <cd ) /0 121227705 xjk (x)19/% dx

q/2
dx

oo
> D P07 k)

J=Lkex!

o
=c Yy 241/220r 7T |ig;||4
j=L

o0
<Y 26,4

j=L
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Finally, we consider the contribution from the boundary waveletsSl.die the
union of the supports of the boundary wavelets at lgvédefineT7; = §; \ 8,1
anda; = 20+1/279;]|,. Then

2 16ivii| = maxiid 3o i o
kex} *7 kex}
(74)
<cll0;1,20 Y2 1181 = ca, I15;].

Using (74), the nesting properties of thg, and the property thdt;| = c27¢,
we obtain, applying Holder’s inequality,

/ |f(”(z)|‘1dz§c/ (iajl[xsj]y:cf (ia,)q
T j=L Te j=L

¢ q ¢
= c2_g(z aj> < c2 /2 Z 2_j/2a7.

Jj=L

(75)

Using the bound (75) for each term, we can now conclude that

1 o
[ wlar=3 [ 1570l d
00 12 )
o ]
(=L

j=L

(76)

(2 j/2 q22—€/2>

=]

o0
—J .4 Sqjg. 119
277al <cy 296014

Using the bounds (72), (73) and (76), we can conclude that

1
/0' |f(r)(t)|thfc</|f£r)|q+/ r)|£] +/|f(i’)| )Scrq,a(f),

completing the proof.

e 1M8

=C

7.2. How much is lost without bounded shrinkage? The Besov space adap-
tivity result Theorem 1 provides a context within which the importance of the
bounded shrinkage property can be assessed. Construct a coefficiert égray
settingfz.0 = €273 and all othe;, = 0. Then for anyp, p anda, 6 will be a
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member of the Besov sequence spafe (C). (Obviously the choice of level 3
to have a single nonzero element is arbitrary, and any other fixed position can be
used.)

Let Z = NY/2y3 9 andu = N1/%03 0. Use the mixture prio1 — w)8g + wy
for 11, settingy to be the normalV (0, 72) density. Whatever the value of, the
posterior median function then has the property

iz, w)| <Aclz]  wherer, = 12/(1+12),

and the same inequality holds for the posterior mean. Sinsed, whetherw is a
fixed or random weight, we have

(77) E(p—w?= E(h—w?IZ < ul = 31— A0)%u.

Multiplying both sides of (77) byv ~1 shows that the the mean square error risk
satisfies

Ry.20(0) > E(30—030)° > (1 — 1.)%02 = 3(1— A,)?27%C2,

which does not tend to zero &5— oo. Hence, the maximum risk over any Besov
sequence class does not diminishAasncreases, and no adaptivity result of the
type given in Theorem 1 can be proved.

In the case wherg has tails asymptotic to expc|t|*) for somex € (1, 2),
it can be shown that, at least for large | — | > cu*~L. Consideration of the
same counterexample as above then demonstrates that, again, however the weight
is chosen, the maximum risk over the Besov sequence space is bounded below
by a multiple of N~2+*. For largea this will dominate the rate in Theorem 1,
and thus the assumption thathas tails at least as heavy as exponential cannot
essentially be relaxed without restricting or removing the adaptivity demonstrated
by the theorem.

7.3. Results for the posterior mean. If the estimation is conducted using the
posterior mean rather than a strict thresholding rule, the results of Theorems
1 and 2 still hold for 1< ¢ < 2, since the bounds of Theorem 3 apply in this case.
For smaller values af in the single sequence case, Johnstone and Silverman [33]
show that the failure of the posterior mean to be a strict thresholding rule has
a substantive effect on the overall risk. However, their counterexample does not
unequivocally settle the question of the behavior of the posterior mean estimator
in the wavelet case. The possible extension or modification of the theorems for the
posterior mean estimator fgr< 1 is a topic for future investigation.

Acknowledgments. 1. M. Johnstone is very grateful for the hospitality of the
University of Bristol, the “Nonparametric Semester” of Institut Henri Poincaré,
Paris and the Australian National University, where parts of the work on this
paper were carried out. Similarly, B. W. Silverman is grateful to the Department



1750 I. M. JOHNSTONE AND B. W. SILVERMAN

of Statistics at Stanford University and the Center for Advanced Study in

the Behavioral Sciences at Stanford. Versions of this work were presented in

B. W. Silverman’s Special Invited Paper in 1999 and I. M. Johnstone’s second

Wald lecture in 2004. We very gratefully acknowledge Ed George for his sustained
encouragement and intellectual generosity over the period of this work, and the

referees for their detailed and helpful comments.

REFERENCES

[1] ABRAMOVICH, F., AMATO, U. and ANGELINI, C. (2004). On optimality of Bayesian wavelet
estimatorsScand. J. Satist. 31 217-234.

[2] ABrRAMOVICH, F. and BNJAMINI, Y. (1995). Thresholding of wavelet coefficients as a
multiple hypotheses testing proceduvéavelets and Statistics. Lecture Notes in Statist.
103 5-14. Springer, Berlin.

[3] ABRAMOVICH, F., BENJAMINI, Y., DONOHO, D. and DHNSTONE |. (2005). Adapting to
unknown sparsity by controlling the false discovery raim. Statist. To appear. Available
at www-stat.stanford.edu/~imj.

[4] ABRAMOVICH, F., SAPATINAS, T. and SLVERMAN, B. W. (1998). Wavelet thresholding via
a Bayesian approach.R. Stat. Soc. Ser. B Sat. Methodol. 60 725-749.

[5] ABRAMOVICH, F. and SLVERMAN, B. W. (1998). Wavelet decomposition approaches to
statistical inverse problemBiometrika 85 115-129.

[6] ANTONIADIS, A., JANSEN, M., JOHNSTONE |. M. and SLVERMAN, B. W. (2004).
EbayesThresh: MATLAB software for Empirical Bayes thresholding. Available at www-
Imc.imag.fr/imc-sms/Anestis.Antoniadis/EBayesThresh.

[7] BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical
and powerful approach to multiple testingRoy. Satist. Soc. Ser. B 57 289—-300.

[8] BENJAMINI, Y. and YEKUTIELI, D. (2001). The control of the false discovery rate in multiple
testing under dependendnn. Satist. 29 1165-1188.

[9] BIRGE, L. and MASSART, P. (2001). Gaussian model selectidrEur. Math. Soc. 3 203—-268.

[10] CaI, T. T. and $LVERMAN, B. W. (2001). Incorporating information on neighboring
coefficients into wavelet estimatioBankhya Ser. B 63 127-148.

[11] CHIPMAN, H. A., KoLACzYK, E. D. and McCuLLOCH, R. E. (1997). Adaptive Bayesian
wavelet shrinkagel. Amer. Statist. Assoc. 92 1413-1421.

[12] CLyDE, M. and GEORGE E. I. (2000). Flexible empirical Bayes estimation for waveldt&.
Stat. Soc. Ser. B Sat. Methodol. 62 681—698.

[13] CLYyDE, M., PARMIGIANI, G. and MDAKovIC, B. (1998). Multiple shrinkage and subset
selection in waveletdBiometrika 85 391-401.

[14] COHEN, A., DAUBECHIES, |. and VIAL, P. (1993). Wavelets on the interval and fast wavelet
transformsAppl. Comput. Harmon. Anal. 1 54-81.

[15] CoiFMAN, R. R. and BDNOHO, D. L. (1995). Translation-invariant de-noisingavel ets and
Satistics. Lecture Notes in Satist. 103 125—-150. Springer, Berlin.

[16] DAUBECHIES, |. (1992).Ten Lectures on Wavelets. SIAM, Philadelphia.

[17] DELYON, B. and IDITSKY, A. (1996). On minimax wavelet estimator8ppl. Comput.
Harmon. Anal. 3 215-228.

[18] DoNOHO, D. L. and bHNSTONE |. M. (1994). Spatial adaptation via wavelet shrinkage.
Biometrika 81 425-455.

[19] DONOHO, D. L. and DHNSTONE |. M. (1995). Adapting to unknown smoothness via wavelet
shrinkageJ. Amer. Satist. Assoc. 90 1200-1224.

[20] DoNOHO, D. L. and HHNSTONE, I. M. (1999). Asymptotic minimaxity of wavelet estimators
with sampled date&atist. Snica 9 1-32.



[21]
[22]
(23]
[24]
[25]

[26]

[27]

(28]

[29]
[30]
[31]
[32]
[33]

[34]

[35]
[36]

[37]
[38]

[39]
[40]
[41]
[42]

[43]

EMPIRICAL BAYES SELECTION OF WAVELET THRESHOLDS 1751

DONOHO, D. L., JOHNSTONE I. M., KERKYACHARIAN, G. and RCARD, D. (1995). Wavelet
shrinkage: Asymptopia? (with discussiod)Roy. Statist. Soc. Ser. B 57 301-369.

DONOHO, D. L., JOHNSTONE |. M., KERKYACHARIAN, G. and RcArD, D. (1997).
Universal near minimaxity of wavelet shrinkage. Hestschrift for Lucien Le Cam
(D. Pollard, E. Torgersen and G. L. Yang, eds.) 183—-218. Springer, Berlin.

EFROMOVICH, S. (1999). Quasi-linear wavelet estimatidnAmer. Statist. Assoc. 94 189—204.

GEORGE E. |. and P©STER D. P. (1998). Empirical Bayes variable selection.Rroc.
Workshop on Model Sclection. Special Issue of Rassegna di Metodi Satistici ed
Applicazioni (W. Racugno, ed.) 79-108. Pitagora Editrice, Bologna.

GEORGE E. |. and FOSTER D. P. (2000). Calibration and empirical Bayes variable selection.
Biometrika 87 731-748.

GOPINATH, R. A. and BJRRuUS, C. S. (1992). On the moments of the scaling functign
In Proc. 1992 |EEE International Symposium on Circuits and Systems 2 963-966. IEEE
Press, Piscataway, NJ.

JOHNSTONE |. M. (1999). Wavelet shrinkage for correlated data and inverse problems:
Adaptivity results Statist. Snica 9 51-83.

JOHNSTONE, I. M. (2003). Threshold selection in transform shrinkage. Statistical
Challenges in Modern Astronomy Il (E. D. Feigelson and G. J. Babu, eds.) 343-360.
Springer, New York.

JOHNSTONE, |. M. (2004). Function estimation and Gaussian sequence models. Draft of a
monograph.

JOHNSTONE |. M. and SLVERMAN, B. W. (1997). Wavelet threshold estimators for data with
correlated noisel. Roy. Satist. Soc. Ser. B 59 319-351.

JOHNSTONE |. M. and SLVERMAN, B. W. (1998). Empirical Bayes approaches to mixture
problems and wavelet regression. Technical report, Dept. Statistics, Stanford Univ.

JOHNSTONE |. M. and SLVERMAN, B. W. (2004). Boundary coiflets for wavelet shrinkage
in function estimationJ. Appl. Probab. 41A 81-98.

JOHNSTONE |. M. and SLVERMAN, B. W. (2004). Needles and straw in haystacks: Empirical
Bayes estimates of possibly sparse sequerges.Satist. 32 1594-1649.

JOHNSTONE I. M. and SLVERMAN, B. W. (2005). EbayesThresh: R programs for empirical
Bayes thresholding). Satist. Software 12(8) 1-38. With accompanying software and
manual.

LIANG, K.-Y. and ZEGER, S. L. (1986). Longitudinal data analysis using generalized linear
models.Biometrika 73 13-22.

MALLAT, S. (1999)A Wavelet Tour of Signal Processing, 2nd expanded ed. Academic Press,
San Diego, CA.

MEYER, Y. (1992).Wavel ets and Operators. Cambridge Univ. Press.

MULLER, P. and VDAKOVIC, B., eds. (1999)Bayesian Inference in Wavelet-Based Models.
Lecture Notes in Statist. 141. Springer, New York.

NASON, G. P. (1996). Wavelet shrinkage using cross-validatioRoy. Satist. Soc. Ser. B 58
463-479.

NAsoON, G. P. (1998). WaveThresh3 Software. Dept. Mathematics, Univ. Bristol, UK.
Available from the CRAN Archive.

PauL, D. (2004). Adaptive estimation in linear inverse problems using penalized model
selection. Technical report, Dept. Statistics, Stanford Univ.

PENSKY, M. (2005). Frequentist optimality of Bayesian wavelet shrinkage rules for Gaussian
and non-Gaussian noisénn. Statist. To appear.

PoLzEHL, J. and $OKOINY, V. (2000). Adaptive weights smoothing with applications to
image restorationl. R. Stat. Soc. Ser. B Sat. Methodol. 62 335-354.



1752 I. M. JOHNSTONE AND B. W. SILVERMAN

[44] PORTILLA, J., SIRELA, V., WAINWRIGHT, M. J. and $vONCELLI, E. P. (2003). Image
denoising using scale mixtures of Gaussians in the wavelet dohk& Trans. Image
Process. 12 1338-1351.

[45] R DeEVELOPMENT CORE TEAM (2004). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. Available at
www.R-project.org.

[46] SILVERMAN, B. W. (1999). Wavelets in statistics: Beyond the standard assumpRof&sc.
Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357 2459-2473.

[47] TRIEBEL, H. (1983).Theory of Function Spaces. Birkh&user, Basel.

[48] Vipakovic, B. (1998). Wavelet-based nonparametric Bayes methedstical Nonpara-
metric and Semiparametric Bayesian Satistics. Lecture Notes in Statist. 133 133-155.
Springer, New York.

[49] VipAakovic, B. (1999).Satistical Modeling by Wavelets. Wiley, New York.

[50] WAINWRIGHT, M. J., SMONCELLI, E. P. and WLLSKY, A. S. (2001). Random cascades
on wavelet trees and their use in analyzing and modeling natural imé&gas Comput.
Harmon. Anal. 11 89-123.

[51] ZHANG, C.-H. (2005). General empirical Bayes wavelet methods and exactly adaptive
minimax estimationAnn. Satist. 33 54—-100.

DEPARTMENT OF STATISTICS ST. PETER'S COLLEGE

STANFORD UNIVERSITY OXxFORD OX1 2DL

STANFORD, CALIFORNIA 94305-4065 UNITED KINGDOM

USA E-MAIL : bernard.silverman@spc.ox.ac.uk

E-MAIL : imj@stat.stanford.edu



