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FROM FINITE SAMPLE TO ASYMPTOTICS. A GEOMETRIC
BRIDGE FOR SELECTION CRITERIA IN SPLINE REGRESSION!

By S. C. Kou
Harvard University

This paper studies, under the settirigspline regression, the connection
between finite-sample properties of selection criteria and their asymptotic
counterparts, focusing on bridging the gap between the two. We introduce a
bias-variance decomposition of the prediction error, using which it is shown
that in the asymptotics the bias term dominates the variability term, providing
an explanation of the gap. A geonietexposition is provided for intuitive
understanding. The theoretical and getnoeesults are illustrated through a
numerical example.

1. Introduction. A central problem in statistics is regression: One observes
{(xi,y1),i=1,2,...,n} and wants to estimate the regression function oh x.
Through the efforts of many authors, the past two decades have witnessed the
establishment of nonparametric regression as a powerful tool for data analysis;
references include, for example, Hardle (1990), Hastie and Tibshirani (1990),
Wahba (1990), Silverman (1985), Rosenblatt (1991), Green and Silverman (1994),
Eubank (1988), Simonoff (1996), Fan and Gijbels (1996), Bowman and Azzalini
(1997) and Fan (2000).

The practical application of nonparametric regression typically requires the
specification of a smoothing parameter which crucially determines how locally the
smoothing is done. This article, under the setting of smoothing splines, concerns
the data-driven choice of smoothing parameter (as opposed to a subjective
selection); in particular, this article focuses on the connection betviege-
sample properties of selection criteria and thasymptotic counterparts.

The large-sample (asymptotic) perspective has been impressively addressed
in the literature. Some references, among others, include Wahba (1985), Li
(1986, 1987), Stein (1990), Hall and Johnstone (1992), Jones, Marron and
Sheather (1996), Hurvich, Simonoff and Tsai (1998) and Speckman and Sun (2001).

Complementary to the large-sample (asymptotic) developments, Efron (2001)
and Kou and Efron (2002), using a geometric interpretation of selection criteria,
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study thefinite-sample properties. For example, they explain (a) why the popular
C, criterion has the tendency to be highly variable [even for data sets generated
from the same underlying curve, th€,-estimated curve varies a lot from
oversmoothed ones to very wiggly ones; see Kohn, Ansley and Tharm (1991)
and Hurvich, Simonoff and Tsai (1998) for examples], and (b) why another
selection criterion, generalized maximum likelihood [Wecker and Ansley (1983),
Wahba (1985) and Stein (1990)], appears to be stable and yet sometimes tends
to undersmooth the curve. Roughly speaking, it was shown that the root of
the variable behavior ofC, is its geometric instability, while the stable but
undersmoothing behavior of generalized maximum likelihood (GML) stems from
its potentially large bias. In addition, they also introduce a new selection criterion,
the extended exponential (EE) criterion, which combines the strength, @ind

GML while mitigating their weaknesses.

With the asymptotic and finite-sample properties delineated, it seems that we
have a “complete” picture of selection criteria. However, a careful inspection of the
finite-sample and asymptotic results, especially the ones comp@giagd GML,
reveals an interesting gap. On the finite-sample siggs geometric instability
undermines its competitiveness [Kohn, Ansley and Tharm (1991) and Hurvich,
Simonoff and Tsai (1998)], which opens the door for the more stable GML, while
on the large-sample (asymptotic) side different authors [e.g., Wahba (1985) and
Li (1986, 1987)] have suggested that from the frequentist standpoirdt tkigpe
criterion asymptotically performs more efficiently than GML. This “gap” between
finite-sample and asymptotic results naturally makes one puzzle: (a) Why doesn’t
the finite-sample advantage of GML, notably its stability, benefit it as far as large-
sample (asymptotics) is concerned? (b) Why does the geometric instabidity of
seen in finite-sample disappear in the asymptotic considerations?

This article attempts to address these puzzles. First, by decomposing the
estimation error into a bias part and a variability part, we show that as sample
size grows large the bias term dominates the variability term, thus making the
large-sample case virtually a bias problem. Consequently in the large-sample
comparisons, one is essentially comparing the bias of different selection criteria
and unintentionally owdooking the variability—a situan particularly favoring
the C,-type criterion as it is (asymptotically) unbiased. Second, by studying
the evolution of the geometry of selection criteria, we show that the geometric
instability of selection criteria gradlig decreases, though tteer slowly, which
again benefits the” ,-type criterion, because it says as far as asymptotics is
concerned, the instability af , evident in finite-sample studies will not show up.
The recent interesting work of Speckman and Sun (2001) appears to confirm our
results regarding asymptotics (see Section 2); they showed that GML aagree
on the relative convergence rate of the selected smoothing parameter.

The connection between finite-sample and asymptotic results is illustrated by
a numerical example (Section 4). The numerical example also indicates that for
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sample sizes one usually encounters in practice the EE criterion appears to behave
more stably than both GML and,.

The article is organized as follows. Section 2 introduces a bias-variance
decomposition of the total prediction error, and investigates its finite- and large-
sample consequences. Section 3 provides a geometric explanation to bridge
the finite-sample and asymptotic results regarding selection criteria. Section 4
illustrates the connection through a simidatexperiment. Tharticle concludes
in Section 5 with further remarks. The detailed theoretical proofs are deferred to
the Appendix.

2. A bias-variance decomposition for prediction error.

2.1. Selection criteria in spline regression. The goal of regression is to
estimatef(x) = E(y|x) from n observed data pointgx;, y;),i = 1,2, ...,n}.
A linear smoother estimatés= ( f (x1), f(x2), ... f(x)) byfx =A,Yy, where the
entries of thex x n smoothing matribd; depend orx = (x1, x2, ..., x,,) and also
on a nonnegativemoothing parameter 1. One class of linear smoothers that will
be of particular interest in this article is (cubic) smoothing splines, under which

(2.1) A =Ua)\U/,

whereU is ann x n orthogonal matrixnot depending ork., anda; = diag(ay;),

a diagonal matrix with théth diagonal elementy; = 1/(1+ 1k;),i =1,2, ..., n.
The constant& = (k1, k2, ..., k,), solely determined by, are nonnegative and
nondecreasing. The trace of the smoothing matriRty is referred to as the
“degrees of freedom,df, = tr(A,), which agrees with the standard definition
if A, represents polynomial regression.

To use splines in practice, one typically has to infer the value of the smoothing
parametei from the data. The”, criterion chooses to minimize an unbiased
estimate of the total squared error. Supposeilseare uncorrelated, with meagf
and constant varianee?. The C, estimate of is ACr = arg min {C, (y)}, where
the C,, statisticCi(y) = |ly — f,[1? + 202tr(A;) — no? is an unbiased estimate
of E||f, —f|2.

The generalized maximum likelihood (GML) criterion [Wecker and Ansley
(1983)] is another selection criterion motivated from empirical Bayes considera-
tions. If one starts frong ~ N (f, o21), and puts a Gaussian prior on the underlying
curve:f ~ N(0, o 2A; (1 — Ay)~ 1), then by Bayes theorem,

(2.2) y~N(0,02(0 — AN, fly ~ N(A,Y, 0°A)).

The second relationship shows tﬁat: A,y is :[he Bayes estimate df The
first relationship motivates the GML: It choosgSML as the MLE ofa from
y~N(©,0%(1 = A)™h.
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The setting of smoothing splines (2.1) allows a rotation of coordinates,
(2.3) z=U'y/o, g=Uf/o, & = U%, /o,

which leads to a diagonal forra:~ N (g, 1), §, = a,z. Letby; = 1—a;,; andb; =

(by1, byo, ..., byy). Inthe new coordinate system, tfig statistic can be expressed

as a function o#?, C(z%) = 02 Y1, (b?,2? — 2b;;) + no'?, and correspondingly
ACr =arg rr;inzg(bfl-ziz — 2by).

Under the coordinate system af and g, since z ~ N(0O, diag(b;l)), glz ~

N(ayz, &),

ACML — MLE of z~ N(0, diaglb; 1)) = arg rrklinX:(sz,-2 —logby;).
i>2
Because andg offer simpler expressions, we will work on them instead of
y andf whenever possible. The extended exponential (EE) selection criterion,
studied in Kou and Efron (2002), provides a third way to choose the smoothing
parameter. It is motivated by the idea of combining the strengtid§,aind GML
while mitigating their weaknesses, since in practice ¢heselected smoothing
parameter tends to be highly variable, whereas the GML criterion has a serious
problem with bias (see Section 4 for an illustration). Expressed in termstoé
EE criterion selects the smoothing parametaccording to

~EE , 4/3 1/3
A :argrrAunZ[Cszi/ — 36,171,

i>2
where the constar@ = %’(’7/@ = 1.203. Kou and Efron (2002) explained its

construction from a geometric point of view and illustrated through a finite-sample
nonasymptotic analysis that the EE criterion combines the strengttis aind
GML to a large extent.

An interesting fact about the three criteri@,, GML and EE) is that they share
a unified structure. Lep > 1, ¢ > 1 be two fixed constants. Define the function

Z[(cqbil/‘f)l’ui - ﬁ((cqbi{q)p_l - 1)}, if p>1,
2.4) PPw={1

1 1 .
> (cgby/ui —logby[?), it p=1,
i
_ JT . . o
wherec, = T2 and a corresponding selection criterion
(2.5) AP0 = arg rr;in{lip"f)(zz/q)}.

Then it is easy to verify that (i)\”"? — lil"’) asp — 1; (i) takingp =1, =1
gives the GML criterion;p = 2, ¢ = 1 gives theC, criterion; p =g = % gives
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the EE criterion. The class (2.5), therefore, unites the three criteria in a continuous
fashion. This much facilitates our theoretical development as it allows us to work
on the general selection criteriaf-4 and take(p, ¢) to specific values to obtain
corresponding results for EE,, and GML.

2.2. The unbiasedness of C,. To introduce the idea of bias-variance decom-
position, we first note that for each selection criteridf-4) there are an associ-

ated central smoothing parametéf"? and central degrees of freedafyi,”"?’
obtained by applying the expectation operator on the selection criterion (2.5):

2.7 dfP? =tr(A po)-

Since (2.6) is the estimating-equation version of (2.5), from the general theory of
estimating equations it can be seen th&t4) and cf}f(p’q) are centered around
AP D andd P9 in the sense that”? andd "7 are the asymptotic means
of AP0 anddf . Thusa”? anddf”*? index the central tendency of the
selection criterionip, q).

Next we introduce thédeal smoothing parameter 1o and theideal degrees of
freedomdfo =tr(A;,), which are intrinsically determined by the underlying curve
and do not depend on the specific selection criterion one uses:

(2.8) ko= argminEy|[f, — f||* = argminE g - gl|*.

The risk E||;, — g|l? associated with.o represents the minimum risk one has
to bear to estimate the underlying curve. Therefore, to compare the performance
of different selection criteria one can focus on théra risk: E|@; — gll® —
EllOy, — gll2. See Wahba (1985), Hardle, Hall and Marron (1988), Hall and
Johnstone (1992), Gu (1998) and Efron (2001) for more discussion.

Having introduced the necessary concepts, we state our first result, the
unbiasedness af,.

THEOREM 2.1. The central smoothing parameter AEZ’D and degrees of
freedom d fc(z’l) of C, correspond exactly to the ideal smoothing parameter and
degrees of freedom

22D =30, af®Y =dfo.

PrRoOOF First, from the definition (2.8) a straightforward expansion gives

(2.9) ho=argminy (b7 (g7 +1) = 2by).
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Next, for C,, according to (2.6) its central smoothing parameter

]

22D —arg rrginE{liz’l) (%)) =arg rrklinE{Z[bfiziz — ZbM]}

(2.10) _ 5
=arg rrAnnZ(bM (& +1) —2by).

The proof is complete because (2.9) and (2.10) give identical expressiohg for
andr®?. O

Since no other element from the selection criteria class (2.5) possesses this
property of unbiasedness, the result of Theorem 2.1 diyean advantage over
the others. As we shall see shortly, this advantage is the main factor that makes the
asymptotic consideration favorable fGy,.

2.3. The bias-variance decomposition. The results developed so far work for
all sample sizes. Next we turn our attention to the large-sample case. There is
a large amount of literature addressing the large-sample properties of selection
criteria. The well-cited asymptotic results [Wahba (1985) and Li (1986, 1987),
among others] suggest that as far as large-sample is concerned,itype
criterion outperforms GML. This interestingly seems at odds with the well-known
finite-sample results. For example, Kohn, Ansley and Tharm (1991) and Hurvich,
Simonoff and Tsai (1998), among others, illustrate that finite-sample-wis€ the
criterion has a strong tendency for high variability in the sense that even for data
sets generated from the same underlying curveGpesstimated curves vary a
great deal from oversmoothed ones to very wiggly ones, which contrasts with
the stably performing GML. To understand why there is this gap between finite-
and large-sample results, we will provide a bias-variance decomposition of the
prediction error, based on which it will be seen that the major reason is that the
large-sample consideration virtually only looks at the bias, as bias asymptotically
dominates variability.

The central smoothing parameter and central degrees of freedom defined
previously pave the way for the bias-variance decomposition. Consider the
prediction error for estimating the curvE||fi(p,q) — |12, which is equal to
o2E 1830 — 911 according to (2.3). We can write

El8;.) — 9l12

= E” (g)ﬁ(p,q) - gkgp»q)) + (g)\gﬂsq) - g) ”2

A 2 A A A A A 2
=E “g)\gp,q) - g” +2E (g)\gﬁm - g)/(gi(p,q) - g)\gﬁ,lZ)) +E ”%]p,q) - g)\gp,q) “ .
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Consequently, the extra risk beyond the unavoidable E§R;, — g|l? can be
written as

Ell§ 00 — 9% — E|8, — 9]
(2.11) = (E|g,00 - o’ - E|&, -9l

+ 2E(ng_p,q) - 9)/(@;@,(» - ngp,q>) + E||85.9) — @Agp,q) Hz

This expression provides a bias-variance decomposition for the prediction error.
The first termE (|, ) — 9l — E[|§:, — gll? can be viewed as the bias term—

it captures the error of estimating the curyebeyond the unavoidable risk by
using the central smoothing paramexéf”‘f), which measures the discrepancy
between the central risk associated witfi-) and the ideal minimum risk; the
third termE (|85 ) — gw |2 can be viewed as the variability term—it measures

" A

the variability ofgw o from its “center gw o, the second term, the covariance,

arises here due to the nature of adaptatlon (the smoothing parameter itself is also
inferred from the data, in addition to estimating the curve).

Clearly, for any practical finite-sample problem, each term in (2.11) contributes
to the squared prediction error. However, we shall show that as the sampie size
grows large the bias term gradually dominates the other two. To focus on the basic
idea, without loss of generality, we assume the design paiatso, ..., x,) aren
equally spaced points along the interf@l1]. Section 5 will discuss the setting of
general design points.

In what follows, to avoid cumbepme notation, we will writek for A(P-9),
df for df'P? . for 279 af. for df"?, and so on. The full notatioh”?,

AP0 g @ will be used whenever potential confusion might arise. Consider
the bias termE||§,, — 9l1° — E||8x, — 9l° first:

n
A 2 2
E|ty, —0|"=E|anz—9|" =) (b7 87 +al,)
i=1

= Ae Za)\clb)»(l(klgl +Za)\cl’

i=1

(2.12)

where the last equality uses the fagt = 1 Ak = Mk;a,;. To obtain the asymptotic
orders, we need to know how,, the central smoothing parameter, evolves
as the sample size gets large. According to definition (216)satisfies the
normal equationa‘rj—kli"’q)(E{zz/q})h:h_ = 0, which (through some algebra) can
be written as

2 -1
(2.13) Za)\cibfc/iq(ch{zi /1y 1) = Zakcibi’; N, C,bfc/ff.
i i i

The following lemma gives the order of the left-hand side of (2.13).
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LEMMA 2.2. Under mild regularity conditions, for p > ¢, 3, axc,-bfc/iq X
(e EZ21 — 1) = 0(r,).

The regularity conditions and the proof of Lemma 2.2 are given in the Appendix.
The proof uses one handy result of Demmler and Reinsch (1975), where by

studying the oscillation of # smoothing-splineigenvectors, it is effectively
shown that for any curve (x) satisfying O< fol F"(1)2dt < oo,

(2.14) 0< Zkig,-zf—zf f"®)%dt <oco  foralln>3.
= o< Jo
See also Speckman (1983, 1985) and Wahba (1985). For the right-hand side

of (2.13), the following theorem, taken from Kou (2003), is useful.

1

THEOREM2.3. Suppose 3 — oo and n3). — oo. Thenfor r > %1, s> —7,

| 1 1\ /n\Y4 n\Y4
iz“’“bﬁﬁ(“z”z)(ﬂ ro((3) )

=3
where the beta function B(x, y) =T'(x)I"(y)/ T (x + y).

Applying this result, the right-hand side of (2.13) is

(p=D)/ / n\M*
et - Soartf =0((3)")
i c

Matching it with the result of Lemma 2.2 gives
(2.15) APD =0om®  forall p>gq,

which furthermore implies (taking=1, s = 0 in Theorem 2.3)

1/4
19 ar=o((igy) )=o) wrpzg
c

Note that (2.15) and (2.16) cover GMC,, and EE, since all three satisfy> g.

With the help of Theorem 2.3 and (2.15), we can calculate the asymptotic order
of the bias termE ||, — gl|> — E [0, — 9ll%. By inequality (2.14), the first term

of (2.12)

n n
e Y aribiikigh] < re Y (kigh) = O(he) = 0(m*3);
i=1 i=1

and (from Theorem 2.3) the second term of (2.32) ;a2 ; = O((#)M* =
0 (n*/®). Adding them together yields

(2.17) E|§,p0 —9|* = 0m').
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Identical treatment of the ideal smoothing paramétegives
A 2
(2.18) E|g, — 9= 00"

Combining the results of (2.17) and (2.18), we observe that for a “general”
cmwbnﬂﬂwﬂmbmsmNMM%y@—gV—Jﬂ@O—mF:CMMﬁ)MBpMa
quotation mark on “general” because there is one exceptignin Theorem 2.1
we have shown that®" = o, which implies thatg 1§, e — glI> — E|l&, —

g|l%2 = 0. The following theorem summarizes the discovery and extends the result
to the variability and covariance terms in the decomposition.

THEOREM 2.4. Under mild regularity conditions provided in the Appendix,
for all p>g:
() thebiasterm
om'®), if(p,g)#(2,D),
0, if (p,q)=(2,1),
(i) the covarianceterm E(§, ¢.o) — 9)' (@000 — 9,00) = O(D),

(iif) the variability term E||8; .., — 9, 0 [I> = O(D).
Therefore, the extra risk '

Elgp0 -l - £, - ol - |

omY®),  if(p,q) #21),

El6:00 —gl?— E|§., — 2:{
18300 = 91" = ElGo —0l"=1 ) 1) )= 21,
The regularity conditions and the proof of Theorem 2.4 are given in the Appen-
dix. From Theorem 2.4 we observe that in general the bias term asymptotically
dominates the other two. It is the unbiasedness pthat gives it the asymptotic
advantage. In other words, when one compares the asymptotic prediction error for
different criteria, essentially the comparison is focused on the bias, and as long as
asymptotics is concerned the variability of the criteria does not matter much. The-
orem 2.4, therefore, provides an understanding of the gap between finite-sample
and asymptotic results regarding selection criteria. Since the asymptotic compar-
ison essentially focuses on the bias aiglis unbiased, it is not surprising that
the high variability ofC, evident in finite-sample studies does not show up in the
large-sample considerations. Furthermore, (2.18) and Theorem 2.4 say that for all
three selection criteria of interest, GML,, and EE, the averaged prediction er-
ror LE|1§; — 9|2 is of order0 (n=#/%), an order familiar to many nonparametric
problems. Speckman and Sun (2001) studied the asymptotic properties of selection
criteria; they showed that GML- and, - estimated smoothing parameters have the
same convergence rate, which, from a different angle, conveys a message similar
to Theorem 2.4.
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3. A geometric bridge between the finite-sample and asymptotic results.
In this section, to obtain an intuitive complement to the result of Section 2, we
provide a geometric explanation of why the finite-sample variability does not show
up in the asymptotics.

3.1. The geometry of selection criteria. The fact thati (") chooses\ as
the minimizer of /"% implies thati(»¢) must satisfy the normal equation
%li”’q)(zz/q)uzi(,,,q) =0, which (through simple algebra) can be written as

- (p.q) (2 (p.q)
(3.1) (@2 = wl ), S =0,
1
where the vectoj"? = (7 ‘”,n&’é Do b Dy ) - — L ai(cqgb byl4yP,

u? (u(p 2 Mi’; Do ;LM P-a)y andu(” ) — =1/(cyb /‘1) This normal equa-
tion representation suggests a simple geometric interpretation af2He crite-
rion. For a given observationy the smoothing parameter is chosen by projecting

z2/7 onto the line{x\”"?’ : ). > 0} orthogonally to the directio\"*’. Figure 1
diagrams the geometry two-dimensionally.

In Figure 1.£7? is the hyperplanet”? = {z: §""?) (221 — p{"?) = 0}.
Finding the specific hyperplan,é(p 9 that passes throught’? is equivalent to
solving (3.1). It is noteworthy from Figure 1 that different hyperplaag‘@‘”
are not parallel, but rather intersect each other, while points on the intersection
of two hyperplanes satisfy both normal equations. This phenomenon is termed
thereversal effect in Efron (2001) and Kou and Efron (2002). Figure 2 provides

2/q
¥

V’Q {m;}

4,

Fic. 1. The geometry of selection criteria. Two coordinates ZZ/q and Z2/q (i < j) are
indicated here.
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intersectién point "/IQ {uy}

FiG. 2. [lllustration of the reversal effect caused by the rotation of the orthogonal directions.

an illustration, showing one hyperplac@&’;"’) intersecting a nearby hyperplane

Jii’;fjm (for a smalldx).

Intuitively, if an observation falls beyond the intersection (i.e., in the reversal
region), the selection criterioA”4) then will have a hard time assigning the
smoothing parameter. Furthermore, we observe thai.fof), if the direction
ﬁi”"” rotates very fast, the reversal region will then be quite large, causing the
criterion to have a high chance of encountering observations falling into the

reversal region. This reversal effect is the main factor beliipd finite-sample

unstable behavior, because ifig orthogonal direction’;&z’l) rotates much faster

than both the EE directi01'7|§3/ 23/2) and the GMLr‘;&l’l) [Kou and Efron (2002)].

It is worth pointing out that the geometry and the reversal effect do not involve
asymptotics. Thus finite-sample-wise, the faster rotatiofﬁi%f) costsC, much
more instability than the EE and GML criteria, undermining its competitiveness.

3.2. The evolution of the geometry. The geometric interpretation naturally
suggests we investigate the evolution of the reversal effect (i.e., the geometric
instability) as the sample size grows large to bridge the gap between finite- and
large-sample results. There are two ways to quantify the geometric instability.
First, since the root of instability is the rotation of the orthogonal directions, the
curvature of the directions, which captures how fast they rotate, is a measure
of the geometric instability. Second, one can investigate the probability that an
observation falls into the reversal region, which directly measures how large the
reversal effect is.



FROM FINITE SAMPLE TO ASYMPTOTICS 2455

For the orthogonal dlrectlom(” 9 its statistical curvature [Efron (1975)],
which measures the speed of rotation, is defined by

( det(M,,) )1/2
Yo =
(n(p q)/V 77(10 11))3

Py, = (P:q) ~(p,q)/ -(p.q)
Vi Vi
with M; = ("A . . )

(p.q) A 77(17 .q) (p q)/ A 77(17 .q)

where "9 = nﬁp 9 and the matrixV, = diag(cq_(”l)b;i(pﬂ)/"/p). For
the selectlon crlterla class (2.5), Kou and Efron (2002) showed that the squared
statistical curvature
1 1
(3 2) yZ (p +q)2{ Zl a}\lb(l’ )/q (Zz aklb(p )/4)2}
: A 1 1
qu (Zt aklb(p )/51)2 (Zz }ib(l’ )/51)3

THEOREM3.1. The curvature evaluated at the ideal smoothing parameter Ag
has the asymptotic order y;, = O (n~1/10).

PROOF Accordlng to Theorem 2.3;2 = 0((5)~ /4y which is O (n=1/%)
by (2.15).

Theorem 3.1 says that, first, for the selection criteria class (2.5), geometrically
as the sample size gets larger and larger, the orthogonal directions will rotate more
and more slowly, which will make the geometric instability smaller and smaller;
second, for different selection criteria, the curvature decreases at the same order.

Next, we consider the probability of an observation falling into the reversal
region. Following Kou and Efron (2002), the reversal region (i.e., the region
beyond the intersection of different hyperplanes) is defined as

reversal region= {z: Ro(z) < 0},
where the functiorRy(2) is given by Ro(z) = i\”" q)(zz/q) ﬂkol}g’q)(zz/q) with
179 defined in (2. 4)1(” @) — » 2P [P 3 179 and the constang;,, =

1 Zz 73 AZ/q o
“Li- @y n Tt

—2/q
4 Zl Aol bkot

THEOREM 3.2. Under mild regularity conditions, the probability that an
observation will fall into the reversal region satisfies

P(Ro(z) <0) — ®(TP9) -0  asn— oo,

where @ is the standard normal c.df. and for all p > ¢ the sequence T,/""% =
onY1% <o.
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The regularity conditions and proof are deferred to the Appendix. Theorems
3.1 and 3.2 point out that as the sample sizegrows large, the reversal
effect, which is the source of ,’s instability, decreases at the same rate for
all (p, g)-estimators and eventually vanishes. This uniform rate is particularly
beneficial forC,, because under a finite-sample sizZg,suffers from the reversal
effect a lot more than the other criteria, such as GML and EE. Theorems 3.1 and 3.2
thus explain geometrically why the high variability @f, observed by many
authors in finite-sample studies does not hurt it as long as asymptotics is concerned.

4. A numerical illustration. In this section through a simulation experiment
we will illustrate the connection between finite-sample and asymptotic perfor-
mances of different selection criteria, focusing@p, GML and EE. The experi-
ment starts from a small sample size and increases it gradually to exhibit how the
performance of different selection criteria evolves as the sample: gjr@ws.

In the simulation the design poirtsaren equally spaced points on tiie 1, 1]
interval, where the sample size starts at 61, and increases to 121, 241, ...,
until 3841. For each value of, 1000 data sets are generated from the curve
fx) =sin(z(x + 1))/(x/2 + 1) shown in Figure 3 with noise levet = 1.

The C,, GML and EE criteria are applied to the simulated data to choose the
smoothing parameter (hence the degrees of freedom), which is subsequently used
to estimate the curve.

The bias-variance relationship can be best illustrated by comparing the
estimated degrees of freedom (from different selection criteria) with the ideal
degrees of freedonify, since Efron (2001) suggested that the comparison based
on degrees of freedom is more sensitive. Figure 4 shows the histogra@s of
GML and EE estimated degrees of freedom under various sample sizes; the vertical
bar in each panel represents the ideal degrees of fredgipm

One can observe from Figure 4 that (i), is roughly unbiased; (ii) as sample
size increases, the bias of GML is gradually revealed,; (iii) the large spre@g of

0.5

f(x)

0.0

-0.5

-1.0 -0.5 0.0 0.5 1.0
X

FIG. 3. Thecurve used to generate the data.
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Fic. 4. Cjp, GML and EE estimated degrees of freedom. The vertical bar in each pane! isthe ideal
degrees of freedom.

estimates points out its high variability even for sample size as large as 3841. The
asymptotic results, overlooking the variability, in a certain sense reveal only part
of the picture.

Table 1 reports the squared curvature of different selection criteria under
various sample sizes; one sees that the curvatur€,ofs significantly larger
than that of GML or EE, meaning that finite-sample-wigg, suffers more
from geometric instability. Although the geometric instability (measured by the
curvature) becomes smaller and smaller as the sample size gets larger and larger,

TABLE 1
The squared curvature of Cj,, GML and EE

n=61 n=121 np=241 n=481 n=91 r=1921 n=3841

Cp 0.71 063 057 051 046 041 037
GML  0.08 007 006 005 004 004 003
EE 029 026 023 021 019 017 015
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TABLE 2
The sample mean and standard deviation of ||gi - g||2

n=61 n=121 n=241 n=481 n=961 n=1921 n=3841

Cp mean 622 641 675 734 745 813 920
std dev 481 454 442 442 425 433 491
GML mean 590 568 591 661 701 7.85 910
std dev 403 334 318 347 339 379 407
EE mean B9 578 610 673 7.03 778 886
std dev 404 334 333 353 349 383 408

it decreases quite slowly, indicating that unless the sample si&eyidarge, the
variability cannot be overlookedgdhe asymptotics would do).

Table 2 reports the average value and standard deviatidfg;of,,, — gll?,
the squared estimation error, across the data sets. It is interesting to observe that
(i) the standard deviation of, estimates is larger than that of GML and EE,
since geometricallyC, suffers more from the reversal effect than the other two;
(i) for small sample sizes, GML appears to work better thgras the asymptotics
come in rather slowly; (iii) for reasonable sample sizes from 61 to 3841, as one
usually encounters in practice, the EE criterion appears to behave stably well.

Comparing Table 2 with the result of Theorem 2.4, a careful reader might notice
that this example itself illustrates the “seeming” gap: For sample size as large as
3841 the asymptotics are still not there. This, again, is due to the fact that although
C,’s unbiasedness gives it an asymptotic competitive edge, the asymptotics come
in rather slowly, and, therefore, for finite-sample size at hand one cannot neglect
the variability, which evidently caus&3, more trouble than the others in Table 2.

5. Discussion. This article investigates the connection between finite-sample
properties of selection criteria and their asymptotic counterparts, focusing on
bridging the gap between the two. Through a bias-variance decomposition of the
prediction error, it is shown that in asymptotics bias dominates variability, and thus
the large-sample comparison essentially concentrates on bias, and unintentionally
overlooks the variability. As the geometry intuitively explains how different
selection criteria work, the article also studies the evolution of the geometric
instability, the source ofC,’s high variability, and shows that although the
geometric instability decreases as sample size grows, it decreases very slowly so
that for sample sizes one usually encounters in practice, it cannot be neglected. We
conclude the article with a few remarks.

REMARK 5.1. General design points. We have assumed that the design points
X = (x1,...,x,) are equally spaced along a fixed intervalx lire drawn, instead,
from a distribution functionG such thaty; = G~1((2i — 1)/n), then essentially
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all the results would remain valid. For example, the conclusion of Theorem 2.3
changes to

it = ([ wan)s(r =5+ )(5) +o((5))
a,;by; =— g/ (x)dx r——,s+-J| - ol |- ,
= A A \Ux 4 4\ A A

whereg(x) is the density of; over the domairi [Kou (2003)]. Correspondingly,
the asymptotic orders that we derived will remain the same (except for longer
expressions in the proofs).

REMARK 5.2. Unknown o2. To focus on the basic ideas, we implicitly
assumed 2 to be known in our analysis. #2 is unknown, we can replace it with
an estimates2, which changes (2.3) ta= U'y/6 = z(c/6) andz%/? = 7?/4R,
whereR = (62/52)1/4, leading to the estimatdr(”9) = argmin, {1."%(72/1)},
and likewised7”'?. If R ~ (1, varg) is independent of?/4, it is easy to see that
(5.1) 7%~ (E(z%/4),varz?/1 + varg -(E(z/9) E (z%/1)' 4 varz?/?)),
where the notatiork ~ («, 8) meansX has mearmx and variance3. The extra

uncertainty ofr2 makes the estimate more variable. For example, it can be shown
that

var{c'l?(p’q)}
Var{c/l?(p’@}

-1
(Zi a)u,-ichj /Cq)2i|

2p 2/q
l.BM. varg;

= 1+varR-[1+ >
dia;,

which shows the loss of precisiondf ”*?’ from having to estimate2. Likewise,
our results in Sections 2 and 3 can be modified (at the expense of more complicated
calculations) without changing the conclusion. In practice, the estiéfatan be
based on the higher componentdby ~ (og, o2l), for instance,

2= Y UV M-2),

i=n—1-M

because the assumed smoothnessimiplies thatg; = 0 for i large and tha&2
andz?/? are nearly independent, which makes (5.1) valid.

REMARK 5.3. Higher-order smooth curves. In Section 2.3, we showed that
for general curves EEC, and GML gave the same orde?(n~%°) for the
averaged prediction errc,J;rE 105 — gll%. A reader familiar with the work of Wahba
(1985) might sense this as a puzzle, because there it is show@i fH&CV) has
a faster convergence rate than GML. This seeming conflict actually arises from
the difference in the requirements. Wahba (1985) worked on higher-order smooth
curves that belong to the null space of the roughness penalty. In our context of
cubic smoothing splines they are the curves such fhglt(x)2dx = 0, namely,
linear lines. In contrast we have assumﬁ¢//(x)2dx > 0, and termed them
“general curves”; see (2.14).
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REMARK 5.4. Generalizations of C, and GML. A number of authors have
suggested modifying”,, or GML, including (i) generalC,, whose criterion
is C,(\) = |y — f1lI? + 2wo?tr(A;), (i) general GCV, whose criterion is
GCV() = |ly — F1112/(1 — o tr(Ay)/n)?2, and (iii) a full Bayesian estimate by
putting a prior on the unknown smoothing parameaterakinge = 1 in (i) and (ii)
results in the classical, and GCV. One can also see (through a Taylor expansion)
that (i) and (ii) are asymptotically equivalent. Using a number 1 will make
the estimate stabler since a heavier roughness penalty is assigned; on the other
hand, this will cause th€, criterion to lose its unbiasedness, since the central
smoothing parameter will no longer coincide with the ideal smoothing parameter
Xo. The finite-sample stability will thus trade off,’s asymptotic advantage. The
full Bayesian approach (iii) is expected to behave even more stably than GML. An
interesting open problem is to investigate how large its bias will be and how its
geometry, if possible, will evolve as sample size grows.

REMARK 5.5. Regularity conditions. All the regularity conditions for the
theoretical results, such as Assumptions A.1-A.4 in the Appendix, can be
summarized simply as

2 1
ch{Zi/q} ~1+ ;giz,

varz?/? ~ const+ constg?,
E(z?% — E{z?"})® ~ const+ constg?.
Strict equality holds in the case 6f, and GML, where; =1, ¢, = 1:
E{z?) =1+ g2,
varz? =2+ 4g?,
E(zf —1-g})3 =8+ 247,
which point out that the conditions are reasonably mild.

APPENDIX: REGULARITY CONDITIONS AND DETAILED PROOFS

Regularity conditions for Lemma 2.2.
ASSUMPTIONA.L. Y a5, ib! (e, E(z2 ) — 1) = O(X; ariblf D).

To see the validity of the assumption, we notice thai 1forC, and GML, and
> i b, l(ch{zz} — 1) exactly equals_; ak(lbp lgl . Assumptlon A.1, hence,
clearly holds true forC, and GML, indicating its mildness. The proof below
provides more dlscussmn
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PROOF OFLEMMA 2.2. To prove the lemma, we need the following result of
Kou and Efron [(2002), Lemma 1]: Fag ~ N(gi, 1), E(z7) = j_zl/qr( +
2)M( 7 2, 2) where M (-, -, -) is the confluent hypergeometric function
(CHF) deflned byM(c,d,2) =14 % + - + & + -+, with (d), = d(d +

1)---d+n-1). Applying the bounds of CHF [Chapter 13 of Abramowitz and
Stegun (1972)]: LL (1 )gl <M(—5 2,—§g1)<1+ 142 one has

l

1

1 /q 1
6q<1__)g’<ch{Z }—1< gl.

1
(A1) —g? -
q

The left-hand side of (2.13) is thus bounded above%byji ak(,bp/qgl, and
below by 3, a, ;b7 g?2 — (1= 1) ¥ @ ib!/f gf. From (2.14) Y1 s kig? <

L J3 f"()?dt < 0o, suggesting that for sufficiently large, the terngfgl.2 of (A.1)
dominates, which again points out that Assumption A.1 is mild. In light of (2.14),
> ak(lbp/q =)e X al, lbp/‘f l(kigl.z) = O(A.), for p > ¢, which according to
Assumptlon A 1 implies ‘that

Zamb”/%qE{z?/Q} ~-1)=0() forp=>q. O

To prove Theorem 2.4, we need the following approximation.

LEMMA A.1.

A 2
- gxc”

2
Cq

) { (Z il (87 + 1)) (Z az ;b;! b2/ varz )

2 2 2 2
+Z ay ;byh "/‘fEKz?—g?—l)(z/‘f—E{z/‘mz]},

(A.2)

E®.-9) (0; —9.)

C
A3 =1
(A3) 05 (E{z%/})

pro! 2 2/ 2/
x Zaxc, Y(ay.icomzf, ;') — giconlz, 27 7)),
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where the function Q,, (u) is defined by

_ 1
A4 0w =Y e+ [ (142 s — 2] bl — 1},

DERIVATION OF LEMMA A.1. Sincel by definition is a function ofi = z%/4,
and . is a function of E{z%/4}, applying a Taylor expansion an. — ay.i, We
obtain
an.ib;.i I

kc F 8uj

(Zi/q _ E{Zf/q})

as; — ayi =—
M ‘ u=E{z2/4)}

Some algebra, after applying the implicit function calculatign to the defini-
tion (2.5) of or equivalently to the normal equation (3.1), yielﬁt%lu:E{ZZ/q} =

)\cha;ubkj/

ITRGEDL which then gives

R N . Cqay,ibyiZi 2 2
(A5) &5 — &ni = (ag; — i)z = m Z C,bf/]‘f(z fa E{zj/q})-

The fact that the;'s are independent of each other implies

A A \2
E(83; — &)
2.2 32
csas .b< .
. q%nciPxi 2 p/q /
02 (E(z2/) | ° Z hel 7

2 2 2
+a2 by B[P - g2 - D E{z,-/q})z]}-

Summing ovei yields the approximation

E|

A A 2
0 — .|
2

. { (Z Aczb)\ct (gl + 1)) (Z a)%ct 2p/q VarZ 2/q )
i

C

Q2 (E{z%/9})
4 Z 4 b2+2P/‘1E[(Zi2 _ gzz _ 1)(212/(1 _ E{Z?/q})z]}
The approximation o (g, — 9)'(0; — §x.) can be obtained in a similar way[]

Before proving Theorem 2.4, we state its regularity conditions. Theorem 2.4
needs the following assumptions, in addition to Assumption A.1.
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ASSUMPTIONA.2.

Zaxclbp/qk p)axci — 2](ch{z,-2/q} -1

=o(Sonsf[(1+2)oni-2)).

Zawbkf/q varz; 2/q
i
2 2
= O(maX<Zail p/q Zak i p/qg;))
i

ASSUMPTIONA.3. ¥, (a2 by P/ E(z7'z2"1) = 0(max(y; (a2 by 7).,
S by g2y, for I, m,n € {1, 2).

Like Assumption A.2, these two assumptions are exactly true for GML(nd
since E{z?} = 1+ g2, and vatz?) = 2 + 4g2. In general, a Taylor expansion on
the CHF can show fag > 1,

(A.6) varz,-z/q = const 14 const2 g2 + O0(g),

which suggests that the assumptions are mild.

PROOF OFTHEOREM2.4. Write

TermA= (Z a? ;b2 (g + 1)) (Z“A bk 2r/4 arz? )
2 2 2
TermB= Zah 2 p (2 — g2 — 1) (22 — E{z29))?);

then approximation (A.2) becomes
2

cq
A7 —
A7) Q2 (E{z%/4))

2= (TermA+ TermB).

For Term A, note that accordlng to Assumptlon A.2 the orde} ph? ; 2”/‘1

varz”/? is the maximum ofy; a2 ,b2”/¢ andy; aA g2 BUtY a2 b 2”/‘1 =
O ((3-)Y* = 0(n'/°) by Theorem 2.3, an; a2 ;b f”/‘fglz 0() = O(n'/®).
So Yy, a? b7 varz/? = 0(n'/%). Next observe thab; a?. lbf g2+ =
Yial b2 g2+ axczbi,w the first term is equal t..(X; a3 ;by,i(kig?)) =

X
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O (L) = O(n1/®); the second term is of orde@((%)l/"') = 0(n'/%). Therefore,
TermA= 0(n° - nl/% = 0(n?%%).
For Term B, a Taylor expansion on the CHF gives

(A.8) E[(?— g% — (" — E{z71))?] = const+ constg? + O (gH).

which, together with Assumption A.3, implies that the order of TermB is the
maximum of O(x.) = 0(n'/®) and 0((%)1/4) = 0(n'/). Thus TermB=

0 (n'/%).
Using Assumption A.2, the denominator in (A.7)

1
01BN = Car bl B+ 02 -3 (1+ L) -]
i

Zak(lbf’/‘f[( p)aw - 2} (c Bz — 1)

= 0((%)1/5) + O(c)

= 0.

(A.9)

Plugging (A.9) and the orders of TermA and TermB into (A.7) yieldd; —

0. l2=0().
For the covariance teri(g;, — g)/(gi —05.), we can write

E(@, —9) (6 —0.) = (TermC+ TermD),

Q. (E{Zz/q})
TermC= Z“Az by P couz2, 271,

TermD= — Zaw 1Jrp/qg, cov(z;, -Z/q).

Applying Assumption A.3 and the facts that
cow(z2, z2/7) = const+ constg? + 0 (g,
gi COM(zi, z /”) = constg? + 0(gHh),
which can be derived similarly to (A.8), it can be shown that
Term C= 0 (n*/®), TermD= 0(n'/®),

which finally givesE (@, — 9)'(G; — G,.) = 0(1). O
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Regularity conditions for Theorem 3.2.

ASSUMPTIONA.4.
L pPle B2 _1)]=0 I pPla,2 forl=1.2
Z[axol i (Cq Bz} )] = Zaxoz roi 8i ori=1,2
i i

2 2
Z[aioibké’/q varz?/?]

i

2 2
= O(max(ZaﬂoibAOP/q, Zaﬂoibkop/"giz» for/=2,3,4.
i i

Like the previous three assumptions, Assumption A.4 is exact for GML and
C,. For general criteria in the class (2.5), the facts (A.6), (A.1) Eh{diz/q —

E{zl.z/"})3 = const+ cons'fgi2 + O(gf‘) suggest that Assumption A.4 is reasonably
mild.

PROOF OF THEOREM 3.2. Let M(Rp) and V(Rgp) denote the mean and
variance ofRy(z). Kou and Efron (2002) showed that

p _
M(Ro) = (P +0)c] !

X [— (Z axoib%i )/q)

p+a\5

(p=1/ Y4 'bx_z'/q 1/ 2/

— 1

+2. [akoi bxgi ! (“Aoi - %) (Cquoin{Zi ) - 1)} }
i > axoibxoi

p? 22 2 12p/q 2 afoi b A_oi/q ’ 2/q
V(Ro) =~ (p+ )%l Yl aggbi! | i — =% ) varg; ! |.
4q ; 2 a54b;
Using the Berry—Esseen theorem [Feller (1971), page 521], we have
P(Ro(2) <0) — dD(M(RO)/\/V(RO)) -0 asn — oo.

iteM(Ro) _ TermlTerm?2
Note that we can ertm = (Term 31 , Where

1 2 . (p-D/q
Tel’m 1= m (212 a)\oib)»oi

3 1-2/q
-1 D Aygibigi 1
+ Z |:akoi b;»i;l /e (a)\_oi - l 201 _Ozl/q ) (bkélq - 1)i| P
i 2 “Aoz‘bxoi
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2 1.—2/q
i axoibxoi

2 af 'bx_z'/q 2

i

Term2= E |:a)»0ibf({iq (a)\oi — #) (CqE{Zl- /q} — 1):|
i

and

S a3 p7 212
Term 3= Z[afoibfop/ 1 (axoi — %) varziz/ ”]
i 2 akoibkoi
To obtain the order of Term 1, we need another result from Kou (2003): Suppose
2 — oo; then for allr > 1 ands < —31, Y7_sal,b5; = O((%)™*). This result and
Theorem 2.3 imply

0\ /4
(A.10) Termil= 0((x_) ) = 0nY®).
0

To obtain the order of Term 2, we note that by Assumption A.4 and (2.14),
3 1-2/q
a3 b5
Term2= 0<xoz[a§0ibf§f"l(%i - %)(@gﬁ)})
i 2 akoibkoi
=0()=0nY%  forallp>gq.
For Term 3, since

3 ;—2/q\ 2 1/4
> . 2p) 2. @5gibsi n 1/5
Z[axoibxopi q(é%i - ﬁ) } = 0((7) ) = 0

i 2 0i P 0

(A.11)

and

]

3 ;-2/q\ 2
h akoibkoi ) 2i|

2 1—-2/q '
i ayoi bkoi

2 12p/q
Z[akoibkoi (a)»oi -

i

3 1=2/q\2
= AOZ[afoibff/q_l(aAoi - %) (kigiz)i|
i 1 Aoi 7 Agi
=00 =0nY>  forallp>gq,
using Assumption A.4 we have
(A.12) Term3=0n'®)  forall p >g4.
Combining (A.10)—(A.12) finally yields
M(Ry) ( nl/>
— Y\ 110
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