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APPROXIMATELY UNBIASED TESTS OF REGIONS USING
MULTISTEP-MULTISCALE BOOTSTRAP RESAMPLING?

BY HIDETOSHI SHIMODAIRA
Tokyo Institute of Technology

Approximately unbiased tests basewl bootstrap probalities are con-
sidered for the exponential family of distributions with unknown expectation
parameter vector, where the null hypothesis is represented as an arbitrary-
shaped region with smooth boundaries. This problem has been discussed pre-
viously in Efron and Tibshirani4nn. Statist. 26 (1998) 1687-1718], and a
correctedp-value with second-order asymptotic accuracy is calculated by the
two-level bootstrap of Efron, Halloran and Holméd#¢c. Natl. Acad. Sci.

U.SA. 93 (1996) 13429-13434] based on the ABC bias correction of Efron
[J. Amer. Statist. Assoc. 82 (1987) 171-185]. Our argument is an extension
of their asymptotic theory, where the geometry, such as the signed distance
and the curvature of the boundary, plays an important role. We give another
calculation of the correcteg-value without finding the “nearest point” on the
boundary to the observation, which is required in the two-level bootstrap and
is an implementational burden in complicated problems. The key idea is to al-
ter the sample size of the replicated dataset from that of the observed dataset.
The frequency of the replicates falfjrin the region is counted for several
sample sizes, and then thevalue is calculated by looking at the change

in the frequencies along the changing sample sizes. This is the multiscale
bootstrap of ShimodairaSystematic Biology 51 (2002) 492-508], which is
third-order accurate for the multivariate normal model. Here we introduce a
newly devised multistep-multiscale boatg, calculating a third-order accu-
rate p-value for the exponential family of distributions. In fact, quivalue

is asymptotically equivalent to those obtained by the double bootstrap of
Hall [The Bootstrap and Edgeworth Expansion (1992) Springer, New York]

and the modified signed likelihood ratio of Barndorff-Niels&idmetrika

73 (1986) 307-322] ignoring? (n~3/2) terms, yet the computation is less
demanding and free from model specification. The algorithm is remarkably
simple despite complexity of the theory behind it. The differences opthe
values are illustrated in simple exalag, and the accuracies of the bootstrap
methods are shown in a systematic way.

1. Introduction. We start with a simple example of Efron and Tibshirani
(1998) to illustate the issue to discuss. L¥t, ..., X,, be independent-dimen-
sional multivariate normal vectors with mean vecjorand covariance matrix
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identity 7,,,
le 7Xn NNp(Mv Ip)

For given observed values, ..., x,, let us assume that we would like to know
whether||u||? = u2 + - + uf, < 1 or not. The problem is also described in a

transformed variabl® = /n X with meany = \/nu, wherex = (xy+--- +x,)/n
is the sample average. We have observegt@mensional multivariate normal
vectory having unknown mean vectgrand covariance matrix the identity,

(1.1) Y ~Npn,Ip).
Then the null hypothesis we are going to tesj is R, with the spherical region

(1.2) R={n:lnll <+/n}.

This problem is simple enough to give the exact answer. The frequentist
confidence level, namely, the probability valye-alue) for the spherical null
hypothesis is calculated as the probability|df||% being greater than or equal
to the observedy|? assuming tha is on the boundargR = {n:||nll = /n'}
of R. The exactp-value is easily calculated knowing thg |2 is distributed as
the chi-square distribution with degrees of freedprand noncentrality|7||2.

In this paper we are going to remove two restrictions in the above problem
for generalization. (i) The underlying probability model fBris the exponential
family of distributions, instead of the multivariate normal model; we denote the
density function with the expectation paramejexs

(1.3) Y~ f(y;n).

(i) The null hypothesis will be represented as an arbitrarily-shaped regiaith
smooth boundaries, instead of the spherical region. The surfag&ahay be
represented as the Taylor series with coefficigfits e?4c, . ..

(1.9) An, = —d" Ang Any — e Ang Anp Ane + - -

in the local coordinatesAns, ..., An,) by taking the origin at a point 0a.R
and rotating the axes properly. The summation convention suétfas), An, =
Zfl’;i Zf;ll d®® An, An, will be used, where the indices b, . .. may run through
1,...,p—1andi,j,... may run though 1.., p when used as subscripts or
superscripts fop-dimensional vectors. The axes are taken soshat ..., An,_1
are for the tangent space of the surface, @ng, is for its orthogonal space
taken positive in the direction pointing away fro. This general setting is the
“problem of regions” discussed previously in Efron and Tibshirani (1998), and our
argument is an extension of their asymptotic theory, where the geometry, such as
the signed distance and the curvature of the boundary, plays an important role.
Since the exacp-value is available only for special cases, we will discuss
several bootstrap methods to calculate approximatalues fromy under the
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assumptions (i) and (ii) above. Let denote a specified significance level, and
a(y) denote an approximajevalue. A large value ok (y) may indicate evidence
to support the null hypothesise R. On the other hand, i (y) < « is observed,
then we reject the null hypothesis and conclude thatRr. The hypothesis test of
R is said to baunbiased if the rejection probability is equal i® whenever € dR.
The approximatg-value is said to béth order accurate if the asymptotic bias is
of orderO(n—*/2), that is,

(1.5) PHa(Y) <a;n}=a + O(n*/?), neIR,

holds for O< « < 1. For sufficiently large:, approximately unbiaseg-values
of higher-order accuracy are considered to be better than those of lower-order
accuracy.

We will not specify the probabilistic model or the shape of the region explicitly
in the calculation of thep-value, but only assume that a mechanism is available to
us for generating the bootstrap replicates and identifying whether the outcomes
are in the region or not. This setting is important for complicated practical
applications, where the exagtvalue is not available and, thus, bootstrap methods
are used for approximation. The phylogenetic tree selection discussed in Efron,
Halloran and Holmes (1996) and Shimodaira (2002) is a typical case; the
history of evolution represented as a tree is inferred by a model-based clustering
of the DNA sequences of organisms, where we are given complex computer
software for inferring the tree from a dataset. For calculatingalues of the
hypothetical evolutionary trees, we can easily run bootstrap simulations, although
computationally demanding, by repeatedly applying the software to replicated
datasets.

We confine our attention to the parametric bootstrap of continuous random
vectors for mathematical simplicity. We also assume that the boundary of the
region is a smooth surface. In practical applications, however, it is often the case
that the nonparametric bootstrap is employed, the random vector is discrete and the
boundary is nonsmooth. Regions with nonsmooth boundaries, in particular, may
lead to serious difficulty as discussed in Perlman and Wu (1999, 2003). Further
study is needed to bridge these gaps between the theory and practice.

The frequency of the bootstrap replicates falling in the region, namely, the
bootstrap probability, has been used widely since its application to phylogenetic
tree selection in Felsenstein (1985). This is also named “empirical strength
probability” of R in Liu and Singh (1997), where a modification for nonsmooth
boundary is discussed as well. The bootstrap probability is, however, biased
as an approximation to the exagtvalue and, thus, thevo-level bootstrap of
Efron, Halloran and Holmes (1996) and Efron and Tibshirani (1998) is developed
to improve the accuracy. Under the assumptions (i) and (ii) above, the two-
level bootstrap calculates a second-order accyratalue, whereas the bootstrap
probability is only first-order accurate.
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The bias of the bootstrap probabilityainly arises from the curvature ofR.
The two-level bootstrap estimates the curvature for bias correction, where the
curvature is estimated by generating second-level replicates arpuyndHere
n(y) denotes the maximum likelihood estimate forestricted todR. 7(y) is the
nearest point ordR to y for (1.1). For the spherical regior(y) = /ny/|yll
is easily obtained, buf(y) must be obtained by numerical search in general,
leading to an implementational burden in complex problems. This motivated our
development of a new method.

Themultiscale bootstrapis developed in Shimodaira (2002) to calculate another
bias correcteg-value. It does not requirg(y). Instead, the bootstrap probabilities
are calculated for sets of bootstrap replicates with several sample sizes which may
differ from that of the observed data. This, in effect, alters the scale parameter of
the replicates (Figure 1). The key idea is to estimate the curvature from the change
in the bootstrap probabilities along varying sample sizes. The corrgctedue
is third-order accurate for any arbitrarily-shaped region with smooth boundaries
under the multivariate normal model. The normality assumption is not as restrictive
as it might look at first, because the procedure is transformation-invariant and
should work fine if there exists a transformation from the dataset to the normal
Y and if the null hypothesis is represented as a region.die do not have to
know what the transformation is. However, it becomes only first-order accurate if
there is no such transformation to (1.1) but only one to (1.3).

The multiscale bootstrap can be used easily for complex problems. It is as
easy as the usual bootstrap. We only have to change the sample size of the

Fic. 1. Multiscale bootstrap. The three circles with dashed lines indicate the conditional
distributions of the bootstrap replicates with mean y and scales r = 1/+/2, 1, +/2. In this particular
configuration, the bootstrap probability may increase by halving the sample size to alter t =1 to
/2, and may decrease by doubling the sample sizeto alter r = 1to 1/+/2.
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bootstrap replicates, and apply a regression fit to the bootstrap probabilities.
The bias correcteg-value is calculated from the slope of the regression curve
(Figure 2). This procedure is implemented in computer software [Shimodaira and
Hasegawa (2001)] for phylogenetic tree selection, and is also applied to gene
network estimation from microarray expression profiles [Kamimura et al. (2003)].

In these applications, the multiscale bootstrap can calculate-tradues for many
related hypotheses at the same time; we do not have to run time-consuming
bootstrap simulations separately for these hypotheses. For example, biologists are
interested in the monophyletic hypothesis that some specified species constitute a
cluster in the phylogenetic tree, and there are many such hypotheses for groups of
species. The bootstrap probabilities for these hypotheses are obtained at the same
time from a single run of bootstrap simulation for each scale. We only have to
apply the regression fit separately to theltiscale bootstrap probabilities of each
hypothesis.

In this paper we provide the theoretical foundation of the multiscale bootstrap,
and introduce a newly devisadultistep-multiscale bootstrap resampling. This
method calculates an approximately unbiasedlue with third-order asymptotic
accuracy under the assumptions (i) and (ii). The previously developed method of
Shimodaira (2002) corresponds to a special case of the new method, that is, the
one-step multiscale bootstrap.

For explaining the bootstrap methods, a rather intuitive argument is given in
Sections 2 to 6 using simple examples. A more formal argument is given in
Section 7, and the technical details are given in a supporting document [Shimodaira
(2004)]. We introduce aodified signed distance, and give a unified approach to
the asymptotic analysis of the bootstrap methods using Edgeworth series, as well
as the tube formula of Weyl (1939). Third-order accuracy is also shown there for
the p-value computed by the modified signed likelihood ratio [Barndorff-Nielsen
(1986)], which requires the analytic expression of the likelihood function, and for
the p-value computed by the double bootstrap [Hall (1992)], which requires a huge
number of replicates, as well as computation;6f). The multistep-multiscale
bootstrap method requires only the bootstrap mechanism for generating replicates
aroundy, inheriting the simplicity from the one-step multiscale bootstrap. The
price for higher-order accuracy and simpler implementation is a large number
of replicates, which can be as large as that of the double bootstrap. These three
p-values are, in fact, shown to be equivalent ignoring: ~%/2) terms.

Our argument may not be justified unless the assumptions (i) and (ii) hold.
We are not sure yet how robust the multistep-multiscale bootstrap method is
under misspecifications of the exponential family model. It is shown at the end
of Section 4, however, that the one-step method adjusts the bias halfway, though
not completely, under misspecifications of the normal model. A simulation study
in Shimodaira (2002) shows that the bias of the one-step method under the normal
model is very small even if the boundary is piecewise smooth, but the bias becomes
larger as) moves closer to nonsmooth points on the boundary.
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2. Two-level bootstrap resampling. Although our ultimate goal is to get
rid of the normal assumption, we use normality in this section to illustrate the
bootstrap methods, and besides (1.1), we also assume (1.2). For given observed
valuex, we consider the parametric bootstrap resampling

X5, XE ~ Ny 1),

Typically, the sample size; of the replicated dataset should be equatk tdout

we reserve the generality of using any value #ar The scaling factor of the
bootstrap,t1 = /n/n1, will be altered later in the multiscale bootstrap. Once
we specifyr1, we may generat®, say 10,000, replicated datasets, and compute
the averageX* = (X1 +---+ X;;,)/na for each replicate. A large value of the
frequency thaf|X*||2 < 1 holds in the replicates may indicate a high chance of
the null hypothesigu |2 < 1 being correct. This is also described in a transformed
variableY* = /nX*. For given observed value, we consider the parametric
bootstrap resampling

(2.1) Y* ~ Ny(y, 11,
and the bootstrap probability with scalgis denoted by
a1(y, 1) =PHY" e R; y, 11},

where the index 1 indicates the “one-step” bootstrap in connectionawitind
a3 defined later, as shown in Tabledl. is estimated by the frequency 8f € R
from the B bootstrap replicates with the binomial variarg&€l — @1)/B.

Let us consider a numerical example with

(2.2) p=4, n=10 |1%]12 = 2.680.
Although ||X]|2 > 1, we are not sure ifj||2 < 1 holds or not. The frequentist
confidence level for the null hypothesis is given by the exastalue, which

TABLE 1
Bootstrap probabilities and corrected p-values

Symbol Section Description

a1y, t1) 2 Bootstrap probability

Qoo (Y) 2 Exactp-valuef

ao(y) 2 Bootstrap probabilitys = 1)

Qabdy) 2 Two-level bootstrap correctggvalue

ag(y) 3 Multiscale bootstrap correctggvalue

as(y, 11, 12) 4 Two-step bootstrap probability

a(y) 4 Two-step multiscale bootstrap correciedalue
as(y, 11, 12, 13) 5 Three-step bootstrap probability

az(y) 5 Three-step multiscalgootstrap correcteg-value

*A third-order accuratg-value in Section 7.
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we will denote byas.(y), or simply a., for brevity sake. In this numerical
example, the value ofx||2 is, in fact, chosen to maké.(y) = 0.05. &, may
be approximated by the bootstrap probability with= 1, denoted by

ao(y) =a1(y, D).

This turns out to bé&g(y) = 0.0085, showingyg is not a very good approximation

to &«. Here the problem is so simple thap(y), as well asa~(y), can be
computed numerically from the noncentral chi-square distribution function. If the
bootstrap resampling wittB = 10,000, say, is used fa¥g, the standard error
becomes 0.0009.

A modification of &g is developed based on the geometric theory in Efron,
Halloran and Holmes (1996) and Efron and Tibshirani (1998) to improve the
accuracy of the approximation té.,. The idea is to computég(n(y)) by
generating the second-level replicates arogg) for estimating the curvature
of the surfacedR. When the surface odR is flat, ao(7(y)) = % It becomes
smaller/larger than% when the surface is curved toward/away fraR Let z
denote a generic symbol for thevalue corresponding toavaluex with relation
z = —® (), where®1(.) is the inverse of the standard normal distribution
function ®(-). For example, we may writég(y) = —® 1(ao(y)). The ABC
conversion formula of Efron (1987) and DiCiccio and Efron (1992) is

2000 —20((»)
1—ao(y) — Zo(n(»)

where Zapdy), 20(y), and 20(/(y)) are denotedZ, Z, andZo, respectively, in
the notation of equation (6.6) of Efron and Tibshirani (1998). The corrected
p-value for the two-level bootstrap is then defined &ydy) = ®(—Zapdy)).
The acceleration constant a, characterizing the probabilistic model, is known to
be a = 0 for the normal modela may also be estimated using the second-level
bootstrap for (1.3); for details we refer to Efron, Halloran and Holmes (1996).
Note that the sign in front of in (2.3) is reversed from that of equation (6.6) of
Efron and Tibshirani (1998), because thg,-axis is taking the opposite direction
here.

The p-values for the numerical example of (2.2) are

@o(y) =0.0085  &o(7(y)) =0.315
Qabdy) = 0.0775 Qoo (y) = 0.05.

(2.3) Zabdy) =

Zo(M(»)),

We observe thakpe Shows great improvement ovég to approximate,,. This
improvement is also confirmed in the asymptotic argument. It has been shown
in Efron and Tibshirani (1998) that = 1 for &g, andk = 2 for &apc under

(1.3) and (1.4).
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3. Multiscale bootstrap resampling. Here we continue to use the normal
model (1.1) for the argument of the correciedalue in this section. The bootstrap
probability changes if the replicate sample size changes. When we:aked 0
to n1 = 3 for the numerical example of (2.2), or equivalently alter the scate 1
to 71 = 4/10/3, we observe thaki(y, 1) = 0.0085 changes tai(y, +/10/3) =
0.0359. In the multiscale bootstraf; (y, 1) is computed for several values of
11 = +/n/n1. For example, instead af= 10, we use the following five; values:

(3.1) n1=3,6,10, 15,21,
and compute the corresponding bootstrap probabilities
(3.2) a@1(y, 1) = 0.0359 0.0205 0.0085 0.0028 0.0008

These values, as well as those for other parameter settings, are shown in Figure 2
by plotting the z-value along the inverse of the scale. The horizontal axis is
1/71 = /n1/n = 0.55,0.78, 1, 1.23, 1.45, and the vertical axis i§1(y, 1) =
— & Yay(y, r1)) = 1.80,2.04,2.39, 2.77,3.17.

Figure 2 shows these values along with a regression fit. This is obtained by
fitting a regression model with explanatory variablgs;landz,

(3.3) Z21(y, ) ® 0/11 + 1y,
to the plot, wheré) and¢ are the regression coefficients estimated as
(3.4) v =2.002 ¢=0.385

for the plot of (3.2). We observe that the regression fit agrees with the plots very

A A
Ooo =0.05 oo =0.95
3 05}
0
251
normal o5l normal
2
~ ~
Zz ¥ 4
1.5} 15
1 '2
tial 2.5 ,
05l exponentia exponential
-3
0 . . ) . A . A L :
0.6 08 1 12 14 06 08 1 1.2 14
17 17

FiG. 2. Plots of the z-value of the multiscale bootstrap probability along the inverse of the scale ¢
for the normal example (p = 4) of Section 2 and the exponential example (p = 1) of Section 4.
Parameter values are chosen so that the exact p-valueiseither 0.05 (left panelpr 0.95 (right panel).
The curves are drawn by the regression model of equation (3.3).
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well for the cases in Figure 2. The regression model (3.3) has been justified in
Shimodaira (2002) under (1.1) and (1.4); we will usé€’‘to indicate that equality
holds up toO (n—1) terms with the error of orde® (n—3/2). The regression model
with explanatory variables/¥; andr; will be justified later, in fact, under (1.3)
and (1.4) as seenin (7.15), although the following interpretation of the coefficients
should be modified accordingly.

A simple geometric interpretation can be given to the regression coefficients
under (1.1) and (1.4). Efron and Tibshirani (1998) have shown a formula equivalent
to

(3.5) Z20(y) 0+ ¢,

where? and¢ correspond tag andd; — xodo, respectively, in their equation (2.19).
v is the signed distance of Efron (1985), defined as the distance fromto
dR with a positive/negative sign when is outside/inside ofR. Thus, v =
+|ly — n(y)|| measures evidence of the null hypothesis being wrérng related

to the (p — 1) x (p — 1) matrix d** measuring the curvature &R at 7(y);

d“ is defined asi?’ in (1. 4) by making the local coordinates orthonormal at
n(y) In our notation,é = dy — ddp, Whered; = d%“ is the trace ofd*’, and
dp = (d*?=yPr; Zlel(d“b)z is that for the squared matrix. Whérr is flat at
A(y), d® =0 and, thus¢ = 0. 9, d1 andd- are transformation-invariant functions
of y calculated from the shape of the boundary and the density functibntbky
are referred to as geometric quantities here. Under (1.1) and (1.2) these quantities
are

. ~ -1 ~ -1
(3.6) b=yl — v,  di=L dp=L""=

This computes directly,
3.7) v =2.015 ¢=0.323

for (2.2), showing good agreement with those computed indirectly from the
multiscale bootstrap: andc¢ in (3.4) are actually estimating those in (3.7), thus, it
would be appropriate to denote the forme@axndé, although we do not make the
notational distinction. This estimation is third-order accurate, since the regression
model (3.3) holds for (3.7) with error ad (n=%/2).

Considering that and¢ are functions ofy, we may define a statistic

(3.8) Gy) =0 —¢é.

This is equivalent to the pivot statistic of Efron (1985), an¢zRiY) < x; n} ~
®(x) for n € 3R under (1.1) and (1.4); see equation (2.16) of Efron and Tibshirani
(1998). Thus, a third-order accuratevalue is defined by (y) = ®(—21(y)). We
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can computer; (y) usingo and¢ obtained from the multiscale bootstrap. For the
example of (2.2),

&1(y) = ®(—2.002+ 0.385) = 0.0529

showing an improvement ovérp(y) = 0.0775 to approximaté..(y) = 0.05.
The index ofa1 indicates the “one-step” bootstrap as similarly dar

It is interesting to note that we can also read off the value§16f) from
Figure 2. The differentiation of (3.3) with respect toriis

021(y,71) . . 2
———— xV— 14,
a(1/71)

and the slope of the regression curve dtil= 1 giveszi(y). The corrected
p-value &1 is essentially obtained from the change of the bootstrap probability
in the multiscale bootstrap.

4. Two-step multiscale bootstrap resampling. The one-step multiscale
bootstrap described in Section 3 calculates a very accyratalue for the
arbitrarily-shaped region if there exists a transformation from the dataset to the
normal model. However, it can be inaccurate if such a transformation does not
exist even approximately. This restriction essentially comes from the fact that the
covariance matrix ofy in (1.1) is constant with respect tp. The acceleration
constantz of the ABC formula measures the rate of change in the covariance
matrix, anda is assumed zero in the derivation of (3.8). Here we introduce the
two-step multiscale bootstrap for estimatingz to improve the accuracy of the one-
step multiscale bootstrap.

A breakdown of the one-step multiscale bootstrap method is illustrated in the
following example. LetX1, ..., X,, be one-dimensional independent exponential
random variables with meaumn,

X1, .., Xy ~exp(—x/u —logu),

and let the null hypothesis of interest pe< 1. The exactp-value is calculated
by knowing that a transformed variable= ,/nX is distributed as Gamma with
shape: and mean) = \/nu. We consider a numerical example with

4.1) p=1 n=10  ¥=1571

so that (v) = 0.05. The multiscale bootstrap probabilities for the fiyevalues
in (3.1) are computed as

(4.2) a1(y, 1) =0.2990 0.1875 0.1115 0.0622 0.0322

and the regression coefficients of (3.3) are estimateti-asl.328 ¢ = —0.110.
Then the correcteg-value is computed as

(4.3) d1(y) = d(—1.328—0.110 = 0.0753
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Although this is an improvement ovégp(y) = 0.112, it is not as good as in the
normal example above. The pivot (3.8) is not justified under (1.3) in general, and
a1(y) is, in fact, only first-order accurate for the exponential example.

The two-step multiscale bootstrap is employed simply to generate a second-step
replicate from every first-step replicate. Let us denote the conditional density of the
first-step bootstrap replicate* = ./n X* as

(4.4) Y*~ f(y*;y, 1),

given meany = /nX and scaler; under (1.3), which reduces tf(y*; y, 1) =
f(*; y) whenty = /n/n1 is unity. This becomes (2.1) for (1.1), and Gamma
with shape:; and meary for the exponential example. We generate a second-step
replicateY** for eachy*. The conditional density of ** given y* takes the same
form as (4.4), but with scale parameter= /n/n;

(4.5) Y™~ f(™5 v, ).
For the normal example, (4.5) is equivalent to generating
X5 L X~ Ny (1)

for given i*, and using the transformed variabié* = \/nX**. The two-step
bootstrap probability with a pair of scalés, 1) is then defined by

a2(y, 11, 72) =PH{Y™ € R; y, 11, 12}
:/&ﬂy*, ) (" y, 1) dy”,

where the integration is taken over the range of the components. We can write
a1(y, 11) = a2(y, 11, 0), because the conditional density Bf* converges to the
point mass ay* by taking the limitz — 0. The two-step bootstrap might look
similar to the double bootstrap of Hall (1992), but they are very different. We
should generate thousandsiof* for given y* in the double bootstrap, but only
oneY* in the two-step bootstrap.

Let us consider twa» values,

(4.6) ny =6, 15,

for the normal example with parameter values (2.2). The two-step bootstrap
probabilities are, for example,

G2y, /20, /10) =00359 @y, /2 /19) = 00205

Of course, they givé: (v, \/?) anday (v, \/?), respectively, in (3.2), because

a2y, 71, 72) = @a(y, y/of +75)
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for (1.1). For the exponential example with parameter values (4.1), however,

G2(y, /2, /1) =03063 @y, /R, /22) =0.1866

are different, though very slightly, froma (y, \/@) = 0.2990 andx1(y, \/%) =

0.1875, respectively, in (4.2). The differencef y, 71, t2) from a1 (y, rlz + r22)
for (1.3) is explained by

. _ _attti(0% — (12 + 1)
4.7) z2(y, T1, rz)—m(y,\/fl +1) = 12 2152 =
(12 + 12)5/

We will use “=" to indicate that equality holds up 10 (n~1/2) terms with error of
orderO(n—l). Formula (4.7) and a revised regression model

A AnD

- .0 —2av A
(4.8) 210y, 1) = — (di—a)y

for (1.3) are consequences of a more general argument with third-order accuracy
shown in Section 7.
The key idea in the two-step multiscale bootstrap is to estid@atelooking at

the difference ofa(y, 11, T2) from a1 (y, 112 + 122). Once we computé (y, 71)
and a2(y, 11, t2) for several values ofr1, 72) by the one-step and two-step
multiscale bootstrap, we can estimated; anda by fitting (4.7) and (4.8) to the
observed bootstrapbabilities. A second-order accurapevalue, denotedz(y),

is then computed by using the estimated geometric quantities irrthiie

(4.9) 2o(y) =0 —dy+a(l—9%).

This expression is shown to be equivalent to (2.3) upta—1/2) terms by using
(4.8);50(y) = 0 4+ d1 — a(1+ 202) and2o(A(y)) = dq — 4. In the next section we
will describe a procedure based on the above idea, as well as its refined version
with third-order accuracy.

It follows from (4.8) that the one-step multiscale bootstrap estimate®4d 12
anddl — a for the coefficients) andc respectively, under (1.3). Thus(y) =
b —di +a(l—20%) = 3a(y) — a2, as well ago(y) = 22(y) + 2d, — 24 — av?, is
first-order accurate in general. Slnce the differefute) — 21(y) = a2 does not
involve d1, the one-step method adjusts the bias resulting from the curvature even
if the normal model is misspecified.

5. Three-step multiscale bootstrap resampling. We may repeat “stepping”
to obtain multistep-multisale bootstrap probabilés so that we might be able to
compute higher-order accurgievalues. This is the case, in fact, for going one step
further, although the results are not known for yet further stepping. We introduce
the three-step multiscale bootstrap for computing a third-order accuragevalue,
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denotedys(y), under (1.3) and (1.4). In the following argument, we first describe
the procedure to compude(y), which helps understand that fég(y).

The expression fata(y, 71, 72) is obtained from (4.7) by substitutinérl2 +12
for 1 in (4.8). This is also expressed as

(5.1) 22(y, 11, 12) = $2(P1. V2. V3, T1, T2),
where the functior; on the right-hand side is defined by

+s
(5.2) Co(r1, 2, v3, 71, T2) = s1y1(L+ say3) — L2213

5171
Heresy = (z£ + t2)~Y/2 ands, = t2t2s7 are functions of the scales, and thes
are specified as functions gfunder (1.3) and (1.4);
(5.3) p=0-2at%,  pp=d@-dy,  p3=da.

Thesey;’s are also used to express
. . L V2
(5.4) 22(y) =711+ 73) + o0

which is equivalent to (4.9) up t@(n~1/2) terms. We calculatés(y, 11, 72)
for several values ofr1, t2) by the two-step multiscale bootstrap resampling,
and fitting the observeda(y, 11, 10) = —®L(@2(y, 11, 12)) to the nonlinear
regression model (5.1). Then the estimajed are used to computéx(y) =
®(—2z2(y)) from (5.4).

This procedure is generalized for the three-step multiscale bootstrap resampling.
A third-step replicate*** is generated for eacyi* by

using the scales, and the three-step bootstrap probability is defined by

a3(y, 11, 72, 713) = PHY™ € R; y, 11, 12, 73}
=/&2(y*,rz, ) f(Y*; y, 1) dy*.

Then, observeda(y, 1, 72, 13) = —®~1(@3(y, 11, T2, 73)) for several values of
(11, T2, T3) are fitted to the nonlinear regression moggldefined by

¢3(y1, v2, ¥3, V4, V5, V6, T1, T2, T3)

(5.5) = y151(1 + y3s2 + 4y3s5 + 553 + v6sa)
— (y15) H(v2 + yas2 + 7)/32 55+ yas2 + 3yss3 + 3y654),
wheresq, ..., s4 are given by

s1= (tl2 + 1'22 + r:,?)—l/z, §2 = (t12t22 + t22r§ + rgtlz)sf,
2.2.2 4.2 4.2 2\) .6 2.2.2\.6
s3= (t{1515 + 1515 + 17 (15 + 13))s7, 54 = (T{1575)s7.
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The least squares estimates for the gis are denoted by, ..., 7. We then
computexs(y) = ®(—z3(y)) by using the estimatef}’s in

(5.6)  z3(y) =1L+ V3 +4P2 + P6) + VL (P2 + PEZ/2+ Da+ o).

Section 7 is mostly devoted to proving the third-order accuraays¢f). The
justification for the second-order accuracyadfy) then immediately follows by
ignoring O (n~1) terms. As seen in (5.3¥1 is O(1), andy» andysz are O (n~%/?).

The rest of the thre@ (n~1) geometric quantities are defined in Section 7.8. We do
not have to know, however, the expressiong,&f for computingas(y), because

their values are estimated from the nonlinear regression, and the estimation error
is only O (n=%/2).

It should be noted that there are other asymptotically equivalent expressions
for ¢3 andzz as functions of coefficients transformed from the gis; we have
shown the two different expressions fgrandz, as functions of eithefy, 72, 73
or 9, d1, 4. The expressions (5.5) and (5.6) are obtained by seeking simple ones.

6. Examples. The two procedures in the previous section are applied to the
exponential example with parameter values (4.1). By the two-step multiscale
bootstrap, the least squares estimateg 'sfare

71 =1.328 o =0.144, y3=0.137,
and the correcteg-value is computed as
~ 0.144
d2(y) =1— ©{1.3281+0.137) + 7355} = 0.0528

which comes closer to the exaptvalue ay(y) = 0.05 than&1(y) = 0.0753
computed in (4.3). By the three-step multiscale bootstrap, the least squares
estimates of theg;’s are

7 =1.328 o =0.145 Js=0.127,
Js=-0018  $5=-0.0004  j=—0.036

and the correcteg-value is
az(y) =1— d>{1.328(1 +0.127+ 0.065— 0.036)

+ 0.145+ 0.008— 0.018— 0.0004
1.328

which is even better thad (y) = 0.0528.

In Table 2p-values are computed for several parameter settings. The bootstrap
probabilities are computed numerically & co), but the standard errors due to the
bootstrap resampling are shown Br= 10,000. The first row corresponds to the
normal model with (2.2), and the fourth row corresponds to the exponential model
with (4.1). The following two rows for each are obtained by changing 10 to

} =0.0509
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TABLE 2
p-valuesin percent (standard error) for the examples*

Ridgeregression

A A A ~ A

n @y Aapc a a as a as

Normal distribution ¢~ = 5.00)
10 08 775 529(0.61) 5.85(1.81) 7.03(8.04 5.67 (1.03 6.04 (1.13)
100 273 525 501(0.37) 5.05(1.16) 5.08(293 5.04(0.78 5.06(0.97)
1000 412 503 500(0.32 5.00(1.05 5.00(222 5.00(0.72 5.00(0.89

Exponential distributionds, = 5.00)
10 1115 500 753(0.31) 5.28(0.77) 5.09 (0.95 5.77 (0.60) 5.13(0.68)
100 673 500 590(0.30 5.03(0.94) 5.01(1.50 5.25(0.67) 5.04 (0.82)
1000 552 500 529(0.30) 5.00(0.98 5.00(1.82 5.08(0.69  5.01(0.80)

Normal distribution ¢~ = 95.00)
10 6784 9233 9526(0.18) 9520(0.41 9502(0.51) 9521(0.34 95.07(0.37)
100 9065 9474 9502(0.24) 95.07(0.84) 95.09(1.28) 95.06(0.60) 95.07(0.70)
1000 9391 9497 9500(0.28) 95.00(0.95 95.00(1.72) 95.00(0.67) 95.00(0.81)

Exponential distributionds, = 95.00)
10 9878 9500 9799(0.24) 94.48(1.31) 96.12(7.39) 95.60(0.81) 96.48(0.56)
100 9649 9500 9595(0.28 94.97(1.06) 95.01(2.71) 95.24(0.72) 95.14(0.82
1000 9550 9500 9530(0.29) 95.00(1.02) 95.00(2.19) 95.08(0.70) 95.02(0.81)

*The bootstrap calculation is replaced by integration numerically, and, hence, the number of
bootstrap replicates is regarded Bs= co. The standard errors in parentheses are calculated for
the case oB = 10* by the Iocal Ilnearlzatlon of the nonllnear regressmn&Draper and Smith (1998)].

All the combinations ofr1 € {§ 1—60 %—8 15 2—1} { 5 15} } are used for the
scales. The total numbers of bootstrap repllcates &elBB and 358 respectlvely, fordq, @z
andas. For the ridge regression, the penalty weights@fe= wo = 0 andwz = - - - = wg = 0.01.

100 and 1000. Similarly, the last six rows are obtained by changing- 0.05 to
0.95. We observe that all the-values tend to converge &g, asn grows, and the
correctedp-values are faster for convergence tlaan

as(y, 11, T2, 13) IS computed for all the combinations @t1, 2, 73) values,
as noted in the table; fivery, 0,0)’s, ten (t1, 72, 0)’s, and twenty(z1, 12, 73)’S.
Therefore, the numbers of bootstrap probabilities are 5, 15 and 35, respectively,
for a1(y), @2(y) andas(y). The nonlinear regression models are fitted to these
bootstrap probabilities, and the least sqeastimates of the geometric quantities
are calculated; each residual term is weighted inversely proportional to the
estimated variance. For stable estimation, ridge regression is also used; a penalty
term Z?Zl w; )91.2 with small w; values is added to the residual sum of squares for
minimization.

For the exponential distributior;, is kth order accuraték = 1, 2, 3), and,
in fact, |a;y — @s| becomes smaller dsincreases in the table. It turns out that
|@abc — Qoso| IS almost zero here, becaugg,c happens to be third-order accurate
for the one-dimensional exponential distribution, as shown in Section 7.7.
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For the normal distributiony1, @» andas are third-order accurate, becayge=
.-+ =y =0under (1.1), as shown in Section 7.8. This may explain &Ry ¢ |
becomes larger dsincreases in some of the rows. These four geometric quantities
of zero value are estimated from slightffdiences of bootstrap probabilities,
leading to unstable estimation as seen in the large standard errors. This is alleviated
by ridge regression; even the worst case in the téagle- 6.04 + 1.13 may be
allowed in practice. However, the total number of replicates is 350,00@4pr
almost comparable to that of the double bootstrap for achieving the same degree
of the standard error.

Although s is first-order accurate for (1.3), it is reasonably accurate even for
the exponential model in the table. The total number of replicates is 50,000, yet the
standard error is considerably smaller than thak©fSimilar observation holds
for the second-order accurade. The one-step, as well as two-step, multiscale
bootstrap may provide a compromise between the number of replicates and the
accuracy in practice.

7. Asymptotic analysis of the bootstrap methods.

7.1. A unified approach. Our approach to assessing the bootstrap methods is
not very elegant but rather elementary and brute-force. We explicitly specify a
curved coordinate system aloAgr, which is convenient to work on the bootstrap
methods. The density function &f with respect to the curved coordinates is first
defined forr =1 in Section 7.2 and extended for> 0 in Section 7.3. We define
a modified signed distance by alteringv slightly, and its distribution function is
given in Section 7.4.

It turns out that the;-values of the bootstrap probabilities are special cases of
the modified signed distance, and our approach gives an asymptotic analysis of
the bootstrap methods in a systematic way. Using the result of Section 7.4, a third-
order accurate pivot statistic is defined in Section 7.5, and the distribution functions
of the bootstrap-values are shown in Sections 7.6 to 7.8, proving the main results
of Section 5.

The proofs of lemmas are given in Shimodaira (2004). We have used
the computer softwardathematica for straightforward and tedious symbolic
calculations; the program file is available from the author upon request.

7.2. Tube-coordinates. In our curved coordinate system, a pairt specified
by two parts, a point 0dR and the signed distance from it. This is an instance
of the coordinate system used for the Weyl tube formula, and we call it tube-
coordinates. Below we will define the coordinate system explicitly, and show the
expression of the density function fin terms of the tube-coordinates. We take
an approach similar to that of Kuriki and Takemura (2000).

The density function of the exponential family of distributions is expressed as

(7.1) exp(8’yi — ¥ (0) — h(y)),
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whered = (01, ..., 67) is the natural parameter vector. We denote (7.1 by; 1)
using the expectation parameter vecioe (n1,...,1,) = E(Y), the expected
value of Y. The change of variables <> n is one-to-one, and is given by =
/30", 0" =3¢ /dn;, i =1, ..., p, where the potential functiog (i) is defined
from the cumulant functiony (0) by ¢ () = max {0 n; — ¥ (0)}. The metric at
is denoted as

! 3¢ (n)
¢ () = :
an; 0n;
and the derivatives af atn = 0 are denoted as
9 92 y a3
o = ¢ (n) ’ ij _ %0 ’ ijk _ _ 970 ’ and so on.
ani lo ani an; lo dni a0 Ik lo

Since the exponential family is not uniquely expressed up to affine transformation,
we assume without loss of generality thit= 0 and¢’/ = §;;, wheres;; takes
value one whem = j, otherwise zero. In other wordg,(Y) = 0 and coyY), the
covariance matrix ot , is I, até = 0. We make our asymptotic argument local in
a neighborhood aoff = 0 by assuming the local alternatives.

The smooth surfacgR of the regionR is specified locally aroung = 0 by

b

Na(u) = ug, a=1...,p—-1 np(u) & _dabuaub — e uqupuc,

whereu = (uy, ..., u,_1) is the(p — 1)-dimensional parameter vector to specify
a pointn(u) on dR. R is specified locally byy, < n,(u). It follows from

the argument below equation (2.12) of Efron and Tibshirani (1998) diat=
O~ 1Y?) and e’ = O(n~1), and similarly, ¢"/* = O(n=1/?) and ¢'/* =
omn™1.

Let Bf(u) = dn;/dus, i =1, ..., p, be the components of a tangent vector of
the surface for =1, ..., p — 1. They are given explicitly as

By (1) = 8ap. b=1,...,p—1, B;(u) ~ —2d’uy, — 3¢ upu,,
and the metric in the tangent space is given by
¢ (u) = ¢" (n(u)) Bf' (u) BY (u)
(7.2) ~ S + ¢ u.
+ {4dacdbd — 2qeegbdp  gqbdgacr _ ged gabe 4 Lgabedyy

whereg (n(u)) ~ 8ij + ¢"%uq + {=d“¢P + 5¢*P7\u up. Let B w), i =1,
.., p, be the components of the unit length normal vector orthogonal to the
tangent vectors with respect to the metric such that

¢ @) Bl WBfw) =0, a=1...p-1L

¢ (n()) Bf () B () = 1.
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The components are calculated explicitlyBS(u) ~ (2d*? — ¢p@bP)uy, + {3e®b +
dab¢cpp + dbc¢app _ Zdbd¢acd + ¢abd¢cdp + %¢abp¢cpp _ %¢abcp}ubuc’ and
Bg(u) ~1— %¢appua + {_Zdacdbc + %dabd)ppp + %¢acp¢bcp + g¢app¢bpp _
29" uat.

Let v be a scalar, andu,v) be a p-dimensional vector. We consider
reparameterization defined by

(7.3) 0 (u,v) =n; W)+ Bip(u)v, i=1,...,p,

and assume < (u, v) is one-to-one at least locally aroumd= 0. (u, v) gives
the tube-coordinates of the point The boundang R is expressed simply by
v =0, and the regionR is v < 0. (1, v) is used for indicating the parameter
valuen = n(u, v), or the observatiory = n(u, v). When there is a possibility of
confusion, we may write <> (i, v) instead ofyp < (u, v).

Since the normal vector is orthogonal to the surfaga) = n(u«,0) € IR is
the projection ofy(u, v) onto dR; i is the maximum likelihood estimate under
the restricted model specified ByR. 1 (i, 0) is denoted byj(y) in Section 1 as a
function of y. v is the signed distance mentioned for (1.1) in Section 3.

v is also related to the signed likelihood rakRgMcCullagh (1984) and Severini
(2000)] byR ~ © + %@pppﬁz + {2%1(/§pppp _ 7_12((]3171717)2}{}3’ whereg?PP andg?PpP
are the third and fourth derivatives to the normal direction evaluatedia®),
instead ofy = 0. This third derivative is associated with the acceleration constant.
For the acceleration constantthe formulaag = —%J)PPP is obtained directly from
equation (2.9) of DiCiccio and Efron (1992), or by using equation (6.7) of Efron
(1987) andd3y/90 067 3% = —¢/*. The expression for the density function of
(U, V) is obtained fromf (y; ) by change of variables, as shown in the following
lemma.

LEMMA 1. Let Y ~ f(y;n) be the exponential family of distributions with
n = E(Y). Without loss of generality we may assume that cow(Y) =1, at n =0
and that the true parameter valueis specifiedby n = (0, ..., 0, 1) for some A, that
i, =0,a=1,...,p—1,n, =2, or, equivalently, u _0 v = A using the tube-
coordinates (u, v) <> . Let f (i, v; A) bethejoint density function of U,V)< Y.
Then, ignoring the error of 0(n‘3/ 2), we obtain

qay 0O @ENEO R+ O D+ 8" (0, Witaiiy
7.4
+ gabc(ﬁ’ K)ﬁaﬁbﬁc + gade(ﬁ7 )\)ﬁaﬁbﬁcﬁd7

where the five functions on the right-hand side are defined by g(v,4) =
—3p10g(2) = 3(0 = 2)? = 5" + §(@74)% — 3¢7PPA3 — 5¢PPPPAY - (24 —
%qﬁaap + %(ﬁppp + %(ﬁppp)\Z + %¢pppp)\3}ﬁ + {_z(dab)Z + Zdab¢abp _ %(¢abp)2 _
%(¢app)2 _ Lll(¢ppp)2+ %¢PPPP + %1¢‘m”p}ﬁ2 _ %¢ppp,§3 _ 2i4¢pppp,34’ g4 (D, 1) =
%(ﬁabb + %(ﬁapp)\Z + %¢QPPP)\3 + {_%(pdpp)\ _ dab¢bcc + 5dab¢bPP + ¢aPdeb _
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2¢abcdbc + %d)abpd)bcc _ %d)abpd)bpp + %1¢app¢bbp _ %d)appd)ppp + %¢abc¢bcp _
%(pabbp 4 %(pappp + 6eabb + dab(ﬁbpp)\Z _ %¢abp¢bpp)\2 _ %1¢app¢ppp)\2}ﬁ +
{_dab¢bpp + %(pabpd)bpp + %¢app¢ppp _ %¢appp}@3, gab(ﬁ’ 1) = _%gab —db) —
%dab(pccp + %¢abcc _ %¢acd¢bcd +2dacdbc _ 2da6¢bcp _ %dab(ﬁppp)\Z_'_ {_dab +
%¢abp _ (Zdacdbc _ %dab¢ppp + %¢abpp _ %d)and)bCp _ %¢app¢bpp))t}ﬁ,
gabC(ﬁ’)L) — _%¢abc . eabc)L + {_zeabc + %d)abcp _ %dabd)cpp + dad(f)de .
%(pabd(ﬁcdp _ %¢abp¢cpp}ﬁ’ gabcd(ﬁ’ A) = —%dubd“i + %¢abpdcd _ 2%1¢abcd'

7.3. Changing the scale. We define a density functiofi(y; n, t) with mean
n and scale > 0 by modifying f (y; n). Herert is regarded as a known constant,
whereas; is a unknown parameter vector. Letn, t) be the potential function
of f(y;n, 1), and¢(n) be that forf(y; n). Since the density function is defined
by specifying the potential function, the following equation gives a definition of

fin, o)
(7.5) o (n, 7) = ¢ (n)/72.

This f(y;n,t) comes naturally from the multiscale bootstrap resampling. In
fact, the potential function of the replicat&* is ¢ (n, 1) = ||n]|2/(2t2) for the
normal example (2.1) of Section 2, and thapis), ) = —n(1+ logn) /72 for the
exponential example of Section 4, and thus both agree with (7.5). The same applies
to the exponential family, in general, as shown below.

LEMMA 2. Let X be a p-dimensional random vector of the exponential
family. We assume that Y is expressed as a sum of m independent X’ s such that
Y =./n(X1+ -+ X,)/m for m > 0, and that the density function is f(y; n)
whenm =n.ThenY ~ f(y;n, t) with t = /n/m for T > 0.

We continue to use the tube-coordinates defined by the reparameterization
n < (u, v) of (7.3). By altering the potential (n, 1) to ¢ (, ), the metric, as well
as the tube-coordinates, should have changed if we go back to the specification of
n(u) and B? (u) given in the previous section. However, we continue to use the
specification witht = 1 for anyt > 0, so that the reparameterizatigpr> (u, v)
does not depend on

LEMMA 3. Let £ (i, 0; ) bethejoint density function of (U, V) < Y givenin
Lemma 1, and f (u, 0; A, T) bethat correspondingto f(y; n, ) with scale t > 0.
Then the expression of log f (i, v; A, t) is obtained from (7.4) by changing (i, v)
to

(7.6) u=u/t, v=10/t,
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by adding the logarithm of the Jacobian log(1/t?) to (7.4), and replacing ¢%*,
@K @b, eab¢ and i, respectively, with

Gk = _L,¢ijk’ Pk — T2¢ijkl,
(7.7) ) -

dt = 74, gabe = ¢200bc F =)/t

7.4. Modified signed distance. We consider yet another transformation of the
coordinates for expressing the bootstrayalues in modified values. Letw be a
scalar variable defined formally by the series

o0 o0 _
(7.8) w=v+ZE,v’+uCbev’,
r=0 r=0

wherev” denotes the'th power. The coefficients a@ = 0 (n~1/?) and bt =

0 (n~1), and their expressions are specified later. We assume the transformation
(u, v) < (u, w) is one-to-one at least locally arouiid, v) = 0. By inverting the
series in (7.8), we also have

o0 o0
(7.9) v=w—Zc,w’—uCbew’,
r=0 r=0

wherec, = ¢, — Y i _or —s 4+ D)¢r—s4165, and bt = Ef. The coefficients are
¢y = 0(n Y2 andb = O(n~1). Let W be the random variable corresponding to
w; the observed valué is defined by (7.8) but using the observédv) instead
of (u, v).

We call w a modified signed distance characterized by the coefficights;
w reduces ta when all these coefficients are zero. THealues of the bootstrap
probabilities are representedwady appropriately specifying the coefficients. The
following lemma plays a key role in studying the distributional properties of the
bootstrap probabilities.

LEMMA 4. Let usassumethat the distribution of Y in the tube-coordinatesis
specified by (U, V) ~ f (i, v; A, T), and the coefficientsin (7.9) are of order b¢ =
O(mYforr=0,co=0n"1?), c1=00n"1), c2=0m %), c3=0m")
and ¢, = O(n~3/?) for r > 4. \We define z.(; A, 7) from the distribution function
of the modified signed distance W as

PH{W <} = ®(z.(; 1, 7)).
Then the z.-formula is, ignoring the error of O (n~%/2), expressed as
(7.10) 2e(l; 2, 1) R T he (B, 4) + T8 (D, A),
where g_ (i, 1) = (0 — 1) — co — SGPPPAZ + 2PPPPAD + (RPPPP — c)B? —
§COPPPA — {c1 + FeopPPPhb + (G + {(@PPr)? — P +
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{_%((bapp)Z + 2&4¢pppp}k2w + {_2%1(¢ppp)2 + 2&4¢pppp — %cz¢>PPP}MZ)2 +
{—F5(@PPP)2 + T pPPPP — ScopPPP — c3}id®, and g (D, A) = —(d + gpPPP) +
{(dab)Z _ dab¢abp + %daad)ppp + %(¢abp)2 + %(d)app)Z + %_g(d)ppp)Z . %¢aapp .
%qupp}w + {(dab)Z _ %daaqup + %(¢app)2 + %(¢ppp)2 _ 2_14¢pppp}k_ Notethat
the z.-formula does not involve the coefficients b¢, and that the distribution func-
tion of W is characterized by the coefficients ¢, with third-order accuracy. The
index ¢ of z. indicates the coefficients ¢, .

The true parameter value is assumed tq®e.) in the («, v)-coordinates for
(7.4) and (7.10). If we alter the true parameter value to arbitiary) with u # 0,
the expression changes as well, @nd (P{W < #}) is denoted as.(¥; u, v, 1),
which reduces ta,.(w; 0, A, t) = z.(w; A, T) whenu =0 andv = A.

z.(Ww; u, v, 7) is used for representing the bootstrap probabilities in particular.
The simple bootstrap probability is, for examplgy(y) = P{V* < 0; y} =
®(z.(0; u, v, 1)) with all ¢, = 0. The expression of.(w*; u, v, T) is obtained
from (7.10) by changing the origin t@(iz).

LEMMA 5. Let Y* be a replicate of Y distributed conditionally as Y* ~
f(»y*; y,7) with mean y and scale 7, and W* be the corresponding modified
signed distance. Let us denote the conditional distribution of W* given y as
PH{W* < &*; y} = ®(z.(d*; i, D, 7). Then the expression of z.(W*; i, , 7)
is obtained from (7.10) by replacing w, A, ¢”PP and dy = d%?, respectively,
with w*, 0,

(7.11) qupp ~ pPPP + {3¢bpp(2dbc _ ¢b6p) _ %¢6pp¢ppp + ¢6ppp}ﬁc and
(712) dAl A~ d% 4 {%daa(pcpp _ dab¢abc + Beaac}ﬁC.

Note that O(n~1) terms change only O (n~%/?). For example, d = (d*")? would
be replaced with do, but d> ~ d>.

7.5. Pivot statistic.  Although the exactly unbiaseg-value may not exist in
general, a third-order accuratevalue can be derived under (1.3) and (1.4). Let
Y*~ f(y*;n(y), 1) be a replicate generated with me#fy) instead ofy, and
@0 (y) be defined as the probability of the corresponding signed distahbeing
greater than or equal to the observed value

Qoo (y) = PHV* = 0; H(y)).

This is the exactp-value for the normal example of Section 2 and for the
exponential example of Section 4. We will show thgs(y) is, in fact, third-order
accurate under (1.3) and (1.4).
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First, 200(y) = —® 1(Goo(y)) is expressed by the.-formula of Lemma 5.
From the definitionZ . (y) = z+(v; u, 0, 1) with all ¢, = 0 and, thus,
2ee(y) A D — ([21 + %(j)ppp) + %éPPPﬁZ
+ {(dab)Z _ dabd)abp + %daad)ppp
+ %(qbabp)Z + %(¢app)2 + %_g((pppp)Z _ Lll(ﬁaapp _ %(ﬁPPPP}{}
+ {_7;2(¢ppp)2 + 2_14¢pppp},33.
By comparing (7.13) with (7.8), we find that,(y) can be expressed aswith
coefficientstg = —d®* — 1pPPP, &1 = (d%)% —dP P + 1dprrr 4 1 ()2 +
%(¢app)2 __{_ %_g(¢ppp)2 _ zll¢aapp _ %d)pppp, Gy = %_¢ppp, Gy = _7&2(¢ppp)2 +
2%1¢pppp, b8 — _%daa(pcpp 4 dab¢abc — 3¢99¢ and b% — %¢bpp(2dbc _ ¢bcp) _

70PPePPP 4 1pPPP. Then the distribution function of«(y) is obtained
immediately from Lemma 4 as shown below.

(7.13)

LEMMA 6. Letusconsider a statistic
24(0) A 200(¥) + g0+ q10 + q20% 4 q30° + i g (D),

where the coefficients are go = O0(n=12), g1 = 0(n™1), g2 = O(n~/?) and
gz=0mnY), and g¢(0) = 0(n™Y), c =1,..., p — 1, representing arbitrary
polynomials of 0. Theindex ¢ of z, indicates the coefficients. Assuming U, V)~
fa,v; 1, 1), thedistribution function of Z, (y) is expressed as

PrZg(Y) <x: 1)
~P[x —r—qo— %qS”p”AZ + %qﬁ”p”kx — q2x2
@)+ G+ (@777 — PP — 5P qo)h
+ {41 202(d" + 5" — qo)}x + (=g (@) + 55" }A%x
+{3677792 + 245 — q3)x> + {§(@7N)? + @) — g1

+ {_%(¢ppp)2 + 2;4¢pppp _ %(ppppqz}xxz].

(7.14)

For 1 =0, the distribution function is R, (Y) < x; 0} ~ ®[x — go — qzx2 +
{—q1 — 2g2(d + §OPPP — qo)}x + {307PPq2 + 293 — g3}x®]. In particular,
Pr{Zoo(Y) < x; 0} = ®(x) and, thusz (y) is a third-order accurate pivot statistic.
We obtain Pfa~(Y) < a; n} = « for n € dR, proving the third-order accuracy
of Qoo ().

The reverse of the above statement also halgéy) = ®(—2z,(y)) is a third-
order accurate-value if and only ifgo = g1 ~ g2 ~ g3 ~ 0. If we confine our
attention to, (y) defined only fromb and the geometric quantiti@s?, e*>¢, ¢/,
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¢'/* andp/* evaluated afi(y), theni.g¢(d) in z,(y) comes only frony,’s by the
replacements shown in Lemma 5. Thag(y) is a third-order accuratg-value if
and onIy if&q (y) & doo(y). Similarly, &, (y) is second-order accurate if and only
if go = g2 =0 and, thusg, (y) = deo ().

Zo0(y) is equivalent to other pivots in the literature up@gn—1) terms. Under
(1.1) and (1.4)¢"/* = ¢'/¥ = 0 and, thus, (7.13) reducesiQ (y) ~ v —d1 + do?,
giving (3.8), the plvot of of Efron (1985). Under (1.3), the modified signed
likelihood ratio [Barndorff-Nielsen (1986) and Barndorff-Nielsen and Cox (1994)]
has been known as a third-order accurate pivot, and it is expresg&d-aR +
(1/R)log(U/R) in the notation of Severini [(2000), page 251], whérés defined
using the log-likelihood derivatives. A straightforward calculation shows that
U=~9 _d'\162+ {%(daa)Z_'_dabdab _ %¢aapp _dab¢abp + %(¢abp)2+ %((ﬁapp)Z_'_
3(@PPP)2 — LoPrrrYi8, and thatR* ~ 2o (y) in the moderate deviation region.

7.6. Accuracy of the bootstrap probability. Since the eventt* € R is
equivalent to the event* < 0, thez-value of the bootstrap probability with scale

7 is expressed by the.-formula of Lemma 5Z1(y, ) = —z.(0; &, v, T) with all
¢, = 0. From (7.10), we obtain a refined version of (4.8), erring aply. —%/2),

a0 0~ + 30— (F@T) + 5@77)7 — §o" 0]
(7.15)  +t[(di+ 24PPP)
— {(dab)Z — %da%ppp + %(d)app)Z + %(¢ppp)2 — 2_14(;)PPPP}1}]'

It follows from (7.15) thatrz1(y, ) is expressed a® and, thusgzi(y, t) =
Z4(y) by choosing the coefficients appropriately. They @e- (d*“ + %dﬂ’l’l’)rz,
c1= (—(d*)? = 3d“PPPP — ()2 — F(GPPP)? 4 2, PP, co = 3HPPP,
andcs = —5(¢%PP)% — (@PPP)? + FPPPP for 4, or, equivalentlygo = (1 +
)@+ 5P, qr=—(L+T)(d)2+d PP + 3¢ PP — 5(¢77)% — §(4+
T2)(@PP) + G(=1 4 T)dUPPPP — 75(13+ 5T ($PPP)? + 343+ TAPPPPP,
G2 = PP, g3 = —5(%PP)% — L (PPP)? + £ PPPP for Z,(y). The distribution

function ofrz(y, ) is obtained from (7.10) or (7.14). In particular, the distribution
function ofZg(y) =Z1(y, 1) underh =0,t =11is

Pr{zo(Y) < x; 0}
~ cp[x — (zdaa + %(pppp) _ %(ppppr
(716) + {Z(dab)Z _ dab¢abp + l.daa(ﬁppp + 1(¢abp)2
5(¢app) + 11(¢ppp) ¢aapp ¢pppp}x
+ {%(d)ppp) + %(¢app)2 _ %2¢pppp}x3]’

showing the first-order accuracy &§(y).
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Remark A of Efron and Tibshirani (1998) discusses a calibrated bootstrap
probability, denotedvgounidy) here, using the double bootstrap of Hall (1992).
Similarly to the two-level bootstrap, thousands Bf are generated around
7(y). Then ao(y*) is computed for each*. The expression ofgoupidy) =
O LPr{zo(Y*) < 20(y); A(y)}] is obtained from (7.16) by the replacements of
Lemma 5, and a straightforward calculation shows tha@funidy) ~ Zoo(¥),
proving the third-order accuracy Gfjoupidy).

7.7. Accuracy of the two-level bootstrap.  The expression afo(y) is obtained
from (7.15) by lettingr = 1, andZo(7(y)) ~ d1 + gpPPP is obtained from it
by letting v = 0. By substituting these expressions, as wellias —%J)PPP for
those in (2.3), we find thafapdy) is expressed a®, or, equivalently,z, (y)
with coefficientsgo = g2 = 0, g1 = —2(d?)% + 2¢99PP + d*bpabr — J(pabr)2 —
g(¢app)2 _ 211(¢ppp)2 + %¢pppp andgz = _%(¢app)2 _ %(¢ppp)2 + %2¢pppp. The
distribution function is then obtained from Lemma 6. kae O, it becomes
(7.17) Pr{Zapd¥) < x; 0} ~ ®(x — g1x — g3x°),

showing the second-order accuracyigidy).

For the exponential example of Sectionp= 1, 1= -2/ /n, p1111=6/n
and all the other quantities iy and g3 are zero. Thereforgg; = g3 =0, and
Zabdy) turns out to be third-order accurate, explaining the high accuraeygfy)
observed in Table 2.

7.8. Accuracy of the multistep-multiscale bootstrap. Using the expressions
(7.4) and (7.15), the expression®f(y, t1, t2) is obtained by the integration

(7.18) Z22(y, 11, 72) = <I>‘1{/ Q(Z1(y*, ) fO" y, 1) dy*}-

By repeating the same integration usifid y*, 2, 73) instead ofz1(y*, 72), we
obtain the expression @§(y, 1, T2, T3) as given below.

LEMMA 7. Letusdefinethefollowing six geometric quantitiesusing the deriv-
atives evaluated at n = 0: y1 = A + SA2PPPP + 23{—2(9PP)2 — 5(¢PPP)2 +
TOPPPPY, yp = A{—d9 — LpPPPY + 22{(d?)? — Ja%igrrr + L(¢%PP)? +
72(@PPP)2 — JadPPPPY, y3 = —gAGPPP + 22(Z($PP)° + G(PPPP)? — §pPPIP),
ya=A2{=dP PP 4 3dCPPIP + 3($°)2 + F () + §(PPPP)P — PP —
§OPPPPY, v5 = A= §(¢UPP)2 — 5(§PPP)? + £5¢PPPP) and ye = A2 {—g(¢P)* —
2(¢Prr)2 + LpPrrry. Those evaluated at 7(y), denoted 71, ..., Ps, are obtained
by replacing A, ¢”PP and d“¢, respectively, with 9, (7.11)and (7.12)as shown in
Lemma 5. Then we have

(7.19) Z3(y, 11, T2, T3) ~ £3(V1, V2, V3, V4, V5, V6, T1, T2, T3)
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using the ¢3-function of (5.5). Since (7.19)errs only O (n—3/2) for any values of
(11, T2, 73), the nonlinear regression for three-step multiscal e bootstrap probabili-
tiesin Section 5 estimates 7;’sup to O (n 1) terms.

If we definezs(y) of (5.6) using thep;’s defined above, we can easily verify

(7.20) 23() ~ Zoo (¥)

by comparing (5.6) with (7.13). This proves the third-order accuracgz0f)
under (1.3) and (1.4).

For the multivariate normal model of (1.13(n) = [I7lI2/2 and, thusgp/* =
¢k = 0. This impliesys = --- = y5 = 0, proving the third-order accuracy of
a1(y) andaz(y) under (1.1) and (1.4).
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