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GENERALIZATIONS OF THE FAMILYWISE ERROR RATE

BY E. L. LEHMANN AND JOSEPHP. ROMANO

University of California, Berkeley and Stanford University

Consider the problem of simultaneously testing null hypotheses
H1, . . . ,Hs . The usual approach to dealing with the multiplicity problem is to
restrict attention to procedures that control the familywise error rate (FWER),
the probability of even one false rejection. In many applications, particularly
if s is large, one might be willing to tolerate more than one false rejection
provided the number of such cases is controlled, thereby increasing the abil-
ity of the procedure to detect false null hypotheses. This suggests replacing
control of the FWER by controlling the probability ofk or more false rejec-
tions, which we call thek-FWER. We derive both single-step and stepdown
procedures that control thek-FWER, without makingany assumptions con-
cerning the dependence structure of thep-values of the individual tests. In
particular, we derive a stepdown procedure that is quite simple to apply, and
prove that it cannot be improved without violation of control of thek-FWER.
We also consider the false discovery proportion (FDP) defined by the number
of false rejections divided by the total number of rejections (defined to be 0 if
there are no rejections). The false discovery rate proposed by Benjamini and
Hochberg [J. Roy. Statist. Soc. Ser. B 57 (1995) 289–300] controlsE(FDP).
Here, we construct methods such that, for anyγ andα, P {FDP > γ } ≤ α.
Two stepdown methods are proposed. The first holds under mild conditions
on the dependence structure ofp-values, while the second is more conserva-
tive but holds without any dependence assumptions.

1. Introduction. In this paper, we will consider the general problem of
simultaneously testing a finite number of null hypothesesHi , i = 1, . . . , s. We
shall assume that tests for the individual hypotheses are available and the problem
is how to combine them into a simultaneous test procedure. The easiest approach is
to disregard the multiplicity and simply test each hypothesis at levelα. However,
with such a procedure the probability of one or more false rejections increases
with s. When the number of true hypotheses is large, we shall be nearly certain to
reject some of them.

A classical approach to dealing with this problem is to restrict attention to
procedures that control the probability of one or more false rejections. This
probability is called the familywise error rate (FWER). Here the term “family”
refers to the collection of hypothesesH1, . . . ,Hs that is being considered for joint
testing. Which tests are to be treated jointly as a family depends on the situation.
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Once the family has been defined, control of the FWER (at joint levelα)
requires that

FWER≤ α(1)

for all possible constellations of true and false hypotheses. A quite broad treatment
of methods that control the FWER is presented in [4].

Safeguards against false rejections are of course not the only concern of multiple
testing procedures. Corresponding to the power of a single test, one must also
consider the ability of a procedure to detect departures from the hypothesis when
they do occur. When the number of tests is in the tens or hundreds of thousands,
control of the FWER at conventional levels becomes so stringent that individual
departures from the hypothesis have little chance of being detected. For this reason,
we shall consider an alternative to the FWER that controls false rejections less
severely and consequently provides better power.

Specifically, we shall consider thek-FWER, the probability of rejecting at
leastk true null hypotheses. Such an error rate withk > 1 is appropriate when
one is willing to tolerate one or more false rejections, provided the number of false
rejections is controlled.

More formally, suppose dataX is available from some modelP ∈ �. A general
hypothesisH can be viewed as a subsetω of �. For testingHi :P ∈ ωi , i =
1, . . . , s, let I (P ) denote the set of true null hypotheses whenP is the true
probability distribution; that is,i ∈ I (P ) if and only if P ∈ ωi . Then, thek-FWER,
which depends onP , is defined to be

k-FWER= P {reject at leastk hypothesesHi with i ∈ I (P )}.(2)

Control of thek-FWER requires thatk-FWER≤ α for all P , that is,

P {reject at leastk hypothesesHi with i ∈ I (P )} ≤ α for all P.(3)

Evidently, the casek = 1 reduces to control of the usual FWER.
We will also consider control of thefalse discovery proportion (FDP), defined

as the total number of false rejections divided by the total number of rejections
(and equal to 0 if there are no rejections). Given a user specified valueγ ∈ (0,1),
the measure of error control we wish to control isP {FDP > γ } and we derive
methods where this is bounded byα.

Recently, there has been a flurry of activity in finding methods that control error
rates that are less stringent than the FWER, which is no doubt inspired by the
FDR controlling method of Benjamini and Hochberg [1] and applications such as
genomic studies wheres is so large that control of the FWER is too stringent. For
example, Genovese and Wasserman [3] study asymptotic procedures that control
the FDP (and the FDR) in the framework of a random effects mixture model. These
ideas are extended in [9], where in the context of random fields the number of
null hypotheses is uncountable. Korn, Troendle, McShane and Simon [8] provide
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methods that control both thek-FWER and FDP; they provide some justification
for their methods, but they are limited to a multivariate permutation model.
Alternative methods of control of thek-FWER and FDP are given in van der Laan,
Dudoit and Pollard [13]; they include both finite sample and asymptotic results.
Surprisingly, the methods presented here are distinct from the above techniques.
Our methods are not asymptotic and hold under either mild or no assumptions, as
long asp-values are available for testing each individual hypothesis.

Before describing methods that provide control of thek-FWER and FDP, we
first recall the notion of ap-value, since multiple testing methods are often
described by thep-values of the individual tests. Consider a single null hypothesis
H :P ∈ ω. Assume a family of tests ofH , indexed byα, with level α rejection
regionsSα satisfying

P {X ∈ Sα} ≤ α for all 0< α < 1,P ∈ ω,(4)

and

Sα ⊂ Sα′ wheneverα < α′.(5)

Then thep-value is defined by

p̂ = p̂(X) = inf{α :X ∈ Sα}.(6)

The important property of ap-value that will be used later is the following.

LEMMA 1.1. Assume p̂ is defined as above.

(i) If P ∈ ω, then

P {p̂ ≤ u} ≤ u.(7)

(ii) Furthermore,

P {p̂ ≤ u} ≥ P {X ∈ Su}.(8)

Therefore, if the Sα are such that equality holds in (4), then p̂ is uniformly
distributed on (0,1) when P ∈ ω.

PROOF. AssumeP ∈ ω. To prove (i), note that the event{p̂ ≤ u} implies
{X ∈ Su+ε} for any smallε > 0. Therefore,

P {p̂ ≤ u} ≤ P {X ∈ Su+ε} ≤ u + ε

by assumption (4). Now letε → 0. To prove (ii), the event{X ∈ Su} implies
{p̂ ≤ u}, and so (8) follows. �

Two classic procedures that control the FWER are the Bonferroni procedure
and the Holm procedure. The Bonferroni procedure rejectsHi if its corresponding
p-value satisfieŝpi ≤ α/s. Assumingp̂i satisfies

P {p̂i ≤ u} ≤ u for anyu ∈ (0,1) and anyP ∈ ωi,(9)
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the Bonferroni procedure provides strong control of the FWER. Unfortunately,
the ability of the Bonferroni procedure to detect cases in whichHi is false will
typically be very low sinceHi is tested at levelα/s which—particularly if s is
large—is orders smaller than the conventionalα levels.

For this reason procedures are prized for which the levels of the individual tests
are increased overα/s without an increase in the FWER. It turns out that such a
procedure due to Holm [5] is available under the present minimal assumptions.

The Holm procedure can conveniently be stated in terms of thep-values
p̂1, . . . , p̂s of the s individual tests. Let the orderedp-values be denoted by
p̂(1) ≤ · · · ≤ p̂(s), and the associated hypotheses byH(1), . . . ,H(s). Then the Holm
procedure is defined stepwise as follows:

Step 0. Let k = 0.

Step 1. If p̂(k+1) > α/(s − k), go to step 2. Otherwise setk = k + 1 and repeat
step 1.

Step 2. RejectH(j) for j ≤ k and acceptH(j) for j > k.

The Bonferroni method is an example of asingle-step procedure, meaning any
null hypothesis is rejected if its correspondingp-value is less than or equal to a
common cutoff value (which in the Bonferroni case isα/s). The Holm procedure
is a special case of a class ofstepdown procedures, which we now briefly describe.
Let

α1 ≤ α2 ≤ · · · ≤ αs(10)

be constants. If̂p(1) > α1, reject no null hypotheses. Otherwise, if

p̂(1) ≤ α1, . . . , p̂(r) ≤ αr,(11)

reject hypothesesH(1), . . . ,H(r) where the largestr satisfying (11) is used. That
is, a stepdown procedure starts with the most significantp-value and continues
rejecting hypotheses as long as their correspondingp-values are small. The Holm
procedure usesαi = α/(s − i + 1).

2. Control of the k-FWER. The usual Bonferroni procedure compares each
p-valuep̂i with α/s. Control of thek-FWER allows one to increaseα/s to kα/s,
and thereby greatly increase the ability to detect false hypotheses. That such a
simple modification results in control of thek-FWER is seen in the following
result.

THEOREM 2.1. For testing Hi :P ∈ ωi , i = 1, . . . , s, suppose p̂i satisfies (9).
Consider the procedure that rejects any Hi for which p̂i ≤ kα/s.
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(i) This procedure controls the k-FWER, so that (3) holds. Equivalently, if each
of the hypotheses is tested at level kα/s, then the k-FWER is controlled.

(ii) For this procedure, the inequality (3) is sharp in the sense that there exists
a joint distribution for (p̂1, . . . , p̂s) for which equality is attained in (3).

PROOF. (i) Fix any P and supposeHi with i ∈ I = I (P ) are true and the
remainder false, with|I | denoting the cardinality ofI . Let N be the number of
false rejections. Then, by Markov’s inequality,

P {N ≥ k} ≤ E(N)

k
= E[∑

i∈I (P ) I {p̂i ≤ kα/s}]
k

= ∑
i∈I (P )

P {p̂i ≤ kα/s}
k

≤ ∑
i∈I (P )

kα/s

k
= |I (P )|α

s
≤ α.

To prove (ii), consider the following construction. Pickk indices at random
without replacement from{1, . . . , s}. Call themJ . Giveni ∈ J , let p̂i = U1, where
U1 is uniform on(0, k/s), that is,U1 ∼ U(0, k/s). Giveni /∈ J , let p̂i = U2, where
U2 is independent ofU1 andU2 ∼ U(k/s,1). Then, unconditionally,

p̂i ∼ k

s
U

(
0,

k

s

)
+

(
1− k

s

)
U

(
k

s
,1

)
∼ U(0,1).

Indeed, ifu ≤ k/s,

P {p̂i ≤ u} = P {i ∈ J } · P {U1 ≤ u} = k

s
· u

k/s
= u

and ifu ≥ k/s,

P {p̂i ≤ u} = P {i ∈ J } · 1+ P {i /∈ J } · P {U2 ≤ u} = k

s
+

(
1− k

s

)
· u − k/s

1− k/s
= u.

Now exactlyk of the p̂i are less than or equal tok/s by construction. The prob-
ability that these are all less than or equal toαk/s is

P

{
U1 ≤ αk

s

}
= αk/s

k/s
= α. �

As is the case for the Bonferroni method, the above single-stage procedure can
be strengthened by a Holm type of improvement. Consider the stepdown procedure
described in (11), where now we specifically consider

αi =




kα

s
, i ≤ k,

kα

s + k − i
, i > k.

(12)

Of course, theαi depend ons and k, but we suppress this dependence in the
notation.
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THEOREM 2.2. For testing Hi :P ∈ ωi , i = 1, . . . , s, suppose p̂i satisfies (9).
The stepdown procedure described in (11) with αi given by (12) controls the
k-FWER, that is, (3) holds.

PROOF. Fix any P and letI (P ) be the indices of the true null hypotheses.
Assume|I (P )| ≥ k or there is nothing to prove. Order thep-values corresponding
to the|I (P )| true null hypotheses; call them

q̂(1) ≤ · · · ≤ q̂|I (P )|.

Let j be the smallest (random) index satisfyingp̂(j) = q̂(k), so

k ≤ j ≤ s − |I (P )| + k(13)

because the largest possible indexj occurs when all the smallestp-values
correspond to thes − |I (P )| false null hypotheses and the next|I (P )| p-values
correspond to the true null hypotheses. Sop̂(j) = q̂(k). Then our generalized Holm
procedure commits at leastk false rejections if and only if

p̂(1) ≤ α1, p̂(2) ≤ α2, . . . , p̂(j) ≤ αj ,

which certainly implies that

q̂(k) = p̂(j) ≤ αj = kα

s + k − j
.

But by (13),

kα

s + k − j
≤ kα

|I (P )| .
So the probability of at leastk false rejections is bounded above by

P

{
q̂(k) ≤ kα

|I (P )|
}
.

By Theorem 2.1(i) the chance that thekth largest amongI (P ) p-values is less
than or equal tokα/|I (P )| is less than or equal toα. �

REMARK 2.1. Evidently, one can always reject the hypotheses corresponding
to the smallestk − 1 p-values without violating control of thek-FWER.
However, it seems counterintuitive to consider a stepdown procedure whose
correspondingαi are not monotone nondecreasing. In addition, automatic rejection
of k − 1 hypotheses, regardless of the data, appears at the very least a little
too optimistic. To ensure monotonicity, our stepdown procedure usesαi = kα/s.
Even if we were to adopt the more optimistic strategy of always rejecting the
hypotheses corresponding to the firstk − 1 hypotheses, we could still only rejectk

or more hypotheses if̂p(k) ≤ kα/s, which is also true for the specific procedure of
Theorem 2.2.
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REMARK 2.2. If thep-values have discrete distributions, it is possible that
there may be ties among them. However, the proof remains valid regardless of
how tied p-values are ordered because monotonicity of theαi ensures that all
hypotheses with a common tiedp-value will be rejected if any of them are rejected.

The question naturally arises whether it is possible to improve the procedure
further by increasing the critical valuesα1, α2, . . . without violating control of the
k-FWER (3). By the previous remark we can always increaseαi to 1 for i < k.
A more interesting question is whether we can increaseαi for i ≥ k. We will show
that this is not possible by exhibiting for eachi ≥ k a joint distribution of the
p-values for which

P
{
p̂(1) ≤ α1, p̂(2) ≤ α2, . . . , p̂(i−1) ≤ αi−1, p̂(i) ≤ αi

} = α.(14)

Moreover, changingαi to βi > αi results in the right-hand side being greater
than α. Thus, withi ≥ k, one cannot increaseαi without violating thek-FWER.
Then, having pickedα1, . . . , αk, . . . , αi−1, the largest possible choice forαi is as
stated in the algorithm.

THEOREM2.3. (i)Let the αi be given in (12).For any i ≥ k there exists a joint
distribution for p̂1, . . . , p̂s such that s + k − i of the p̂i are uniformly distributed
on (0,1) and (14) holds.

(ii) For testing Hi :P ∈ ωi , i = 1, . . . , s, suppose p̂i satisfies (9). For the
stepdown procedure (11) with αi given in (12), one cannot increase even one of
the constants αi ( for i ≥ k) without violating the k-FWER.

Before proving the theorem, we make use of the following lemma.

LEMMA 2.1. Fix k, u and constants 0 < β1 ≤ β2 ≤ · · · ≤ βk ≤ u. Assume for
every j = 2, . . . , k,

j (βj − βj−1)

βj

≤ 1.(15)

Then there exists a joint distribution for (q̂1, . . . , q̂k) satisfying the q̂i are
marginally uniform on (0, u) such that the ordered values q̂(1) ≤ · · · ≤ q̂(k) satisfy

P
{
q̂(1) ≤ β1, . . . , q̂(k) ≤ βk

} = βk/u.(16)

PROOF. The proof is by induction onk. The result clearly holds fork = 1.
With probabilityβk/u we will construct(q̂1, . . . , q̂k) equal to(q̃1, . . . , q̃k), where
q̃i ∼ U(0, βk) for i = 1, . . . , k and such that their ordered valuesq̃(1) ≤ · · · ≤ q̃(k)

satisfy

P
{
q̃(1) ≤ β1, . . . , q̃(k) ≤ βk

} = 1.(17)
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But, with probability 1− βk/u, construct thẽqj to be conditionally distributed as
U(βk,u). Then unconditionally thêqj satisfy (16) and are marginally distributed
asU(0, u). So it suffices to construct thẽqj satisfyingq̃j ∼ U(0, βk) and (17).

Let β0 = 0 and fori = 1, . . . , k let Ei = {(βi−1, βi]} andpi = βi − βi−1. First
constructY1, . . . , Yk−1, each taking values in(0, βk−1] such that their ordered
valuesY(1) ≤ · · · ≤ Y(k−1) satisfy

P
{
Y(1) ≤ β1, . . . , Y(k−1) ≤ βk−1

} = 1(18)

andYi is uniform on(0, βk−1]. This is possible by the inductive hypothesis, since
we can assume the result holds fork − 1 as long asβ1, . . . , βk andu satisfy the
stated conditions; in particular, we apply the result withu = βk−1. Next, letYk be
uniform onEi with probabilityθpi for i = 1, . . . , k −1 and let it be uniform onEk

with probability 1− θβk−1, whereθ satisfies

θ = 1

βk−1

[
1− k(βk − βk−1)

βk

]
.(19)

Finally, let q̃1, . . . , q̃k be a random permutation ofY1, . . . , Yk . Because of (18) and
the fact thatYk ≤ βk , the ordered values ofY1, . . . , Yk and hence the ordered values
of q̃1, . . . , q̃k satisfy (17). Furthermore, it is easy to check thatq̃i falls in Ej with
probabilitypj and soq̃i is U(0, βk). Indeed, ifj < k, the probability that̃qi falls
in Ej , conditional onq̃i not being equal toYk , is pi/βk−1 and isθpi in the latter
case, which unconditionally is

k − 1

k
· pi

βk−1
+ 1

k
θpi = pi,

and similarly for the probability that̂qi falls in Ek . The only detail that remains
is to note that this construction withθ defined in (19) is possible only ifθpi and
1− θβk−1 are all values in(0,1). But

1− θβk−1 = k(βk − βk−1)

βk

,

which is certainly≥ 0 sinceβk ≥ βk−1. It is also≤ 1 by the assumption (15). Also,

θpi = pi

βk−1
·
[
1− k(βk − βk−1)

βk

]
.

But the first factorpi/βk−1 is in (0,1) as is the latter by the above, and so the
product is in(0,1). �

PROOF OF THEOREM 2.3. The casei = k follows from the construction
in the proof of Theorem 2.1. Let the firsti − k of the p̂j be identically equal
to 0. (Actually, rather than point mass at 0, any distribution supported on[0, α1)

will do.) For the remainings′ = s + k − i p-valuesp̂j , j = i − k + 1, . . . , s,
randomly choosek indices fromi − k + 1, . . . , s. The k that are chosen will be
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marginallyU(0, k/s′) and have a joint distribution which will be specified below;
the remainings − i can be taken to be distributed asU(k/s′,1).

Let q̂1, . . . , q̂k denote thek observations that are marginallyU(0, k/s′). We
need to specify the joint distribution of̂q1, . . . , q̂k so that their ordered values
q̂(1) ≤ · · · ≤ q̂(k) satisfy

P
{
q̂(1) ≤ αi−k+1, q̂(2) ≤ αi−k+2, . . . , q̂(k) ≤ αi

} = α(20)

(becausêq(j) = p̂(j+i−k) for j = 1, . . . , k). So the problem reduces to constructing
a joint distribution for(q̂1, . . . , q̂k) satisfying (20) subject to the constraint thatq̂j

is marginally distributed asU(0, k/s′). To do this, apply Lemma 2.1 withu = k/s′
andβj = αi−k+j . We need to verify the conditions of the lemma, which reduces
to showing

j (αi−k+j − αi−k+j−1)

αi−k+j

≤ 1(21)

for i ≥ k (and s andk fixed). But, if i − k + j − 1 ≤ k, then the left-hand side
of (21) is 0; otherwise it is easily seen to simplify to

j

s + 2k − i − j
≤ j

s + k − j
≤ k/s,(22)

where the first inequality holds becausei ≥ k and the second becausej ≤ k.
But k/s ≤ 1 and so the conditions of the lemma are satisfied. Therefore, we can
conclude that the left-hand side of (20) is given by

βk

u
= αi

k/s′ = α,

and (i) is proved.
To prove (ii), the construction used in (i) can be used even ifαi is replaced by

ᾱi > αi , as long as such a switch still allows one to appeal to the lemma. However,
the same argument works as long asᾱi does not get bigger thans/k ·αi , so that the
argument leading to (22) being less than or equal to 1 still applies. For such anᾱi ,
the argument for (i) then shows that, if the left-hand side of (14) hasαi replaced
by cαi for some 1< c < s/k, then the right-hand side of (14) will becα > α,
which would violate control of thek-FWER. �

3. Control of the false discovery proportion. The numberk of false
rejections that one is willing to tolerate will often increase with the number
of hypotheses rejected. So it might be of interest to control not the number of
false rejections (sometimes called false discoveries) but the proportion of false
discoveries. Specifically, let thefalse discovery proportion (FDP) be defined by

FDP =




Number of false rejections

Total number of rejections
, if the denominator

is greater than 0,

0, if there are no rejections.

(23)
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Thus FDP is the proportion of rejected hypotheses that are rejected erroneously.
When none of the hypotheses is rejected, both numerator and denominator of that
proportion are 0; since in particular there are no false rejections, the FDP is then
defined to be 0.

Benjamini and Hochberg [1] proposed to replace control of the FWER by
control of thefalse discovery rate (FDR), defined as

FDR = E(FDP).(24)

The FDR has gained wide acceptance in both theory and practice, largely because
Benjamini and Hochberg proposed a simple stepup procedure to control the FDR.
Unlike control of thek-FWER, however, their procedure is not valid without
assumptions on the dependence structure of thep-values. Their original paper
assumed the very strong assumption of independence ofp-values, but this has
been weakened to include certain types of dependence; see [2]. In any case, control
of the FDR does not prohibit the FDP from varying, even if its average value is
bounded. Instead, we consider an alternative measure of control that guarantees the
FDP is bounded, at least with prescribed probability. That is, for a givenγ andα

in (0,1), we require

P {FDP > γ } ≤ α.(25)

To develop a stepdown procedure satisfying (25), letF denote the number of
false rejections. At stepi, having rejectedi − 1 hypotheses, we want to guarantee
F/i ≤ γ , that is,F ≤ �γ i	, where�x	 is the greatest integer less than or equal
to x. So, if k = �γ i	 + 1, thenF ≥ k should have probability no greater thanα;
that is, we must control the number of false rejections to be less than or equal
to k. Therefore, we use the stepdown constantαi with this choice ofk (which now
depends oni); that is,

αi = (�γ i	 + 1)α

s + �γ i	 + 1− i
.(26)

We give two results that show the stepdown procedure with this choice
of αi satisfies (25). Unfortunately, like FDR control, some assumptions on the
dependence ofp-values are required, at least by our method of proof. Later, we
will modify the method so we can dispense with the dependence assumptions. As
before,p̂1, . . . , p̂s denotes thep-values of the individual tests. Also, letq̂1, . . . , q̂|I |
denote thep-values corresponding to the|I | = |I (P )| true null hypotheses. So
qi = pji

, wherej1, . . . , j|I | correspond to the indices of the true null hypotheses.
Also, let r̂1, . . . , r̂s−|I | denote thep-values of the false null hypotheses. Consider
the following condition: for anyi = 1, . . . , |I |,

P
{
q̂i ≤ u|r̂1, . . . , r̂s−|I |

} ≤ u;(27)

that is, conditional on the observedp-values of the false null hypotheses, ap-value
corresponding to a true null hypothesis is (conditionally) dominated by the
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uniform distribution, as it is unconditionally in the sense of (7). No assumption
is made regarding the unconditional (or conditional) dependence structure of
the truep-values, nor is there made any explicit assumption regarding the joint
structure of thep-values corresponding to false hypotheses, other than the basic
assumption (27). So, for example, if thep-values corresponding to true null
hypotheses are independent of the false ones, but have arbitrary joint dependence
within the group of true null hypotheses, the above assumption holds.

THEOREM 3.1. Assume condition (27).Then the stepdown procedure with αi

given by (26) controls the FDP in the sense of (25).

PROOF. Assume the number of true null hypotheses is|I (P )| > 0 (or there is
nothing to prove) and the number of false null hypotheses isf = s − |I (P )|. The
argument is conditional on the{r̂i}. Let

r̂(1) ≤ r̂(2) ≤ · · · ≤ r̂(f )

denote the ordered values of ther̂i and similarly for theq̂i . Let α0 = 0 and
defineRi to be the number of̂ri in the interval(αi−1, αi]. (Actually, assumeR1
includes the value 0 as well.) Given the values ofr̂1, . . . , r̂f , it may be impossible
to haveFDP > γ , that is,

P {FDP > γ |r̂1, . . . , r̂f } = 0.

Otherwise, letj = j (r̂1, . . . , r̂f ) be defined as

j = min

{
m :m −

m∑
i=1

Ri > mγ

}
.(28)

To interpret this, given thep-values of the false hypotheses,j is the smallest
critical index (depending only on thêri ) where it is possible to haveFDP > γ ,
except whenever there are severalp-values within an interval(αi−1, αi) we
consider the index of the largest one. The point of the construction is that if the
stepdown procedure stops at an indexm < j , then m − ∑

i Ri/m ≤ γ and so
FDP ≤ γ . On the other hand, if the eventFDP > γ occurs, then there must be
a rejection of a true null hypothesis at stepj .

For example, ifs = 100,f = 5 andγ = 0.1, then if all five of ther̂i are less
thanα1, then we definej = 6 even though the smallest truep-value could be the
smallest among the 100. So the FDP could be greater than 0.1 after the first step
of the algorithm ifq̂(1) < r̂(1), but even if this is the case, we then know we will
reject at least six total hypotheses. So the important point here is that, given such
a configuration of{r̂i}, in order for FDP to be greater than 0.1, it must be the case
that we reject a true null hypothesis at step 6.
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Note that, withj so defined,Rj = 0. For if
∑j

i=1 Ri = j − k with k/j > γ and
Rj > 0, then

j−1∑
i=1

Ri = j − k − Rj ≤ j − 1− k

andk/(j − 1) > γ , so thatm = j − 1 satisfies the criterion. Furthermore, we also
have

∑j
i=1 Ri = j − k (so not< j − k), wherek/j > γ , because if

∑j
i=1 Ri <

j − k ≤ j − 1 − k say, thenk/(j − 1) > γ if k/j > γ and soj can again be
reduced toj − 1.

In addition, at the indexj it must be the case that

k = k(j) = j −
j∑

i=1

Ri = 1+ �γj	.

But k > γj impliesk ≥ �γj	 + 1. But if k > �γj	 + 1, thenk − 1 ≥ �γj	 + 1 and
so

k − 1

j − 1
≥ �γj	 + 1

j − 1
> γ,

the last equality trivially following from 1+ �γj	 ≥ γj > γ (j − 1).
We can now complete the argument. At the indexj we must havek =

j − ∑j
i=1 Ri = 1 + �γj	 of the q̂i being≤ αj . But from Theorem 2.1 (applied

conditional on thêri),

P {at leastk(j) of the q̂i ≤ αj |r̂1, . . . , r̂f }
≤ |I |αj

k(j)

= |I |(�γj	 + 1)α

k(j)(s + �γj	 + 1− j)
= |I |α

s + �γj	 + 1− j
.

But |I | ≤ s − ∑j
i=1 Ri = s − j + k, so the above probability is less than or equal

to
s − j + k

s + �γj	 + 1− j
· α = α.

Therefore,

P {FDP > γ |r̂1, . . . , r̂f } ≤ α,

which of course impliesP {FDP > γ } ≤ α. �

Next, we prove the same stepdown procedure controls the FDP in the sense
of (25) under an alternative assumption. Here, the assumption only involves the
dependence of thep-values corresponding to true null hypotheses.
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THEOREM 3.2. Consider testing s null hypotheses, with |I | of them true.
Let q̂(1) ≤ · · · ≤ q̂(|I |) denote their corresponding ordered p-values. Set M =
min(�γ s	 + 1, |I |).

(i) For the stepdown procedure with αi given by (26),

P {FDP > γ } ≤ P

{
M⋃
i=1

{
q̂(i) ≤ iα

|I |
}}

.(29)

(ii) Therefore, if the joint distribution of the p-values of the true null hypotheses
satisfies Simes inequality, that is,

P

{{
q̂(1) ≤ α

|I |
}

∪
{
q̂(2) ≤ 2α

|I |
}

∪ · · · ∪ {
q̂(|I |) ≤ α

}} ≤ α,

then P {FDP > γ } ≤ α.

PROOF. Let j be the smallest (random) index where the FDP exceedsγ for
the first time at stepj ; that is, the number of false rejections corresponding to the
first j − 1 rejections divided byj exceedsγ for the first time atj . If j is such that
γj < 1, thenFDP > γ at stepj implies p̂(j) ≤ αj . But this implies

q̂(1) ≤ αj = α

s + 1− j
≤ α

|I | ,

because the number of true null hypotheses|I | necessarily satisfies|I | ≤ s −
(j − 1) for such aj .

Similarly, if j is such that 1≤ γj < 2, then we must havêp(i) ≤ αi and
p̂(j) ≤ αj for somei < j , wherei, j correspond to true null hypotheses. But for
such aj , αj = 2α/(s + 2 − j), and so we must havêq(2) ≤ 2α/(s − j + 2). But,
by definition ofj , we must have|I | ≤ s − (j − 2) and soq̂(2) ≤ 2α/|I |.

Continuing in this way, ifm−1≤ γj < m, the eventFDP > γ at stepj implies
q̂(m) ≤ mα/|I |. The largest value ofj is of courses and so the largest possiblem
is �γ s	 + 1. Also, we cannot havem > |I |. So, withM as in the statement of the
theorem,

P {FDP > γ } ≤
M∑

m=1

P

{
q̂(m) ≤ mα

|I | ,m − 1≤ γj < m

}

≤
M∑

m=1

P

{
M⋃
i=1

{
q̂(i) ≤ iα

|I |
}
,m − 1≤ γj < m

}

≤ P

{
M⋃
i=1

{
q̂(i) ≤ iα

|I |
}}

.

Part (ii) follows trivially. �
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In fact, there are many joint distributions of positively dependent variables for
which Simes inequality is known to hold. In particular, Sarkar and Chang [11]
and Sarkar [10] have shown that the Simes inequality holds for the family
of distributions which is characterized by the multivariate positive of order 2
condition, as well as some other important distributions.

Theorem 3.2 points toward a method that controls the FDP without any
dependence assumptions. One simply needs to bound the right-hand side of (29).
In fact, Hommel [6] has shown that

P

{ |I |⋃
i=1

{
q̂(i) ≤ iα

|I |
}}

≤ α

|I |∑
i=1

1

i
.

This suggests we replaceα by α(
∑|I |

i=1(1/i))−1. But of course|I | is unknown. So
one possibility is to bound|I | by s, which then results in replacingα by α/Cs ,
where

Cj =
j∑

i=1

(1/i).(30)

As is well known,Cs ≈ log(s + 0.5) + ζE, with ζE ≈ 0.5772156649 known as
Euler’s constant. Clearly, changingα in this way is much too conservative and
results in a much less powerful method. However, notice in (29) that we really
only need to bound the union overM ≤ �γ s + 1	 events. Therefore, we need to
slightly generalize the inequality by Hommel [6], which is done in the following
lemma.

LEMMA 3.1. Suppose p̂1, . . . , p̂t are p-values in the sense that P {p̂i ≤ u} ≤ u

for all i and u in (0,1). Let their ordered values be p̂(1) ≤ · · · ≤ p̂(t). Let
0= β0 ≤ β1 ≤ β2 ≤ · · · ≤ βm ≤ 1 for some m ≤ t .

(i) Then

P
{{

p̂(1) ≤ β1
} ∪ {

p̂(2) ≤ β2
} ∪ · · · ∪ {

p̂(m) ≤ βm

}} ≤ t

m∑
i=1

(βi − βi−1)/i.(31)

(ii) As long as the right-hand side of (31) is less than or equal to 1, the bound
is sharp in the sense that there exists a joint distribution for the p-values for which
the inequality is an equality.

PROOF. Let J be the smallest (random) indexj among 1≤ j ≤ m for which
p̂(j) ≤ βj ; defineJ to bet + 1 if p̂(j) > βj for all 1≤ j ≤ m. Let θk = P {J = k}.
Then the left-hand side of (31) is equal to

P

{
m⋃

k=1

{J = k}
}

=
m∑

k=1

θk,
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since the events{J = k} are disjoint. We wish to bound
∑

k θk . For any 1≤ j ≤ m,

j∑
k=1

JI {J = k} = JI {J ≤ j} ≤ Sj ,

whereSj is the number ofp-values≤ βj . Taking expectations yields

j∑
k=1

kθk ≤ tβj , j = 1, . . . ,m.(32)

For j = 1, . . . ,m − 1, multiply both sides of (32) by 1/[j (j + 1)], and forj = m,
multiply both sides by 1/m; then sum overj to yield

m−1∑
j=1

1

j (j + 1)

j∑
k=1

kθk + 1

m

m∑
k=1

kθk ≤
m−1∑
j=1

tβj

j (j + 1)
+ tβm

m
.(33)

By changing the order of summation, the left-hand side of (33) becomes

m−1∑
k=1

kθk

(
1

k
− 1

m

)
+ 1

m

m∑
k=1

kθk =
m∑

k=1

θk.

The right-hand side of (33) is easily seen to be the right-hand side of (31) and (i)
follows.

To prove (ii), we construct̂p1, . . . , p̂t as follows. LetUi be uniform inIi and
let Um+1 be uniform in(βm,1). Let p be equal to the right-hand side of (31),
assumed less than or equal to 1. Letπ1, . . . , πm be probabilities summing to 1,
with πi ∝ (βi − βi−1)/i. Then, with probabilityπip, randomly picki indices and
let thosep-values be equal toUi , and the remainingt − i p-values equal toUm+1.
With the remaining probability 1− p, let all p-values be equal toUm+1. With this
construction it is easily checked thatp̂i is uniform on(0,1) and the left-hand side
of (31) is equal to the right-hand side of (31).�

Theorem 3.2 and Lemma 3.1 now lead to the following result.

THEOREM 3.3. For testing Hi :P ∈ ωi , i = 1, . . . , s, suppose p̂i satisfies (9).
Consider the stepdown procedure with constants α′

i = αi/C(�γ s	+1), where αi is
given by (26) and Cj is defined by (30).Then P {FDP > γ } ≤ α.

PROOF. By Theorem 3.2(i),P {FDP > γ } is bounded by the right-hand side
of (29) with α replaced byα/C�γ s	+1, which is further bounded by the same
expression withM replaced by�γ s	 + 1. Then apply Lemma 3.1 witht = |I |
andβi = iα/(C�γ s	+1|I |). �

It is of interest to compare control of the FDP with control of the FDR. Some
obvious connections between methods that control the FDP in the sense of (25)
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and methods that control its expected value, the FDR, can be made. Indeed, for
any random variableX on [0,1], we have

E(X) = E(X|X ≤ γ )P {X ≤ γ } + E(X|X > γ )P {X > γ }
≤ γP {X ≤ γ } + P {X > γ },

which leads to

E(X) − γ

1− γ
≤ P {X > γ } ≤ E(X)

γ
,(34)

with the last inequality just Markov’s inequality. Applying this toX = FDP, we
see that, if a method controls the FDR at levelq, then it controls the FDP in the
senseP {FDP > γ } ≤ q/γ . Obviously, this is very crude because ifq andγ are
both small, the ratio can be quite large. The first inequality in (34) says that if
the FDP is controlled in the sense of (25), then the FDR is controlled at level
α(1− γ )+ γ , which is greater than or equal toα but typically only slightly. These
crude arguments suggest that control of the FDP is perhaps more stringent than
control of the FDR.

The comparison of actual methods, however, is complicated by the fact that the
FDR controlling procedure of Benjamini and Hochberg [1] is a stepup procedure,
but we have only considered stepdown procedures. It is interesting to note that,
in order to make our procedure work without any dependence assumptions, we
needed to changeα to α/C�γ s	+1. Benjamini and Yekutieli [2] show that the
Benjamini–Hochberg procedure that controls the FDR at levelq can also work
without dependence assumptions, if you replaceq by q/Cs . Clearly, this is a more
drastic change sinceCs is typically much larger thanC�γ s	+1. Such connections
need to be explored more fully.

4. Conclusions. We have seen that a very simple stepdown procedure is
available to control thek-FWER under absolutely no assumptions on the
dependence structure of thep-values. Furthermore, control of thek-FWER
provides a measure of control for theactual number of false rejections, while
the number of false rejections in the case of the FDR can vary widely. We have
also considered two stepdown methods that control the FDP in the sense of (25).
The first method provides control under very reasonable types of dependence
assumptions, while the second holds in general.
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After the revision and acceptance of this paper, we became aware of the work
by Hommel and Hoffman [7] which has much overlap with the results in Section 2,
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and we’d like to thank Helmut Finner for pointing out this oversight. In particular,
Hommel and Hoffman [7] provide Theorem 2.1(i) with proof, Theorem 2.2 (stated
but no proof ) and a weaker version of Theorem 2.3(ii) (stated but no proof ). They
attribute the idea of controlling the number of false hypotheses to Victor [14], who
also suggested control of the FDP. However, Hommel and Hoffman did not further
discuss control of the FDP as they “could not find suitable procedures satisfying
this criterion.” As far as we know, the three theorems in Section 3 which address
control of the FDP are new.
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