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GENERALIZATIONS OF THE FAMILYWISE ERROR RATE
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Consider the problem of simultaneously testing null hypotheses
Hy, ..., Hs. The usual approach to dealing with the multiplicity problem is to
restrict attention to procedures that control the familywise error rate (FWER),
the probability of even one false rejection. In many applications, particularly
if s is large, one might be willing to tolerate more than one false rejection
provided the number of such cases is controlled, thereby increasing the abil-
ity of the procedure to detect false null hypotheses. This suggests replacing
control of the FWER by controlling the probability éfor more false rejec-
tions, which we call th&-FWER. We derive both single-step and stepdown
procedures that control theFWER, without makingany assumptions con-
cerning the dependence structure of ghealues of the individual tests. In
particular, we derive a stepdown procedure that is quite simple to apply, and
prove that it cannot be improved without violation of control of tREWER.
We also consider the false discovery proportion (FDP) defined by the number
of false rejections divided by the total number of rejections (defined to be 0 if
there are no rejections). The false discovery rate proposed by Benjamini and
Hochberg J. Roy. Satist. Soc. Ser. B 57 (1995) 289—-300] control& (FDP).
Here, we construct methods such that, for gngnda, P{FDP > y} < «.
Two stepdown methods are proposed. The first holds under mild conditions
on the dependence structuregpf/alues, while the second is more conserva-
tive but holds without any dependence assumptions.

1. Introduction. In this paper, we will consider the general problem of
simultaneously testing a finite number of null hypotheggsi =1,...,s. We
shall assume that tests for the individual hypotheses are available and the problem
is how to combine them into a simultaneous test procedure. The easiest approach is
to disregard the multiplicity and simply test each hypothesis at levelowever,
with such a procedure the probability of one or more false rejections increases
with s. When the number of true hypotheses is large, we shall be nearly certain to
reject some of them.

A classical approach to dealing with this problem is to restrict attention to
procedures that control the probability of one or more false rejections. This
probability is called the familywise error rate (FWER). Here the term “family”
refers to the collection of hypothesgs, ..., H that is being considered for joint
testing. Which tests are to be treated jointly as a family depends on the situation.

Received December 2003; revised June 2004.
AMS 2000 subject classifications. Primary 62J15; secondary 62G10.
Key words and phrases. Familywise error rate, multiple testing;value, stepdown procedure.

1138



GENERALIZATIONS OF THE FWER 1139

Once the family has been defined, control of the FWER (at joint leyel
requires that

(1) FWER< «

for all possible constellations of true and false hypotheses. A quite broad treatment
of methods that control the FWER is presented in [4].

Safeguards against false rejections are of course not the only concern of multiple
testing procedures. Corresponding to the power of a single test, one must also
consider the ability of a procedure to detect departures from the hypothesis when
they do occur. When the number of tests is in the tens or hundreds of thousands,
control of the FWER at conventional levels becomes so stringent that individual
departures from the hypothesis have little chance of being detected. For this reason,
we shall consider an alternative to the FWER that controls false rejections less
severely and consequently provides better power.

Specifically, we shall consider the-FWER, the probability of rejecting at
leastk true null hypotheses. Such an error rate witk 1 is appropriate when
one is willing to tolerate one or more false rejections, provided the number of false
rejections is controlled.

More formally, suppose dat¥ is available from some modé € Q2. A general
hypothesisH can be viewed as a subsetof Q. For testingH;: P € w;, i =
1,...,s, let I(P) denote the set of true null hypotheses whenis the true
probability distribution; that is;, € 7 (P) if and only if P € w;. Then, thet-FWER,
which depends o, is defined to be

(2) k-FWER= P{reject at least hypotheses7; withi € 1 (P)}.
Control of thek-FWER requires that-FWER < « for all P, that is,
(3)  P{reject at least hypotheses7; withi € I (P)} <« for all P.

Evidently, the casé = 1 reduces to control of the usual FWER.

We will also consider control of thialse discovery proportion (FDP), defined
as the total number of false rejections divided by the total number of rejections
(and equal to 0 if there are no rejections). Given a user specified yadu@, 1),
the measure of error control we wish to controlA$FDP > y} and we derive
methods where this is bounded by

Recently, there has been a flurry of activity in finding methods that control error
rates that are less stringent than the FWER, which is no doubt inspired by the
FDR controlling method of Benjamini and Hochberg [1] and applications such as
genomic studies whereis so large that control of the FWER is too stringent. For
example, Genovese and Wasserman [3] study asymptotic procedures that control
the FDP (and the FDR) in the framework of a random effects mixture model. These
ideas are extended in [9], where in the context of random fields the number of
null hypotheses is uncountable. Korn, Troendle, McShane and Simon [8] provide
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methods that control both thHeFWER and FDP; they provide some justification
for their methods, but they are limited to a multivariate permutation model.
Alternative methods of control of tHeFWER and FDP are given in van der Laan,
Dudoit and Pollard [13]; they include both finite sample and asymptotic results.
Surprisingly, the methods presented here are distinct from the above techniques.
Our methods are not asymptotic and hold under either mild or no assumptions, as
long asp-values are available for testing each individual hypothesis.

Before describing methods that provide control of thREWER and FDP, we
first recall the notion of ap-value, since multiple testing methods are often
described by the-values of the individual tests. Consider a single null hypothesis
H:P € w. Assume a family of tests aff, indexed byw, with level o rejection
regionss, satisfying

4) P{X €Sy} <« forallO<a <1, P cw,
and
(5) Se C Sy whenevew < o'

Then thep-value is defined by
(6) p=pX)=infla: X € S,}.
The important property of a-value that will be used later is the following.

LEMMA 1.1. Assume p isdefined as above.
@) If P € w,then

(7) P{p<u}<u.
(i) Furthermore,
(8) P{p <u}> P{X € S,}.

Therefore, if the S, are such that equality holds in (4), then p is uniformly
distributed on (0, 1) when P € w.

PROOF AssumeP € w. To prove (i), note that the everip < u} implies
{X € S,..} forany smalle > 0. Therefore,

P{p<u}<P{XeSuc}<u-+te

by assumption (4). Now let — 0. To prove (ii), the even{X e S,} implies
{p <u}, and so (8) follows. O

Two classic procedures that control the FWER are the Bonferroni procedure
and the Holm procedure. The Bonferroni procedure rejBgit$ its corresponding
p-value satisfiep; < «/s. Assumingp; satisfies

9) P{pi<u}<u foranyu € (0, 1) and anyP € w;,
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the Bonferroni procedure provides strong control of the FWER. Unfortunately,
the ability of the Bonferroni procedure to detect cases in wikighs false will
typically be very low sincef; is tested at levek /s which—particularly ifs is
large—is orders smaller than the conventiomadvels.

For this reason procedures are prized for which the levels of the individual tests
are increased over/s without an increase in the FWER. It turns out that such a
procedure due to Holm [5] is available under the present minimal assumptions.

The Holm procedure can conveniently be stated in terms of pthalues
p1, ..., ps Of the s individual tests. Let the ordereg-values be denoted by
Py <--- < p(s), and the associated hypothesedy, ..., H(). Then the Holm
procedure is defined stepwise as follows:

Sep 0. Letk=0.

Sepl. If pe+y1 > a/(s —k), go to step 2. Otherwise sket=k + 1 and repeat
step 1.

Sep 2. RejectH; for j <k and accepH,; for j > k.

The Bonferroni method is an example ofiagle-step procedure, meaning any
null hypothesis is rejected if its correspondipgyalue is less than or equal to a
common cutoff value (which in the Bonferroni caseris). The Holm procedure
is a special case of a classstdpdown procedures, which we now briefly describe.
Let

(10) a1 <ap<--- <y
be constants. Ip(1) > a1, reject no null hypotheses. Otherwise, if

(11) P <ai1, ..., pe) <ar,

reject hypothese#l(y), ..., H, where the largest satisfying (11) is used. That
is, a stepdown procedure starts with the most signifigamalue and continues
rejecting hypotheses as long as their corresponginglues are small. The Holm
procedure uses; = «/(s —i + 1).

2. Control of the k-FWER. The usual Bonferroni procedure compares each
p-value p; with «/s. Control of thek-FWER allows one to increase/s to ka/s,
and thereby greatly increase the ability to detect false hypotheses. That such a
simple modification results in control of theFWER is seen in the following
result.

THEOREM?2.1. Fortesting H;: P ew;,i=1,...,s,suppose p; satisfies (9).
Consider the procedure that rejects any H; for which p; < ka/s.
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(i) Thisprocedure controlsthe k-FWER, so that (3) holds. Equivalently, if each
of the hypotheses is tested at level k«/s, then the k-FWER is controlled.

(ii) For this procedure, the inequality (3) is sharp in the sense that there exists
ajoint distribution for (p1, ..., p,) for which equality is attained in (3).

ProoFr (i) Fix any P and supposed; with i e I = I(P) are true and the
remainder false, with/| denoting the cardinality of. Let N be the nhumber of
false rejections. Then, by Markov’s inequality,

E(N E[Y; I{p; <k P{p; <k
PINzK =T = L2iercr) k{” WAL o w
iel(P)
k
= 2 a/s=|1(P)Ig§a.
. k s
iel(P)

To prove (ii), consider the following construction. Pigkindices at random
without replacement frorfi, .. ., s}. Call themJ. Giveni € J, let p; = U1, where
Uy is uniform on(0, k/s), that is, U1 ~ U(0, k/s). Giveni ¢ J, let p; = U, where
U, is independent of/; andU, ~ U (k/s, 1). Then, unconditionally,

pi ~ EU(O, 5) + <1— E)U@ 1> ~U(0,1).
S A S

s
Indeed, ifu <k/s,

P{ﬁifu}zp{ief}-P{Ulsu}zf-;‘%zu
andifu>k/s,
- . : k k\ u—k/s
P{PiEM}ZP{lE]}-1+P{l¢J}~P{U2§u}=;+<l—;)-1_k/S:u

Now exactlyk of the p; are less than or equal #g's by construction. The prob-
ability that these are all less than or equadtg's is

{ ak} ak/s
PiUi1<—} = =a.
S k/s

g

As is the case for the Bonferroni method, the above single-stage procedure can
be strengthened by a Holm type of improvement. Consider the stepdown procedure
described in (11), where now we specifically consider
ka

N
ka
s+k—i’
Of course, thex; depend ons and k, but we suppress this dependence in the

notation.

9 l. S k’
(12) o =

i>k.
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THEOREM?2.2. Fortesting H;: P cw;,i =1,...,s, suppose p; satisfies (9).
The stepdown procedure described in (11) with «; given by (12) controls the
k-FWER, that is, (3) holds.

PROOF Fix any P and let/(P) be the indices of the true null hypotheses.
Assume|I (P)| > k or there is nothing to prove. Order tipevalues corresponding
to the |7 (P)| true null hypotheses; call them

day < <4y
Let j be the smallest (random) index satisfyifg) = g, SO
(13) k<j=<s—|I(P)+k

because the largest possible indgxoccurs when all the smallest-values
correspond to the — |1 (P)| false null hypotheses and the nextP)| p-values
correspond to the true null hypotheses./Bg = ). Then our generalized Holm
procedure commits at leakstfalse rejections if and only if
Py <ai, P <az, e P <aj,
which certainly implies that
A Ao ka
4y = P(j) =4 Stk—J
But by (13),
ka ka
g .
s+k—j 7 [1(P)
So the probability of at leagtfalse rejections is bounded above by
P{ ~ ka }
qk) = .
=11

By Theorem 2.1(i) the chance that thth largest amond (P) p-values is less
than or equal téo/|1(P)| is less than or equal to. [

REMARK 2.1. Evidently, one can always reject the hypotheses corresponding
to the smallestt — 1 p-values without violating control of th&-FWER.
However, it seems counterintuitive to consider a stepdown procedure whose
corresponding; are not monotone nondecreasing. In addition, automatic rejection
of k —1 hypotheses, regardless of the data, appears at the very least a little
too optimistic. To ensure monotonicity, our stepdown procedure aseska/s.

Even if we were to adopt the more optimistic strategy of always rejecting the
hypotheses corresponding to the first 1 hypotheses, we could still only reject

or more hypotheses px) < ka/s, which is also true for the specific procedure of
Theorem 2.2.
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REMARK 2.2. If the p-values have discrete distributions, it is possible that
there may be ties among them. However, the proof remains valid regardless of
how tied p-values are ordered because monotonicity of ¢dhesnsures that all
hypotheses with a common tigdvalue will be rejected if any of them are rejected.

The question naturally arises whether it is possible to improve the procedure
further by increasing the critical values, a2, ... without violating control of the
k-FWER (3). By the previous remark we can always incragsto 1 fori < k.

A more interesting question is whether we can increader i > k. We will show
that this is not possible by exhibiting for ea¢h» k a joint distribution of the
p-values for which

(14) P{pa) <1, p <@2,..., pi-1) < i1, pay < i} =

Moreover, changingy; to 8; > «; results in the right-hand side being greater
than «. Thus, withi > k, one cannot increasg without violating thek-FWER.
Then, having pickedsq, ..., ax, ..., a;—1, the largest possible choice fay is as
stated in the algorithm.

THEOREM2.3. (i)Lettheq; begivenin(12).For anyi > k thereexistsajoint
distribution for p1, ..., ps such that s + k — i of the p; are uniformly distributed
on (0, 1) and (14) holds.

(i) For testing H;:P € w;, i = 1,...,s, suppose p; satisfies (9). For the
stepdown procedure (11) with «; given in (12), one cannot increase even one of
the constants «; (for i > k) without violating the k-FWER.

Before proving the theorem, we make use of the following lemma.
LEMMA 2.1. Fixk,u and constants0 < 81 < B2 <--- < Br < u. Assume for
every j =2,...,k,

J(Bj—Bj-1) <1
Bj -

Then there exists a joint distribution for (q1,...,qx) satisfying the g; are
marginally uniformon (O, u) such that the ordered values g1y < - - - < g« satisfy

(16) Plgay < B1,---» 4 < B} = Bi/u.

(15)

PrROOF The proof is by induction ot. The result clearly holds fok = 1.
With probability Bx /u we will construct(qs, ..., gx) equal to(qs, . .., gx), where
gi ~U(O, ) fori =1,...,k and such that their ordered valugs) < --- < g
satisfy

(17) P{gay <B1,.--.qu < B} =1
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But, with probability 1— B /u, construct thej; to be conditionally distributed as

U (Bk, u). Then unconditionally thg; satisfy (16) and are marginally distributed

asU (0, u). So it suffices to construct thg satisfyingg; ~ U (0, ) and (17).
LetBo=0and fori =1,...,klet E; = {(Bi—1, Bi]1} andp; = B; — Bi—1. First

constructYy, ..., Y;_1, each taking values i0, B;_1] such that their ordered
valuesY () <--- < Y—1) satisfy
(18) P{Y1) <B1....,Yk-1) < Br-1} =1

andY; is uniform on(0, B¢—1]. This is possible by the inductive hypothesis, since
we can assume the result holds for 1 as long a1, ..., B andu satisfy the
stated conditions; in particular, we apply the result wita 8;_1. Next, letY; be
uniform on E; with probability6p; fori =1, ...,k —1 and let it be uniform ork},
with probability 1— 68,1, wheref satisfies

1 k(Br — Bi—
(19) o [1 k(B — B 1)]'
Br-1 B
Finally, letgs, ..., g« be a random permutation &, ..., Y. Because of (18) and
the fact thatr; < B, the ordered values @f, . .., Y; and hence the ordered values

of g1, ..., gx satisfy (17). Furthermore, it is easy to check thatalls in E; with
probability p; and sog; is U(0, Bi). Indeed, ifj < k, the probability thag; falls
in E;, conditional ong; not being equal td’, is p; /Br—1 and isép; in the latter
case, which unconditionally is

k=1 p 1,
k ,Bk_l kpl_pl’

and similarly for the probability thaj; falls in E;. The only detail that remains
is to note that this construction withdefined in (19) is possible only &p; and
1— 08— are all values in0, 1). But

k(Bx — Br—
1— 0B 1= (Bk — Br 1)’
Bk
which is certainly> 0 sinceg; > Br—1. Itis also< 1 by the assumption (15). Also,
0p; = pi [1_ k(Br — ﬂkl)]
Br-1 Bk

But the first factorp; /8r_1 is in (0, 1) as is the latter by the above, and so the
productisin(0,1). O

PROOF OF THEOREM 2.3. The caseé = k follows from the construction
in the proof of Theorem 2.1. Let the first— k of the p; be identically equal
to 0. (Actually, rather than point mass at 0, any distribution supportefd,ar )
will do.) For the remainings’ = s + k — i p-valuesp;, j =i —k+1,...,s,
randomly choosé indices fromi — k + 1, ...,s. Thek that are chosen will be
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marginallyU (0, k/s") and have a joint distribution which will be specified below;
the remaining — i can be taken to be distributed &k /s’, 1).

Let g1, ..., gr denote thek observations that are marginally(0, k/s”). We
need to specify the joint distribution @fy, ..., g so that their ordered values
day <--- < qu satisfy
(20) P{ga) < di—k+1,4@) < k42, - 4o < i} =«

(becausg ;) = p(j+i—k for j =1,..., k). So the problem reduces to constructing
a joint distribution for(gs, . . ., gx) satisfying (20) subject to the constraint tigat

is marginally distributed a& (0, k/s"). To do this, apply Lemma 2.1 with= k /s’
andp; = o;_r+;. We need to verify the conditions of the lemma, which reduces
to showing

J@i—ftj — gt j—1) -

Qi—k+j N
for i > k (ands andk fixed). But, ifi — k 4+ j — 1 <k, then the left-hand side
of (21) is 0; otherwise it is easily seen to simplify to

j o

s+2%k—i—j  s+k—j
where the first inequality holds because- £k and the second becauge< k.
But k/s < 1 and so the conditions of the lemma are satisfied. Therefore, we can
conclude that the left-hand side of (20) is given by
Br
—_— = =
u kj/s’

(21) 1

(22) <k/s,

and (i) is proved.

To prove (i), the construction used in (i) can be used even i replaced by
a; > «;, as long as such a switch still allows one to appeal to the lemma. However,
the same argument works as long@sloes not get bigger that k - «;, so that the
argument leading to (22) being less than or equal to 1 still applies. For sugh an
the argument for (i) then shows that, if the left-hand side of (14)dhagplaced
by ca; for some 1< ¢ < s/k, then the right-hand side of (14) will b&x > «,
which would violate control of thé-FWER. O

3. Control of the false discovery proportion. The numberk of false
rejections that one is willing to tolerate will often increase with the number
of hypotheses rejected. So it might be of interest to control not the number of
false rejections (sometimes called false discoveries) but the proportion of false
discoveries. Specifically, let tHealse discovery proportion (FDP) be defined by

Number of false rejections

—, if the denominator
(23) FDP= Total number of rejections

is greater than 0,

0, if there are no rejections.
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Thus FDP is the proportion of rejected hypotheses that are rejected erroneously.
When none of the hypotheses is rejected, both numerator and denominator of that
proportion are 0; since in particular there are no false rejections, the FDP is then
defined to be 0.

Benjamini and Hochberg [1] proposed to replace control of the FWER by
control of thefalse discovery rate (FDR), defined as

(24) FDR= E(FDP).

The FDR has gained wide acceptance in both theory and practice, largely because
Benjamini and Hochberg proposed a simple stepup procedure to control the FDR.
Unlike control of thek-FWER, however, their procedure is not valid without
assumptions on the dependence structure ofpitvalues. Their original paper
assumed the very strong assumption of independengevafiues, but this has

been weakened to include certain types of dependence; see [2]. In any case, control
of the FDR does not prohibit the FDP from varying, even if its average value is
bounded. Instead, we consider an alternative measure of control that guarantees the
FDP is bounded, at least with prescribed probability. That is, for a givandu

in (0, 1), we require

(25) P{FDP >y} <a.

To develop a stepdown procedure satisfying (25),Hetlenote the number of
false rejections. At stefy having rejected — 1 hypotheses, we want to guarantee
F/i <y, thatis, F < |yi], where|x] is the greatest integer less than or equal
tox. So, ifk = |yi| + 1, thenF > k should have probability no greater than

that is, we must control the number of false rejections to be less than or equal
to k. Therefore, we use the stepdown constanwith this choice of (which now
depends on); that is,

_ (yil+Da

s+ lyi]+1—i

We give two results that show the stepdown procedure with this choice
of «; satisfies (25). Unfortunately, like FDR control, some assumptions on the
dependence op-values are required, at least by our method of proof. Later, we
will modify the method so we can dispense with the dependence assumptions. As
before,p1, ..., ps denotes the-values of the individual tests. Also, Igi, . . ., ¢
denote thep-values corresponding to thé| = |7 (P)| true null hypotheses. So
gi = pj;,» Wwherejy, ..., jj;; correspond to the indices of the true null hypotheses.
Also, let7q, ..., 75— denote thep-values of the false null hypotheses. Consider
the following condition: forany =1, ..., ||,

(27) P{gi <ulfy,....Fs 1)} <u;

(26) o

that is, conditional on the observedvalues of the false null hypotheseg;avalue
corresponding to a true null hypothesis is (conditionally) dominated by the
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uniform distribution, as it is unconditionally in the sense of (7). No assumption

is made regarding the unconditional (or conditional) dependence structure of
the true p-values, nor is there made any explicit assumption regarding the joint
structure of thep-values corresponding to false hypotheses, other than the basic
assumption (27). So, for example, if thevalues corresponding to true null
hypotheses are independent of the false ones, but have arbitrary joint dependence
within the group of true null hypotheses, the above assumption holds.

THEOREM3.1. Assume condition (27). Then the stepdown procedure with «;
given by (26) controls the FDP in the sense of (25).

PrROOF Assume the number of true null hypothesed is?)| > O (or there is
nothing to prove) and the number of false null hypotheses4ss — |1 (P)|. The
argument is conditional on thg; }. Let

Fay<fe < <7

denote the ordered values of tligand similarly for theg;. Let «p = 0 and
defineR; to be the number of; in the interval(«; 1, «;]. (Actually, assumery
includes the value 0 as well.) Given the valuesof .., 7, it may be impossible
to haveFDP > y, that is,

P{FDP > ]/|f1,...,ff}=0.

Otherwise, letj = j (1, ...,7y) be defined as

m
(28) J =min m:m—ZR,->my .

i=1
To interpret this, given the-values of the false hypotheses,is the smallest
critical index (depending only on th&) where it is possible to haveDP > y,
except whenever there are sevepabalues within an intervalo;_1, ;) we
consider the index of the largest one. The point of the construction is that if the
stepdown procedure stops at an index< j, thenm — >_; R;/m < y and so
FDP < y. On the other hand, if the eveRDP > y occurs, then there must be
a rejection of a true null hypothesis at stgp

For example, ifs = 100, f =5 andy = 0.1, then if all five of the?; are less

thanay, then we defing = 6 even though the smallest trgevalue could be the
smallest among the 100. So the FDP could be greater tHaaft@r the first step
of the algorithm ifg1) < 71y, but even if this is the case, we then know we will
reject at least six total hypotheses. So the important point here is that, given such
a configuration of7;}, in order for FDP to be greater tharllQit must be the case
that we reject a true null hypothesis at step 6.
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Note that, withj so definedR; = 0. For if Z{Zl Ri=j—kwithk/j >y and
R; >0, then
j—1
> Ri=j—k—Rj<j—1—k
i=1
andk/(j — 1) > y, so thatm = j — 1 satisfies the criterion. Furthermore, we also
have}>/_; R; = j — k (so not< j — k), wherek/j > y, because ify_/_; R; <
j—k=<j—1—ksay thenk/(j — 1) >y if k/j >y and soj can again be
reduced toj — 1.
In addition, at the indeX¥ it must be the case that
J
k=k()=j—) Ri=1+1yjl.
i=1
Butk > yj impliesk > |yj] + 1. Butifk > |yj] +1,thenk—1> |yj] +1and
so
k=1 lyjl+1
- = — >y,
j—-17 j-1
the last equality trivially following from & |yj] > vj > y(j — 1).
We can now complete the argument. At the indgxwe must havek =
Jj— Z‘i’:l R; =1+ |yj] of theg; being < «;. But from Theorem 2.1 (applied
conditional on the),

P{at leastc(j) of theg; < aj|r,...,7r)}
_ e
k()
_ 171(Lyj] + De _ o
k(NG +Lyil+1=j) s+lvjl+1-j

But|7|<s— Z-{Zl R; =s — j + k, so the above probability is less than or equal
to

s—j+k
s+lyjl+1—j

o =d.

Therefore,
P{FDP > y|y,...,7f} < «,
which of course implie®{FDP > y} <«. [
Next, we prove the same stepdown procedure controls the FDP in the sense

of (25) under an alternative assumption. Here, the assumption only involves the
dependence of the-values corresponding to true null hypotheses.
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THEOREM 3.2. Consider testing s null hypotheses, with |I| of them true.
Let g1y < --- < qqu denote their corresponding ordered p-values. Set M =
min(lys] + 1, |1]).

(i) For the stepdown procedure with «; given by (26),
M

(29) P{FDP>y}§P{U{é(i)§|lI—“|”.
i=1
(i) Therefore, if thejoint distribution of the p-values of the true null hypotheses
satisfies Smes ineguality, that is,

2

N o ~ ~
P{{qm < m}U{CI(a = m}U"‘U{Q(II) S“}} =«

then P{FDP > y} < a.

PROOF Let j be the smallest (random) index where the FDP exceefis
the first time at steg; that is, the number of false rejections corresponding to the
first j — 1 rejections divided by exceeds for the firsttime atj. If j is such that
yJj < 1,thenFDP > y at step; implies p(;) < «;. But this implies
o o
- 7. S _7
s+1—j 7|1

because the number of true null hypothegBsnecessarily satisfied| < s —
(j — 1) for such aj.

Similarly, if j is such that 1< yj < 2, then we must havg;, < «; and
p(j) < aj for somei < j, wherei, j correspond to true null hypotheses. But for
such aj, a; =2a/(s + 2 — j), and so we must havgo) < 2a/(s — j + 2). But,
by definition of j, we must havel| <s — (j — 2) and sog(2) < 2a/|I].

Continuing in this way, ifn — 1 < yj < m, the evenEDP > y at stepj implies
dm) <ma/|I|. The largest value of is of courses and so the largest possibie
is |ys| + 1. Also, we cannot have: > |I|. So, withM as in the statement of the
theorem,

day <a;

M
~ mo .
P{FDP >y} < ZP{q(m)_T,m—lSVJ <m}

1 1]

M M

. i
= ZP{U{%)— |I|}’m_l<” <m}

m=1 i=1

Part (ii) follows trivially. [
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In fact, there are many joint distributions of positively dependent variables for
which Simes inequality is known to hold. In particular, Sarkar and Chang [11]
and Sarkar [10] have shown that the Simes inequality holds for the family
of distributions which is characterized by the multivariate positive of order 2
condition, as well as some other important distributions.

Theorem 3.2 points toward a method that controls the FDP without any
dependence assumptions. One simply needs to bound the right-hand side of (29).
In fact, Hommel [6] has shown that

1] ia |1 1
P{U{‘}(i) < —” <a) <.
i=1 ] i=1'

This suggests we replaaebya(zl'ﬂl(l/i))—l. But of coursdI] is unknown. So

one possibility is to bound| by s, which then results in replacing by «/Cj,
where

J
(30) Cj=>_(1/0.

i=1
As is well known,Cs ~ log(s + 0.5) + ¢g, with ¢g &~ 0.5772156649 known as
Euler's constant. Clearly, changingin this way is much too conservative and
results in a much less powerful method. However, notice in (29) that we really
only need to bound the union ov8f < |ys + 1] events. Therefore, we need to
slightly generalize the inequality by Hommel [6], which is done in the following
lemma.

LEMMA 3.1. Suppose pi, ..., pr are p-valuesinthesensethat P{p; <u} <u
for all i and u in (0,1). Let their ordered values be p1y < --- < pg). Let
0=Bo<B1<P2<-<Pn<Llfor somem <t.

() Then
B1)  P{{pawy =P} U{b@ =B} U--U{pum) < Bull <t (B — Bi-1)/i.
i=1
(ii) Aslong asthe right-hand side of (31)islessthan or equal to 1, the bound
issharp in the sense that there exists ajoint distribution for the p-values for which
the inequality is an equality.
PROOF Let J be the smallest (random) indgxamong 1< j < m for which

ﬁ(j) <Bj; defineJ to ber + 1 if ﬁ(j) > B forall1<j <m.Let6y = P{J =k}.
Then the left-hand side of (31) is equal to

P{U{J=k}}=20k,
k=1 k=1
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since the event§/ = k} are disjoint. We wish to bouny’; 6;. For any 1< j <m,

J
Y=k =J1{J <j} <5,
k=1

wheres; is the number op-values< g;. Taking expectations yields

J
(32) > kbx <1B;, j=1...,m.
k=1

Forj=1,...,m— 1, multiply both sides of (32) by/L;j(j + 1)], and forj =m
multiply both S|des by Am; then sum ovey to yield

I Zk9+ Zke B L
jG+p =t CS GG T m

Jj=1 Jj=1

By changing the order of summation, the left-hand side of (33) becomes

m—1

Zk9k<———) Zkek_Zek

The right-hand side of (33) is easily seen to be the rlght-hand side of (31) and (i)
follows.

To prove (ii), we construcps, ..., p; as follows. LetU; be uniform in/; and
let U,,+1 be uniform in(8,,,1). Let p be equal to the right-hand side of (31),
assumed less than or equal to 1. ket..., 7, be probabilities summing to 1,
with r; o< (8; — Bi—1)/i. Then, with probabilityr; p, randomly picki indices and
let thosep-values be equal tt;, and the remaining— i p-values equal t@/,;+1.
With the remaining probability - p, let all p-values be equal to/,, 1. With this
construction it is easily checked that is uniform on(0, 1) and the left-hand side
of (31) is equal to the right-hand side of (31).]

Theorem 3.2 and Lemma 3.1 now lead to the following result.

THEOREM3.3. Fortesting H;: P cw;,i =1,...,s, suppose p; satisfies (9).
Consider the stepdown procedure with constants o] = o/ C(|ys)+1), Where o; is
given by (26) and C; is defined by (30). Then P{FDP > y} < a.

Proor By Theorem 3.2(i),P{FDP > y} is bounded by the right-hand side
of (29) with « replaced bya/C|,s)+1, Which is further bounded by the same
expression withM replaced by|ys] + 1. Then apply Lemma 3.1 with= ||
andg; =ia/(Cysj+1ll). O

It is of interest to compare control of the FDP with control of the FDR. Some
obvious connections between methods that control the FDP in the sense of (25)
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and methods that control its expected value, the FDR, can be made. Indeed, for
any random variabl& on [0, 1], we have

EX)=EXIX<y)P{X<y}+EX|X>y)P{X >y}
<yP{X=y}+P{X>vr}

which leads to
(34) wEP{X>V}§@,

1-v Y
with the last inequality just Markov’s inequality. Applying this = FDP, we
see that, if a method controls the FDR at leyethen it controls the FDP in the
senseP{FDP > y} < ¢/y. Obviously, this is very crude becausejifandy are
both small, the ratio can be quite large. The first inequality in (34) says that if
the FDP is controlled in the sense of (25), then the FDR is controlled at level
a(1—y)+y, which is greater than or equal &obut typically only slightly. These
crude arguments suggest that control of the FDP is perhaps more stringent than
control of the FDR.

The comparison of actual methods, however, is complicated by the fact that the
FDR controlling procedure of Benjamini and Hochberg [1] is a stepup procedure,
but we have only considered stepdown procedures. It is interesting to note that,
in order to make our procedure work without any dependence assumptions, we
needed to change to o/C|,s +1. Benjamini and Yekutieli [2] show that the
Benjamini-Hochberg procedure that controls the FDR at Igveln also work
without dependence assumptions, if you replats ¢/ C,. Clearly, this is a more
drastic change sinc€; is typically much larger thad' |, ;)+1. Such connections
need to be explored more fully.

4. Conclusions. We have seen that a very simple stepdown procedure is
available to control thek-FWER under absolutely no assumptions on the
dependence structure of the-values. Furthermore, control of theeFWER
provides a measure of control for tlaetual number of false rejections, while
the number of false rejections in the case of the FDR can vary widely. We have
also considered two stepdown methods that control the FDP in the sense of (25).
The first method provides control under very reasonable types of dependence
assumptions, while the second holds in general.
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Editor for many helpful suggestions that greatly improved the clarity of the paper.
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After the revision and acceptance of this paper, we became aware of the work
by Hommel and Hoffman [7] which has much overlap with the results in Section 2,
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and wed like to thank Helmut Finner for pointing out this oversight. In particular,
Hommel and Hoffman [7] provide Theorem 2.1(i) with proof, Theorem 2.2 (stated
but no proof) and a weaker version of Theorem 2.3(ii) (stated but no proof). They
attribute the idea of controlling the number of false hypotheses to Victor [14], who
also suggested control of the FDP. However, Hommel and Hoffman did not further
discuss control of the FDP as they “could not find suitable procedures satisfying
this criterion.” As far as we know, the three theorems in Section 3 which address
control of the FDP are new.
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