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SEMIPARAMETRIC ESTIMATION FOR STATIONARY PROCESSES
WHOSE SPECTRA HAVE AN UNKNOWN POLE?!

By JAVIER HIDALGO
London School of Economics

We consider the estimation of the location of the pole and memory
parameter)»O ando, respectively, of covariance stationary linear processes
whose spectral density functiofi(A) satisfies f(L) ~ C|A — 29=% in a
neighborhood of.9. We define a consistent estimator i# and derive its
limit distribution Z,0. As in related optimization problems, when the true
parameter value can lie on the boundary of the parameter space, we show that
Z,o is distributed as a normal random variable whére (0, ), whereas for
A9=0orm, Z,0 is a mixture of discrete and continuous random variables
with weights equal to 22. More specifically, when® =0, Z,o0 is distributed
as a normal random variable truncated at zero. Moreover, we describe and
examine a two-step estimator of the memory parameteshowing that
neither its limit distribution nor its rate of convergence is affected by the
estimation of.¥. Thus, we reinforce and extend previous results with respect
to the estimation ofr when 10 is assumed to be known a priori. A small
Monte Carlo study is included to illustrate the finite sample performance of
our estimators.

1. Introduction. Given a covariance stationary procé¢sg observed at times
t=1,2,...,n,the search for cyclical components and their estimation and testing
are of undoubted interest. This is motivated by the observed periodic behavior
exhibited in many time series and manifested by sharp peaks of the spectral density
estimate.

A well-known model capable of generating such a periodic behavior is the
regression model

(1.1) xr = p + p1c0SA%) + posin(A%) + ¢,

where p; and p> are zero-mean uncorrelated random variables with the same
variance ande,} is a stationary sequence of random variables independent of
p1 and p2. Model (1.1) has enjoyed extensive use and different techniques have
been proposed for the estimation of the frequency, amplitude and phase (see [6,
18-20, 35]). Extensions to a model with more than one periodic component have
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been examined by Quinn [29] and Kavalieris and Hannan [25], whose interest was
also in testing the number of sinusoidal/cosinusoidal components. See also [30].

A second statistical model capable of exhibiting peaks in its spectral density
function is the autoregressive AR process

(1.2) (1— a1l —asL®)x, = &

when the zeros of the polynomiél — a1 L — a>L?) are complex, with.? identified
as arcco%). Models (1.1) and (1.2) represent two extreme situations

explaining cyclical behavior of the data and the peakedness of the spectral density
function. Model (1.2) possesses a continuous spectral density function whereas
model (1.1) has a spectral distribution function with a jump at the frequefcy
The cyclical component of the data remains constant or invariant with time in
model (1.1), whereas the cyclical pattern of model (1.2) fades out with time fairly
quickly.

Between these two extreme situations there exists a class of intermediate models
in which the spectral density function of exhibits a pole at the frequenay. For
that purpose, define the spectral density functiom, &fs the functionf (1) which
satisfies the relationship

(1.3) y(j):Cov(x,,xH.,-):f_ f)cosjr)da, j=0,1,2,....

We say thatf (1) has a pole at0 if
(1.4) FA)~CA—29"%  asi— A0

whereC € (0, >0), o € (0,1) is the memory parameter and-* means that the
ratio of the left- and right-hand sides tends to 1. One of the main objectives of this
paper is the estimation af.

One model capable of generating such a cyclical behavior in the data has been
proposed by Andel [2] and Gray, Zhang and Woodward [17] and defined as

(1.5) (1—2(cosA®)L + L) x, =&,

whereL is the backshift operatod, = /2 for 10 € (0, ), whereas fon® = 0 or
7, d = a/4. The model (1.5) was coined the Gegenbauer model by Gray, Zhang
and Woodward [17], who extended it to the GARMA model where the innovations
{e;} follow an autoregressive moving average (ARMA) process, and it was later
extended by Giraitis and Leipus [13] allowing for more than one pole or cyclical
component. The GARMA process is characterized by having the spectral density
function

2

2
(1.6) fO)Zg;H—Zwmﬂ%Jk+darm

a(e'*; 9)
b(e'*; 0)
whereo? > 0, anda(-) andb(-) are polynomials of finite degree, all of whose
zeroes lie outside the unit circle. Wher? = 0, we have the more familiar

, —mT <A<,
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FARIMA model, apparently originated by Adenstedt [1], and studied by Granger
and Joyeux [16] and Hosking [23]. GARMA models are characterized by a
stronger and more persistent cyclical behavior than ARMA models, that is, (1.2),
but unlike model1.1), their amplitude does not remain constant over time.

If the location of the pole.? is known, then under some regularity conditions
and a correct specification of the model, Whittle estimates of the parameters
a (or d), 6 and o2, for example model (1.6), are known to bé&2-consistent
and asymptotically normal. In the case of Gaussianity or linear processes, this
was shown by Fox and Taqqu [11], Dahlhaus [7] and Giraitis and Surgailis [15]
when1? = 0 and generalized by Giraitis and Leipus [13] and Hosoya [24}.for
different from 0. All these papers assume th&h) is fully specified by a set of
parametersa, 6, 02)’.

Although knowledge ofr® can be realistic in some time series data, with
nonseasonal data that knowledgex8fis not so clear. An example of the latter
is when the practitioner is interested in estimating cycles in macroeconomic
or geophysical data. Recently, Giraitis, Hidalgo and Robinson [12] have shown
that Whittle estimates ofw, 6’, 02)’ are asymptotically the same irrespective of
whether or not? is known. In addition, they proved that the estimater8fis
n-consistent although its limit distribution remains an open problem.

However, if the ultimate interest is only the estimation of the memory
parametetr, one possible criticism of the parametric approach is that an incorrect
specification of the model leads to inconsistent estimates. dne source of
misspecification is the choice of a wrong value\f If that were the case, Whittle
estimates ofr would be inconsistent, and would possibly estimate the vadte
The latter might happen even if a semiparametric approach were adopted; see
Section 3. Thus, we might conclude that the data is short-memory- instead of
long-memory-dependent, which could have some adverse effects on the statistical
inference of relevant statistics such as the serial covariances; see [21] or [33].

The main objectives of this paper are twofold: first, under mild conditions,
to provide a consistent estimator of and characterize its limit distribution. In
particular we show that the limiting distribution of the estimator.8fdepends
on whethen.? e (0, 7) or A% = 0 or z. The second objective is to investigate the
consequences that the lack of knowledge bmight have on the estimation af

Some earlier related work has been completed by Miller and Prewitt [27] and
Yajima [36]. In the former the authors estimate the peak of the spectral density
f(2) in a model, like that in (1.2), whose spectral density function is continuous
in [0, ]. Looking at argsupf (), where f (1) is a smoothed nonparametric
estimate off(A), they show its consistency and the limit distribution to be a
normal random variable whex? e (0, ). Yajima [36] considers the estimation of
10 in a model with spectral density function possessing a pol@.aBased on the
maximum of the periodogram of the data, he gives consistency and an upper rate of
convergence for the estimate . Unfortunately, the limit distribution, which is
required for statistical inference, was not provided. In addition, his results rely on
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the assumption that the data is Gaussian, which is not required in the present paper.
Finally, it should be mentioned that Giraitis and Leipus [13] prove the consistency
of A2 in a model like (1.6).

The paper is organized as follows. In Section 2 we describe a semiparametric
estimator ofx whenA? and the estimatok® of A% are known. In Section 3 we
discuss the statistical propertiesi® and we show that the asymptotic properties
of a two-step estimator af remain the same irrespective of wheth&ris known
or estimated. The finite sample behavior of the estimatoi @ihd« is analyzed
in Section 4 through a Monte Carlo study. Section 5 provides the proofs of the
results given in Section 3, which apply a series of lemmas given in Section 6.
Finally, Section 7 contains a summary.

2. Regularity conditions and the estimators of the pole and memory
parameter. Let {x,} be a covariance stationary linear process observed at times
t=1,2,...,n, with spectral densityf (1) satisfying (1.4). Wheri? is known,
under the semiparametric specification (1.4) several estimators of the memory
parametekx have been proposed and examined. In this paper, to estimae
shall use a modification of the log-periodogram estimator (see [31]), which we now
describe. Consider the average periodogram spectral density estimgtor) of

Z Iy,

lj1=<k1

(2.1) fo=foo) =

2k1+l

wherel, = I (A¢) denotes the periodogram gf, that is,

" 2
(2.2) Ir=|@2rn) Y2y xe™|,  t=1....[n/2],
=1

andIp =0, wherer, = 2r¢)/n for £ =1,2,...,[n/2], [z] denotes the integer
part of z and k1 = k1(n) is a positive number which increases slowly with
that is,kl‘1 +n~1k; — 0. (Observe that the definition d@f entails sample-mean
correction.)

Let v (1) be a weight function irf0, 1), and write

. 1 A 3
(2.3) a(rg) = EY Y ¥p(10g fy1p +109 fg—p).
.')l, p:l

wherey, = ¥ (p/k), hy = k=238 _ v, log(p/k), fo = max(fi, n~1) andk =
k(n), a positive number which increases slowly withthat is, k=1 + n~1k — 0.

DEFINITION 2.1. If A9 is known, we define the estimator of the memory
parameterr asa (1), wherei; is the closest Fourier frequengy to 20,
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REMARK 2.1. The motivation to use; instead off; in (2.3) is due to the
singular behavior of log at x = 0. Specifically for the proof of tightness, that is,
Proposition 5.4 in Section 5, we have not been able to bound some probabilities
or moments for alk > ng as required. This problem, of course, does not appear
asn — oo as can be observed from Propositions 5.1-5.3, nor if our goal were to
examine the behavior @ ();). We do not believe that this adjustment is needed
in practice and have made it here only because we cannot establish Theorem 3.2
(cf. Proposition 5.4) without it, unless some additional stronger conditions were
introduced, for instance, the normality of the data.

We now define our estimator af asi®=; = (27§)/n, where

(2.4) g = argmax a(iy).
q=0,...,[n/2]

Note that periodicity and symmetry around zero imply that it suffices to search
for the maximum in (2.4) at frequencigg, withg =0, ..., [n/2]. From (2.4) we
could definea (1% as an estimator of, that is, (2.3) evaluated af. However
(see Section 3), sinc@(1% does not have optimal properties, we will describe
a two-step estimator, denotédi?%), which overcomes all the adverse properties
of &(19); see Theorem 3.4.

The motivation for the estimator in (2.4) is as follows. From the proof of
Theorem 3.4(a) below, it is easily shown tlad#.;) is a consistent estimator af
On the other hand, i£, is in any open set outside®, that is,|Aqy — As| > 6, for
any arbitrarily small > 0, Condition C.1 below implies that

FOq) =1hg = 2" %g(hg) ~ Ca ().
That s, at the frequency;, the spectral density function behaves aswere equal

to zero. So, from the proof of Theorem 3.4(a) we should expectatiiat) £ 0,
implying that P{|A° — A,| < 8§} — 1. That is, the estimator given in (2.4) is
consistent. These heuristics will be formalized in Theorem 3.1 below. We finish
this section by introducing the following regularity conditions and their discussion.

CoNDITION C.1. There exista € (0, 1) such that
A —20"%g(n),  fO<i<m,
IA+219"%g), if—r<r<0,

whereg()) is a bounded symmetric and bounded away from zero function with
two continuous derivatives forQ A < .

f()\)=!

CoNDITION C.2. {x;}is a covariance stationary linear process,

oo oo
2
=) Bje—j. Y Bi<oo,
j=0 Jj=0
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where{s;} is a zero-mean i.i.d. sequence wiﬂ{sf) =1 andE|g|t = pue < 0
fore=3,...,27 and some > 4.

CONDITION C.3.  Asi — 4, the functiong (%) = 332, B,¢"/* satisfies

1980/ = O (1 — 2217 HB(V))).

2
CONDITION C.4. kMt 2+ k~2k3logk + nky & T2/ - 0, for some > 0
asn — 0o, with k < cn?®, 0 < ¢ < oo and wherer is as in Condition C.2.

ConDITION C.5. The functiony (x) is twice continuously differentiable
with second derivative that is Lipschitz of order at Ieés'ln its support(0, 1)

and satisfies/y ¥ (x)dx =0, 0< hy = — [3 ¥ (x)(logx)dx < oo, 0 < ¥ =

J3 " () (logx) dx, wherey” (x) = Ly (x), andlx 2y (0] +[(L—x) "1y (x)] <
D < oc.

We now discuss Conditions C.1-C.5. Condition C.1 is much the same as that
employed by Robinson [31, 32]. Indeed, Condition C.1 implies that-as°,

fR)=Chh =271+ g0 - 10+ o(r —29?)

by Taylor expansion ofg(x) aroundA® and whereC = g(1°). Observe that
¢'(19 = 0 when1? = {0, 7} by symmetry of f(%), obtaining then the corre-
sponding condition used in [31, 32]. However, we prefer to state the condition
in its present form since, in Theorems 3.1 and 3.2 below, some regularity con-
ditions on f (1) are needed outside any open set containiei. Examples
of processes whose spectral density function satisfies Condition C.1 are the
FARIMA (p,«/2,q) and the GARMA model given in (1.6). Finally, the last
part of Condition C.1 is quite standard in the spectral density estimation litera-
ture. Condition C.2 is needed for the proof of tightness (see the proofs of The-
orems 3.2 and 3.1). It is also required to show the uniform convergenge of
although for the latter property, at the expense of stronger conditions on the
rate of convergence da‘l‘l to zero, fewer moments af, can be assumed. Ob-
viously Condition C.2 is satisfied i; is Gaussian. Condition C.3 is the same
as Robinson’s [32]. Condition C.4 controls the rate of increasé ahd k;.
For instance, denoting = n"2 andk; = n1, in the Gaussian case, we can take
0< y1<8/15 and 31/2 < y2 < min{2y1/(1 + 1), 4/5}, whereas forr = 4 the
bounds are 2 < y1 < 8/15 and 31/2 < y» < 4/5. Finally, Condition C.5 char-
acterizes the type of weight in (2.3). An example/qit) satisfying Condition C.5
is ¥ (u) = —u? + 35u%°/6 — 293/6 + 2u3logu.

It is worth mentioning that the quadratic behavior of the weigtt), asu — 0,
guarantees that the first momenttgt) (see Theorem 3.2 below) has a parabolic
structure so that the maximum &f{v) is easily obtainable. Obviously, other
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different types of weights can be used which would not prevent the consistency
of the estimator of.%. However, for weights not having a quadratic behavior, the
asymptotic distribution of the estimate of the pole is not guaranteed to be normally
distributed. We will return to this condition after Theorem 3.2.

3. Statistical properties of the estimators of the pole and memory parame-
ter. Inthis section we prove a functional limit theorem for a process operating on
increments ofx(1,) nearA%, which together with the continuous mapping theo-
rem will allow obtaining the asymptotic distribution &. A similar approach was
used by Eddy [10] to estimate the mode of a probability density function and by
Miiller [26] for the estimation of the break point in a regression model. Apart from
providing the consistency and rate of convergence®ab A2, the limit distribution
will guarantee that asymptotic valid inferences around the true valu® mfy be
implemented. A

The strategy of the proof to obtain the asymptotic distribution®bonsists of
three steps; see [34], Chapter 3. Step 1 establishes the consistekftyoo£®.
Step 2 establishes the rate of convergencébfo 1°, and Step 3 shows that
suitably rescaled versions éf(1,) converge weakly to a limit, denotedv) in
Theorem 3.2, in the spade[—M, M] for each finite O< M < oo. Note that
convergence ifd[—M, M] for each finite O< M < oo is to be meant convergence
in D(—o00, c0). See Pollard [28]. From here, the continuous mapping theorem
will conclude thatio, after normalization, will converge in distribution to the
argmay &(v).

The next theorem gives the consistency and rate of convergenfe®£?, that
is, Steps 1 and 2. Theorem 3.2 justifies Step 3, whereas Corollary 3.3 examines the
asymptotic distribution of.°.

THEOREM3.1. Assuming Conditions C.1-C.5,[A° — 10 = 0, (k}/2n~1).

We see that the rate of convergenceibfto A0 is slower than the parametric
rate n~! obtained by Giraitis, Hidalgo and Robinson [12]. This appears to be
reasonable due to the local behavior of our statistics. The same phenomenon occurs
in other related, although different, problems involving nonparametric statistics;
see, for instance, [10, 26] or [27].

Under Conditions C.2 and C.4, far= 4, (1° — 1% = 0,(n*=?%/3) for any
arbitrarily smalls > 0. However, a closer examination of these conditions and
the proof of Lemma 6.3 indicate that the rate depends on the number of finite
moments of the sequenegin Condition C.2. In general, with > 4, (30— 20 =
Op(n“‘(2f2‘3f+4)/2(72+2)). So, the greater the number of finite moments allowed
for ¢, the faster the rate of convergencei@fto 29. In the extreme case where
all the moments exist, the rate of convergencei%foecomem‘s‘l. This rate
was obtained by Yajima [36] in the Gaussian case and is arbitrarily closelto
obtained in [12].
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So Theorem 3.1 indicates thaf = A% + n=1(27[kY/2v]) for some |v| <
M < oo. To examine the asymptotic distribution), let us introduce the notation

(31) i:n(U) ( ( H_[kl/zu]) &()W))

£,(v) is a random step function which is constant in the interyalg®/2, (i +
1)/kY?), |i| < M, so thatén(v) is a random element in the Skorohod space
D[—M, M] for arbitrary 0< M < .

We now establish our main result, that is, the aforementioned Step 3.

THEOREM 3.2. Let |v| < M for any arbitrary M € (0, c0). Assuming
Conditions C.1-C.5,

sn(u) Weékys(v) in the space D[—M, M],

where & (v) isa continuous Gaussian process such that
E(EW) =—hy " v%e/2 and  Cov(§(v), () =y suivy,
where ¢ = fg ¥/ (u)?du < oo with ¥/ (x) = Ly (x).

The immediate consequence of Theorem 3.2 is that arg §@y is a normal
random variable. Indeed, because Theorem 3.2 implies that the limiting process
&(v) is Gaussian, it can be written as

E(w) =—h; wnvza/ZJrh 1.1/2,,

whereX = N(0, 1). But £(v) is a random parabola with fixed second derivatives
and a unique maximum at

U* _ (l/_f//a)_l 1/2X

since by Condition C.5, & hy,0 < ¥, so thatd2s (v)/dve = —hy, L < 0.
From here we can observe the (possible) consequences of using a weight
function ¥ (u) which does not have a parabolic structurexat 0. The main
implication is that if the latter were the casg(&(v)) would not necessarily
be a parabola as in Theorem 3.2. For example, it may beAlgatv)) = Clv|,
in which case not only can the argmaxv) be difficult to obtain, but more
importantly it would no longer be a normal random variable. So, in view of the
asymptotic normality achieved with a weigtit(u) satisfying Condition C.5, it
appears desirable to employ it. Similar issues occur when estimating the date of a
break in a regression model; see, for example, [26].

Now we turn our attention to the asymptotic propertiesi8f Note that
Theorem 3.1 indicates that

2nkY? o 2wkY? 1
)\- + U}’l+0<_>’

(3.2) A=, +

Uy =

whereuv,, = argmay, £,(v). Then we have the following:
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COROLLARY 3.3. Denote W = ¢ (¢"a) 2. Assuming Conditions C.1-C.5as
n— 00:

(@) 1120 (0, 7), then 27k¥2)1n (30— 29 & Z,o =Y = N(O, V).

(b) If 1% = 0, then (27kY2) 1230 % Zo = Y4(¥ > 0), where 4(A) denotes
theindicator function of the set A.

(©) 1 10 = 7, then (27kY2)~1n (30 — ) 4 Z, = Y 4(Y <0).

We now comment on the results of Corollary 3.3. First, we now see the necessity
of Theorem 3.1, as it will give us the normalization needed to achieve a “proper”
asymptotic distribution. Next, we observe that the limiting distributionibf
depends on whethe® is {0, 7} or 1° € (0, 7). The intuition about the limiting
distribution of A% in cases (b) and (c) is as follows. As the maximization of
@(Ly) in (2.4) is restricted to the interval ® 1, < =, for 20 =0, it implies that
(A9 — 19 = 1% > 0 so thatZp cannot take negative values. Similarh? = =
implies thati® — 7 <0 andZ, cannot take positive values. So, the estimation
of A9 falls into the category of a constrained optimization problem or inequality
constraint estimation. Indeed, whghis an interior point of the s¢0, ] and due
to the consistency af%, we can expect that the constrained estimatBr= Ags

coincides with the unconstrained estimaftgr: LG = (2mq)/n, where

(3.3) g= argmax a(iy),
ge{0,£1,+2, ...}

whereas ifl® =0, § = G4(¢ > 0). Similar arguments apply whex? = 7.

Once we have examined the properties.Bf we next examine the estimation
of «. By Theorems 3.1 and 3.2 and the functional mapping theorem, it is easily
shown that(A%) — & (1% =0, (k"¥?). S0,k?(&(A0%) — a) andk¥?(& (1% — )
have the same asymptotic distribution. However, the faster the convergeie of
to A9, the slower the rate of convergence&xffxo) to «, and hence it becomes
slower than the rate obtained whihis known. The same phenomenon happens to
hold in [26]. Hence, to circumvent this drawback, as in [26], we propds®-atep
procedure to estimaie. To this end, we shall use as an estimatow @dhat given
in (2.3) wherey, is replaced by.’ = (27§)/n such thati® — 1% = 0, (kY/?/n),
andk andk; are replaced by: andm1, respectively, satisfying:

CONDITION C.6. m*1+mm12+m?m’3logm1+k/m — O withm = cn/®,
O<c<oo.

In addition, to be a bit more general regarding our choice of the weight
function (1), we allow for the weighted function, say(u), to satisfy:
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CONDITION C.7. [dw(u)du =0, 0 < hy = — [Fw()(logu)du < oo,
w(u) ~ cu® asu — 0+ for some ¥3<¢ <1 andforall O< uy < us < 1,

lw(u2) —w(u1)| < Dluz —u1l*,  0< D < oo.

So, ourtwo-step estimator ofx is defined as

e 1z A A
(3.4) a(0) = - > wy(10g fi4p 4100 f5-p).
w”lpzl

where f (1) = max{ f (1), n~1} and f() is as in (2.1) but with the smoothing
parameterk; there being replaced by, hy, = —m~*3"'_; w,log(p/m) and
wy, =w(p/m).

We now comment o (1.%) compared t@ (A% = (h,m)~* ¥'_; w), log fitp-
Observe that the former is a “symmetrized” version of the latter°). Assume
for simplicity that A% is known. As in other semiparametric estimators, for
example, [31], one source of the bias @f/2(@(1°%) — «) comes from the
replacement off (1) by g(A%)|» — A% ~*, which in our case, that is, if° £ {0, 7},
will be proportional to

m
m Y23 " w,(h, + 0(3)) = 0(n tm¥?).
p=1

The main reason for this behavior is that wheh= {0, 7}, by symmetry we
have g'(0) = g’(w) = 0, whereas forh # 0 or 7, g’(A) may not be zero so
that g7t (A0 [n — 2% f(V) = 1+ g0’ WO — 1% + 0(1a — 1%?) by a
Taylor expansion of (1) aroundr’. Recall the comments made on Condition C.1.
However, when the estimatafr(1%) in (3.4) is employed, the contribution of
the above approximation (Taylor expansion) to the biag:d® (& (1%) — «) is
proportional to

m m
m V2N wp(—hp + 005 +m Y2y w,(hp + 0(A3)) = O(m>?n~?).
p=1 p=1

Note that the latter holds true also fdt = {0, }. So, the “symmetrized” estimator
(1% would have a smaller bias order and thus it would have a faster rate of
convergence te thana(19).

THEOREM3.4. Denote ®2=2"1 [ w?(x)dx and B = (32/9:2logg(1.9)) x
S uPw(u)du. Let X0 be an estimator of A% such that [1° — 10| = 0, (k¥2/n).
Assuming Conditions C.1-C.4with k1 = n* and k = n"2, where 2t/(t% + 2) <
y1 < 8/15, 31/2 < yo < min{f—f[, g‘}, 7 as in Condition C.2, and Conditions
C.6and C.7,then
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@) @m)Y2(@(hy) — ) S N(4n2c52B/(2Y2h,,), &2/ h2),
(b) 2m)Y2& (.0 — a) 4 N(4n2c5?B/(2Y?h,,), ®2/h2).

REMARK 3.1. Itis worth mentioning that the results of Theorem 3.4 hold true
if the weighty (1) employed to estimate® is used inz(1%). However, this weight
will not guarantee an asymptotic variance smaller than 1, as is the case with the
weight used in the Monte Carlo experiment. In fact, for the weight used in the
Monte Carlo experimenh;Zd)2 ~ 0.70, which is smaller than the corresponding
asymptotic variance of other estimatorsaobuggested in the literature. Finally,
the theorem indicates that although any preliminary estimatof wtich satisfies
120 — 291 = 0, (k2 /n) is adequate for the results to follow, in practice it appears
that one may use that given in (2.4) for computational simplicity.

Theorem 3.4 provides a consistent estimator of the asymptotic variari@ of
that is, ¥ in Corollary 3.3, by replacing: by &(.%). But more importantly, it
indicates that thewo-step estimatory (1°), apart from having the same asymptotic
distribution asx(1°), achieves the optimal semiparametric rate of convergence
obtained by Giraitis, Robinson and Samarov [14] wh&g= 0. So, asymptotically,
there is no loss by usin@o instead ofA°. However, to achieve the latter, as in
other nonparametric estimates.%) will have a bias term of the same order of
magnitude as the standard deviation.

4. Finitesamplebehavior. In this section we study via Monte Carlo analysis
the finite sample performance of the estimatafs and ¢(1%. The models
employed throughout the simulations are

(4.1) A—L)*?x, =¢, 1=0,%1,...,
4.2) 1—2cosn/2)L + L% %x, =g, t=0,%+1,...,
( /

where{e;} is a zero-mean sequence of i.i.d. Gaussian random variables. Model (4.1)
generates a pole af = 0, whereas model (4.2) does sa.8t= /2. We have cho-
sena = 0.2, 0.4,0.6 and 08. The autocorrelation functions of (4.1) and (4.2) are
given by

J—1+a/2 )
= —F——F—pPj— =12, ...,
p] ]—05/2 p] 1, J ,
and
1—j—a/2 .
Pei = —qj2 PPUD p2j-1=0,  j=12...,

respectively; see, for example, [3]. For each combinatiom afid°, 2500 repli-
cations of series of lengths= 256 and 1024 were generated by the method of
Davies and Harte [8].
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Also, we have compared the performancei8fand &(.% with the corre-
sponding estimators obtained using the log-periodogram estimator of [31] popular
among practitioners. That is, considér= Lg = (2mq)/n, where

(4.3) g = argmax aLoc(rq),
q=0,...,[n/2]

k -1 %
(4.4) &LOG()Lq):—<ZZ¢j|Ogj) > ¢;(0g1j1q+logl,_;),

j=1 j=1

with ¢; =logj — k1 Z’gzllogﬁ. Moreover, we have examined the behavior of
the estimator og(A%) of o, wherek = m in (4.4). For the estimation af?,
the chosen bandwidth parameters were,fee 256 and 1024k = 14 and 24,
respectively, and; = k%%loglog 2, whereas for théwo-step estimatorsx (1°)
and & oc(A%) of «, we have chosem = n/4 andmy = m®®loglog2n. The
weight functions used wer¢ (1) = —u? + 354%°/6 — 293/6 + 2u®logu and
w(u) = ut® —9ul/?2/8, respectively.

Table 1 illustrates the bias and standard deviation of the estimafogé/en
in (2.4) and X% in (4.3). More specifically, since.’ = (27§)/n and 19 =
(2rq)/n, we have reported the bias and standard deviatiaf afdg. Table 2
summarizes the bias, standard deviation and mean square erﬁqﬁ(bf and
&(19). The motivation to includer(1°) is to investigate the relative loss we
incur by lack of knowledge of.% in small samples. Recall that Theorem 3.4
indicates that asymptotically there is no loss. Moreover, Table 2 illustrates the
finite sample performance of the corresponding estimatasatitained using the
log-periodogram estimator in (4.4), thatdés.oc(1°) andaog(19).

TABLE 1
Bias and standard deviation of g and ¢

o

0.2 0.4 0.6 0.8

A0=0 n 256 Q935 (8.33) 638 (6.96) 424 (5.39) 280 (4.04)
926 (7.88) 732 (6.85) 594 (6.01) 485 (5.25)

1024 1540 (15.50) 843 (10.74) 481 (7.64) 262 (5.76)

2291 (25.31) 1%5 (20.89) 90 (14.02) 673 (9.96)

»9=% n 256 Q003 (7.64) —0084 (533) —0091 (2.96) —0.054 (1.56)
0209 (9.59) (@70 (9.21) (272 (8.66) 0320 (7.28)

1024 0051 (11.87) Q17 (4.77) (063 (1.89) (216 (1.13)
0435 (27.89) (44 (25.77) —0.213 (21.30) —0.060 (13.52)

The first row in each cell correspondsgpwhereas the second row is thatgof



TABLE 2

Bias, standard deviation and MSE of the long-memory parameter estimators

o

0.2 0.4 0.6 0.8
A0 n BIAS SD. M.SE. BIAS SD. M.SE. BIAS SD. M.SE. BIAS SD. M.SE.
0 256  —-0.020 0064 Q004 —0.022 Q067 Q005 —0.017 ao71 Q005 —0.006 Q072 Q005
—0.019 Q057 Q004 —0.030 Q065 Q005 —0.024 Q074 Q006 —0.006 Q075 Q006
—0.001 Q089 Q008 —0.003 Q089 Q008 —0.003 Q089 Q008 —0.007 Q082 Q007
—0.015 Q084 Qoo7 —0.043 Q090 Q010 —0.064 Q099 0014 —0.079 Q105 Q017
1024 —0.006 0024 aoo1 —0.003 0025 Q001 Q007 Q031 Qaoo1 0026 Q031 Q002
—0.015 Q030 Q001 —-0.014 Q035 Q001 Q002 Q040 Q002 Q032 Q045 Q003
—0.002 Q042 Q002 —0.003 Q042 Q002 —0.005 Q042 Q002 —0.005 Q042 Q002
—0.022 Q045 Q003 —0.039 0054 Q004 —0.046 Q059 Q006 —0.051 Q066 Q007
5 256 —0.020 Q055 Q003 —0.035 Q059 Q005 —-0.041 0064 Q006 —0.040 Q070 Q006
—0.010 Q046 Q0002 —0.020 Q053 Q003 —0.004 0062 Q004 Q043 Q059 Q005
0.002 Q094 Q009 Q000 0094 Q009 Q000 Q093 Q009 Q005 Q084 Qoo7
—0.050 Q098 Q012 —0.083 0121 Q022 —0.100 0156 Q034 —0.083 Q0182 Q040
1024 -0.012 Q022 Qo001 —0.015 0024 Q001 —0.007 Q028 Q001 Q014 Q034 Q001
—0.014 Q018 aoo1 —0.017 0020 Q001 Q003 0024 aoo1 Q044 Q035 Q003
—0.002 Q038 Q001 —0.004 Q038 Q001 —0.006 Q038 Q001 —0.007 Q038 Q001
—0.039 Q046 Q004 —0.064 Q069 Q009 —0.061 0096 Q013 —0.023 Q097 Q010

The first row in each cell corresponds to the estiméztﬁlo), whereas the second,

aLoc(19), respectively.

third and fourth correspond to the estimatdts, & og(1%) and

370d 3HL 40 NOILVINILST DId1INVHVLINTIS

G681
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Inspection of Table 1 indicates better performance®than.C across different
models and sample sizes, especiallydor 0.2. For example, whea = 0.8, the
finite sample performance 6f is clearly superior to that of?, this superiority
being greater with the sample size. With regard to the estimators of the memory
parametetr, we observe that the proposed two-step estimataf) outperforms
&Loc(A9) and has better finite sample properties forraind°. In some cases,
the performance o og(1°) is very poor compared to that &f(A°), especially
for large values ofw. Finally, when comparing their performances with the
estimators obtained when the location of the pdlés known, we observe that the
relative loss of efficiency o&(ko) is smaller than that ofLOG(AO) Moreover, as
Theorem 3.4 indicates, it appears that knowledge’d$ not relevant to estimate
whene (19) is used, although it seems not to be the case when the log-periodogram
is employed. Altogether, we can conclude th8tand &(1°) enjoy better finite
sample properties than the corresponding ones basg8 amdé og(19).

5. Auxiliary resultsand proofs. We begin with the proof of Theorem 3.2.

5.1. Proof of Theorem3.2. Letr = —[vk?/2]. We examine the case- 0; that
for t <0 is similarly handled. First, since Condition C.5 and Lemma 6.10 imply
that|hy — hy| = O(k~1), we have by the definition @(1,) that

6
£t/ kY% = 2—1@1(25,2”(:)) (14 0,k™)
i=1
after observing thad, (¢ / k) = §,(v), and where
k
ED@W)=—a) y,log(p—11+/p),

p=1

R k

ED(t)y=—a ) ¥,log((p+1)/p),
p=1

Fits—th - t|+)

EQ ) = Z ¥plog

(5
s<4><r>—2wplog< = ”’“),
o)

(frheee

-1 A
f
(6) — [ P
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where f; = (2k1 + 1>—1Z§1:_k1 FG+08G+e£s)+(s+Dd(j+e=s) and gl =
max(|g|, 1). _

We examine the behavior d},ﬁ’)(t), fori =1,...,6, in four propositions.
Specifically, Propositions 5.1 and 5.2 deal with the limiting bia3 ¥t , £\ (1),
although for the proof of Proposition 5.1 we will allow< pk for 0 < p < 1.
Proposition 5.3 examines the finite-dimensional limiting distributioé,ﬁg)f(t) +
§,§6) (r) and Proposition 5.4 its tightness. Propositions 5.1-5.4 imply Theorem 3.2.

ProPOSITIONS.1. &Y #) +£2 1) = —1/?”05% +0(; + I’;—ﬁ).

PROOF  We only examiné.Y (1), £{2 (+) being identically handled. Assume
o < 1/2first, sothat O< ¢t < k/2. Then

t k
5.1) EPO=—a) yploglp —tl+/p)—a > W,log((p —1)/p),

p=1 p=t+1

where the first term on the right-hand sidedigk—2r%) becauséy,| < Dp?/k? by
Condition C.5 and the integrability df2log((1 — u)/u)|. Next, the second term
on the right-hand side of (5.1) is

2t
—a Y yplog((p —1)/k)
p=t+1
k—t k
—a Y pr—¥p)log(p/k) +a Y vplog(p/k).
p=t+1 p=k—t+1

Proceeding as with the first term on the right-hand side of (5.1), the first term of the
last displayed expression &(k—2:3log(k/t)), whereas the last term 8 (k—23)
by Taylor expansion of () aroundu = 1, noting that Condition C.5 implies
thaty (1) =0 and thatZ’l‘):k_,+1 llog(p/k)| = O(t2/k) by Taylor expansion of
log(x) aroundx = 1. Finally, the second term of the last displayed expression is

at’l

¢ k—t k—t £5/2
2) —al /| _ers | L
(52) —of 3 V000 = 577 3 jloor/b+ o(%32)

by integrability of |logu| and the fact that)”(u) is Lipschitz continuous of
order /2 by Condition C.5. By Lemma 6.10 and Condition C.5, the first term
of (5.2) is

L / f t d d /
_atfo ' (u)(logu) du + 0(;> + 0(%<{Z +p:kz_t+l}|¢p |og(p/k)|>>

p=1

1
=at/0 Y tdu + 0k~ (1+ 2k~ log(k/1))),
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noting that Condition C.5 implies tha{t(u)(logu)% =0 and|w;| < Dp/k and
then proceeding as above. On the other hand, the second term of (5.2) is

_Ef/ v (u)(logu) du + 0(’2 |og<§)) wz/zz + 0(t3 log(k))

so that, becausé—1/2:1/2log(k/1)| < D for 0 <t < k, we conclude that

‘@ 1 1 1;/%2 t t5/2
sn (t)=0[l/o Y (u)u du —« %K +0(%+m)

Now, when ¥2 < p < 1, so thatt/2 < < k, the proof is identical since in this
case the left-hand side of (5.1)-sx Z _1¥plog(t = pli/k) —a Zk 1 (W pgs —
V) log(p/k) + az’; ki1 ¥plog(p/k). Then proceed as above Proceeding

similarly, 5,(,2)0) = atfo v wutdu — a + O(k k3/2) From here the
conclusion is obvious.

PROPOSITIONS.2. £ (1) + £ (1) = 0(1).

PROOF  We only examiné.> (1), asé\? (¢) is similar. By definitioré,> (1) is

2kq k k
(5.3) - Z Vpap — Z Vpap — Z Vp&p
p=1 p=2k1+1 p=1
where
ap =log(f;,} Fots)
p (p+5)L(p£0)+(s+1) L (p=0)J p+s
_1 ~
- |09(f(p+s—t)1(p¢z)+(s+1)1(p:z)fp+s—z)
and

&p = 109(A%, fip+)1(p#£0)+ s+ 1(p=0))
—10Q(AT, ¢ 1, fipts—02(p#D+6+DL(p=))-

Since by Condition C.1 andi® — is| < Z, D Y(ka/p)* < A fpes <

D(k1/p)*, itimplies that, forp < 2k, |a,| = O(log(k1/p)) by Lemma 6.1. Note
thata, = O(logki). Hence the absolute value of the first term of (5.3) is bounded

by
2k,

Diyillogh) +D Y |wp|log(';1) 0<k—f)=o<1>

2
p=Lp#t k



SEMIPARAMETRIC ESTIMATION OF THE POLE 1859

by Condition C.4 and because Condition C.5 implies thiaf] < D(p/k)2. The
absolute value of the second term of (5.3) is bounded by

ka[log"/3 k1] k
D Z |wl7al7| +D Z |¢pap|
p=2k1+1 p=killog3k11+1

= O(kflzzg;kl tkl (1+Iog< ))) =o(1),

where for the first term on the left-hand side we have used the fact that by
Lemma6.1(a)p~1 < | fot fp+s| < D and then Condition C.5, and for the second

term on the left-hand side the fact that by Lemma 6'1(ﬁ)_;+sfp+s 1 =
O(p~2k2), which implies that log( £, fp+s)| = O(p~2k?) by the mean value
theorem, and then Lemma 6.4 with = k; 210g(f, 1 f+s) there.

To complete the proof, it remains to show that the third term of (5.3)1%. By
Condition C.1,5°%_1 ¥,2, is

k
> ¥ (10g(g (A ps)) — 109(g (G prrs—1)))

p:

(5.4) .

—a > Yp(10g(lrprs — 2012, = log(I2p—rvs — A%14A10,.))-
p=1

Denote the first and second derivatives of(9@.)) by (1) andh’(1), respec-
tively. The first term of (5.4) is

<2”t>2¢ph(kp+s) ( ) Ztﬁp Apts—6(pyt)

4 2
il th (s >prp+o<1>

p=1

whered (p) € (0, 1), by Condition C.4 and because Lemma 6.10 and Condition C.5
imply thatk ™t Y-8 _; ¥, = O(k™1), so that

k k
Y Uph(prs) =D Up(hOpis) — k(i) + O(D)

p=1 p=1

21
——h (A )pr,,+0(k3 —241).

p=1
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Next, the second term of (5.4) is
—a{ >+ Z }zpp (10g((Apts = A0, —log(12p—r4s — A21iA,, )
p=1 p=2t+1

The contribution due tcz _1 is 0(1) by Condition C.5 and then Condition C.4,
whereas the contribution due Ep _2:+1, by Taylor expansion of lo@), is

k

o(*55) $ wl(i-55)

p=2t+1

a o =20\ & {1_ 1 }
+2”< 2n > A ey ey

p=21+1

= Otk tlogk) + O (kL + tk—?logk) = o(1),

where p(s — a) is an intermediate point betwegn—a and (p — a) + n(As —
29)/(27), and then becauser’ — is| < 7, |p~/¥,| < Dk=/ for j =1,2, by
Condition C.5 and the fact thap?p—2(s)| + |(p — 1)2p~2(s — 1)| < D. So, we
conclude that

Ed@) = h (As) Z Py +o(D).
p=1
Similarly, £ () = 42th’ () > 1 p¥p/n? + o(1). From here the conclusion
of the proposition is obvious.[

ProPOSITION5.3. The finite-dimensional distributions of éés)(t) + 5,56)0)
converge to those of a normal random variable.

PrROOF By the Wold device, it suffices to show that, for any firiite O,
i X R ., l
> 0 (EQ 1) + £ 1)) > N(o, s> ¢,-¢,-ul~u,->,
i=1 i,j=1
whereg; satisfiesy"!_; |¢:|? = 1 andv; = lim;/ k*/2. Denoting f,* f, by &,

2t k
grES) () =-— Z wp IOg(gp+s/gp+s—t) - Z Wp Iog(gp+s/gp+s—t)
p=1 p=2t+1
(5.5)
= blt + bzt-
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We begin by showing thai;; = 0, (1). In particular, we will show something
stronger than needed, that is, that for eachO there exista such that

(5.6) P sup |biy — b1, | >t < DMk Y2 og Y ky
P 1014 1

11=<q=t

for all n > ng and 0< 11 < 1o < [kY/2M . Because, < [k1/2M],

2[kY2 M)
sup |bi, —biy| <2 sup  [loggsis| Y 1l
=q=f2 0<lq|<2[kY/2M] p=1

<D sup |logggs| M3k Y2,
0<|q|<2[k1/2M]

since Condition C.5 implies tha} }_; [v,| < Da®/k?. Then by Markov's
inequality the left-hand side of (5.6) is bounded by

DM3 Y27 E sup  |logg,ss| < DMV og T kg,
0<|g|<2[kY2M]

because Lemma 6.1 and the definitionf‘ng imply that g, is bounded from
below by D~1n~", for someh > 1, and forx > D~1n=",

(5.7) llogx — (x — 1)| < D(x — 1)°logn,

by Condition C.4,|logn/logki| < D, and the fact that by Lemma 6.3 and
Condition C.4, for some > 0,

(5.8) E( sup  |&g+s — 1I“) S —
glgl=z log"™* ki
D
(5-9) E( sup |§q+s - 1|M) = TBur”
g: 2k1<q] ky"

So (5.6) holds, which implies that; =0, (1).
Next we look at the second term on the right-hand side of (5.5), thabs,
Denoting

k—t
(5-10) b3 = Z (‘ﬁp-&-t - 1;ﬁp) IOg(éA’p—&-s),
p=2t+1

we have thaby; — b3, is

2t k
(5.11) > Ypsil0g@prs) — Y. ¥plog(@pts).

p=t+1 p=k—t+1
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Because by Condition C.H,Zf,’:,+1|1ﬂp+t| + Zfaq:q+1|‘ﬂp+q|} < Dk~2(s3 +
q3) < DM3k—Y/2 the first term of (5.11) satisfies

2t 2q
PI’{ Sup Z Vp+n Iog(g’p-i-s) - Z Vp+q Iog(§p+s) > 8}
n=q=f2 p=t1+1 p=q+1
5.12
(5.12) D

<
~ ekl/2logky

by Markov's inequality and (5.7)—(5.8), whereas the second term satisfies
k k | . - DM [tp—1n1
Z - Z Vplog(gp+s)| > € < z10gk, <W>

p=k—t1+1 p=k—q+
by (5.7) and (5.9) and be}faU§]Z=k—q+1—Z]}=k—m+1 = Z];;’kl_qﬂ and by
Condition C.5, SUR_, </, )t 411Vl < X, F 1yl < D205 — 1) <
DMEk=Y2(t) — 17).

So, (5.6), (5.12) and the last inequality imply that for any 0 there existag
such that for alk > ny,

Pr[ sup

n=q=t

Pr{ sup [(£(q) — bag) — (7 (1) — bay)| > 8}

n=q=t
(5.13) oy

<———(M?+ (t2 — 11)).
_skl/zlogkl( + (12 — 1))

Clearly (5.13) implies that s@p, - o;1/2p |§,§5)(t) — bz| = 0,(1). Proceeding
similarly, we have that for any > 0 there existag such that for alk > no,

Pr{ sup [(£%(q) — bag) — (¥ (t1) — bayy)| > 8}

5.14 s
( . ) <A(M2+(tz—l1))
~ ek1/2logky ’
where
k
(5-15) b4t = Z (Wp—t - Iﬂp) Iog(gs—p)-

p=3t+1

Next we examinés, andbs,. Denotingd, = g, — 1 and writing

k—t - k
(5.16) b= Y Wpr—¥p)Ppis: b= Y Wpt— V)P p,

p=2t+1 p=3t+1
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Lemma 6.5 implies thais, = b, +1/k?0,(1) andba, — b, + t/kY?0,(1), where
theo, (1) termis uniformly inz < pk, for p < 1/3.

So it remains to examink andb,. By Taylor expansion of,,

(5.17) b= Z Y0y + 2k2 Z w( ) pss

p 2r+1 p=2t+1

whereé = §(¢) € (0, 1). The first term on the right-hand side &.17) is

k—2k1

LY Uty { S Z }w;ﬁp+s.
p=2k1+1 p=2t+1 p=k—2k1+1

By Lemma 6.2 and Conditions C.4 and C.5, the second term of the last displayed

expression is clearlytkl/z/ko 1+ k™ 1k°‘+1/21(a > 1/2)) = t/kY?0,(1),

where theo, (1) term does not depend an< pk. On the other hand, writing

nj = fi1i+s — 1, the firstterm is

+s
k—2k1 / k1

t vy

o D M)

k p=Zhitl 2k1+1 =k
(518) t k—2k1 w/ kl f it

+ - Z - Z(pjs_]-)’?pﬂ'-
kponmZatl 25N fpis

since| fy iy fpes = U = FoisforslL = i foisl = O3/ p?) by Lemma 6.1,
| ol Fojs — A1 < D%% by Condition C.3, and by an obvious extension
of Robinson [32]E| Y52, cjnpejl = O(1'?) for any |e; = c(j/kp)| < D,
we obtain that the first absolute moment of the second term of (5.18) is
by Condition C.5 and then Condition C.zﬁl(;‘l/ZO(ki/zk‘l/2 Z’;Zl VAES
t/k¥20(1), where ther(1) term does not depend orx pk.

On the other hand, after rearranging subindices, the first term of (5.18) is

k—2kq

Ay np<2k 1+ 1 Z¢p+,>

p =2k1+1

1 rch
Z Up(2k +1 Z wj-i-kl)

p =k1+1

k—ky 1 k—kq
/
v T w(g X Yiw)
J=P

p:k—2k1+l

| o~
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After standard calculations and routine application of Robinson’s [32] Theorem 2,

the last two terms are/kO,, (kl/2 = t/k%20,(1) by Conditions C.4 and C.5,
whereas the first term of the Iast displayed expression is

k—2ky k—2k 1
Z w np Z w np(wp |:2k +1Z¢p+1:| )

p =2k1+1 p =2k1+1

We note thaty’(«) continuous by Condition C.5 implies th&n;jL /w —1as

k1/p — 0, and hence the expression inside the parentheses converges to zero as
p — o0. So by Toeplitz's lemma we conclude that the last displayed expression,
and therefore also the first term of (5.17), is

t 1 kP

/

12 <k1/2 > Vet Op(l))-
p=2k1+1

Proceeding similarly as with the first term on the right-hand side of (5.17), the
second term of (5.17) i~ 3/22(k~1/2 yk—2 v (2 +85)m, +0,(1)), so that

p=2k1+1
_ ¢ 1 k—2k1
p=2k1+1
where theo, (1) and 0, (1) terms are uniform im < pk. Similarly, we obtain that
z t 1 K
(520) b’:m<k1/2 Z 1/f n— p+ 0 (1)+0p(1)>
p=2k1+1

where then,(1) and O, (1) terms are uniformim < pk.
Thus, (5.13), (5.14), Lemma 6.5, (5.19) and (5.20) imply that;fer[MkY/2],

I
Z¢i(§,§5)(ti) +£0@)) Z¢z by, + bt,) kl/zop(l)

i=1 i=1

l
—d> N(O, g Z ¢i¢jv,~vj)

ij=1

(5.21)

by Robinson’s [32] Theorem 2 and Toeplitz's lemma, smf:e1 Ze z+1(W)2 _
¢| =o0(1) by Lemma 6.10. [J

PROPOSITIONS.4. £ (t) and £° (¢+) aretight.
PROOR Write ¢; = 5,55) (t) — ba;, Wherebs, is given in (5.10). To show that

A,ﬁs)(t) is tight it suffices to show that; and b3 are tight. Since the finite-
dimensional distributions of; converge to zero [cf. (5.13)], Billingsley’s [4]
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Theorem 15.4 implies that; is tight if for eache > 0 andv > 0 there exists a
8 € (0, 1) such that
(5.22) Pr{®" (c;,8) > ¢} <v
holds for alln > ng, where
3" (cr, 8) = supmir{|c; — ¢y

Crp — Ct H’
and the supremum is over, ¢ andr, satisfyingr; <t < o with 1o — 1, < 8[kY2M]
ands < (0, 1). Observe that we can assuie’? < [ro/kY2M] — [t/ kY° M. If
[t2/ kY2M] — [11/kY2M] < k=1/2, then either, and lie in the same subinterval
[(p—1)/M, p/M) or elser andt, do; in either of these cases the left-hand side
of (5.22) vanishes.

Inequalities (14.9) and (14.46) in [4] imply that (5.22) holds if

P (¢, 8) = e} <,

’

for some O< § < 1, where
9 (¢, 8) = sup lcr — ¢yl
[(t—v)/(kY2M)| <8
(Observe that ag, converges in probability to zero, which has continuous paths,

the Skorohod metric can be replaced by the uniform topology.) By the corollary of
Billingsley’s [4] Theorem 8.3, it suffices to show that

li—-1=V=t

(5.23) ZPr{ sup ey —cr_y| > 3/3} <v,
i=1

where 215 < [kY2M] 1t —t;_1) <sand O=19 <11 < --- <1, = [kY/2M]. But
this is the case since by (5.13),

} DM3s
<

pr{ SUp ey — ¢y, >8/3) < elogky”

1 1=V=Y
Now chooseng such thath M3 ~1log~1 k1 < v sincer < 2[6~1] to obtain (5.23).

Proceeding similarly, but using (5.14) instead of (5.1;533), (t) — by, is also tight.
Next we show the tightness condition fiof; ; the proof forby, is similar and is
omitted. Consider < g. Thenbsz; — bz, is

k—t k—q
Z (‘/’p+t - ‘/fp) |09§p+s - Z (‘/fp—i-q - 1//p) IOg§p+s

p=2t+1 p=2q+1

2q k—t
(5.24) ={ oo+ ) }(wp+t—wp)log§p+s

p=2t+1 p=k—q+1
k—q

+ (wp—H - Wp+q) IOg §p+s~
p=2q+1
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The first term on the right-hand side of (5.24) is tight, as we now show. Because
by Condition C.5,

2q k—t
Yoo1+ Y 1

p=2t+1  p=k—q+1

¥ pss — ¥yl < DKL <3(q —1),

abbreviating the first term on the right-hand side of (5.243:hy, we obtain that

r .
ZPr{ sup ¢, 1q\>s} ZPr{ kl/Z sup |Iog§p+s|zs}
i=1 p=21+

li-1=q=t;

DM
elogky

by Markov’s inequality and (5.7)—(5.8) witla = 1 there. Then choosg) such that
DMes1logtk;1 < v to complete.

Next, Taylor expansion implies that the second term on the right-hand side
of (5.24) is

1/t—q\2 =4 .
(5 25) ( k ) Z lﬁp+[ Ioggp+s E(Tq> Z w;;_i_e Ioggp+57

p=2q+1 p=2q+1

where{ is an intermediate point betweemndg.
The second term of (5.25) is tight as we now show. Proceeding as with the proof
of tightness oft, it suffices to show that for all ande > 0 there exists:g such
2 k—q
q—1ti-1 N
( kl ) Z |1//;7/+zloggp+s|

that
. } <
p=2q+1

for all n > ng and 0< 19 < --- < t, < [k¥/2M]. But by (5.7) and (5.8) and the
fact that|y”(u)| < D by Condition C.5, the left-hand side of the last displayed
inequality is bounded by

> Pr! sup
i=1

ti_1=q=<t;

r r
De 'k tog ™tk Y (6 — ti-1)? < DMPetog kY 8% < v,
i—1 i=1

sincer <2[8 11 and 2715 < [kY2M17 1@t —1_1) <3§.

To finish the proof it remains to examine the first term of (5.25), denotetl by
Since from the proof of Proposition 5.3, the finite-dimensional distributior pf
converge to those of the limiting Gaussian process which has continuous paths, by
Billingsley’s [4] Theorem 15.4, it implies that it suffices to check that

P (d;q,8) > e} <v
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for somen > ng. Now by Billingsley’s [4] Theorem 15.6, it suffices to check the
moment condition

t—vl|f2

k1/2

(5.26) E|dy gdg.|P* < D‘

fort < ¢ <vand some; > 0 andBz > 1. Write

A
dt,q = <T) Z w;_u(gp-l—s - 1)

p=2q+1
3ky

k—q
—t ) R A
- (qk ): Z + Z }‘/’p+t(1_gp+s +1098p+s)-

p=2q+1 p=3k1+1

Using (5.7), the first absolute moment of the second term on the right-hand side
of (5.27) is bounded by

3k k—q

D‘QT_Z"OQ”{ DR }Iw,’,+,|E(§p+s—1)2

p=2q+1 p=3k;+1

k2o 1
< Dlg — rllogn( Tyt = 1/2)+ )

plEma[ME o (REDR g
T T (@=1/2)
_ A+
=0/t
— k1/2

for some O< & < 3(1 — @) by Lemma 6.2 and observing th@fj‘:lzﬁl |wl/,+l| <

Dk?k~t = o(k¥/?) by Conditions C.4 and C.5. So, the second term on the
right-hand side of (5.27) satisfies (5.26), which follows by the Cauchy—Schwarz
inequality, choosingg1 = 1/2 andg> = 1+ &, and the fact thatg — t)(v — ¢) <

(v —1)2. Finally, proceeding as with the proof bf given in (5.19),

A L a1\

p=2q+1

which implies that the first term on the right-hand side of (5.27) satisfies (5.26)
choosingB1 = 1 andB, = 2, and noting thatg — t)(v — ¢) < (v — 1)?. So, we
conclude thabs; is tight. Proceeding similarlyh4; is also tight, which completes
the proof. O
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5.2. Proof of Corollary 3.3 (a) By Theorem 3.2,§n(v) Wik!y E() in
D[—M, M] for any arbitraryM > 0. Next, since the limiting Gaussian process
&(v) has continuous paths, that is, it belong<{e- M, M], the Skorohod metric
can be replaced by the uniform topology. On the other hand, by Eddy [10], the
argmaximum is a continuous functional in the set of parabolas with fixed second
derivatives inC[—M, M]. So, by van der Vaart and Wellner’s [34] Theorem 3.2.2,
we obtain that

O = argmavé, (v) %> argmaxt (v) = v*,

where v* = W¥2x and X = N(0,1). Observe that Theorem 3.1 shows that
Pr{|0,| < L} > 1 — § for n sufficiently large. This together with Problem 1.3.9
in [34], page 27, implies thal, is uniformly tight.

But by constructioni® = 1° + n=1(27kY2)0, + O(n™Y), that is, (3.2), and
hence

kY2 (G0 =20 = 0, + 0k~ Y2) & F = w2y

(b) As in (a), the limit process is(v), where from the definition of°, v > 0.
Thus, if X takes a positive value, the restrictian> 0 is not binding and the
maximum of&(v) is achieved at*. However, whenX takes a negative value,
the restriction is binding and thus the maximum issat 0 due to the parabolic
structure of (v).

(c) The proof is identical to part (b) once the wording positive (negative) is
replaced by negative (positive)]

5.3. Proof of Theorem 3.1 Similarly to the proof of Theorem 3.2, it suffices
to show the theorem withy, replaced by:y, . With that replacement and recalling

thatg, = f, £, @(r,) becomes

-1 k
% Z 1ﬁp(IOQéA’p—i-q + IOgg’q—p)
p=1

1 %
+ % Z wl’ Iog()“(lyp—i-q—sn fp+q)
p=1
G28)
+ % Z Yplog(Ajg—p—s1, fa-p)
p=1
hot k
@l Y w092l p +q — sl /m) +log@rla — p =511 /m).

p=1
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Because (5.7)—(5.9) imply that sup .2 [logg¢| = 0,(1), we then have
that, uniformly ing, the first term of (5.28) converges to zero in probability.
Next, consider the second term of (5.28). (Recall that § < [1n/2].) If ¢ <
max0, s — [k1l0ogk1] — k} or s + [k1logk1] < ¢, this is

th Z wp{log<f”+q) _ m(M)

fp-i—q g(Aptq)

(5.29) o
+ Iog<ﬂ> } +0(1)
Mp—i—q - )\o|a ,

because Lemma 6.10 and Condition C.5 imply that - _; v, = 0 (k%) and

by Condition C.1,f, =[x, — A0|—“g(xp). But by Lemma 6.1(a) and Taylor
expansion of lo¢) aroundz = 1, (5.29) is bounded in absolute value by

g(hg) >' k? A ptgosl
— | | —1 1).
Z V] (‘ °g<g(kp+q) q+p—s2 ° °g<|kp+q —A°|>) o)

The contribution due to the second term inside the brackets is easily shown to be
0(1), as is the contribution due to the third term by Taylor expansion and the fact
thatn|i, — /\0| < mr. Finally, by the mean value theorem, the first term inside the
brackets is bounded by

D & P k
25 Py = 0(—),
k p:ln n

because by Condition C.%,(2) is continuously differentiable. Next, when—
[k1logk1] < g <s + [k1logki], the second term of (5.28) is als@l), since there
are at mostO ([k11ogk1]) terms such thatp + ¢ — s| < [k1logk1], and hence
by Lemma 6.1 D tlogk; < IOg(fP"‘q{)“lp—Fq o, T fp+q}) < D, whereas for the
remaining onegp + ¢ — s| > [k1logki], so that proceeding as before, it will
be 0(1) by Condition C.4. Thus, we conclude that the second term of (5.28) in
this region isO (k~1kylogki) + o(1) = o(1) by Condition C.4. Similarly, when
max0, s — [k1logk1] — k} < g < s — [k1l0gk1] we obtain that the second term
of (5.28) is als@w(1). Proceeding as with the proof of the second term of (5.28), it
follows that the third term of (5.28) is(1) uniformly ing.

Usingfo1 ¥ (x)dx =0 and Lemma 6.10, we conclude that

sup [&(hg) — 3841 (hg) — 38— n(hg)| = 0,(D),
0<g<[n/2]

where 8, ,(hg) = —ah, k25K _ v, log(lp + g — sl /k) and 5, () =
—ah Yk, log(lg — p — sl /k).
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We now examine the properties 6f ,(1,); those ofs_ ,(i,) are handled
similarly. First, by Lemma 6.10,

Wtk

Syn(hs) —a= —a% Z (Wp IOQ(%) —i—hg,) = O(k_l).

p=1
Now, for arbitrarily smallp > 0, sup,-1;<|,_s d+n(Ag) < Dp since by Taylor
expansion,

sup |log(lg —s|+) —log(|£p +¢ — s|1)| < Dp.
p~Yk<|g—s]|

Next, by Proposition 5.1, SYR 1<k Spnhyg) —a < —Dpz, whereas since
8+.1(X4) is a nonincreasing function iy — s|, SURyk<jg—s|<p-1k S+.n(hg) —a <
—D,o2.

Therefore, writingA,, (r) = & (As + (27¢)/n), we conclude that

Pr( sup (A, (1) — A, (0)) > 0) -0,
[t]=pk

that is, 20 is a consistent estimator of°. Thus, to complete the proof of the
theorem, it suffices to show that for any- 0, there existd. > 0 such that

(5.30) Pr< sup  (An(t) — A (0) > 0) <e.
pk>|t|>k2L

By Theorem 3.2 (cf. Propositions 5.1-5.3),

£ (R0~ Ry(0) = —1}”@<1+ 0((%)1/2)) i+

1 - 1 .

+ by — b + ;(sﬁ(r) — by)
1 ~ 1 .

+ ~(ba —bo) + ;(5,5%) — byy).

By Proposition 5.3 [cf. (5.19) and (5.20)] and Lemma 6.9,

1 . ~ 1 k—lt|
Sup |=(bs +bs)| = —7 SUP |77 W/ (27Tls,p+s -1+ Op(l)
|t|<pk k1/2 ltl<pk k2 p§|:t| g

1
:0p m ,
k—|t|

since by Condition C.5'(u) is continuous, so that syp. ,; k=23 Z v, x
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2rle prs — 1| = 0,(1) by Lemma 6.7, and thence by Lemma 6.5,

(5.31) sup
|t|<pk

1 - = 1 ~ 1 ~ _
—(bi +b) + (b3 — b)) + = (ba — b)) = 0,k 12,

By Condition C.4, there exists a finite positive integesuch tha’rkir_l)’3 <

kY2 < kTP Consider first the casekg™” < k. Then the left-hand side
of (5.30) is bounded by

r k - PR
> Pr sup —(An(t) — Ay(0) > 0>
e=1 Lo ak/KVP >t Lok kP

k _~ -~
(5.32) + Pr( sup —(An (1) — A, (0)) > 0)
Lok/KP = 1t)>2k, L

k - —~
+ Pr( sup —(An(t) — Ay (0)) > O),
2k L>|t|>kY/2L

whereLo=p, Ly > 0 for ¢ > 1 andL > 0. Sinceh;laxﬁ// >0 andA,(t) —
A, (0) > 0, the third term of (5.32) is bounded by
} <e

k2 k1 -

Pr{|O 1 1)‘ "
H ”(k3/zlogk1 - Kb k12 )|z

for L large enough, by Lemma 6.8(b) and (5.31), and because Condition C.5

implies thatk2k—3/2 = o(1), and k~¥2k}# = kM2 (k) = 0(1).

Next, the second term of (5.32) is bounded by

e e R
)4 r r =0p
KPP loghy - K

> |y inf
B >
Lek/ky" >|t|>2Lky

t
_inf 77
2y L>|t|>kY2L | k

t
<é

1

for L large enough, by Lemma 6.8(a), (5.31) and the fact tHé&t = o(k1),

kY2 < k" *PF and Condition C.4.
Finally, consider the first term of (5.32), whose typical element is, proceeding
as before, bounded by

8 148 8
k k k
Prilo, (L + A 4 "L )
{ p<kfﬂ + k logky + k1/2

= 0,(1)

tki’g

> al g X

Lo ak/K PP s t> Lok kP

| <.
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eﬂ z/s+1

because s <t = = o(k~2%P*1) = 0(1) by Condition C.4 and < r.

Next con5|der the case< 2ki+”3. In this case, lef be the biggest integer such

that 2,77 < k < k177 butk < k1 T"PP . The proof now proceeds identically
as in the previous case, but now the sum of the first term of (5.32) runséfeerh

to 7. Note that ifk < Zkf’g, so thatr = 1, then the left-hand side of (5.30) is
bounded by

Pr( sup E(/A\n(t)—f\,,(O))>O)

pk>|t|>2Lk1
+ Pr( _sup E(Kn(t) — A, (0) > O),
2Lk >|t|>kY2L
and then proceed as in the proof of the second and third terms of (5.32), since
Condition C.4 implies tha%f = o(k?), and recalling that now < Zkf”g, we have
ki~ Pk=1/2 = o(1) by Condition C.4. O

5.4. Proof of Theorem 3.4 We begin with part (a). Observing that Condi-
tion C.7 implies thatjr,, — i) = On™) andm™t30'_jw, = O(m™1) by
Lemma 6.10, the behavior 02m)Y2(¢(1s) — ) is governed by that of

Bt i ou(s S gt i Iog(fp+s fs—p>
w 8 g w —a —o
(Zm)l/zp A p p+s&s—p (2m)1/2 for’ p )\«p )\p

(5.33) (zml/z( iwpmg( ) )

Recall thatf 1f,, = g,. By Lemma 6.10 the last term of (5.33)d¢l). Denoting
mj = [my Iogml] the second term of (5.33) is
hil mi f +s fs - f—l—s f~s—
(5.34) %{Z Iog( e _p> + > wplog< o Tj) .
(2m) / p=1 )\ A p=mij+1 )\p )‘p
Next, because by Lemma 611 < A%lfsip < D for | p| < 2m¥, we have that
the first term of (5.34) i) (m~Y2log(m1) Z;”il lwpl) = O(my  m=&+D/2

log'*t¢ (m1)) = o(1) by Conditions C.6 and C.7 since > 1/3. Denoting
g(rp) = gp, the second term of (5.34) is

m

s 3w ) e S s
@m?? PN fpws fop) @2 pomermE

:ma“_—i-l =mi+1

—ah:”l 3 -1 0 -1 0
~2m)i2 Y wpllog(h, Iap + Ay — 27D 4 109G, HAs — A7 = ApD).

p=mi+1
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Because, folp| > 2m}, Lemma 6.1(a) implies thab= < m72p?| £, L fprs —

1] < D, we obtain by the mean value theorem thatfgdqu+é O(m3p=?)
and so the first term of the last displayed expression is bounded in absolute value
by
Dmi & 2 1+¢
-2 _ —(2+1)/2
p=mi+1
whereas the second term is 4B¢>/2/(2Y/2h,,) + O (n~1/?) because

1 m
(2m)1/2 Z W) 100(8p+58s—p)
p=mj+1

2 ™M 472B 52 1
(zm)l/Zpr|Og(gs)+ 12 +O<m1/2>

by Condition C.6 and Taylor expansion of Iggs) and loggs_,) around
log(gs) and that by Lemma 6.10 and Condition C¥;’_; w, = O(1). So,
the second term of (5.33) ist4Bc®2/(2%/2h,,) + o(1). Finally, proceeding as
with the second term of (5.4), the third term is easily shown to be bounded by
Dm~1/?2 Xp |wp|p_1 =o(1).

Denoting ¥, = g, — 1, and proceeding as with the proof of Lemma 6.5, to
complete the proof of the theorem, it suffices to show that

ht &
(5.35) (2m)1/2 Z Wy (D pts + Fs—p) 4 N, h720?),
(5.36) (zm)l/Z{Z + ) }wp(zmv +02,) 5 0.
p=2m1+1

We begin with (5.36). By Lemma 6.2(b), the first moment of the first sum
inside the braces on the left-hand side of (5.36)o(m—1/22i”;11|wp|) =
o(mym~@&+D/2) — 5(1) by Conditions C.7 and C.6 sinag> 1/3, whereas
the contrlbutlon due to the second sum inside the braces on the left-hand side
of (5.36) isO,,(m7 'm/?) = 0,,(1) by Lemma 6.2(a), Condition C.6 and Markov's
inequality. So, it remains to show (5.35), whose left-hand side is

h_l 2m1
(5.37) (2m)1/2 (Z wp(0p+v + Us— p) + Z wp(l?ers + 0sp)>-
p=2m1+1

Because Lemma 6.2(b) implies th&a{d;,| = o(1) for |b — s| < 2m, the first
term of (5.37) iSOP(miﬂm—(ZHl)/z) = 0,(1) by Conditions C.7 and C.6 and
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Markov’s inequality. But proceeding as in the proof of Proposition 5.3 [cf. (5.21)],
the second term of (5.37) converges in distribution A0, 4;;2®2), which
completes the proof of part (a).

Part (b). Dropping the constahi, and(2m)~/2, it suffices to show that

(538) Z wp{log(gp-i-s—t/é;p-i-s) + Iog(és—p—t/gs—p)} = 0p(m1/2)
p=1

holds uniformly in|¢| < [kY2M] = o(m'/?). We only examine the contribution
due to the first term on the left-hand side of (5.38); the contribution due to the
second term follows by identical steps. The first term on the left-hand side of (5.38)
is

2t m
(539) D w,log@pis—1/8prs)+ D wplog@pis—1/8pts)-
p=1 p=2t+1
Using (5.7)—(5.9) and Markov’s inequality, the first term of (5.39) is, uniformly

1/2
in ¢, o,,(Zfil/ MIw,|) = 0,(m%?) by Condition C.6. Next, the second term

of (5.39) is

2t m m—t
Z Wp+t |09§p+s - Z Wp |09§p+s + Z (Wpt+r — wp) |09§p+s-
p=t+1 p=m—t+1 p=2t+1

By (5.7)—(5.9), the first two terms of the last displayed expression, uniformily in
areo, (k'/?) = 0,,(m*/?) by Condition C.6.

Finally, we consider the third term in the last displayed expressiony},.et
except in a se, such that lim_ o Pr{Q,} = 0, it implies that log,+s =
O pts — 27192, (1 + 0,(1)) by Taylor expansion. So, the third term of the last

. psi= T 7
displayed expression is

m—t 2mq
{ Z + Z }(wp—l-t - wp)ﬁp—H
p=2mi+1 p=2t+1
(5.40)

m—t

+D Y (wpss — wyl95, (14 0,(D)).
p=2t+1

Since Condition C.7 implies that 4, — w,| < D(t/m)*, we have that

m—t
2
sup pr+,—wp|1‘}p+s
1<[kY2M]| p=2s+1
\¢ m 2my
<D sup (—) ( > ﬁ§+s>+ sup w2,
t<k2p NN o1 t<kY2M1| p=2r 41
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But by Lemma 6.2,E|z9p+s|2 = O(mzl) if |p| > 2m1, whereas Lemma 6.3

.....

Conditions C.6 and C.7, the third term of (5.40) ds (k/2m'~¢/2m * +

m~<my"%) = 0,(m*?). Proceeding similarly and in view of Condition C.7, the
second term of (5.40) isvp(mi/z(kl/z/m)f) = 0,(m¥?). So, denotingh, =

Z’;émlﬂ(w,,ﬂ —wp) P4y, thatis, the first term of (5.40), to complete the proof

we need to show that spR;1/2) 101 = SUR =1, (ami1/4) SURG—1)k1/4 < <gk1/4 b1
is 0, (m1/2). Now, by the triangle inequality, sug1/2 6| is bounded by

m—t
sup sup Z (Wptt — Wy g gk 1/4) 0 pts
q=1,....[MkY4) (g—DkY4<t<qkV/4| p=2m,+1
m
(5.41) +  sup sup i >
g=1....[MKY4] (q—DkY A<t <gkY 4| | p=2m1 1

m

- Z }(wp+qkl/4 —Wp)Ppts
p=m—t+1

Because(sup; ¢! = sup; [c;|* < 30 lcjl* for u > 0, the second moment of
the second term of (5.41) is bounded by

[(MEY4 m 2
> (e 2 ety
qg=1 p=2mi1+1

[MKY2) m

Z (wp+qk1/4 —Wp)Vpts
p=m—{+1

[MKY/4] { (MKY/2) } <qk1/4>2§_ KEHL/4

=o(m),

mt ! Y1

=1 m

proceeding as with the proof of (5.16) and noting that Condition C.7 implies that
|(m/p)*w,| < D and|(m/(gkY*)* (w414 — wp)| < D with ¢ > 1/3. The
second moment of the first term 5.41) is bounded by

[MKY4 gky/4 m—t 2
Y X B Y - wp e
q=1 t=(g-DkY4+1 p=2m1+1

18/ [MKY4 gki/4 2

_FZ > E

q=1 t=(g-DkY¥4+1

m—t
*
Z wp,tﬂpﬂ
p=2m1+1

’
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where|w | = [(m/kY*) (wp1 — w,, 41/4)] < D by Condition C.7. Now pro-
ceeding as with the proof of (5.16), the right-hand side of the last displayed equa-
tion is O (m*~% k1+9/2) = o(m) since¢ > 1/3 andk = o(m) by Condition C.6.
Using Markov's inequality we conclude that (5.41)ds(m'/?) and the proof is
complete. O

6. Technical lemmas. From now on}_; denotesZ';l:_k1 andkin—! — 0.

LEMMA 6.1. Let f,, be as defined in the proof of Theorem 3.2. Then
D™t < f, 1 fp <D,
f,  fp—D=00G3/Ip—sP).  |p—s|=2k.
(b) D l'<if fp<D if 1p— 5| < 2k1.

(a)

PROOF.  First observe that by definition g%, /,1f, = ki +1D)™1 ¥ f, %
fi+p- We begin with (a). We first show thdd ! < (k1 + D)1y, £, 1 fiap <
O— o .
D. Be.(_:ausqm — )\:s| <X Dl<1+ %| < D, for |j| < k1, so that
Condition C.1 implies that

o

p—S
Jt+p—s

p—S
Jt+p—s

-1 [k1/2]

< > <
K il 1T S Tk

But|p —s| > 2k1 and|j| <kpimplythat 2/3 < |(p —s)/(j + p — s)| < 2. From
here the conclusion is standard since 0; we conclude the first part of (a). Next,
we show the second part of (a). By Taylor expansioifof,, the left-hand side is

1 @r)j f, ()22 f"M)) _D j 2
2h+1%j n };+ 2n2 ﬁ,}SiI%Xp—s+w>(l+dDL

wherex = A(p +6j) is an intermediate point betweep and . ; ands =3(j) €
(0,1), by Condition C.1 and the fact thg‘gjlf(x) is bounded. The conclusion
follows since|p —s +8j| > |p —s| — |8j| > |p — s|/2.

(b) Itis immediate since by Condition C.%;t pyu(j+pss) = DA 5 g, 1+
o(1) andk;“ki‘l =o(ky). O

J

LEMMA 6.2. Denote (k1) = O (k; /%) + OGS Hd(e = 1/24(|p — s| <
2k1). Then

(@) E\fy fp — 1 = g(ka),
(b) E\fy fp — 1 = g(k).
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PROOF  We begin with (a).f, 1 f, — Lis
~ I
[+t Y f,-+p( e 1)
j+p#s Fitp

+ £ Mk + DT — fir)d(p — s| < k).
In view of Propositions A.1 and A.2 of [22] and Lemma 6.1, the first term of (6.1)
is ¢(k1), whereas the second term of (6.1) is a{s@&1) by Lemma 6.1(b) and
E(n~"I,) < D. o
To show part (b), it suffices to examirfgl(f,, — fp), Which is by definition
Ftm™ = ) a(fy <nh
=((f; ' =D = (f, = D)(fp <n7H.

By the Cauchy—-Schwarz inequality, the second moment of the right-hand side
of (6.2) is bounded by

2E(ft fp — D2+ 2(f, P = DPE(U(f, <n™Y) < DE(f, M, — D2,

(6.1)

(6.2)

using the fact thalE (4(f, <n~1)) is
PHf Yy — 1< fy = < Pr{Ify 1 > 11— f ),

because by Lemma G.f[jln*1 — 1 < —D for n large enough. Now use part (a)
and Markov’s inequality to conclude [

LEMMA 6.3. Let 2k1 <v<u<([n/2land p=0,1,..., [n/2]. Denoting
1/t
W (v, 1) = O(MU—LkT ) and (k) = O(log ™1 k),

k:(LZ+r2)/21:2

E( sup 1f, My — fp)l“) = p(kp),

pilp—si<2k
(@) e
B( s G Apl) = v,
pi2ki<|p—s|=v+1,...,u
E  sup [f, Y fp— Fp)lt =gk,
pilp—sI<2ky
(b) PP
E sup Ifp ~(fp = fp)l =¥, u).

p:2ki<|p—s|=v+1,...,u

PROOF  For notational simplicity we shall take= 0. We begin with part (a).
From Hidalgo and Robinson’s [22] Proposition A.1, it suffices to examine the
behavior offp‘l(f,, — Ef,). On the other hand, Hidalgo and Robinson’s [22]
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Proposmon A.3(a) and (b) implies that it suffices to examine the behavior of
[ (fe.p — E fe.p), where

. 1
fe.p = 2t 1 Z,: Fi+ple,j+p

andl;, , = 1. (1)) is the periodogram df, };_;. We examinesup_, .4, |fp‘1 X

.....

(fe.p — E fe.p)| only; that of sup_y o, 1/, (fe.p — E fep)| is similarly han-
dled. Because sypa;| = (sup; |a;|")Y/", thezth power of sup_,,; _, f,* X
(fe.p — E fe.p)| is, except for constants,

T

Zd’jﬂ? p(20) e j4p — 1)

T

(6.3) — @jb,p((2m) e jyp — 1))

T

Z¢j+b p (27T)Ie j+b — 1)

’

2t 1su u
* P %2k1+1

where sup and sup denote SUP 1,k y: and SUp_y,,- I

T/l b
1/t
respectively, and = gk;’ .
After the change of |nd|ce;s: Jj — k1, the second term of (6.3) is bounded by
2k1—1

Dsupsu% i1 Z (Pj+b—ks.p — Pjtb+1k1.p)

T

J
(64) X Z((Zﬂ)le,a+b—k1 - 1)
a=0

2kq
+ DSUDSUQ%HQ ol ‘Zk 1 Z((zn}ls,jﬂkkl —-1)

T

’

by Abel summation by parts. On the other hand, by Conditions C.1 and C.3,

@ jtb—tr,p — Djtbtiky,p| < Dfp_l(j +b —ky) 1R

V4 “ . -1
<Dl ——MM— +b—k ,
- (j+b—k1) G D
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since by Lemma 6.1(ap~* < | £, f,| < D. So, using supla,|” < ¥, |a;|*, by
Hélder’s inequality andD ! < |$p+ky,pl < D by Lemma 6.1(a), we obtain that
the first moment of (6.4) is bounded by

1/t
u/k
D /ky 2kq

p e _
TR ZSUp(jer—kl) U +b—k)™

.
q=14v/ky/" /=0

T

J
Z ((Zﬂ)ls,a—kb—kl - 1)

x E
a=0
u/ky'* %y T
+D ) > (@) I jyb—iy — 1)
1t 1+1 i=0
q=1+v/k; j=

which, becaus€r)E|, j;, =1 and proceeding as in the proof of Brillinger’s [5]
Theorem 7.4.4, is bounded by

u/ki/T To 2k i /2
b 1 1 -
P 8 () AR )
Loy 1 150V 1
u/ky'* 17\ 7/2 1\ 7/2 max(u — v, k1)
0 X () +(5) )=o(Fmrt)
g=14v/k}’" .

becausex <1,b<2(b —k1),g>1+ v/ki/’ andb = qki/’. Thus, we conclude
that the second term of (6.3) @(max(u — v, kl)/k{/zﬂ/’).
Next, we examine the first term of (6.3). Because
2k
py = D (Djtp—ta,p (@O Lo, jp—ty — 1) = Dby, p (20 Lo, jp—ky — 1))
j=0

has at moski/’ terms, and becaus@r)EI; j+, = 1 and proceeding as in the

proof of Brillinger’s [5] Theorem 7.4.4, itsth moment is bounded byll/z, so that
the expectation of the first term of (6.3) is bounded by

1/t
u/k
'k u—v

b
1/2—
D Z Z ki r=01D<'kr/2+1/£),
1

q=1+v/ k" p=1+b—k}'"

because > 2. This completes the proof of part (a).
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To show part (b), denoting, = f, *n

examine

— 1 and using (6.2), it suffices to

suplay|L(f, <n~Y) < Dsupd(f, 1 f, — 1<ap).
p p
But the expectation of the right-hand side is bounded by
DE1<sup|fp1f';, -1 > rryn|ap|)
p
— DPr{suplf;lf'p —1 > rr})in|ap|}
p

< p(minla,l)  E(supl 7, f, - 1)
p
< D(p(kp)d(p < 2k1) + ¥ (v, u)d(p > 2k1))
by Markov’s inequality and becausgsup, [c,|)" = sup, |cp|®. [
LEMMA 6.4. Let h(u) beatwice continuously differentiable functionin (0, 1)

such that 4(0) = 4'(0) = (1) = 0, where h'(u) = iuh(u). Consider a sequence
{v;} such that |j2v.,-| < D for all j. Then, for a > 2r and denotingg = p — ¢ + 1,

(6.5) Zp:h('/ ) ) o(tlo (p)+t2+t>

. Vi —Vj_)= — — —+ ).
j=at1 P p? A pa®  p?
ProOOF The left-hand side of (6.5) is

a

p
Y. hG/pwvi— D h((+0/p)y;
j=p—t+1 j=a—t+1
(6.6)

p—t
+ 3 (hGi/p) = h((+1/p))v;.

j=a+1

Since the first derivative df(u) is continuous and (1) = 0, from the mean value
theorem it follows that the absolute value of the first terng®) is bounded by

p
D Y = /plvil=0(%/(p(p — 1+ %) = 0(p~ ¢ %),
j=p—t+1
using|j2vj| < D. The absolute value of the second term of (6.6) is bounded by

0 3 (5 mi=o(3)

j=a—t+1
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sinceh(0) =h'(0) =0 and|j2vj| < D, whereas the absolute value of the third

term of (6.6) is bounded by
! p

ol 5 (L) (L vt

] =a+1
by Taylor expansion of’(x) and usingh’(0) = 0, whereé = £(j) € (0, 1).
O

LEMMA 6.5. Let by, li,, b3 and bg, be given in (5.16), (5.10)and (5.15),
respectively. Then, for p < 1/3,

(@) SUp~,t b3 — by = 0, (k7/2),

(0) SUR_xt bar — by| =0, (k~1/?).

PROOF  We only examine part (a); part (b) is identical. Because by
Lemma 6.3, SUR1 (/218 — 1l = 0,(log~?k1), then except in a se?, such
that lim, Pr{Q,,} = 0, 1092.¢, = 9.5 — 27192 (1 + 0, (1)) by Taylor expansion,
which implies that fom sufficiently large, by definition abs;,

k—t
-1 T -1 2
supt by — b <D suprT Y Yy — Vpl P
r=pk 1<pk  p—2t41

Because by Lemma 6.2, fop| > 2k, o p+s = 0, (k] 1y, for Ipl < 2k1, O p+s

0,(k;“ V1@ = 1/2) + k'Y and by Condition C.5, — Y| < DIyLIt/k,
wherew =vy/(p/k) andp <& < p +1t, the last displayed expression is

2k k

21
kl( “ p=1 k k p=1 k

by Conditions C.5 and C.4.0J

LEMMA 6.6. Let¢, =¢(p/k), where ¢ (u) isacontinuousfunctionin (0, 1).
Define

(k]

() =—g53 ), $pCOray),
p=lkpl+1

whereO<u < <l.Foranyu <91 < <1,ifk/n — 0, then

n—1n—r1

67) YD crlui Pr)en (i B2) = / $2(w) du (1+o(D).

ri=1rpy=1
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PrROOE The left-hand side of (6.7) is
4 kol [k92] n—1n—ry
2k Z b Z bp2 Z Z COS(rAp,) COSr2A )
p1=lkul+1 p2=lkul+1 r1i=1r=1
4 [k91] n—-1n—r1

:ﬁ Yo 95> Y coS(rahy)

=[kun]+1 ri=1rp=1
(6.8) (k9] (k9] n—1n—ry

2
2k > Im > b2 2 D {CoLrahpitpy)
p

1=[ku]+1 p2=lkunl+1, po#p1 r1=1rpy=1

_|_

+ COS(FZ)‘pl—pz)}'

Because (see [32)"_ Y "1 cof(ron,) = (n — 1)%/4 and

r= l ro=1
n—1n—r1
Z Z {Coqrz)‘mﬂvz) + COS(”Z)‘Per)} =—-n for p1 # po,
ri=1rp=1
the right-hand side of (6.8) is
(n— 1)2 1 [k1] 5 2 [k1] [kv2]
n2 T Z ¢p Tk Z bps Z Ppo
p=[kul+1 p1=lkul+1 pa=[kul+1, po#p1
U1
:/ $2(u) du (1+ o(1)),
"

because () is continuous it andk/n — 0. [

LEMMA 6.7. Denote n, = (2r)l;, — 1 and ¢(u) as in Lemma 6.6. The
process

k—[kv]

Rnw>=kl/2 > ppmp.  0<9<1/2
=[k?]+1

istight.

PROOF  Since by Proposition 5.3, the finite limit distributions ®f () con-
verge to those of a Gaussian process with continuous paths, then by Billingsley’s
[4] Theorem 15.6, it suffices to check the moment condition
(6.9) E(|Ry(92) — Ru()[* IRy (®) — Ru(¥D)[7) < D2 — v1)?
for somer > 0,y > 1, where O< 91 < ¥ < 92 < 1/2. Because

[k¥2] 1 k—[kD]

12 Z ¢pﬁp+m Z bpNp,

p=[ko1+1 p=k—[kv2l+1

Ry(D) — Ry (D2) =
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a sufficient condition fo(6.9) to hold is

1 (k2] T 1 [kD] T
E(m 2 | fap 2 o )smﬁz—mw,
p=[kv]+1 p=Ilkv1]+1
(6.10) ko] L ke .
E( k12 Z Gpnp K12 Z Gpnp ) <D —91)Y.
p=k—[kv2]+1 p=k—[kv1+1

We will examine the first inequality of (6.10) only; the second displayed inequality
is similarly handled.

By definition of,,,

1 [kD2] 1 [kv2] k1/2 n ,
k12 > 4)1”71’:(% > ¢P)(TZ(8r—1)>

p=[kv]+1 p=[kd1+1 r=1

n r—1
+ Z Er Z EaCr—a(D, ¥2)
r=2 a=1

=81, (9, ¥2) + 62, (D, ¥2),

wherec;, (¢, ¥2) was defined in Lemma 6.6. Becaugg‘zﬁmﬂqm < Dk|9» —

9| by continuity of ¢(x) and E(Y"_,(¢? — 1))> < Dn by Condition C.2,

E (1810 (0, 92)||81., (01, D)) < (P2— 91)2 by the Cauchy—-Schwarz inequality and
|92 — 9|9 — 91| < |92 — /2. That is, &1., (¥, ¥2) satisfies the first inequality
in (6.10) witht =1 andy = 2. So, to complete the proof, it suffices to examine
that the first inequality in (6.10) holds fd2 , (9, ¥2). The fourth moment of
&2, (0, V) IS

n 4 ri—1
E|: Z l_lgrj< Z 8ajcrj—(lj(ﬁ7 192)):|

2=r1<rz=<r3=<rs j=1 aj=1

4 1/2
<DJ] ( g, 192))

Jj=1\l<a;<rj<n

2
:D( 3 crz_a(ﬁ,ﬁz)>,

1<a<r<n

proceeding as in the proof of Lemma 5.4 of [12]. But proceeding as in Lemma 6.6,
the right-hand side of the last displayed equation is bounded by

9 2
D( f 2¢2(u)du> < D2 — 91)?
v

sinceg (1) is continuous. This concludes the proof, choosing v =2. O
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LEMMA 6.8. Let 2k; <1tg < pk for some arbitrarily small p > 0. Then

sup [17(4,7() —ba)| = 0, l " Rlogky )

2k1<t<tg
(6.11)
—1/2(6) _ fo kato
sup | H(E@ (1) — ba)| = 0 (—+7 ,
2k1<t§to‘ ( t)} b kkf kzlogkl
(b) —-1(£(5 K ka
sup 1 (EO (1) — ba)| =0 (—+—),
Lk1/2<t§2k1} (& )l =0y k?logky  kk?
(6.12)

. k? k1
126 _ 1
sup  |t7HEP () —ba)|=0 <7+—>
Lk1/2<t§2k1} ke =0 k2logks — fkf

where b3, and by4; are given by (5.10) and (5.15), respectively, and L > 0 and
B> 0.

PROOF We begin with (a). We only examine the first equality in (6.11);
the proof of the second equality is similarly handled. By definition (see Propo-
sition 5.3) é,@(t) = b1; + by:. First, SUBy, <1 <o |t~1by,| satisfies the equality
in (6.11) by Condition C.5 and since the sumnhas at most 2 terms, say
the remaining terms sypy ;. -, 11098 p4s| = OP(k[ﬁ) using (5.7) and (5.9).

Next we estimatéy, — bs;. First by (5.11), SUR, <, ¢ tlbas — b3 is

k 2t
sup til Z Ilfplog(gp—ﬁ—s)_ Z l//p-i-tIoQ(zép-i—s)

2k1<t=<ty p=k—t+1 p=t+1

= 0, (tokky” + 18k, P,
by Condition C.5 and using (5.7) and (5.9) and Markov’s inequality.
Part (b). As was done in part (a), we only examine the first equality
in (6.12); the second is similarly handled. By Condition C.5 and (5.7) and (5.9)
together with Markov's inequality, it follows easily that syp2_, -, |t =1by,| =
0,(k~2k2log~1k1). Finally, we estimateby, — bs. As was done in part (a), it
suffices to examine

k 2t
NN |
LkY2<t<2ky p=k—t+1 p=t+1

The second term of the last displayed expressiomj;(kfk‘zlog‘lkl) by

Condition C.5 and using (5.7)—(5.8), whereas the first term,,ieklk—lkl_ﬁ) using
Condition C.5 and (5.7) and (5.9), which concludes the proif.
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LEMMA 6.9. Let¢(u) beasin Lemma6.6.Then

[kw] N
sup ¢(L—Zn1,- >
e[0,1] kl/zz "\ Fits n

=0p(1).

PROOF  Writing u; = f ] a)jﬂ,x andv; = 21)Y2w; 45 Wherew; i
andw; . are the discrete Fourler transformsxpfande,, respectively, the left-
hand side of the last displayed expression is, by the triangle inequality, bounded

by

[kw]

1 9 [kw]
(6.13) sup —— |¢pillu; —vil©+2 sup
we[o,l]kl/zjzzl T 0

1 - -
&7 Zlfﬁjvj(uj —vj)|s
J:

wherec denotes the conjugate of the complex numhber
The first term of (6.13) i®, (1) since its expectation is bounded by

k
kY23 g {(Elu > - 1)

j=1
(6.14) — (E(u;9;) — 1) — (E(@jv)) — 1) + (Elv;|* - 1)}
£ log j
=0k 12 —)
s

becz;tuseﬂvjl2 =1, |¢;| < D and by the extension of Theorems 1 and 2 of [31]
given in Lemma 4.4 of [12].

Next, to show that the second term of (6.13)ois(1), it suffices to show
that the finite-dimensional distributions of the term inside the absolute value
converge to zero and the tightness condition. First, choosipgsuch that
[kw}] = max([k¢], [kw1]) for some O< ¢ < 1/4, then for any O< w1 < wp < 1,

o k - o2
Elk—12 ngﬂ[kwﬂ ¢;v;@i; — ;)2 is bounded by

[kawp] 2

2E kY2 Z ¢jvj(u; —vj) [ka)f]([kwf] — [k
j=1+{kesk]

(6.15) < Dk~ Ylog?k(([kw2)Y? — [kai]Y?)
x (log(kwz) — log(kw?)) + [kwil([kwi] — [kw1l)),

proceeding as with (4.8) in [32]. So, the finite-dimensional distributions of the
second term of (6.13) converge to zero in probability by Markov’s inequality.



1886 J. HIDALGO

To complete the proof we need to show tightness. Since the limiting process has
continuous paths, by Billingsley’s [4] Theorem 15.6, it suffices to show that
[kap] 4
6.16) E[kY2 3 ¢, —9)| <D(H(p) — Hwn) ™,
J=1+[kw1]
whereé > 0, 0< w1 < w2 < 1 andH (w) is a nondecreasing continuous function.
The left-hand side of (6.16) is bounded by

k™2(1Ma) + 3M3),

where M, denotes therth cumulant onB.k;“ﬂ[kwﬂ ¢jvj(u; — v;). Using the

inequality in (6.15)k~2M3 < D(H (w2) — H(»1))1*?, so it remains to show that
k—2|My| satisfies the inequality in (6.16). Nokw2|My| is

1 [kw2] 4

(6.17) 2 Z <1_[ ¢ji> CUM(V1Z j1+ Vo2 j2r VjsZjas Vjalia)s
J1sJ2, j3, ja=14lkw1] \i=1

where we have abbreviated — v; by z;. By Theorem 2.3.2 of [5] and denoting

Xj1:¢jvj andeZI(,ijj,

1
(6.17)= - Y ocum(Xje; j€ € D)+ - CUM(X jg; jL € D)),
24

where the summation is over all indecomposable partitibrs ¥1 U --- U .
Atypical componentin cuitX j,; j£ € 1) hasq: elements); andg, elements;,

so applying formulae of [5], (2.6.3), page 26, and (2.10.3), page 39, we deduce
after straightforward calculations that cky; j¢ € ¥1) i [] e, ¢, times

Hqg1+q2
k(q1+492)/2
/ B4 A=D1y ey g(—aly . f(—an D)

X

[, ja1+a2-1 Bir-- By,

x B(=vh - B(—v%)

X Ejyowjyy b1 (Al, oAb v92) A byl gz,

whereE ... e,..e, A1, ... 207D Wl wpyis

Gy = [l 2070 0l )Gy +7)
X x G(Aj, + A9 NG W = ag)) x - x G(VP —Xe,)s

with G() = Y7_; ¢/ and, say,f(—vl) = ﬁ[llﬂ(—vl) — 1. But by a routine
extension of Lemma 3 of [32] and observing that in each partitionedhe
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subindexj;,i =1, ..., 4, appears only once,
[kwo] 4 .
(6.17)< Dk‘2< Z W) < D(H(w2) — H(w1)) ",
j=1+kax]

whereH (w) = /2, which is a nondecreasing continuous functionl

REMARK 6.1. An alternative proof of this lemma can be found in Lemma 4
of [9].

LEMMA 6.10 ([5], page 15). Let h(x), 0 < x <1, beintegrable and have an
integrable derivative 2 (x). Then

%éh(ﬁ) — /Olh(x)dx

1 11 1
—— Z _ B PA )
=5 (h(0) +h(D)) + - /0 (nx [nx] 2>h (x)dx.

7. Conclusions. In this paper we have studied a nonparametric estimator
for the pole of a long-memory process under mild conditions on the spectral
density f (). Specifically, we have only assumed thai) ~ C|a — 22|~ with
C > 0, but smooth elsewhere, and wherghe memory parameter, belongs to the
interval (0, 1). We have shown that the estimaidrof the poler? is consistent and
we have characterized its limit distribution. More preciseR, centered around
10 and appropriately renormalized, is asymptotically normal wh2r (0, ),
whereas ifA% = {0, 7}, the asymptotic distribution is a mixture of a discrete and
continuous random variable. In particular, whéh= 0 the asymptotic distribution
takes the value 0 with probability/2 and behaves as a (truncated) normal random
variable for positive values. In addition, we have shown that the asymptotic
statistical properties of a two-step estimatowafre the same as whefl is known.
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