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STATISTICAL ANALYSIS ON HIGH-DIMENSIONAL SPHERES
AND SHAPE SPACES1

BY IAN L. DRYDEN

University of Nottingham

We consider the statistical analysis of data on high-dimensional spheres
and shape spaces. The work is of particular relevance to applications where
high-dimensional data are available—a commonly encountered situation in
many disciplines. First the uniform measure on the infinite-dimensional
sphere is reviewed, together with connections with Wiener measure. We
then discuss densities of Gaussian measures with respect to Wiener measure.
Some nonuniform distributions on infinite-dimensional spheres and shape
spaces are introduced, and special cases which have important practical
consequences are considered. We focus on the high-dimensional real and
complex Bingham, uniform, von Mises–Fisher, Fisher–Bingham and the real
and complex Watson distributions. Asymptotic distributions in the cases
where dimension and sample size are large are discussed. Approximations
for practical maximum likelihood based inference are considered, and in
particular we discuss an application to brain shape modeling.

1. Introduction. Applications where high-dimensional data are available are
routinely encountered in a wide variety of disciplines. Hence the study of suitable
probability distributions and inferential methods for analyzing such data is very
important. A practical application that we shall consider is cortical surface
modeling from magnetic resonance (MR) images of the brain.

Consider the situation where we have a high-dimensional observationxp on
the unit sphere inp real dimensionsSp−1(1) = {xp :‖xp‖ = 1}. We wish to
consider modelingxp asp → ∞, and the observation tends to a function of some
kind (a generalized function), which is represented by a point on the infinite-
dimensional sphereS∞(1). We investigate appropriate probability distributions
and statistical inference for this situation.

The unit norm constraint often arises naturally in high-dimensional data
analysis; for example, ifZ ∼ Np(0, Ip/p), whereIp is thep × p identity matrix,
then‖Z‖ = 1+Op(p−1/2) and hence asp → ∞ we regardZ as a point onS∞(1)

almost surely.
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The unit norm constraint is also commonly used in shape analysis, where one
requires invariance under scale changes, as well as location and rotation. Also,
the constraint arises in the analysis of curves. For example, a dataset may have
been recorded at arbitrary scales, and it is the general shapes of the curves that are
of interest. A common approach to dealing with this problem is to rescale each
curve to have unit norm. The models we consider are for generalized functions but
they may also be of relevance to functional data analysis (FDA) (e.g., see [24]).
However, in FDA various additional continuity and smoothness assumptions are
usually made.

Statistical analysis on the infinite-dimensional sphere is not straightforward. For
example,surface area {Sp−1(1)} → 0 asp → ∞ even though the radius is fixed
at 1. In order to define a uniform measure and other distributions on the infinite-
dimensional sphere one can use a relation with Wiener measure.

In Section 2 we review the Wiener measure and its connection with the infinite-
dimensional sphere. Work on densities of Gaussian measures with respect to
Wiener measure is also discussed. In Section 3 we define a nonuniform measure
on the infinite-dimensional sphere. We show that particular high-dimensional
Bingham and high-dimensional zero-mean multivariate normal distributions have
this distribution in the limit as the dimensionp → ∞. In Section 3.3 we describe
maximum likelihood based inference, and in particular we discuss practical
implementations. Asymptotic distributions in the cases where dimension and
sample size are large are also discussed. In Section 4 we make connections
with existing results and provide extensions for the high-dimensional uniform,
von Mises–Fisher and Watson distributions, and we discuss the Fisher–Bingham
distribution. We also investigate the high-dimensional complex Bingham and
complex Watson distributions, which have important applications in shape
analysis. In Section 5 we discuss an application to cortical surface analysis from
medical images of the brain, and finally we conclude with a brief discussion.

2. Wiener measure and Gaussian measures.

2.1. Wiener measure and the infinite-dimensional sphere. Let C = {w ∈
C[0,1] :w(0) = 0} be the set of continuous paths on[0,1] starting at 0. When
considering an observationxp = (xp(1), . . . , xp(p))T on a high-dimensional
sphereSp−1(1) it will also be useful to construct the following path defined onC:

Qp(xp, k/p) =
k∑

i=1

xp(i),(1)

whereQp(xp,0) = 0 andQp(xp, t) is linearly interpolated between(k − 1)/p <

t ≤ k/p, k = 1, . . . , p. If xp is uniformly distributed onSp−1(1), thenQp tends
to the Wiener process (i.e., Brownian motion) onC asp → ∞ [8]. Hence, the
uniform measure onS∞(1) is related to the Wiener measure onC. Despite a
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relatively recent rigorous proof, the connection between Wiener measure and the
uniform measure onS∞(1) has a long history starting with Poincaré [23] and
Wiener [30].

The formal sense in which the Wiener measure is related to the uniform
distribution onS∞(1) is now described. The Wiener process is written asW =
{W(t) : t ∈ [0,1]}. The Wiener measure onC is the probability measure given by

µW

({W :W(t) − W(s) ∈ D}) = 1

(2π(t − s))1/2

∫
D

exp
( −w2

2(t − s)

)
dw

for s < t and a Borel setD ⊆ R, and the disjoint incrementsW(t)−W(s) of paths
in C are independent. LetµS,p be the uniform probability measure on the finite-
dimensional sphereSp−1(1). Then consider the probability measureµW,p onC of
a Borel setD,

µW,p(D) = µS,p

({xp :Qp(xp, ·) ∈ D}).
THEOREM 2.1 ([8]). µW,p → µW weakly as p → ∞.

Hence, we can think of the uniform distribution onS∞(1) as inducing the
Wiener measure onC. If X = {X(t) : t ∈ [0,1]} is uniformly distributed onS∞(1),
then the induced pathY (the indefinite integral ofX) on C is the Wiener process,
and we writeY ∼ W . Note thatX is not a standard stochastic process [sinceW(t)

is nowhere differentiable], but ratherX is a generalized function or generalized
random field [11], which is also known as a Schwarz distribution. The generalized
random fieldX in the uniform case here is known as white noise [13] and we write
X ∼ Ẇ to meanX is white noise. Note that the induced path onC given by the
indefinite integral of white noise is defined, even though pointwise values ofX(t)

are not. Hence, the induced path onC is a standard stochastic process and it is often
more straightforward to work in the induced space of the continuous paths. Note
that in our work it is the white noise that satisfies the unit norm constraint, not the
induced path process. We shall reserve the notationX(t) andU(t) for generalized
functions onS∞(1), andY(t) andW(t) for the induced path processes onC.

We can also regard white noise as a limit of a standard multivariate normal
distribution as the dimension increases. From the definition of the Wiener process,
if zp ∼ Np(0, Ip/p), then the pathQp(zp, ·) D→ W (Wiener process) asp → ∞,

where “
D→” means convergence in distribution (i.e., weak convergence). We shall

also writezp
D→ Ẇ (white noise) asp → ∞ in this case.

In Section 1 we noted that‖zp‖ = 1+ Op(p−1/2), and sozp is approximately
on Sp−1(1) for large p. This observation can be seen using‖zp‖2 ∼ χ2

p/p,
whereχ2

p is a chi-squared random variable withp degrees of freedom. Therefore
E[‖zp‖2] = 1, var(‖zp‖2) = 2/p and so‖zp‖2 = 1 + Op(p−1/2) and ‖zp‖ =
1+ Op(p−1/2).
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2.2. Gaussian measures. Shepp [25] discussed absolute continuity and prob-
ability density functions of Gaussian measures with respect to Wiener measure.
Consider the Gaussian measureµm,R onC with mean

m(t) =
∫ ∞
−∞

Y(t) dµm,R(Y )

and covariance function

R(s, t) =
∫ ∞
−∞

(
Y(s) − m(s)

)(
Y(t) − m(t)

)
dµm,R(Y ).

Let L2([0,1]) be the space of Lebesgue square integrable functions on[0,1] and
let L2 be the space of Lebesgue square integrable functions on[0,1] × [0,1].

THEOREM 2.2 ([25]). The Gaussian measure µm,R is absolutely continuous
with respect to Wiener measure if and only if:

(i) there exists a kernel K ∈ L2 for which

R(s, t) = min(s, t) −
∫ s

0

∫ t

0
K(u, v) dudv,

(ii) the eigenvalues aj of K all satisfy aj < 1,
(iii) there exists a function η ∈ L2([0,1]) for which

m(t) =
∫ t

0
η(u)du.

The kernel K is unique and symmetric and is given by −∂2R/∂s ∂t for almost
every (s, t). The function η is unique and is given by η(t) = dm(t)/dt for almost
every t .

Denote the complete orthonormal eigenfunctions ofK asγ1, γ2, . . . , γ∞ cor-
responding to eigenvaluesa1, a2, . . . , a∞. SinceK ∈ L2 we have

∑∞
j=1 a2

j < ∞.
Let M ∈ L2 have the same eigenfunctions asK and corresponding eigenvalues
1− (1− aj )

1/2, whereaj < 1. Define

I (s) =
∫ 1

0
M(s,u)dW(u)

and

Y(t) = W(t) −
∫ t

0
I (s) ds + m(t),

whereW(t) is the Wiener process onC. Note

E[Y(t)] = m(t), cov
(
Y (s), Y (t)

) = min(s, t) −
∫ s

0

∫ t

0
K(u, v) dudv.
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THEOREM 2.3 ([25]). Let µm,R be absolutely continuous with respect to
Wiener measure. The probability density function of Y = {Y(t) : t ∈ [0,1]} with
respect to Wiener measure is

dµm,R

dµW

(Y ) = fG(Y ;m,R)

(2)

=
∞∏

j=1

{
(1− aj )

−1/2 exp
{
−(Yj − ηj )

2

2(1− aj )
+ 1

2
Y 2

j

}}
,

where Yj = ∫ 1
0 γj (t) dY (t) is the Wiener integral evaluated at Y , and ηj =∫ 1

0 η(t)γj (t) dt .

PROOF. This follows directly from [25], equation (4.8). Since
∑∞

j=1 a2
j < ∞

this product converges, and since allaj < 1 the product is nonzero.�

Note that (2) is also known as the Radon–Nikodým derivative or likelihood
ratio.

2.3. Sequences of matrices. Consider the positive-definite self-adjoint linear
operator� with eigenvaluesλ1 ≥ λ2 ≥ · · · ≥ λ∞ > 0, and orthonormal eigenfunc-
tionsγ1, γ2, . . . , γ∞ which form a complete orthonormal basis inL2([0,1]). From
the spectral decomposition theorem

� =
∞∑

j=1

λjγj >< γj ,

where>< is the outer product. We shall define a particular sequence of matrices
which converges to the self-adjoint linear operator�, and this sequence imposes
some extra structure on�. Consider thep × p symmetric matrices with full rank:

�p =
p∑

j=1

λ
(p)
j γ

(p)
j >< γ

(p)
j ,

whereλ
(p)
1 ≥ λ

(p)
2 ≥ · · · ≥ λ

(p)
p > 0 are the eigenvalues of�p, with corresponding

eigenvectors given byγ (p)
j , j = 1, . . . , p. We shall consider sequences of symmet-

ric positive definite matrices�p, p = 1,2, . . . ,∞, which have the properties

λ
(p)
j → λj > 0, γ

(p)
j → γj asp → ∞, j = 1, . . . , p,(3)

p∑
j=1

λ
(p)
j = p + O(1),(4)

p∑
j=1

(
λ

(p)
j

)2 = p + O(1).(5)
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From (3)�p → � asp → ∞, where� is a positive-definite self-adjoint linear
operator. We write

lim
p→∞(Ip − �p) = K, aj = 1− λj ,(6)

whereK is a self-adjoint linear operator andaj < 1. From (3) and (4) we have∑∞
j=1 aj = O(1). From (5)

∑∞
j=1 a2

j < ∞, and henceK ∈ L2.
We also consider a reparameterization

Bp = 1
2(Ip − �−1

p ),(7)

whereBp has eigenvaluesβ(p)
j = 1

2(1− 1/λ
(p)
j ), j = 1, . . . , p.

EXAMPLE. An example of a sequence that satisfies (4) and (5) is where the
eigenvalues of�p are

λ
(p)
1 ≥ λ

(p)
2 ≥ · · · ≥ λ

(p)
h > λ

(p)
h+1 = · · · = λ(p)

p = 1,(8)

andλ
(p)
j = O(1), j = 1, . . . , h, that is, the smallestp − h eigenvalues of�p are

equal to 1, where 1≤ h < ∞ is fixed.

3. Nonuniform distributions and the Bingham distribution.

3.1. Nonuniform distributions on S∞(1). In order to consider modeling
on S∞(1) we need to define useful nonuniform distributions. Let us consider the
generalized functionX = limp→∞ �

1/2
p up, whereup is uniformly distributed on

Sp−1(1), �
1/2
p = ∑∞

j=1(λ
(p)
j )1/2γ

(p)
j >< γ

(p)
j , with eigenvalues and eigenvectors

constructed as in Section 2.3. The noiseX induces a nonuniform distribution
for the limiting pathY = limp→∞ Qp(�

1/2
p up, ·) ∈ C in general with respect to

Wiener measure onC, and we writeW0,� for this process onC. The noiseX itself
is not white noise in general onS∞(1). We writeX ∼ Ẇ0,� for this generalized
function and we note thaṫW ≡ Ẇ0,I , whereI is the identity linear operator.

PROPOSITION3.1. If X = limp→∞ �
1/2
p up ∼ Ẇ0,� , then the induced mea-

sure of a Borel set D ∈ C is µ0,�(D), the zero-mean version of the Gaussian
measure defined in Section 2.2. The probability density function of the induced
process Y = limp→∞ Qp(�

1/2
p up, ·) ∈ C with respect to Wiener measure is

dµ0,�

dµW

(Y ) = fG(Y ;0,�) =
∞∏

j=1

{
(1− aj )

−1/2e
−aj Y 2

j /{2(1−aj )}}
,(9)

where Yj = ∫ 1
0 γj (t) dY (t) is the Wiener integral evaluated at Y .
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PROOF. If up is uniform on Sp−1(1), then we know that the path

Qp(up, ·) D→ W asp → ∞. Hence,yp = Qp(�
1/2
p up, ·) → Y ∈ C, whereY is

the Gaussian process given by

Y(t) = W(t) −
∫ t

0

∫ 1

0
M(s,u)ds dW(u),(10)

so

E[Y(t)] = 0, cov
(
Y (s), Y (t)

) = min(s, t) −
∫ s

0

∫ t

0
K(u, v) dudv,(11)

and the relation between�p andK is given by (6). Hence, the induced measure
onC is µ0,� and the density follows from Theorem 2.3.�

The noiseẆ0,� can also be regarded as a limit of zero-mean multivariate normal
distributions, as shown in the next results.

PROPOSITION 3.2. Under assumptions (4) and (5), if vp ∼ Np(0,�p/p),
then ‖vp‖ = 1+ Op(p−1/2).

PROOF. This result follows from the properties of the multivariate normal
distribution and because trace(�p) = p+O(1) and trace(�2

p) = p+O(1). Hence,

E[‖vp‖2] = p−1 trace(�p) = 1+ O(p−1),

var(‖vp‖2) = 2p−2 trace(�2
p) = O(p−1).

Therefore,‖vp‖2 = 1+ Op(p−1/2) and hence‖vp‖ = 1+ Op(p−1/2). �

So, for finitep, the pointvp does not lie onSp−1(1) but will be close for largep.

PROPOSITION 3.3. Under assumptions (3)–(5), if vp ∼ Np(0,�p/p), then

vp
D→ Ẇ0,� , as p → ∞.

PROOF. Note zp = �
−1/2
p vp ∼ Np(0, Ip/p)

D→ Ẇ as p → ∞. Hence the

path yp = Qp(�
1/2
p zp, ·) → Y ∈ C, whereY is the Gaussian process given by

(10) and (11). Hence,yp
D→ W0,� and sovp

D→ Ẇ0,� asp → ∞, as required. �

3.2. The Bingham distribution. Let us define the Bingham (pBp) family of
distributions onSp−1(1) to have probability measure

dµB,p,� = cB(pBp)−1 exp(pxT
p Bpxp)dµS,p,

wherexp ∈ Sp−1(1), Bp is given in (7) and

cB(pBp) = 1F1

(
1

2
,
p

2
,pBp

)
(12)
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is the confluent hypergeometric function with matrix argument (e.g., see [21],
page 181). The addition of an arbitrary constant to the eigenvalues ofpBp does
not change the particular Bingham distribution. So to ensure identifiability we fix
the minimum eigenvalue ofBp at 0, which is equivalent to fixing the minimum

eigenvalue of�p to be 1, that is,λ(p)
p = 1. From (7)

dµB,p,� = cB(pBp)−1ep/2 exp
(
−p

2
xT
p �−1

p xp

)
dµS,p

(13)
= fp(xp,�p)dµS,p,

say. The Bingham distribution is often used for modeling axial data in directional
data analysis, where the directionsxp and −xp are indistinguishable (see [21],
page 180). Ifλ(p)

1 > λ
(p)
2 , then the mode of the distribution isγ1. We regardγj as

the(j − 1)st principal component (PC) (j ≥ 2). The Bingham(pBp) distribution
is theNp(0,�p/p) distribution conditioned to have unit norm.

Chikuse ([6] and [7], Chapter 8) has considered high-dimensional asymptotic
results for the Bingham distribution, the matrix Bingham and other nonuniform
distributions on spheres and Stiefel and Grassman manifolds. We discuss one
of her results in particular for the finite-dimensional projection of the high-
dimensional Bingham distribution. LetPh = [e1, . . . , eh] be ap×h (p ≥ h) matrix
of orthonormal columns with propertiesP T

h Ph = Ih andPhP
T
h xp = xv , wherexv

is the projection ofxp into theh-dimensional subspace generated by the columns
of Ph.

THEOREM 3.4 ([6]). If xp has a Bingham distribution with parameter matrix
pBp and �p = (Ip − 2Bp)−1 is positive definite, then

p1/2P T
h �−1/2

p PhP
T
h xp = p1/2P T

h (Ip − 2Bp)1/2PhP
T
h xp

D→ Nh(0, Ih)

as p → ∞.

PROOF. Chikuse ([6], Theorem 4.5) used an asymptotic expansion of the joint
distribution of the components for the matrix Bingham distribution on the Stiefel
manifoldVp,k . SinceVp,1 = Sp−1(1), thek = 1 case is of interest. In particular,

lim
p→∞ 1F1

(
1

2
,
p

2
,pP T

h BpPh

)
= |Ih − 2P T

h BpPh|−1/2

leads to the required result.�

Note that

pxT
p PhP

T
h �−1

p PhP
T
h xp

D→ χ2
h,

asp → ∞. Chikuse [7] also provides higher-order terms in the approximation of
Theorem 3.4, and many other finite projection results. We wish to examine the
distribution ofxp in the continuous limit asp → ∞.
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PROPOSITION 3.5. Define Qp(xp, ·) as in (1). Consider the Bingham
probability measure µW,p,� on C of a Borel set D given by µW,p,�(D) =
µB,p,�({xp :Qp(xp, ·) ∈ D}), where µB,p,� is defined in (13) and the sequence
�p satisfies (3)–(5)with �p → �. Then µW,p,� → µ0,� weakly as p → ∞.

PROOF. Let g :C → R be a bounded continuous function. Define

Ep[g] =
∫
C

g
(
Qp(xp, ·))dµW,p,�

=
∫
Sp−1(1)

g
(
Qp(xp, ·))dµB,p,�

=
∫
Sp−1(1)

g
(
Qp(xp, ·))fp(xp,�p)dµS,p

=
∫
C

g
(
Qp(xp, ·))fp(xp,�p)dµW,p

→
∫
C

g(Y )fG(Y ;0,�)dµW asp → ∞,

becauseY = limp→∞ Qp(xp, ·), limp→∞ pxT
p Bpxp = ∑∞

j=1 −ajY
2
j /{2(1−aj )},

where Yj = ∫ 1
0 γj (t) dY (t) and µW,p → µW weakly asp → ∞. Note that

fG(Y ;0,�) is given by (9) andfG(Y ;0,�)dµW = dµ0,� . So

Ep[g] →
∫
C

g(Y )dµ0,�.

Hence, we have shown weak convergenceµW,p,� → µ0,� asp → ∞. �

We can considerxp ∼ Bingham(pBp) → Ẇ0,� asp → ∞. From the above
results a practical approximation is that, for largep and under assumptions (3)–(5),

Bingham(pBp) ≈ Np

(
0,p−1(Ip − 2Bp)−1) ≡ Np(0,�p/p).(14)

Since there is a constraint‖xp‖ = 1 under the Bingham distribution, the
approximation will be best when a singular multivariate normal distribution is
used withp − 1 dimensions of variability; see Section 4.6 for a comparison in
an example.

3.3. Inference. Let xpi ∈ Sp−1(1), i = 1, . . . , n, denote a random sample from
the Bingham distribution of (13). The log-likelihood is

l(xp1, . . . , xpn|�p/p) =
n∑

i=1

logfp(xpi,�p)

= −n logcB(pBp) + p

n∑
i=1

xT
piBpxpi,
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where cB is defined in (12). The maximum likelihood estimators (m.l.e.’s) of
the eigenvectors ofBp are given by the eigenvectors ofp

n

∑n
i=1 xpix

T
pi , but the

m.l.e.’s of the eigenvalues must be obtained using numerical optimization, working
with the difficult normalizing constantcB(pBp). Kume and Wood [18] provide a
saddlepoint approximation.

For largep, from (14) we can use the normal approximationxpi ≈ Np(0, (I −
2Bp)−1/p) = Np(0,�p/p). Hence, the m.l.e. of�p is approximately�̂p =
p
n

∑n
i=1 xpix

T
pi , which has (exact Bingham m.l.e.) eigenvectorsγ̂1, . . . , γ̂p corre-

sponding to (approximate Bingham m.l.e.) eigenvaluesλ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p ≥ 0,
and we write

ω̂j = λ̂j /p, j = 1, . . . , p.

The m.l.e. for the mode of the distribution iŝγ1 (when the largest eigenvalue
of �p is unique). We can regard an estimate of the concentration about the mode
to beω̂1, and if ω̂1 ≈ 1 the data are highly concentrated. The sample eigenvector
γ̂j is the (j − 1)st sample principal component with estimated varianceω̂j ,
j = 2, . . . , p.

Another option for practical analysis is to consider the special case with
eigenvalues (8). Chooseh ≤ n and fix the projection matrixPh in advance
(e.g., usingh Fourier or spline basis functions). Then, asp → ∞ (fixed h),

from Theorem 3.4,vpi = p1/2P T
h xpi

D→ Nh(0,�h), i = 1, . . . , n, where�h =
P T

h �Ph. The m.l.e. of�h is �̂h = 1
n

∑n
i=1 vpiv

T
pi and the distribution of�̂h is

a Wishart distribution (e.g., [22], page 85). Expressions for the joint density of the
sample eigenvalues can be written down using the two-matrix0F0 hypergeometric
function (from [14]) and a large sample approximation is given by G. A. Anderson
[1]—see [22], pages 388, 392. The joint distribution of sample eigenvalues and
eigenvectors of covariance matrices of Gaussian data is known for alln,p but
difficult to work with (e.g., see [22]). Hence, we consider useful approximations
for largen,p.

The asymptotic joint distribution of the eigenvalues and eigenvectors of�̂h for
large n is given by the classical result of T. W. Anderson [2], and we require
p/n2 → ∞ and n → ∞ for this result to hold (withh fixed). The details are
as follows. Assume for now that the eigenvalues of�h are distinctλ(h)

1 > λ
(h)
2 >

· · · > λ
(h)
h > 0 with corresponding eigenvectorsγ (h)

j , j = 1, . . . , h. From [2] as

n → ∞, p/n2 → ∞ we have

n1/2(λ̂(h)
j − λ

(h)
j

) D→ N
(
0,2

(
λ

(h)
j

)2)
, j = 1, . . . , h,(15)

independently, and

n1/2(γ̂ (h)
j − γ

(h)
j

) D→ Nh(0,Vj ),(16)
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where

Vj = λ
(h)
j

∑
k �=j

λ
(h)
k

(λ
(h)
k − λ

(h)
j )2

γ
(h)
k

(
γ

(h)
k

)T
, j = 1, . . . , h,

andγ̂
(h)
j , λ̂

(h)
j are all asymptotically independent. Similar results follow when there

are some multiplicities of eigenvalues, using [2] again.
Asymptotic distributions for dimensionp fixed andn → ∞ are summarized by

Mardia and Jupp ([21], page 187) and Watson [28]. If we now letp → ∞ and
n/p → ∞, then we have a consistency result.

PROPOSITION 3.6. Consider the Bingham (�p/p) distribution on Sp−1(1)

with �p = (Ip − 2Bp)−1 and m.l.e. �̂p. As p → ∞, n → ∞ and np−1 → ∞,

then �̂p
p→ �p → �.

PROOF. Since�̂p = �p + Op(p1/2n−1/2) and asn/p → ∞, we have�̂p
p→

�p → � asp → ∞. �

Other results forp fixed andn → ∞ are worth investigating forp → ∞ and
n/p → ∞, for example, the central limit results of Watson [28], Fisher, Hall, Jing
and Wood [10] and Bhattacharya and Patrangenaru [5].

4. Other distributions. We now consider results for other high-dimensional
distributions which are useful in directional data analysis and shape analysis.
Table 1 provides a summary of the notation used in the paper for the different
measures, and the limiting path processes and noises.

TABLE 1
Notation used in the paper for the different measures, the limiting path processes and limiting noise

Measures

Distribution (a) (b) (c) Limiting path process Limiting noise

Uniform µS,p µW,p µW W Ẇ
Bingham µB,p,� µW,p,� µ0,� W0,� Ẇ0,�

von Mises–Fisher µV,p,ν,κ µW,p,ν,κ µξ,I Wξ,I Ẇξ,I

Fisher–Bingham µF,p,ν,κ,� µW,p,ν,κ,� µξ,� Wξ,� Ẇξ,�

Complex uniform µc
S,p µc

W,p µc
W Wc Ẇc

Complex Bingham µc
B,p,� µc

W,p,� µc
0,� Wc

0,� Ẇc
0,�

Column (a) denotes measures for Borel sets onSp−1(1) or CSp−1(1) in the complex case, col-
umn (b) denotes measures for Borel sets onC using the continuous piecewise linear approximation
Qp of (1) and column (c) denotes the limiting Gaussian measure onC asp → ∞. The final columns
show the limiting path Gaussian process onC and the limiting noise.
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4.1. Uniform distribution. Let Ph be a p × h matrix so thatP T
h xp is the

h-vector of the firsth components ofxp. Stam [26] showed that ifxp is uniformly
distributed onSp−1(1), then

p1/2P T
h xp

D→ Nh(0, Ih) asp → ∞.

The result also holds for anyp × h matrix Ph of h orthonormal columns.
Theorem 2.1 provides the extension to the infinite-dimensional case and we have

xp
D→ Ẇ asp → ∞.

4.2. von Mises–Fisher distribution. Watson [27, 29] considered the fixed rank
case for the von Mises–Fisher distribution (which Watson called the Langevin
distribution). Letxp have a von Mises–Fisher distribution with parameters given
by the modeνp ∈ Sp−1(1) and concentrationp1/2κ . The density with respect to
uniform measure onSp−1(1) is

dµV,p,ν,κ

dµS,p

= fV,p(xp, νp,p1/2κ) = c−1
V (p1/2κ)exp(p1/2κxT

p νp),

where

cV (p1/2κ) =
(

p1/2κ

2

)1−p/2

(p/2)Ip/2−1(p
1/2κ),

with Ij (·) the modified Bessel function of the first kind and orderj ∈ R+ (e.g.,
see [21], page 168) and where(·) is the gamma function. Note that this von
Mises–Fisher distribution can be regarded as the multivariate normal distribution
Np(κνp/p1/2, Ip/p) conditioned to have unit norm.

Watson [27] showed that for this von Mises–Fisher distribution

p1/2P T
h xp

D→ Nh(P
T
h νpκ, Ih) asp → ∞,

for any p × h matrix Ph of h orthonormal columns spanning a subspace
containing νp. We write zp = xp − κνp/p1/2 and limp→∞ κνp/p1/2 = η ∈
L2([0,1]). Since

fV,p(zp, νp,p1/2κ) → fG

(
Y = lim

p→∞Qp(zp, ·);0, I

)
asp → ∞,

and using a similar argument to that in the proof of Proposition 3.5, it follows that

zp
D→ Ẇ . Equivalently, consider the probability measureµW,p,ν,κ onC of a Borel

setD:

µW,p,ν,κ (D) = µV,p,ν,κ

({xp :Qp(xp, ·) ∈ D});
thenµW,p,ν,κ → µξ,I weakly asp → ∞, whereξ(t) = ∫ t

0 η(s) ds. From [8] the
probability density function of the shifted measure is given by the Cameron–
Martin (Girsanov) formula

dµξ,I

dµW

(Y ) = exp
{∫ 1

0
η(t) dW(t) − 1

2

∫ 1

0
η(t)2 dt

}
,
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which can also be seen using Shepp’s [25] result of Theorem 2.3 in this special
case whereaj = 0 for all j = 1, . . . ,∞.

The practical implication is that we can choose fixedh ≤ n, usePh as any
suitable choice ofh basis functions, and then carry out inference usingvp =
p1/2P T

h xp/h1/2 ∼ Nh(κP T
h νp/h1/2, Ih/h). In particular, if vp1, . . . , vpn are a

random sample from this multivariate normal distribution, then the m.l.e.’s are

κ̂ =
∥∥∥∥∥h1/2n−1

n∑
i=1

vpi

∥∥∥∥∥,
(17)

P̂ T
h νp =

n∑
i=1

vpi

/∥∥∥∥∥
n∑

i=1

vpi

∥∥∥∥∥ = h1/2n−1
n∑

i=1

vpi/κ̂.

Also, κ̂2 ∼ 1
n
χ2

h(nκ2) (which was given by Watson [29]) and̂P T
h νp has an offset

Gaussian distribution ([21], page 178). Also, from [29] if we write cosρ =
(P T

h νp)T P̂ T
h νp, then

nκ̂2ρ2 ∼ χ2
h−1 asp,n → ∞,

wherep/n2 → ∞.

4.3. Watson distribution. Again let P T
h xp select the firsth points from the

p-vectorxp, wherexp ∈ Sp−1(1). Let xp have a distribution with density with
respect to the uniform measure onSp−1(1) given by

c−1
W (pκ)exp(pκ‖P T

h xp‖2),

where cW (pκ) = 1F1(
1
2,

p
2 ,pκ) is here the confluent hypergeometric function

with scalar argument (see [21], page 181). Watson [27] showed that, for fixedh,
under this distribution

(1− 2κ)1/2p1/2P T
h xp

D→ Nh(0, Ih) asp → ∞,

whenκ < 1/2. (Note that it seems clear that there is a typographical error in (47)
of [27], where the square root of(1− 2κ) was not taken.)

The Watson distribution is a special case of the Bingham distribution, and a
suitable choice of matrix sequence that satisfies (3)–(5) is�−1

p = Ip − 2κPhP
T
h ,

which is positive definite ifκ < 1/2 andPh is anyp × h matrix of orthonormal
columns (noteBp = κPhP

T
h ). From Theorem 3.4, for this particular Bingham

distribution

p1/2P T
h xp

D→ Nh

(
0, (1− 2κ)−1Ih

)
asp → ∞,

if κ < 1/2. Hence, Watson’s result is confirmed as a special case of Theorem 3.4.
The case whereh = 1 is commonly encountered in directional data analysis

with parametersκ,P1, with modes at±P1 for κ > 0, and isotropically distributed
about these modes.
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4.4. Fisher–Bingham distribution. Similar high-dimensional results follow
for the Fisher–Bingham distribution ([19], [21], page 174). The parameters of
the distribution are the modeνp, a concentration parameter and a matrix (with
constraints) specifying the structure of variability about the mode. Consider the
parameterization where the Fisher–Bingham(νp,p1/2κ,pBp) distribution has
density with respect to the uniform measure onSp−1(1) given by

dµF,p,ν,κ,�

dµS,p

(xp) = cF (νp,p1/2κ,pBp)−1 exp(p1/2κxT
p νp + pxT

p Bpxp),

whereνp is one of the firsth eigenvectors ofBp, and we shall consider�p =
(Ip − 2Bp)−1 to be positive definite. The integrating constant

cF (νp,p1/2κ,pBp) =
∫
Sp−1(1)

exp(p1/2κxT
p νp + pxT

p Bpxp)dµS,p

can be expressed in terms of the density of a linear combination of noncentral
χ2

1 random variables [18], which can be evaluated using a saddlepoint approx-
imation. The Fisher–Bingham(νp,p1/2κ,pBp) distribution can be regarded as
N(κ�pνp/p1/2,�p/p) conditioned to have norm 1.

PROPOSITION4.1. If xp has a Fisher–Bingham (νp,p1/2κ,pBp) distribution
on Sp−1(1), with νp one of the first h eigenvectors of Bp and positive definite
�p = (Ip − 2Bp)−1, then

p1/2P T
h �−1/2

p PhP
T
h xp

D→ Nh(φ, Ih) as p → ∞,(18)

where Ph is the p × h matrix with columns given by the first h eigenvectors of Bp

and φ = limp→∞ κP T
h �pPhP

T
h νp.

PROOF. Let xp = txv + (1 − t2)1/2x⊥
v , where xv is a unit vector in the

subspaceV of Rp spanned by the firsth eigenvectors of�p, x⊥
v is a unit vector in

the orthogonal complement ofV andt = ‖xh‖ is the norm ofxh = txv = PhP
T
h xp,

which is the part ofxp in V . An invariant measure onSp−1(1) may be written as

µS,p(dxp) = th−1(1− t2)(p−h)/2−1 dt µS,h(dxv)µS,p−h(dx⊥
v );

see [27]. So, the Fisher–Bingham measure with parametersνp,p1/2κ , pBp =
p(Ip − �−1

p )/2 in terms of(t, xv, x
⊥
v ) is proportional to

exp
{
κp1/2txT

v νp − t2p

2
xT
v �−1

p xv + t2p

2

}

× th−1(1− t2)(p−h)/2−1 dt µS,h(dxv)µS,p−h(dx⊥
v ).
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Notex⊥
v is independently uniformly distributed. Writingu = p1/2t and integrating

outx⊥
v we have the joint density of(u, xv) as

f (u, xv) ∝ uh−1(1− u2/p)(p−h)/2−1 exp
(
κuxT

v νp − u2

2
xT
v �−1

p xv + u2

2

)
.

Let y = p1/2P T
h �

−1/2
p PhP

T
h xp be theh-vector such thatyT y = u2xT

v �−1
p xv .

Hence transforming from(u, xv) to y and with Jacobian proportional tou1−h,
and noting that(1− u2/p)(p−h)/2−1 → e−u2/2 asp → ∞, we see that

f (y) ∝ (1− u2/p)(p−h)/2−1 exp
(
yT φp − 1

2
yT y + u2

2

)

→ exp
{
−1

2
(y − φ)T (y − φ)

}

asp → ∞, whereφp = κP T
h �pPhP

T
h νp. Hencey

D→ Nh(φ, Ih) as required. �

Note that ifBp = 0, then the result reduces to the result for the von Mises–
Fisher distribution described in Section 4.2. Ifνp = 0, then the result reduces to
Chikuse’s [6] result of Theorem 3.4.

Consider the probability measureµW,p,ν,κ,� onC of a Borel setD

µW,p,ν,κ,�(D) = µF,p,ν,κ,�

({xp :Qp(xp, ·) ∈ D});
thenµW,p,ν,κ,� → µξ,� weakly asp → ∞, using the same argument as in the
proof of Proposition 3.5. The limiting measures in particular cases are summarized
in Table 1.

4.5. Complex Bingham distribution. The complex unit sphere is written
CSp−1(1) and we considerCSp−1(1) ≡ S2p−1(1). As p → ∞ the uniform
measure onCS∞(1) induces a Wiener process onC. In this case we writeWc

for the Wiener process using complex notation. IfZ is complex white noise which
induces this Wiener processWc onC, then we writeZ ∼ Ẇ c.

The complex Bingham family of distributions is the complex analogue of
the real Bingham distribution [17]. The complex Bingham distributions are
particularly useful in shape analysis of landmarks in two dimensions (e.g.,
see [9]), where the distribution is used for rotation-invariant shape modeling
because the density has the property thatf (z) = f (eiθ z) for any rotationθ .
The complex Bingham distribution is actually a special case of the real Bingham
distribution [17].

The high-dimensional results for the complex Bingham proceed in an analogous
way to the real Bingham case, with inner product replaced by〈z,w〉 = z∗w,
wherez∗ = z̄T is the transpose of the complex conjugate. Positive (semi-) definite
symmetric matrices are replaced by positive (semi-) definite Hermitian matrices,
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and positive (semi-) definite self-adjoint linear operators are replaced with positive
(semi-) definite Hermitian linear operators. The complex Bingham (pBp) family
of distributions onCSp−1(1) has probability measure

dµc
B,p,� = cCB(pBp)−1 exp(pz∗

pBpzp) dµc
S,p,

wherezp ∈ CSp−1(1), µc
S,p is the uniform probability measure onCSp−1(1),

pBp is Hermitian and

cCB(pBp) = 2πp
p∑

j=1

bj expτj , b−1
j = ∏

i �=j

(τj − τi),

in the case when the real eigenvaluesτj of pBp are all distinct.

PROPOSITION 4.2. Let zp have a complex Bingham (pBp) distribution.
Consider the sequence of Hermitian positive-definite matrices �p = (Ip − Bp)−1,
p = 1,2, . . . ,∞, which satisfy (3)–(5) and let Ph = [γ1, . . . , γh], where γh are
complex eigenvectors of �p. By direct analogy with Theorem 3.4we have

p1/2P ∗
h �−1/2

p PhP
∗
h zp

D→ CNh(0, Ih) as p → ∞.

We can use the complex normal approximation to the high-dimensional
complex Bingham distribution and carry out inference in an analogous way to
the procedure for the real Bingham distribution in Section 3.3. Weak convergence
of the complex Bingham measure to a Gaussian measure asp → ∞ follows
directly from Proposition 3.5, as the complex Bingham is a special case of the
real Bingham.

4.6. Complex Watson. The complex Watson distribution is a special case
of the complex Bingham distribution with�−1

p = Ip − κµµ∗ (see [20]). The
distribution is useful in planar shape analysis as an isotropic distribution about the
modal shapeµ. As the form of the density is particularly simple in this case, we
shall compare the high-dimensional complex Watson distribution with the complex
normal approximation for variousp. Consider a particular form of the complex
Watson density given by

fCW(zp) = cCW
−1(κ)exp{−pz∗

p(Ip − κµµ∗)zp},
where

cCW(κ) = 2πp
1F1(1;p;κp)e−p/(p − 1)!.

Now, asp → ∞, 1F1(1;p;κp) → (1− κ)−1, and so using Stirling’s approxima-
tion,

cCW(κ) =
√

2πp−1/2p−(p−1/2)

1− κ

(
1+ O(p−1)

)
.
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TABLE 2
Values of log(cCW (κ)/cN (κ)) for different p,κ

κ

p 0.02 0.2 0.4 0.6 0.8 0.9 0.98 0.998

2 0.04148 0.05783 0.12564 0.29834 0.74630 1.31239 2.81813 5.09713
5 0.01671 0.02567 0.06778 0.19128 0.56143 1.07649 2.53515 4.80278

10 0.00837 0.01354 0.04005 0.12750 0.42875 0.89228 2.29969 4.55444
20 0.00419 0.00700 0.02247 0.07944 0.30906 0.71003 2.04892 4.28558
50 0.00167 0.00287 0.00982 0.03853 0.18134 0.48686 1.70299 3.90438

100 0.00084 0.00145 0.00508 0.02098 0.11193 0.34247 1.43873 3.60139
1000 0.00008 0.00015 0.00053 0.00231 0.01526 0.06727 0.64364 2.55192

10000 0.00001 0.00001 0.00005 0.00023 0.00160 0.00792 0.16451 1.52600
100000 0.00000 0.00000 0.00001 0.00002 0.00016 0.00081 0.02268 0.66978

Since there is a constraint‖zp‖ = 1, we take the singular complex normal
approximation in 2p−1 real dimensions of variability. We can write the density as

fN(z) = cN
−1(κ)exp{−pz∗

p(Ip − κµµ∗)zp},
where

cN(κ) = √
2πp−1/2|�p/p|g,

where |�p/p|g is the determinant in the 2p − 1 real dimensions of variability
given by|�p/p|g = p−p−1/2/(1− κ). Hence,

cCW(κ) = cN(κ)
(
1+ O(p−1)

)
.

In Table 2 we see some numerical comparisons of log(cCW (κ)/cN(κ)) for
different p,κ . Note that the approximation is better whenκ is small. For very
high concentrations close to 1 a very large value ofp is required for a good
approximation.

5. Practical application: brain shape modeling. Shape is the geometri-
cal information that remains when translation, rotation and scale effects are re-
moved [16]. We consider an application where the shape of the cortical surface
of the brain is of interest. The data form part of a larger study with collaborators
Bert Park, Antonio Gattone, Stuart Leask and Sean Flynn that will be reported
elsewhere.

A sample of n = 74 MR images of adult brains is taken. The brains are
preregistered into a standard frame of reference (Talairach space) and so location
and rotation are regarded as fixed—see Figure 1 for an example.

We actually restrict the analysis to thep = 62,501 points on the cortical surface
along a hemisphere of rays which radiate from the origin at a central landmark
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FIG. 1. An example brain showing the points on the surface. In the analysis we restrict ourselves
to the upper hemisphere of the cortex only (above the origin landmark) and consider p = 62,501
points.

(midway between the anterior and posterior commissures). The measurements
taken for theith brain (i = 1, . . . , n) are {rpi(t) : t = 1, . . . , p}, which are the
lengths of the rays measured at the locations{θ(t) : t = 1, . . . , p} on the upper
hemisphere, that is,θ(t) ∈ S2+(1). Since{θ(t) : t = 1, . . . , p} are fixed and equal
for all the brains, our data for theith brain are solely the ray lengths, which we
write as thep-vector rpi = (rpi(1), . . . , rpi(p))T , i = 1, . . . , n. We remove the
scale information by takingxpi = rpi/‖rpi‖, so that‖xpi‖ = 1 for i = 1, . . . , n.
Since the location and rotation are treated as fixed, this application involves
statistical analysis on a high-dimensional sphere rather than in shape space itself.
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We wish to obtain an estimate of the modal cortical shape and the principal
components of shape variability for the dataset. We initially consider a model for
the data as the high-dimensional Bingham distribution, and use the multivariate
normal approximations from (14). We consider maximum likelihood estimation
as in Section 3.3, and the parameters of the model are given by�p estimated by
�̂p = p

n

∑n
i=1 xpix

T
pi = pS, say.

First we need to be able to compute the spectral decomposition in high-
dimensional spaces. In the case where we haven � p, the eigenvalues and
eigenvectors can be computed using a straightforward procedure. Let us write
X = [xp1, . . . , xpn] for the n columns of vectors from a random sample. Now,
using the spectral decomposition we have

S = 1

n
XXT =

n∑
j=1

ω̂j γ̂j γ̂
T
j .

Consider then × n matrix A = 1
n
XT X, and the spectral decomposition isA =∑n

j=1 δjqjq
T
j , which can be computed inO(n3) steps. Now

S2 = 1

n2XXT XXT =
n∑

j=1

ω̂2
j γ̂j γ̂

T
j

= 1

n
XAXT =

n∑
j=1

δj

n
(Xqj )(Xqj )

T .

Hence, by equating coefficients,

γ̂j = Xqj/‖Xqj‖, ω̂j = ‖Xqj‖
√

δj /n, j = 1, . . . , n.

Thus calculating the PCs is practical for hugep � n. Practical statistical analysis
is carried out by choosing a low number of PCs which hopefully summarize a large
percentage of variability, and then carrying out multivariate tests in the reduced
space.

So, returning to the cortical brain surface example, we stack thep radial lengths
into vectors of lengthp = 62,501, and since we are not interested in size we divide
through by the norm of each stacked vector, to givexpi = rpi/‖rpi‖ ∈ Sp−1(1),
i = 1, . . . , n. We then obtain the spectral decomposition ofS = �̂p/p. The data
are extremely concentrated, with a very high contribution from the first eigenvector
(ω̂1 = 0.99885).

We displayω̂1/2
1 γ̂1 ± 3ω̂

1/2
2 γ̂2 in Figure 2, which shows the mode cortical sur-

face shape± 3 standard deviations along the first PC, for each of three orthogonal
views. Note that this PC appears to show variability in the location of the origin
landmark relative to the surface. This PC explains 100ω̂2/

∑n
i=2 ω̂i = 26.9% of

the variability about the mode. We displayω̂
1/2
1 γ̂1 ± 3ω̂

1/2
3 γ̂3 in Figure 3, which
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FIG. 2. Plots of the modal cortical shape ± 3 standard deviations along PC1: (a) Sagittal view.

Lighter gray: ω̂
1/2
1 γ̂1; darker gray: ω̂

1/2
1 γ̂1+ ω̂

1/2
2 γ̂2. (b)Sagittal view. Lighter gray: ω̂

1/2
1 γ̂1; darker

gray: ω̂
1/2
1 γ̂1 − ω̂

1/2
2 γ̂2. (c) Axial view. Lighter gray: ω̂

1/2
1 γ̂1; darker gray: ω̂

1/2
1 γ̂1 + ω̂

1/2
2 γ̂2.

(d) Axial view. Lighter gray: ω̂
1/2
1 γ̂1; darker gray: ω̂

1/2
1 γ̂1 − ω̂

1/2
2 γ̂2. (e) Coronal view. Lighter

gray: ω̂
1/2
1 γ̂1; darker gray: ω̂

1/2
1 γ̂1 + ω̂

1/2
2 γ̂2. (f ) Coronal view. Lighter gray: ω̂

1/2
1 γ̂1; darker gray:

ω̂
1/2
1 γ̂1 − ω̂

1/2
2 γ̂2. Additional shading has been added so that the higher the distance above the

horizontal base (the line joining the anterior and posterior commissures) the lighter the shade of
gray.

shows the mode cortical surface shape± 3 standard deviations along the sec-
ond PC, for each of three orthogonal views. Note that this PC is largely pick-
ing up “taller” “thinner” brains versus “shorter” “fatter” brains. This PC explains
100ω̂3/

∑n
i=2 ω̂i = 12.8% of the variability about the mode. Note that the modal

shape can only be identified up to a reflection, but in this case the correct choice is
obvious.

It could be argued that the Fisher–Bingham is a more appropriate model here
given that we have the reflection information in our data. In this case the high-
dimensional approximation is the multivariate normal distribution with nonzero
mean. The estimated parameters of the approximating model are the sample mean
and sample covariance matrix, and for this example the sample mean andω̂

1/2
1 γ̂1

are indistinguishable up to machine accuracy, and so the conclusions are identical.
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FIG. 3. Plots of the modal cortical shape ± 3 standard deviations along PC2. The caption is the

same as Figure 2, except that ω̂
1/2
2 γ̂2 is replaced by ω̂

1/2
3 γ̂3.

6. Discussion. The noise models considered in the paper should have further
applications in addition to those in high-dimensional directional data analysis and
shape analysis. For example, the work could be used to model noise in (high-
dimensional) images where the parameters of the noise process would depend
on the particular imaging modality and the object(s) in the image. The models
could be suitable for nonstationary and long-range correlation noise. There is a
large literature on stochastic models in image analysis, and particularly successful
models include Markov random field models (e.g., [3, 12]) and intrinsic random
fields [4]. Our models have far more parameters in general, and so their use as
image noise models would be restricted to situations where there is a reasonable
amount of training data (or strong prior knowledge) available.

In the brain application the points on the cortical surface provide a rough
correspondence of parts. An improved analysis would be to locate points at more
accurate points of biological homology, and then the mean shape and principal
components would give more accurate estimates of the population properties of the
cortical surfaces. Such a task is far from straightforward. However, our approach
does give an approximate assessment of the main global features of brain shape
and variability.
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We have considered the size of an objectxp to be‖xp‖, but other choices are
possible which would change the practical analysis. For example, with the brain
application one might fit a smooth surfacex̂ to a brain using a finite series of
orthogonal functions and then take the size as‖x̂‖. Two brains which look to be
quite similar in size with similar‖x̂‖ values could have rather different‖xp‖ values
if one is a much rougher surface than the other.

For inference we discussed the casesp/n → ∞ andn/p → ∞ in Section 3.3.
The asymptotic regimen/p → γ fixed asn → ∞, p → ∞ is of great interest
in many disciplines, including mathematical physics—see [15]. In particular,
Johnstone [15] describes developments based on the Tracy–Widom distribution
for the largest eigenvalue, and associated work.

As mentioned in the Introduction, the analysis of functions is somewhat
different from our situation due to the smoothness assumptions that are usually
made in FDA. The models for the induced paths inC are of more relevance to
FDA, where the functions are of a standard type and continuity is present.

It is of interest to extend the work to other manifolds, in particular the
Stiefel manifold of orthonormal frames and the Grassmann manifold (which
is appropriate for affine shape). Watson [27] provides some asymptotic high-
dimensional results, and in particular,p1/2 multiplied by the firsth rows of
a uniformly distributed matrixX on the Stiefel manifoldVm,p tend to an
hm-dimensional zero-mean Gaussian distribution with identity covariance matrix
as p → ∞. Chikuse [6, 7] provides many extensions. However, the study of
probability distributions in the continuous limit ash → ∞ requires further
developments.
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