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NONPARAMETRIC ESTIMATION OF SCALAR DIFFUSIONS
BASED ON LOW FREQUENCY DATA1

BY EMMANUEL GOBET, MARC HOFFMANN AND MARKUS REIß

Ecole Polytechnique, Université Paris 7 and Humboldt-Universität zu Berlin

We study the problem of estimating the coefficients of a diffusion
(Xt , t ≥ 0); the estimation is based on discrete dataXn�,n = 0,1, . . . ,N .
The sampling frequency�−1 is constant, and asymptotics are taken as the
number N of observations tends to infinity. We prove that the problem
of estimating both the diffusion coefficient (the volatility) and the drift
in a nonparametric setting is ill-posed: the minimax rates of convergence
for Sobolev constraints and squared-error loss coincide with that of a,
respectively, first- and second-order linear inverse problem. To ensure
ergodicity and limit technical difficulties we restrict ourselves to scalar
diffusions living on a compact interval with reflectingboundary conditions.

Our approach is based on the spectral analysis of the associated Markov
semigroup. A rate-optimal estimation of the coefficients is obtained via
the nonparametric estimation of an eigenvalue–eigenfunction pair of the
transition operator of the discrete time Markov chain(Xn�,n = 0,1, . . . ,N)

in a suitable Sobolev norm, together with an estimation of its invariant
density.

1. Introduction.

1.1. Overview. Since Feller’s celebrated classification, stationary scalar diffu-
sions have served as a representative model for homogeneous Markov processes
in continuous time. Historically, diffusion processes were probably first seen as
approximation models for discrete Markov chains, up to an appropriate rescal-
ing in time and space. More recently, the development of financial mathematics
has argued in favor of genuinely continuous time models, with simple dynamics
governed by a local mean (drift)b(·) and local variance (diffusion coefficient, or
volatility) σ(·) on the state spaceS = R or S ⊂ R with appropriate boundary con-
dition. The dynamics are usually described by an Itô-type stochastic differential
equation in the interior ofS, which in the time-homogeneous case reads like

dXt = b(Xt ) dt + σ(Xt) dWt, t ≥ 0,
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where the driving process(Wt, t ≥ 0) is standard Brownian motion. The growing
importance of diffusion models progressively raised among the community of
statisticians a vast research program, from both quantitative and theoretical angles.
We outline the main achievements of this program in Section 1.2.

In the late 1970s a statistician was able to characterize qualitatively the
properties of a parametric ergodic diffusion model based on the continuous
observation of a sample path

XT := (Xt ,0≤ t ≤ T )

of the trajectory, asT → ∞, that is, as the time length of the experiment grows to
infinity, a necessary assumption to assure the growing of information thanks to the
recurrence of the sample path. The 1980s explored various discretization schemes
of the continuous time model: the dataXT could progressively be replaced by the
more realistic observation

X(N,�N) := (
Xn�N

,n = 0,1, . . . ,N
)
,

with asymptotics taken asN → ∞. The discretization techniques used at that time
required the high frequency sampling assumption�N → 0 whereasN�N → ∞
in order to guarantee the closeness ofX(N,�N) andXT , with T = N�N . Soon,
a similar nonparametric program was achieved for both continuous time and high
frequency data.

By the early to mid-1990s, the frontier remained the “fixed� case,” that is,
the case of low frequency data. This is the topic of the present paper. First, one
must understand the importance and flexibility gained by being able to relax the
assumption that the sampling time� between two data points is “small”: indeed,
one can hardly deny that, in practice, it may well happen that sampling with
arbitrarily small� is simply not feasible. Put differently, the asymptotic statistical
theory is a mathematical construct to assess the quality of an estimator based
on discrete observations and it must be decided which asymptotics are adequate
for the data at hand. Second, the statistical nature of the problem drastically
changes when passing from high to low frequency sampling: the approximation
properties of the sample pathXN�N by X(N,�N) are not valid anymore; the
observation(X0,X�, . . . ,XN�) becomes a genuine Markov chain, and inference
about the underlying coefficients of the diffusion process must be sought via the
identification of the law of the observationX(N,�N). In the time-homogeneous
case the mathematical properties of the random vectorX(N,�N) are embodied in
the transition operator

P�f (x) := E[f (X�)|X0 = x],
defined on appropriate test functionsf . Under suitable assumptions, the opera-
tor P� is associated with a Feller semigroup(Pt , t ≥ 0) with a densely defined
infinitesimal generatorL on the space of continuous functions given by

Lf (x) = Lσ,bf (x) := σ 2(x)

2
f ′′(x) + b(x)f ′(x).
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The second-order termσ(·) is the diffusion coefficient, and the first-order termb(·)
is the drift coefficient. Postulating the existence of an invariant densityµ(·) =
µσ,b(·), the operatorL is unbounded, but self-adjoint negative onL2(µ) :=
{f | ∫ |f |2µ < ∞}, and the functional calculus gives the correspondence

P� = exp(�L)(1.1)

in the operator sense. Therefore, a consistent statistical program can be presumed
to start from the observed Markov chainX(N,�), estimate its transition operatorP�

and infer about the pair(b(·), σ (·)), via the correspondence (1.1), in other words
via the spectral properties of the operatorP�. Expressed in a diagram, we obtain
the following line:

data= X(N,�) (E)−→ P�
(I)−→ L ←→ (

b(·), σ (·)) = parameter.(1.2)

The efficiency of a given statistical estimation procedure will be measured by the
proficiency in combining the estimation part(E) and the identification part(I ) of
the model.

The works of Hansen, Scheinkman and Touzi (1998) and Chen, Hansen and
Scheinkman (1997) paved the way: they formulated a precise and thorough pro-
gram, proposing and discussing several methods for identifying scalar diffusions
via their spectral properties. Simultaneously, the Danish school, given on impulse
by the works of Kessler and Sørensen (1999), systematically studied the para-
metric efficiency of spectral methods in the fixed� setting described above. By
constructing estimating functions based on eigenfunctions of the operatorL, they
could construct

√
N -consistent estimators and obtained precise asymptotic prop-

erties.
However, a quantitative study of nonparametric estimation in the fixed�

context remained out of reach for some time, for both technical and conceptual
reasons. The purpose of the present paper is to fill in this gap, by trying to
understand and explain why the nonparametric case significantly differs from
its parametric analogue, as well as from the high frequency data framework in
nonparametrics.

We are going to establish minimax rates of convergence over various smooth-
ness classes, characterizing upper and lower bounds for estimatingb(·) andσ(·)
based on the obervation ofX0,X�, . . . ,XN�, with asymptotics taken asN → ∞.
The minimax rate of convergence is an index of both accuracy of estimation and
complexity of the model. We will show that in the nonparametric case the com-
plexity of the problems of estimatingb(·) andσ(·) is related to ill-posed inverse
problems. Although we mainly focus on the theoretical aspects of the statistical
model, the estimators we propose are based on feasible nonparametric smoothing
methods: they can be implemented in practice, allowing for adaptivity and finite
sample optimization. Some simulation results were performed by Reiß (2003).

The estimation problem is exactly formulated in Section 2, where also the
main theoretical results are stated. The spectral estimation method we adopt is
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explained in Section 3, which includes a discussion of related problems and
possible extensions. The proofs of the upper bound for our estimator and its
optimality in a minimax sense are given in Sections 4 and 5, respectively. Results
of rather technical nature are deferred to Section 6.

1.2. Statistical estimation for diffusions: an outlook. We give a brief and
selective summary of the evolution of the area over the last two decades. The
nonparametric identification of diffusion processes from continuous data was
probably first addressed in the reference paper of Banon (1978). More precise
estimation results can be listed as follows:

1.2.1. Continuous or high frequency data: the parametric case.Estimation of
a finite-dimensional parameterθ from XT = (Xt ,0 ≤ t ≤ T ) with asymptotics as
T → ∞ whenX is a diffusion of the form

dXt = bθ (Xt ) dt + σ(Xt) dWt(1.3)

is classical [Brown and Hewitt (1975) and Kutoyants (1975)]. Here(Wt, t ≥ 0) is
a standard Wiener process. The diffusion coefficient is perfectly identified from
the data by means of the quadratic variation ofX. By assuming the processX
to be ergodic (positively recurrent), a sufficiently regular parametrizationθ 	→
bθ (·) implies the local asymptotic normality (LAN) property for the underlying
statistical model, therefore ensuring the

√
T -consistency and efficiency of the

ML-estimator [see Liptser and Shiryaev (2001)].
In the case of discrete dataXn�N

,n = 0,1, . . . ,N , with high frequency
sampling�−1

N → ∞, but long range observationN�N → ∞ asN → ∞, various
discretization schemes and estimating procedures had been proposed [Yoshida
(1992) and Kessler (1997)] until Gobet (2002) eventually proved the LAN property
for ergodic diffusions of the form

dXt = bθ1(Xt ) dt + σθ2(Xt ) dWt(1.4)

in a general setting, by means of the Malliavin calculus: under suitable regularity
conditions, the finite-dimensional parameterθ1 in the drift term can be estimated
with optimal rate

√
N�N , whereas the finite-dimensional parameterθ2 in the

diffusion coefficient is estimated with the optimal rate
√

N .

1.2.2. Continuous or high frequency data: the nonparametric case.A similar
program was progressively obtained in nonparametrics: If the drift functionb(·)
is globally unknown in the model given by (1.3), but belongs to a Sobolev ball
S(s,L) (of smoothness orders > 0 and radiusL) over a given compact intervalI,
a certain kernel estimator̂bT (·) achieves the following upper bound inL2(I) and
in a root-mean-squared sense:

sup
b∈S(s,L)

E
[‖b̂T − b‖2

L2(I)

]1/2 � T −s/(2s+1).



NONPARAMETRIC ESTIMATION OF SCALAR DIFFUSIONS 2227

This already indicates a formal analogy with the model of nonparametric
regression or “signal+ white noise” where the same rate holds. (Here and in
the sequel, the symbol� means “up to constants,” possibly depending on the
parameters of the problem, but that are continuous in their arguments.) See
Kutoyants (1984) for precise mathematical results.

Similar extensions to the discrete case with high frequency data sampling
for the model driven by (1.4) were given in Hoffmann (1999), where the rates
(N�N)−s/(2s+1) for the drift function b(·) and N−s/(2s+1) for the diffusion
coefficient σ(·) have been obtained and proved to be optimal. See also the
pioneering paper of Pham (1981). Methods of this kind have been successfully
applied to financial data [Aït-Sahalia (1996), Stanton (1997), Chapman and
Pearson (2000) and Fan and Zhang (2003)]. In particular, it is investigated whether
the usual parametric model assumptions are compatible with the data, and the use
of nonparametric methods is advocated.

1.2.3. From high to low frequency data.As soon as the sampling frequency
�−1

N = �−1 is not large anymore, the problem of estimating a parameter in the
drift or diffusion coefficient becomes significantly more difficult: the trajectory
properties that can be recovered from the data when�N is small are lost. In
particular, there is no evident approximating scheme that can efficiently compute
or mimic the continuous ML-estimator in parametric estimation.

Likewise, the usual nonparametric kernel estimators, based on differencing, do
not provide consistent estimation of the driftb(·) or the diffusion coefficientσ(·).
As a concrete example, consider the standard Nadaraya–Watson estimatorb̂(x) of
the drift b(x) in the pointx ∈ R:

b̂(x) := (N�)−1 ∑N−1
n=0 Kh(x − Xn�)(X(n+1)� − Xn�)

N−1 ∑N−1
n=0 Kh(x − Xn�)

with a kernel functionK(·) and Kh(x) := h−1K(h−1x) for h > 0. If we let
N → ∞ andh → 0, then by the ratio ergodic theorem and by kernel properties
we obtain almost surely the limit

E[�−1(X� − X0)|X0 = x] = �−1
∫ �

0
Ptb(x) dt.

Hence, this estimator is not consistent. It merely yields a highly blurred version
of b(x), which of course tends tob(x) in the high frequency limit� → 0. Note that
the transition operatorsPt involved depend on the unknown functionsb(·) andσ(·)
as a whole. The situation for estimators ofσ(·) based on the approximation of the
quadratic variation is even worse, because the driftb(·) enters directly into the
limit expression.
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1.2.4. Spectral methods for parametric estimation.Kessler and Sørensen
(1999) suggested the use of eigenvaluesκθ and eigenvectorsϕθ (·) of the
parametrized infinitesimal generator

Lθf (x) = σ 2
θ (x)

2
f ′′(x) + bθ(x)f ′(x),

that is, such thatLθϕθ (x) = κθϕθ (x). Indeed, since the pair(κθ , ϕθ ) also satisfies

P�ϕθ (Xn�) = E
[
ϕθ

(
X(n+1)�

)∣∣Xn�

] = exp(κθ�)ϕθ (Xn�),

whenever it is easy to compute, the knowledge of a pair(κθ , ϕθ ) can be translated
into a set of conditional moment conditions to be used in estimating functions.
With their method, Kessler and Sørensen can construct

√
N -consistent estimators

that are nearly efficient. See also the paper of Hansen, Scheinkman and Touzi
(1998) that we already mentioned.

In a sense, in this idea also lies the essence of our method. However, the
strategy of Kessler and Sørensen is not easily extendable to nonparametrics: there
is no straightforward way to pass from a finite-dimensional parametrization of the
generatorLθ with explicit eigenpairs(κθ , ϕθ ) to a full nonparametric space with
satisfactory approximation properties. Besides, there would be no evident route
to treat the variance of such speculative nonparametric estimators either, because
the behavior of the parametric Fisher information matrix for a growing number of
parameters is too complex to be easily controlled. We will see in Section 3 how to
pass over these objections by estimating directly an eigenpair nonparametrically.

1.2.5. Prospectives. A quick summary yields Table 1 for optimal rates of
convergence.

Table 1 can be interpreted as follows: the difficulty of the estimation problem
is increasing from top to bottom and from left to right. A blank line separates
the continuous–high-frequency (HF) data domain from the low-frequency (LF)
data domain. The breach for LF data opened by Kessler and Sørensen as well as
by Hansen, Scheinkman and Touzi shows that

√
N -consistent estimators usually

exist in the parametric case. The remaining case are the rates of convergence for
LF data in the nonparametric caseuN for the drift b(·) andvN for the diffusion
coefficientσ(·), for which we are aiming.

TABLE 1

Parametric Nonparametric

b σ b σ

Continuous T −1/2 known T −s/(2s+1) known
HF data (N�N )−1/2 N−1/2 (N�N )−s/(2s+1) N−s/(2s+1)

LF data N−1/2 N−1/2 uN vN
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2. Main results.

2.1. A diffusion model with boundary reflections.We shall restrict ourselves
to reflecting diffusions on a one-dimensional interval to avoid highly nontrivial
technical issues; see the discussion in Section 3.3.

Choosing for convenience the interval[0,1], we suppose the following.

ASSUMPTION 2.1. The functionb : [0,1] → R is measurable and bounded,
the function σ : [0,1] → (0,∞) is continuous and positive and the function
ν : [0,1] → R satisfiesν(0) = 1, ν(1) = −1.

We consider the stochastic differential equation

dXt = b(Xt ) dt + σ(Xt) dWt + ν(Xt ) dLt(X),

(2.1)
X0 = x0 and Xt ∈ [0,1] ∀ t ≥ 0.

The process(Wt, t ≥ 0) is a standard Brownian motion and(Lt (X), t ≥ 0) is
a nonanticipative continuous nondecreasing process that increases only when
Xt ∈ {0,1}. The boundedness ofb(·) and the ellipticity ofσ(·) ensure the existence
of a weak solution; see for instance Stroock and Varadhan (1971). Note that the
processL(X) is part of the solution and is given by a difference of local times ofX

at the boundary points of[0,1].
Due to the compactness of[0,1] and the reflecting boundary conditions,

the Markov processX has a spectral gap, which implies geometric ergodicity;
compare with Lemmas 6.1 and 6.2. In particular, a unique invariant measureµ

exists and the one-dimensional distributions ofXt converge exponentially fast to
µ as t → ∞ so that the assumption of stationarity can be made without loss of
generality for asymptotic results.

We denote byPσ,b the law of the associated stationary diffusion on the canonical
space� = C(R+, [0,1]) of continuous functions over the positive axis with values
in [0,1], equipped with the topology of uniform convergence and endowed with its
Borelσ -fieldF . We denote byEσ,b the corresponding expectation operator. Given
N ≥ 1 and� > 0, we observe the canonical process(Xt , t ≥ 0) at equidistant
timesn� for n = 0,1, . . . ,N . Let FN denote theσ -field generated by{Xn�|n =
0, . . . ,N}.

DEFINITION 2.2. An estimator of the pair(σ (·), b(·)) is anFN -measurable
function on� with values inL2([0,1]) × L2([0,1]).

To assess theL2-risk in a minimax framework, we introduce the nonparametric
set�s , which consists of pairs of functions of regularitys ands − 1, respectively.
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DEFINITION 2.3. Fors > 1 and given constantsC ≥ c > 0, we consider the
class�s := �(s,C, c) defined by{

(σ, b) ∈ Hs([0,1]) × Hs−1([0,1])∣∣‖σ‖Hs ≤ C, ‖b‖Hs−1 ≤ C, inf
x

σ (x) ≥ c

}
,

whereHs denotes theL2-Sobolev space of orders.

Note that all(σ (·), b(·)) ∈ �s satisfy Assumption 2.1.

2.2. Minimax rates of convergence.We are now in position to state the main
theorems. By (3.12) and (3.13) in the next section we define estimatorsσ̂ 2 andb̂

using a spectral estimation method based on the observation(X0,X�, . . . ,XN�).
These estimators, which of course depend on the numberN of observations, satisfy
the following uniform asymptotic upper bounds.

THEOREM 2.4. For all s > 1, C ≥ c > 0 and0< a < b < 1 we have

sup
(σ,b)∈�s

Eσ,b

[‖σ̂ 2 − σ 2‖2
L2([a,b])

]1/2 � N−s/(2s+3),

sup
(σ,b)∈�s

Eσ,b

[‖b̂ − b‖2
L2([a,b])

]1/2 � N−(s−1)/(2s+3).

Recall thatA � B means thatA can be bounded by a constant multiple ofB,
where the constant depends continuously on other parameters involved. Similarly,
A � B is equivalent toB � A andA ∼ B holds if both relationsA � B andA � B

are true.
As the following lower bounds prove, the rates of convergence of our estimators

are optimal in a minimax sense over�s .

THEOREM 2.5. Let EN denote the set of all estimators according to
Definition2.2.Then for all0 ≤ a < b ≤ 1 ands > 1 the following hold:

inf
σ̂2∈EN

sup
(σ,b)∈�s

Eσ,b

[‖σ̂ 2 − σ 2‖2
L2([a,b])

]1/2 � N−s/(2s+3),(2.2)

inf
b̂∈EN

sup
(σ,b)∈�s

Eσ,b

[‖b̂ − b‖2
L2([a,b])

]1/2 � N−(s−1)/(2s+3).(2.3)

If we sets1 = s −1 ands2 = s, then the driftb(·) ∈ �s with regularitys1 can be
estimated with the minimax rate of convergenceuN = N−s1/(2s1+5), whereas the
diffusion coefficientσ(·) ∈ �s has regularitys2 and the corresponding minimax
rate of convergence isvN = N−s2/(2s2+3). Hence, Table 1 in Section 1.2.5 can be
filled with two rather unexpected rates of convergenceuN andvN . In Section 3.3
the rates are explained in the terminology of ill-posed problems and reasons are
given why the tight connection between the regularity assumptions onb(·) andσ(·)
is needed.
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3. Spectral estimation method.

3.1. The basic idea. We shall base our estimator of the diffusion coeffi-
cient σ(·) and of the drift coefficientb(·) on spectral methods for passing from
the transition operatorP�, which is approximately known to us, to the infinitesi-
mal generatorL, which more explicitly encodes the functionsσ(·) andb(·). In the
sequel, we shall rely on classical results for scalar diffusions; for example, consult
Bass [(1998), Chapter 4]. We use the specific form of the invariant density

µ(x) = 2C0σ
−2(x)exp

(∫ x

0
2b(y)σ−2(y) dy

)
(3.1)

and the functionS(·) = 1/s′(·), derived from the scale functions(·),
S(x) = 1

2σ 2(x)µ−1(x) = C0 exp
(
−

∫ x

0
2b(y)σ−2(y) dy

)
,(3.2)

with the normalizing constantC0 > 0 depending onσ(·) andb(·). The action of
the generator in divergence form is given by

Lf (x) = Lσ,bf (x) = 1

2
σ 2(x)f ′′(x) + b(x)f ′(x) = 1

µ(x)

(
S(x)f ′(x)

)′
,(3.3)

where the domain of this unbounded operator onL2(µ) is given by the subspace
of theL2-Sobolev spaceH 2 with Neumann boundary conditions

dom(L) = {f ∈ H 2([0,1])|f ′(0) = f ′(1) = 0}.
The generatorL is a self-adjoint elliptic operator onL2(µ) with compact resolvent
so that it has nonpositive point spectrum only. Ifν1 denotes the largest negative
eigenvalue ofL with eigenfunctionu1, then due to the reflecting boundary of[0,1]
the Neumann boundary conditionsu′

1(0) = u′
1(1) = 0 hold and thus

Lu1 = µ−1(Su′
1)

′ = ν1u1 
⇒ S(x)u′
1(x) = ν1

∫ x

0
u1(y)µ(y) dy.(3.4)

From (3.2) we can derive an explicit expression for the diffusion coefficient:

σ 2(x) = 2ν1
∫ x
0 u1(y)µ(y) dy

u′
1(x)µ(x)

.(3.5)

The corresponding expression for the drift coefficient is

b(x) = ν1
u1(x)u′

1(x)µ(x) − u′′
1(x)

∫ x
0 u1(y)µ(y) dy

u′
1(x)2µ(x)

.(3.6)

Hence, if we knew the invariant measureµ, the eigenvalueν1 and the eigenfunc-
tion u1 (including its first two derivatives), we could exactly determine the drift and
diffusion coefficient. Of course, these identities are valid for any eigenfunctionuk

with eigenvalueνk , but for better numerical stability we shall use only the largest
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nondegenerate eigenvalueν1. Moreover, it is known that only the eigenfunctionu1
does not have a vanishing derivative in the interior of the interval (cf. Proposi-
tion 6.5) so that by this choice indeterminacy at interior points is avoided.

Using semigroup theory [Engel and Nagel (2000), Theorem IV.3.7] we know
thatu1 is also an eigenfunction ofP� with eigenvalueκ1 = e�ν1. Our procedure
consists of determining estimatorŝµ of µ and P̂� of P�, to calculate the
corresponding eigenpair(κ̂1, û1) and to use (3.5) and (3.6) to build a plug-in
estimator ofσ(·) andb(·).

3.2. Construction of the estimators.We use projection methods, taking
advantage of approximating properties of abstract operators by finite-dimensional
matrices, for which the spectrum is easy to calculate numerically. A similar
approach was already suggested by Chen, Hansen and Scheinkman (1997). More
specifically, we make use of wavelets on the interval[0,1]. For the construction of
wavelet bases and their properties we refer to Cohen (2000).

DEFINITION 3.1. Let(ψλ) with multiindicesλ = (j, k) be a compactly sup-
portedL2-orthonormal wavelet basis ofL2([0,1]). The approximation spaces(VJ )

are defined asL2-closed linear spans of the wavelets up to the frequency levelJ ,

VJ := span{ψλ||λ| ≤ J } where|(j, k)| := j.

The L2-orthogonal projection ontoVJ is called πJ ; the L2(µ)-orthogonal
projection ontoVJ is calledπ

µ
J .

In the sequel we shall regularly use the Jackson and Bernstein inequalities with
respect to theL2-Sobolev spacesHs([0,1]) of regularitys:

‖(Id−πJ )f ‖Ht � 2−J (s−t)‖f ‖Hs , 0≤ t ≤ s,

∀vJ ∈ VJ , ‖vJ ‖Hs � 2J (s−t)‖vJ ‖Ht , 0 ≤ t ≤ s.

The canonical projection estimate ofµ based on(Xn�)0≤n≤N is given by

µ̂ := ∑
|λ|≤J

µ̂λψλ with µ̂λ := 1

N + 1

N∑
n=0

ψλ(Xn�).(3.7)

By the ergodicity ofX it follows that µ̂λ is a consistent estimate of〈µ,ψλ〉 for
N → ∞. To estimate the action of the transition operator on the wavelet basis
(PJ

�)λ,λ′ := 〈P�ψλ,ψλ′ 〉µ, we introduce the symmetrized matrix estimatorP̂�

with entries

(P̂�)λ,λ′ := 1

2N

N∑
n=1

(
ψλ

(
X(n−1)�

)
ψλ′(Xn�) + ψλ′

(
X(n−1)�

)
ψλ(Xn�)

)
.(3.8)

This yields an approximation of〈P�ψλ′ ,ψλ〉µ, that is, of the action of the
transition operator onVJ with respect to the unknown scalar product〈·, ·〉µ
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in L2(µ). We therefore introduce a third statistiĉG, which approximates the
dim(VJ )× dim(VJ )-dimensional Gram matrixG with entriesGλ,λ′ = 〈ψλ,ψλ′ 〉µ,
and which is given by

Ĝλ,λ′ := 1

N

(
1

2
ψλ(X0)ψλ′(X0)

+ 1

2
ψλ(XN�)ψλ′(XN�) +

N−1∑
n=1

ψλ(Xn�)ψλ′(Xn�)

)
.

(3.9)

The particular treatment of the boundary terms will be explained later. If we
put � = (wnψλ(Xn))|λ|≤J,n≤N with w0 = wN = 1

2 and wn = 1 otherwise, we

haveĜ = N−1��T , �T being the transpose of�. Our construction can thus be
regarded as a least squares type estimator, as in a usual regression setting; see the
argument developed in Section 3.3.1.

We combine the last two estimators in order to determine estimates for the
eigenvalueκ1 and the eigenfunctionu1 of P�. As will be made precise in
Proposition 4.5, the operatorsP� andπ

µ
J P� are close for large values ofJ . Note

that all eigenvectors ofπµ
J P� lie in VJ , the range ofπµ

J P�. The eigenfunctionuJ
1

corresponding to the second largest eigenvalueκJ
1 of π

µ
J P� is characterized by

〈P�uJ
1 ,ψλ〉µ = κJ

1 〈uJ
1 ,ψλ〉µ ∀ |λ| ≤ J.(3.10)

We pass to vector-matrix notation and use from now on bold letters to define for
a functionv ∈ VJ the corresponding coefficient column vectorv = (〈v,ψλ〉)|λ|≤J .
Observe carefully the differentL2-scalar products used; here they are with respect
to the Lebesgue measure. Thus, we can rewrite (3.10) as

PJ
�uJ

1 = κJ
1 GuJ

1 .(3.11)

As vT Gv = 〈v, v〉µ > 0 holds forv ∈ VJ \ {0}, the matrixG is invertible and
(κJ

1 ,uJ
1 ) is an eigenpair ofG−1PJ

�. This matrix is self-adjoint with respect to the
scalar product induced byG:

〈G−1PJ
�v,w〉G := (G−1PJ

�v)T Gw

= vT PJ
�w = 〈v,G−1PJ

�w〉G.

Similarly, vT Ĝv = N−1(�T v)T �T v ≥ 0 holds and the matrix̂G can be shown
to be even strictly positive definite with high probability (see Lemma 4.12). In
this case, we similarly infer that̂G−1P̂ is self-adjoint with respect to thêG-scalar
product. The Cauchy–Schwarz inequality and the inequality between geometric
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and arithmetic mean yield the estimate

〈Ĝ−1P̂�v,v〉Ĝ = 1

N

N∑
n=1

v
(
X(n−1)�

)
v(Xn�)

≤ 1

N

(
N−1∑
n=0

v(Xn�)2

)1/2( N∑
n=1

v(Xn�)2

)1/2

≤ 1

N

(
1

2
v(X0)

2 + 1

2
v(XN�)2 +

N−1∑
n=1

v(Xn�)2

)
= 〈v,v〉Ĝ.

We infer that all eigenvalues of̂G−1P̂� are real and not larger than 1. Hence,
the second largest eigenvalueκ̂1 of Ĝ−1P̂� is well defined, which is why we
downweighted the boundary terms ofĜ. The eigenvaluêκ1 of Ĝ−1P̂� and its
corresponding eigenvectorû1 yield estimators ofκJ

1 anduJ
1 .

Plugging the estimator̂µ as well aŝκ1 andû1 into (3.5) and (3.6), we obtain our
estimators ofσ 2(·) andb(·):

σ̂ 2(x) := 2�−1 log(κ̂1)
∫ x
0 û1(y)µ̂(y) dy

û′
1(x)µ̂(x)

,(3.12)

b̂(x) := �−1 log(κ̂1)
û1(x)û′

1(x)µ̂(x) − û′′
1(x)

∫ x
0 û1(y)µ̂(y) dy

û′
1(x)2µ̂(x)

.(3.13)

To avoid indeterminacy, the denominators of the estimators are forced to remain
above a certain minimal level, which depends on the subinterval[a, b] ⊂ [0,1] for
which the loss function is taken. See (4.5) for the exact formulation in the case
of σ̂ 2(·) and proceed analogously forb̂(·).

3.3. Discussion.

3.3.1. Least squares approach.The estimator matrixĜ−1P̂� is built as in
the least squares approach for projection methods in classical regression. To
estimateP�ψλ0(x) = Eσ,b[ψλ0(X�)|X0 = x], the least squares method consists
of minimizing

N∑
n=1

∣∣∣∣∣ψλ0(Xn�) − ∑
|λ|≤J

α0
λψλ

(
X(n−1)�

)∣∣∣∣∣
2

−→ min!(3.14)

over all real coefficients(α0
λ), leading to the normal equations

N∑
n=1

( ∑
|λ|≤J

α0
λψλ

(
X(n−1)�

))
ψλ′

(
X(n−1)�

) =
N∑

n=1

ψλ′
(
X(n−1)�

)
ψλ0(Xn�)
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for all |λ′| ≤ J . Up to the special treatment of the boundary terms, we thus obtain
the vector(α0

λ) as the column with indexλ0 in Ĝ−1P̂�.

3.3.2. Other than wavelet methods.For our projection estimates to work,
we merely need approximation spaces satisfying the Jackson and Bernstein
inequalities. Hence, other finite element bases could serve as well.

The invariant density and the transition density could also be estimated using
kernel methods, but the numerical calculation of the eigenpair(κ̂1, û1) would then
involve an additional discretization step.

3.3.3. Diffusions over the real line. Using a wavelet basis ofL2(R), it is still
possible to estimateµ and P� over the real line; in particular the eigenvalue
characterization (3.10) extends to this case. Hansen, Scheinkman and Touzi (1998)
derive the same formulae as (3.5) and (3.6) under ergodicity and boundary
conditions so that a plug-in approach is feasible. However, a theoretical study
seems to require much more demanding theoretical tools. If the uniform separation
of the spectral valueν1 and a polynomial growth bound for the eigenfunction
u1(·) are ensured, we expect that the same minimax results hold with respect to
an L2(µ)-loss function, where the invariant densityµ(·) is of course parameter-
dependent. However, all spectral approximation results have to be reconsidered
with extra care, in particular because theL2(µ)-norms are in general not equivalent
for different parameters.

3.3.4. Adaptation to unknown smoothness.The knowledge of the smooth-
nesss that is needed for the construction of our estimators is not realistic in
practice. An adaptive estimation of the eigenpair(u1(·), κ1) andµ(·) that yields
adaptive estimators for(σ (·), b(·)) could be obtained by the following modifica-
tions: First, the adaptive estimation ofµ(·) in a classical mixing framework is
fairly well known [e.g., Tribouley and Viennet (1998)]. Second, taking advan-
tage of the multiresolution structure provided by wavelets, the adaptive estima-
tion of P� could be obtained by introducing an appropriate thresholding in the
estimated matrices on a large approximation space.

3.3.5. Interpretation as an ill-posed problem.One can make the link with ill-
posed inverse problems by saying that estimation ofµ(·) is well-posed (i.e., with
achievable rateN−s/(2s+1)), but forS(·) we need an estimate of the derivativeu′

1(·)
yielding an ill-posedness degree of 1 (N−s/(2s+3)). Observe that the regularity
conditionsσ ∈ Hs and b ∈ Hs−1 are translated intoµ ∈ Hs , S ∈ Hs . The
transformation of(µ,S) to σ 2(·) = 2S(·)/µ(·) is stable [L2-continuous forS(·) ≥
s0 > 0], whereas inb(·) = S′(·)/µ(·) another ill-posed operation (differentiation)
occurs with degree 1.

A brief stepwise explanation reads as follows. Step 1, the natural parametriza-
tion (µ,P�) is well-posed (forP� in the strong operator norm sense). Step 2, the
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calculation of the spectral pair(κ1, u1) is well-posed. Step 3, the differentiation
of u1 that determinesS has an ill-posedness of degree 1. Step 4, the calculation
of σ 2 from (µ,S) is well-posed. Step 5, the calculation ofb from (µ,S) is ill-
posed of degree 1.

3.3.6. Regularity restrictions onb(·) and σ(·). It is noteworthy that in the
continuous time or high frequency observation case, the parameterb(·) does not
influence the asymptotic behavior of the estimator ofσ(·) and vice versa. The
estimation problems are separated. In our low frequency regime we had to suppose
tight regularity connections betweenσ(·) andb(·). This stems from the fact that
for the underlying Markov chainX(N,�) the parametersµ(·) andS(·) are more
natural and the regularity of these functions depends on the regularity both ofb(·)
and ofσ(·).

At a different level, in nonparametric regression, different smoothness con-
straints are needed between the mean and the variance function. Recommended
references are Müller and Stadtmüller (1987) and Fan and Yao (1998).

Finally, although we ask for the tight connections1 = s2 − 1 for the regularity
s1 of the drift b(·) ands2 of the diffusion coefficientσ(·), our results readily carry
over to the milder constraints1 ≥ s2 − 1.

3.3.7. Estimation when one parameter is known.If σ(·) is known, an
estimateµ̂ of the invariant density yields an estimate ofb(·), since

b(x) = (σ 2(x)µ(x))′

2µ(x)
, x ∈ [0,1].

Estimation ofµ ∈ Hs , s > 1, inH 1-norm can be achieved with rateN−(s−1)/(2s+1)

and this rate is thus also valid for estimatingb(·) in L2-norm. Given the drift
coefficientb(·), we find

σ 2(x) = 2

∫ x
0 b(y)µ(y) dy + C

µ(x)
, x ∈ [0,1],

where C is a suitable constant. If we knewσ 2(0), we would obtain the rate
N−s/(2s+1) for µ ∈ Hs .

Using a preliminary nonparametric estimateσ̂ 2
C depending on the parameterC

and then fitting a parametric model forC, we are likely to find the same rate. In
any case, the assumption of knowing one parameter seems rather artificial and no
further investigations have been performed.

3.3.8. Estimation at the boundary.Our plug-in estimators can only be defined
on the open subinterval(0,1). Estimation at the boundary points leads to a
risk increase due toS−1(0) = ν1u1(0)µ(0)/u′′

1(0) by de l’Hôspital’s rule applied
to (3.4). Thus, estimatingσ(0) and b(0) involves taking the second and third
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derivative, respectively, when using plug-in estimators. A pointwise lower bound
result—along the lines of theL2-lower bound proof—shows that this deterioration
cannot be avoided.

4. Proof of the upper bound.

4.1. Convergence ofµ̂. First, we recall the proof for the risk bound in
estimating the invariant measure:

PROPOSITION4.1. With the choice2J
∼ N1/(2s+1) the following uniform risk

estimate holds for̂µ based onN observations:

sup
(σ,b)∈�s

Eσ,b

[‖µ̂ − µ‖2
L2

]1/2 � N−s/(2s+1).

PROOF. The explicit formula (3.1) forµ shows that‖µ‖Hs is uniformly
bounded over�s . This implies that the bias term satisfies

‖µ − πJ µ‖L2 � 2−J s‖µ‖Hs ∼ N−s/(2s+1),

uniformly over�s . Sinceµ̂λ is an unbiased estimator of〈µ,ψλ〉, we can apply the
variance estimates of Lemma 6.2 to obtain

Eσ,b

[‖µ̂ − πJ µ‖2
L2

] = ∑
|λ|≤J

Varσ,b[µ̂λ] � 2JN−1,

which—in combination with the uniformity of the constants involved—gives the
announced upper bound.�

4.2. Spectral approximation.We shall rely on the spectral approximation
results given in Chatelin (1983); compare also Kato (1995). Since forσ̂ (·) we
have to estimate not only the eigenvalueu1, but also its derivativeu′

1, we will
be working in theL2-Sobolev spaceH 1. The general idea is that the error in the
eigenvalue and in the eigenfunction can be controlled by the error of the operator
on the eigenspace, once the overall error measured in the operator norm is small.
Let R(T, z) = (T − z Id)−1 denote the resolvent map of the operatorT , σ(T ) its
spectrum andB(x, r) the closed ball of radiusr aroundx.

PROPOSITION4.2. Suppose a bounded linear operatorT on a Hilbert space
has a simple eigenvalueκ such thatσ(T ) ∩ B(κ,ρ) = {κ} holds for some
ρ > 0. Let Tε be a second linear operator with‖Tε − T ‖ < R

2 , whereR :=
(supz∈B(κ,ρ) ‖R(T, z)‖)−1. Then the operatorTε has a simple eigenvalueκε in
B(κ,ρ) and there are eigenvectorsu anduε with T u = κu, Tεuε = κεuε satisfying

‖uε − u‖ ≤ √
8R−1‖(Tε − T )u‖.(4.1)
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PROOF. We use the resolvent identity and the Cauchy integral representation
of the spectral projectionPε on the eigenspace ofTε contained inB(κ,ρ) [see
Chatelin (1983), Lemma 6.4]. By the usual Neumann series argument we find
formally for an eigenvectoru corresponding toκ ,

‖u − Pεu‖ = 1

2π

∥∥∥∥ ∮
B(κ,ρ)

R(Tε, z)

κ − z
dz (Tε − T )u

∥∥∥∥
≤ 1

2π
2πρ sup

z∈B(κ,ρ)

‖R(Tε, z)‖ρ−1‖(Tε − T )u‖

≤ sup
z∈B(κ,ρ)

‖R(T, z)‖
1− ‖R(T, z)‖‖Tε − T ‖‖(Tε − T )u‖

= (R − ‖Tε − T ‖)−1‖(Tε − T )u‖.
Hence, for‖Tε − T ‖ < R

2 this calculation is a posteriori justified and yields
‖u − Pεu‖ < 2R−1‖(Tε − T )u‖. Applying ‖(Tε − T )u‖ < R

2 ‖u‖ once again, we
see that the projectionPε cannot be zero. Consequently there must be a part of
the spectrum ofTε in B(κ,ρ). By the argument in the proof of Theorem 5.22 in
Chatelin (1983) this part consists of a simple eigenvalueκε.

It remains to find eigenvectors that are close, too. Observe that, for arbitrary
Hilbert space elementsg,h with ‖g‖ = ‖h‖ = 1 and〈g,h〉 ≥ 0,

‖g − h‖2 = 2− 2〈g,h〉 ≤ 2(1+ 〈g,h〉)(1− 〈g,h〉) = 2‖g − 〈g,h〉h‖2

holds. We substitute forg and h the normalized eigenvectorsu and uε with
〈u,uε〉 ≥ 0; note that oblique projections only enlarge the right-hand side and thus
infer (4.1). �

COROLLARY 4.3. Under the conditions of Proposition4.2 there is a constant
C = C(R,‖T ‖) such that|κε − κ| ≤ C‖(Tε − T )u‖.

PROOF. The inverse triangle inequality yields

|κε − κ| = |‖Tεuε‖ − ‖T u‖| ≤ ‖Tε(uε − u) + (Tε − T )u‖
≤ (‖T ‖ + ‖Tε − T ‖)‖uε − u‖ + ‖(Tε − T )u‖
≤

((
‖T ‖ + R

2

)√
8R−1 + 1

)
‖(Tε − T )u‖,

where the last line follows from Proposition 4.2.�

4.3. Bias estimates. In a first estimation step, we bound the deterministic error
due to the finite-dimensional projectionπµ

J P� of P�. We start with a lemma
stating thatπµ

J andπJ have similar approximation properties.
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LEMMA 4.4. Let m : [0,1] → [m0,m1] be a measurable function withm1 ≥
m0 > 0. Denote byπm

J theL2(m)-orthogonal projection onto the multiresolution
spaceVJ . Then there is a constantC = C(m0,m1) such that

‖(Id −πm
J )f ‖H1 ≤ C‖(Id −πJ )f ‖H1 ∀f ∈ H 1([0,1]).

PROOF. The norm equivalencem0‖g‖L2 ≤ ‖g‖m ≤ m1‖g‖L2 implies

‖πm
J ‖L2→L2 ≤ m1m

−1
0 ‖πm

J ‖L2(m)→L2(m) = m1m
−1
0 .

On the other hand, the Bernstein inequality inVJ and the Jackson inequality for
Id−πJ in H 1 andL2 yield, for f ∈ H 1,

‖(Id−π
µ
J )f ‖H1 = ‖(Id −π

µ
J )(Id−πJ )f ‖H1

≤ ‖(Id −πJ )f ‖H1 + ‖πµ
J (Id−πJ )f ‖H1

� ‖(Id −πJ )f ‖H1 + 2J‖πµ
J (Id−πJ )f ‖L2

� ‖(Id −πJ )f ‖H1 + ‖πµ
J ‖L2→L2‖(Id −πJ )f ‖H1,

where the constants depend only on the approximation spaces.�

PROPOSITION 4.5. Uniformly over �s we have‖πµ
J P� − P�‖H1→H1 �

2−J s .

PROOF. The transition densityp� is the kernel of the operatorP�. Hence,
from Lemma 6.7 it follows thatP� :H 1 → Hs+1 is continuous with a uniform
norm bound over�s . Lemma 4.4 yields

‖(P� − π
µ
J P�)f ‖H1 � ‖ Id−πJ ‖Hs+1→H1‖f ‖H1.

The Jackson inequality inH 1 gives the result. �

COROLLARY 4.6. LetκJ
1 be the largest eigenvalue smaller than1 of πµ

J with
eigenfunctionuJ

1 . Then uniformly over�s the following estimate holds:

|κJ
1 − κ1| + ‖uJ

1 − u1‖H1 � 2−J s.

PROOF. We are going to apply Proposition 4.2 on the spaceH 1 and its
Corollary 4.3. In view of Proposition 4.5, it remains to establish the existence
of uniformly strictly positive values forρ andR over�s . The uniform separation
of κ1 from the rest of the spectrum is the content of Proposition 6.5.

For the choice ofρ in Proposition 6.5 we search a uniform boundR. If
we regardP� on L2(µ), then P� is self-adjoint and satisfies‖R(P�, z)‖ =
dist(z, σ (P�))−1 [see Chatelin (1983), Proposition 2.32].
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By Lemma 6.3 and the commutativity betweenP� andL we conclude

‖R(P�, z)f ‖H1 ∼ ‖(Id−L)1/2R(P�, z)f ‖µ

≤ ‖R(P�, z)‖‖(Id−L)1/2f ‖µ

∼ dist
(
z, σ (P�)

)−1‖f ‖H1.

Hence, ‖R(P�, z)‖H1→H1 � ρ−1 holds uniformly over z ∈ B(κ,ρ) and
(σ, b) ∈ �s . �

REMARK 4.7. The Kato–Temple inequality [Chatelin (1983), Theorem 6.21]
onL2(µ) even establishes the so-called superconvergence|κJ

1 − κ1| � 2−2J s .

4.4. Variance estimates.To bound the stochastic error on the finite-
dimensional spaceVJ , we return to vector-matrix notation and look for a bound
on the error involved in the estimatorsĜ andP̂�. The Euclidean norm is denoted
by ‖ · ‖l2.

LEMMA 4.8. For any vectorv ∈ R
|VJ | we have, uniformly over�s ,

Eσ,b

[‖(Ĝ − G)v‖2
l2

]
� ‖v‖2

l2
N−12J .

PROOF. We obtain, by (6.1) in Lemma 6.2,

Eσ,b

[‖(G − Ĝ)v‖2
l2

]
= ∑

|λ|≤J

Eσ,b

[
1

N2

(
Eσ,b[ψλ(X0)v(X0)] − 1

2
ψλ(X0)v(X0)

− 1

2
ψλ(XN�)v(XN�) −

N−1∑
n=1

ψλ(Xn�)v(Xn�)

)2]

�
∑

|λ|≤J

N−1
Eσ,b

[(
ψλ(X0)v(X0)

)2]

� N−1

∥∥∥∥∥ ∑
|λ|≤J

ψ2
λ

∥∥∥∥∥∞
‖v‖2

L2‖µ‖∞ � N−12J‖v‖2
l2
,

as asserted.�

LEMMA 4.9. For any vectorv we have, uniformly over�s ,

Eσ,b

[‖(P̂� − P�)v‖2
l2

]
� ‖v‖2

l2
N−12J .
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PROOF. We obtain, by (6.2) in Lemma 6.2,

Eσ,b

[‖(P̂� − P�)v‖2
l2

]
= ∑

|λ|≤J

Eσ,b

[(
1

N

N∑
n=1

ψλ

(
X(n−1)�

)
v(Xn�) − Eσ,b[ψλ(X0)v(X�)]

)2]

�
∑

|λ|≤J

N−1
Eσ,b

[(
ψλ(X0)v(X1)

)2]
≤ N−1

∑
|λ|≤J

‖ψλ‖2
L2‖v‖2

L2‖µp�‖∞ � N−12J ‖v‖2
l2
,

as asserted.�

DEFINITION 4.10. We introduce the random set

R = RJ,N := {‖Ĝ − G‖ ≤ 1
2‖G−1‖−1}

.

REMARK 4.11. SinceG is invertible, so isĜ on R with ‖Ĝ−1‖ ≤ 2‖G−1‖
by the usual Neumann series argument.

LEMMA 4.12. Uniformly over�s we havePσ,b(� \ R) � N−122J .

PROOF. By the classical Hilbert–Schmidt norm inequality,

‖Ĝ − G‖2
l2→l2

≤ ∑
|λ|≤J

‖(Ĝ − G)eλ‖2
l2→l2

holds with unit vectors(eλ). Then Lemma 4.8 gives uniformly

Eσ,b

[‖Ĝ − G‖2
l2→l2

]
� N−122J .

Since the spacesL2([0,1]) andL2(µ) are isomorphic with uniform isomorphism
constants,‖G−1‖ ∼ 1 holds uniformly over�s and the assertion follows from
Chebyshev’s inequality.�

PROPOSITION4.13. For anyε > 0 we have, uniformly over�s ,

Pσ,b(R ∩ {‖Ĝ−1P̂� − G−1P�‖ ≥ ε}) � N−122J ε−2.

PROOF. First, we separate the different error terms:

Ĝ−1P̂� − G−1P� = Ĝ−1(P̂� − P�) + (Ĝ−1 − G−1)P�

= Ĝ−1((P̂� − P�) + (G − Ĝ)G−1P�

)
.



2242 E. GOBET, M. HOFFMANN AND M. REIß

On the setR we obtain, by Remark 4.11,

‖Ĝ−1P̂� − G−1P�‖ ≤ ‖ ˆG−1‖(‖P̂� − P�‖ + ‖G − Ĝ‖‖G−1‖‖P�‖)
≤ 2‖G−1‖(‖P̂� − P�‖ + ‖G − Ĝ‖‖G−1‖‖P�‖)
� ‖P̂� − P�‖ + ‖G − Ĝ‖.

By Lemmas 4.8 and 4.9 and the Hilbert–Schmidt norm estimate (cf. the proof of
Lemma 4.12) we obtain the uniform norm bound over�s ,

Eσ,b[‖Ĝ−1P̂� − G−1P�‖21R] � N−122J .

It remains to apply Chebyshev’s inequality.�

Having established the weak consistency of the estimators in matrix norm, we
now bound the error on the eigenspace.

PROPOSITION 4.14. Let uJ
1 be the vector associated with the normalized

eigenfunctionuJ
1 of π

µ
J P� with eigenvalueκJ

1 . Then uniformly over�s the
following risk bound holds:

Eσ,b

[‖(Ĝ−1P̂� − G−1PJ
�)uJ

1‖2
l2

1R
]
� N−12J .

PROOF. By the same separation of the error terms onR as in the preceding
proof and by Lemmas 4.8 and 4.9 we find

Eσ,b

[‖(Ĝ−1P̂� − G−1PJ
�)uJ

1‖2
l2

1R
]

≤ 8‖G−1‖2(
E

[‖(P̂� − PJ
�)uJ

1‖2
l2

] + E
[‖(G − Ĝ)κJ

1 uJ
1‖2

l2

])
� N−12J .

The uniformity over�s follows from the respective statements in the lemmas.�

COROLLARY 4.15. Let κ̂1 be the second largest eigenvalue of the matrix
Ĝ−1P̂� with eigenvector̂u1. If Ĝ is not invertible or if‖û1‖l2 ≥ 2 sup�s

‖u1‖L2

holds, put û1 := 0, κ̂1 := 0. If N−122J → 0 holds, then uniformly over�s the
following bounds hold forN,J → ∞:

Eσ,b

[(|κ̂1 − κJ
1 |2 + ‖û1 − uJ

1‖2
l2

)
1R

]
� N−12J ,(4.2)

Eσ,b

[‖û1 − uJ
1‖2

H1

]
� N−123J .(4.3)

PROOF. For the proof of (4.2) we apply Proposition 4.2 using the Euclidean
Hilbert spaceRVJ and Corollary 4.3. Then Proposition 4.14 in connection with
Proposition 4.13 (usingε < R/2 andN−122J → 0) yields the correct asymptotic
rate on the eventR. For the uniform choice ofρ and R for G−1PJ

� in
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Proposition 4.2 just use the corresponding result forP� and the convergence
‖πµ

J P� − P�‖ → 0.
The precaution taken for undefined or too largeû1 is necessary for the event

� \ R. Since the estimatorŝκ1 andû1 are now kept artificially bounded, the rate
Pσ,b(� \ R) � N−122J established in Lemma 4.12 suffices to bound the risk on
�\R. Hence, the second estimate (4.3) is a consequence of (4.2) and the Bernstein
inequality‖û1 − uJ

1‖H1 � 2J ‖û1 − uJ
1‖L2. �

REMARK 4.16. The main result of this section, namely (4.3), can be extended
to pth moments for allp ∈ (1,∞):

Eσ,b

[‖û1 − uJ
1‖p

H1

]1/p � N−1/223J/2.(4.4)

Indeed, tracing back the steps, it suffices to obtain bounds on the moments of
orderp in Lemmas 4.8 and 4.9, which on their part rely on the mixing statement
in Lemma 6.2. By arguments based on the Riesz convexity theorem this last
lemma generalizes to the corresponding bounds forpth moments, as derived in
Section VII.4 of Rosenblatt (1971). For the sake of clarity we have restricted
ourselves to the casep = 2 here.

4.5. Upper bound forσ(·). By Corollary 4.15 and our choice ofJ , 2J
∼

N1/(2s+3),

sup
(σ,b)∈�s

Eσ,b

[|κ̂1 − κJ
1 |2 + ‖û1 − uJ

1‖2
H1

]
� N−123J

∼ N−2s/(2s+3)

holds. Using this estimate and the estimate forµ̂ in Proposition 4.1, the risk of
the plug-in estimator̂σ 2(·) in (3.12) is bounded as asserted in the theorem. We
only have to ensure that the stochastic error does not increase from the plug-in and
that the denominator is uniformly bounded away from zero. Using the Cauchy–
Schwarz inequality and Remark 4.16 on the higher moments of our estimators, we
encounter no problem in the first case. The second issue is dealt with by using the
lower boundca,b > 0 in Proposition 6.5 so that an improvement of the estimate for
the denominator by using

µ̂u1 := max(µ̂û1, ca,b)(4.5)

instead ofµ̂û1 guarantees the uniform lower bound away from zero.

4.6. Upper bound forb(·). Sinceb(·) = S′(·)/µ(·) holds, it suffices to discuss
how to estimateS′(·), which amounts to estimating the eigenfunctionu1 in
H 2-norm; compare with (3.6). SubstitutingH 2 for H 1 in Proposition 4.5 and its
proof, we obtain the bound

‖πµ
J P� − P�‖H2→H2 � 2−J (s−1),



2244 E. GOBET, M. HOFFMANN AND M. REIß

because‖ Id−πJ‖Hs+1→H2 is of this order. As in Corollary 4.6 this is also the
rate for the bias estimate. The only fine point is the uniform norm equivalence
‖f ‖H2 ∼ ‖(Id −L)f ‖µ for f ∈ dom(L), which follows by the methodology of
perturbation and similarity arguments given in Section VI.4b of Engel and Nagel
(2000). We omit further details.

The variance estimate is exactly the same. From (4.2) we infer, by Bernstein’s
inequality forH 2 and the estimate ofPσ,b(� \ R),

Eσ,b

[‖û1 − uJ
1‖2

H2

]
� N−125J .

Therefore balancing the bias and variance part of the risk by the choice 2J
∼

N1/(2s+3)—as before—yields the asserted rate of convergenceN−(s−1)/(2s+3).

5. Proof of the lower bounds. First, the usual Bayes prior technique is
applied for the reduction to a problem of bounding certain likelihood ratios. Then
the problem is reduced to that of bounding theL2-distance between the transition
probabilities, which is finally accomplished using Hilbert–Schmidt norm estimates
and the explicit form of the inverse of the generator.

5.1. The least favorable prior. The idea is to perturb the drift and diffusion
coefficients of the reflected Brownian motion in such a way that the invariant
measure remains unchanged. Let us assume thatψ is a compactly supported
wavelet inHs with one vanishing moment. Without loss of generality we suppose
C > 1 > c > 0 such that(1,0) ∈ �s holds. We putψjk = 2j/2ψ(2j · − k) and
denote byKj ⊂ Z a maximal set of indicesk such that supp(ψjk) ⊂ [a, b] and
supp(ψjk) ∩ supp(ψjk′) = ∅ holds for allk, k′ ∈ Kj , k �= k′. Furthermore, we set
γ ∼ 2−j (s+1/2) such that, for allε = ε(j) ∈ {−1,+1}|Kj |,

(√
2Sε, (Sε)

′) ∈ �s with Sε(x) := Sε(j, x) :=
(

2+ γ
∑

k∈Kj

εkψjk(x)

)−1

.

We consider the corresponding diffusions with generator

LSεf (x) := (Sεf
′)′(x) := Sε(x)f ′′(x) + S′

ε(x)f ′(x), f ∈ dom(L).

Hence, the invariant measure is the Lebesgue measure on[0,1].
The usual Assouad cube techniques [e.g., see Korostelev and Tsybakov (1993)]

give, for any estimator̂σ(·) and forN ∈ N, ρ > 0, the lower bounds

sup
(σ,b)∈�s

Eσ,b

[‖σ̂ 2 − σ 2‖2
L2([a,b])

]
� 2j δ2

σ2e
−ρp0,(5.1)

sup
(σ,b)∈�s

Eσ,b

[‖b̂ − b‖2
L2([a,b])

]
� 2j δ2

be
−ρp0,(5.2)
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where, for allε, ε′ with ‖ε − ε′‖l1 = 2 and withPε := P√
2Sε,S′

ε
,

δσ2 ≤ ‖2Sε′ − 2Sε‖L2, δb ≤ ‖S′
ε′ − S′

ε‖L2, p0 ≤ Pε

(
dPε′

dPε

∣∣∣∣
FN

> e−ρ

)
.

We chooseδσ2 ∼ γ since, forx ∈ supp(ψjk) with εk = −ε′
k ,

Sε′(x) − Sε(x) = ±2γψjk(x)Sε′(x)Sε(x)

and Sε, Sε′ → 1
2 holds uniformly so that theL2-norm is indeed of orderγ .

Equivalently, we findδb ∼ 2jγ . Due toγ ∼ 2−j (s+1/2), the proof of the theorem
is accomplished, once we have shown that a strictly positivep0 can be chosen for
fixedρ > 0 and the asymptotics 2j

∼ N1/(2s+3).

5.2. Reduction to the convergence of transition densities.If we denote the
transition probability densitiesPε(X� ∈ dy|X0 = x) by pε(x, y) dy and the
transition density of reflected Brownian motion bypBM, then we infer, from
Proposition 6.4,

lim
j→∞ sup

ε∈{−1,+1}Kj

‖pε − pBM‖∞ = 0

due to ‖Sε − 1
2‖C1 ∼ γ 23j/2 → 0 for s > 1. We are now going to use the

estimate− log(1 + x) ≤ x2 − x, which is valid for allx ≥ −1
2. For j so large

that ‖1 − pε′
pε

‖∞ ≤ 1
2 holds, the Kullback–Leibler distance can be bounded from

above (note that the invariant measure is Lebesgue measure):

Eε

[
− log

(
dPε′

dPε

∣∣∣∣
FN

)]

= −
N∑

k=1

Eε

[
log

(
pε′(Xk−1,Xk)

pε(Xk−1,Xk)

)]

= −N

∫ 1

0

∫ 1

0
log

(
pε′(x, y)

pε(x, y)

)
pε(x, y) dy dx

≤ N

∫ 1

0

∫ 1

0

(pε′(x, y) − pε(x, y))2

pε(x, y)
− (

pε′(x, y) − pε(x, y)
)
dy dx

= N

∫ 1

0

∫ 1

0

(pε′(x, y) − pε(x, y))2

pε(x, y)
dy dx

≤ N‖p−1
ε ‖∞‖pε′ − pε‖2

L2([0,1]2).
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The square root of the Kullback–Leibler distance bounds the total variation
distance in order, which by the Chebyshev inequality yields

Pε

(
dPε′

dPε

∣∣∣∣
FN

> e−ρ

)
= 1− Pε

(
dPε′

dPε

∣∣∣∣
FN

− 1 ≤ e−ρ − 1
)

≥ 1− Eε

[∣∣∣∣dPε′

dPε

∣∣∣∣
FN

− 1
∣∣∣∣](1− e−ρ)−1

= 1− (1− e−ρ)−1‖(Pε′ − Pε)|FN
‖TV

≥ 1− CN1/2‖pε′ − pε‖L2([0,1]2),

whereC > 0 is some constant independent ofγ , N , ε andj . Summarizing, we
need the estimate

lim sup
N,j→∞

N1/2‖pε′ − pε‖L2([0,1]2) < C−1 for 2j
∼ N1/(2s+3).(5.3)

5.3. Convergence of the transition densities.Observe first that‖pε′ −
pε‖L2([0,1]2) is exactly the Hilbert–Schmidt norm distance‖P ε′

� −P ε
�‖HS between

the transition operators derived fromLSε′ and LSε acting on the Hilbert space
L2([0,1]). If we introduce

V :=
{
f ∈ L2([0,1])

∣∣∣ ∫ f = 0
}

and V ⊥ := {f ∈ L2([0,1])|f constant},

then the transition operators coincide onV ⊥ and leave the spaceV invariant so
that‖P ε′

� − P ε
�‖HS = ‖(P ε′

� − P ε
�)|V ‖HS.

We take advantage of the key result that for Lipschitz functionsf with Lipschitz
constant� on the union of the spectra of two self-adjoint bounded operators
T1 andT2 the continuous functional calculus satisfies

‖f (T1) − f (T2)‖HS ≤ �‖T1 − T2‖HS;(5.4)

see Kittaneh (1985). We proceed by bounding the Hilbert–Schmidt norm of the
difference of the inverses of the generators and by then transferring this bound to
the transition operators via (5.4). By the functional calculus for operators onV , the
functionf (z) = exp(�(z−1)) sends(Lε|V )−1 to P ε

�|V . Moreover,f is uniformly
Lipschitz continuous on(−∞,0) due to� := supz<0 |f ′(z)| = 4�−1e−2 < ∞.
Thus, we arrive at

‖pε′ − pε‖L2([0,1]2) = ∥∥(
P ε′

� − P ε
�

)∣∣
V

∥∥
HS ≤ �‖(Lε′ |V )−1 − (Lε|V )−1‖HS.

The inverse of the generatorLε onV has forg ∈ V the explicit form

(Lε|V )−1g(x) =
∫ 1

0

(∫ 1

y
S−1

ε (v)
(
v − 1[x,1](v)

)
dv

)
g(y) dy.(5.5)
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Using |S−1
ε′ − S−1

ε | = 2γψjk for somek ∈ Kj and denoting by� the primitive
of ψ with compact support, we obtain

‖(Lε′ |V )−1 − (Lε|V )−1‖2
HS

=
∫ 1

0

∫ 1

0

(∫ 1

y
2γψjk(v)

(
v − 1[x,1](v)

)
dv

)2

dx dy

= 4γ 22−j
∫ 1

0

∫ 1

0

(
−�(2j y − k)y

−
∫ 1

y
�(2j v − k) dv + �

(
2j (x ∨ y) − k

))2

dx dy

� γ 22−j‖�(2j ·)‖2
L2 ∼ γ 22−2j .

Consequently,‖pε′ − pε‖2
L2 ∼ 2−j (2s+3) holds with an arbitrarily small constant

if γ 2j (s+1/2) is chosen sufficiently small. Hence, the estimate (5.3) is valid for this
choice and the asymptoticsN2−j (2s+3) → 1, which remained to be proved.

6. Technical results. We shall need several technical results, mainly to de-
scribe the dependence of certain quantities on the underlying diffusion parameters.
The following result is in close analogy with Section IV.5 in Bass (1998).

LEMMA 6.1. The second largest eigenvalueν1 of the infinitesimal generator
Lσ,b can be bounded away from zero:

ν1 ≤ − inf
x∈[0,1]S(x) =: −s0.

This eigenvalue is simple and the corresponding eigenfunctionf1 is monotone.

PROOF. The variational characterization ofν1 [Davies (1995), Section 4.5]
and partial integration yield

ν1 = sup
‖f ‖µ=1
〈f,1〉µ=0

〈Lf,f 〉µ = − inf‖f ‖µ=1
〈f,1〉µ=0

∫ 1

0
S(x)f ′(x)2 dx.

Given the derivativef ′, the functionf ∈ dom(L) with 〈f,1〉µ = 0 is uniquely
determined. SettingM(x) := µ([0, x]), this functionf satisfies

0 =
∫ 1

0

(
f (0) +

∫ x

0
f ′(y) dy

)
µ(x) dx = f (0) +

∫ 1

0
f ′(y)

(
1− M(y)

)
dy.
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Forf,g ∈ L2(µ) with 〈f,1〉µ = 〈g,1〉µ = 0 we find

〈f,g〉µ =
∫ 1

0

(
f (0) +

∫ x

0
f ′(y) dy

)(
g(0) +

∫ x

0
g′(z) dz

)
µ(x) dx

= f (0)g(0) − f (0)

∫ 1

0
g′(z)

(
1− M(z)

)
dz

− g(0)

∫ 1

0
f ′(y)

(
1− M(y)

)
dy

+
∫ 1

0

∫ 1

0
f ′(y)g′(z)

(
1− M(y ∨ z)

)
dy dz

=
∫ 1

0

∫ 1

0

(
M(y ∧ z) − M(y)M(z)

)
f ′(y)g′(z) dy dz

=:
∫ 1

0

∫ 1

0
m(y, z)f ′(y)g′(z) dy dz.

The kernelm(y, z) is positive on(0,1)2 and bounded by 1, whence we obtain, by
regardingu = f ′,

−ν1 = inf
u

∫ 1
0 S(x)u(x)2 dx∫ 1

0
∫ 1
0 m(y, z)u(y)u(z) dy dz

≥ s0‖u‖2
L2

‖u‖2
L1

≥ s0.

If the derivative of an eigenfunctionf1 changed sign, we could writef ′
1 = u+−u−

with two nonnegative functionsu+, u− that are nontrivial. However, this would
entail that the antiderivativef0 of f ′

0 := u++u− satisfies〈Lf0, f0〉µ = 〈Lf1, f1〉µ,
while ‖f0‖µ would be strictly greater than‖f1‖µ due to the positivity ofm(u,v).
This contradicts the variational characterization ofν1 so that all eigenfunctions
corresponding toν1 are monotone. Consequently, for any two eigenfunctions
f1 andg1 the integrand in

〈f1, g1〉µ =
∫ 1

0

∫ 1

0
m(y, z)f ′

1(y)g′
1(z) dy dz

does not change sign and the whole integral does not vanish. We infer that
the eigenspace ofν1 cannot contain two orthogonal functions and is thus one-
dimensional. �

LEMMA 6.2. For H1, H2 ∈ L2([0,1]) we have the following two uniform
variance estimates over�s :

Varσ,b

[
1

N

N∑
n=1

H1(Xn�)

]
� N−1

Eσ,b[H1(X0)
2],(6.1)

Varσ,b

[
1

N

N∑
n=1

H1
(
X(n−1)�

)
H2(Xn�)

]
� N−1

Eσ,b[H1(X0)
2H2(X1)

2].(6.2)
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PROOF. Due to the uniform spectral gaps0 over �s (Proposition 6.1),
P� satisfies‖P�f ‖µ ≤ γ ‖f ‖µ with γ := e−|s0|� < 1 for all f ∈ L2(µ) with
〈f,1〉µ = 0.

We obtain the first estimate by considering the centered random variables
f1(Xk�) := H1(Xk�) − Eσ,b[H1(Xk�)], k ∈ N:

Varσ,b

[
N∑

n=1

H1(Xn�)

]
=

N∑
m,n=1

Eσ,b[f1(Xm�)f1(Xn�)] =
N∑

m,n=1

〈
f1,P

|m−n|
� f1

〉
µ

≤
N∑

m,n=1

γ |m−n|‖f1‖2
µ � NEσ,b[H1(X0)

2].

The second estimate follows along the same lines. Merely observe that for
m > n, by the projection property of conditional expectations

Eσ,b

[
H1

(
X(n−1)�

)
H2(Xn�)H1

(
X(m−1)�

)
H2(Xm�)

]
= 〈

H1 · (P�H2),P
m−n−1
�

(
H1 · (P�H2)

)〉
µ

holds, where “·” is the usual multiplication operator.�

LEMMA 6.3. Uniformly over�s the following norm equivalence holds:

‖f ‖H1 ∼ ‖(Id −L)1/2f ‖µ for all f ∈ H 1.

PROOF. The invariant measureµ and the functionS are uniformly bounded
away from zero and infinity so that we obtain, with uniform constants forf ∈
dom(L),

‖f ‖2
H1 = 〈f,f 〉 + 〈f ′, f ′〉 ∼ 〈f,f 〉µ + 〈Sf ′, f ′〉

= 〈(Id−L)f,f 〉µ = ‖(Id −L)1/2f ‖2
µ.

By an approximation argument this extends to allf ∈ H 1 = dom(L1/2). �

PROPOSITION6.4. Suppose((σn(·), bn(·)) ∈ �s , n ≥ 0, and

lim
n→∞‖σn − σ0‖∞ = 0, lim

n→∞‖bn − b0‖∞ = 0.

Then the corresponding transition probabilities(p
(n)
t ) converge uniformly:

lim
n→∞

∥∥p(n)
t (·, ·) − p

(0)
t (·, ·)∥∥∞ = 0.

PROOF. An application of the results by Stroock and Varadhan (1971) yields
that the corresponding diffusion processesX(n) converge weakly toX(0) for any
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fixed initial valueX(n)(0) = x. This implies in particular

lim
n→∞

∫ 1

0
p

(n)
t (x, y)ϕ(y) dy =

∫ 1

0
p

(0)
t (x, y)ϕ(y) dy

for all test functionsϕ ∈ L∞([0,1]) and allx ∈ [0,1].
On the other hand, the functions(p(n)

t )n form a relatively compact subset of
C([0,1]2) by Proposition 6.7 and Sobolev embeddings. Any point of accumulation
of (p

(n)
t )n in C([0,1]2) must equalp(0)

t , which follows from testing with suitable
functionsϕ ∈ L∞([0,1]). Consequently,(p(n)

t )n is a relatively compact sequence
with only one point of accumulation and thus converges.�

PROPOSITION6.5. For the class�s there is a constantρ > 0 such that for all
parameters(σ (·), b(·)) the eigenvalueκ1 = κ1(σ, b) of P� is uniformly separated:
σ(P�) ∩ B(κ1,2ρ) = {κ1}.

Furthermore, for all 0 < a < b < 1 there is a uniform constantca,b > 0 such
that the associated first eigenfunctionu1 = u1(σ, b) satisfies, for all (σ, b) ∈ �s ,

min
x∈[a,b] |u

′
1(x)| ≥ ca,b.

PROOF. Proceeding indirectly, assume that there is a sequence(σn, bn) ∈ �s

such that the corresponding eigenvalues satisfyκ
(n)
1 → 1 (or κ

(n)
1 − κ

(n)
2 → 0,

resp.). By the compactness of the Sobolev embedding ofHs into C0 we can
pass to a uniformly converging subsequence. Hence, Proposition 6.4 yields
that the corresponding transition densities converge uniformly, which implies
that the transition operatorsP (n)

� converge in operator norm onL2([0,1]). By
Proposition 5.6 and Theorem 5.20 in Chatelin (1983), this entails the convergence
of their eigenvalues with preservation of the multiplicities. Since the limiting
operator is again associated with an elliptic reflected diffusion, the fact that the
eigenvalueκ1 = e�ν1 is always simple (Lemma 6.1) gives the contradiction.

By the same indirect arguments, we construct transition operatorsP
(n)
� on

the spaceC([0,1]) and infer that the eigenfunctionsu(n)
1 [Chatelin (1983),

Theorem 5.10], the invariant measuresµ(n) [see (3.1)] and the inverses of the
functions S(n) [see (3.2)] converge in supremum norm. Therefore(u

(n)
1 )′ =

ν
(n)
1 (S(n))−1 ∫

u
(n)
1 µ(n) also converges in supremum norm. Due tou′

1|[a,b] �= 0

(Lemma 6.1) this implies that(u(n)
1 )′ cannot converge to zero on[a, b]. �

LEMMA 6.6. The L2(µ)-normalized eigenfunctionuk of the generatorL
corresponding to the(k + 1)st largest eigenvalueνk satisfies

‖uk‖Hs+1 ≤ C(s, s0,‖S−1‖s ,‖µ‖s−1)|νk|�s�,
whereC is a continuous function of its arguments.
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PROOF. We know thatµ−1(Su′
k)

′ = νkuk andu′
k(0) = 0 holds, which imply

u′
k(x) = νkS

−1(x)

∫ x

0
uk(u)µ(u) du.

Supposeuk ∈ Hr+1 with r ∈ [0, s]. Then the functionukµ is in Hr∧(s−1) due
to uk ∈ Cr (Sobolev embeddings). Hence, the antiderivative is inH(r+1)∧s .
As S−1 ∈ Hs holds, the right-hand side is an element ofHs∧(r+1). We conclude
that the regularityr of uk is larger by 1, which implies thatuk is in Hs+1.

In quantitative terms we obtain forr ∈ [1, s], where we use the seminorm
|f |s := ‖f (s)‖L2,

|u′
k|r ≤ |νk|C(r)

(
|S−1|r

∥∥∥∥∫ ·

0
ukµ

∥∥∥∥∞
+ ‖S−1‖∞

∣∣∣∣ ∫ ·

0
ukµ

∣∣∣∣
r

)
≤ |νk|C(r)‖S−1‖r

(‖uk‖L1(µ) + |ukµ|r−1
)

≤ |νk|C(r)‖S−1‖s(1+ |uk|r−1‖µ‖∞ + ‖uk‖∞‖µ‖r−1)

≤ |νk|C(r)‖S−1‖s(1+ 2‖uk‖r−1‖µ‖s−1).

By applying this estimate‖uk‖r+1 � |νk|‖S−1‖s(1 + ‖uk‖r−1‖µ‖s−1) succes-
sively for r = 1,2, . . . , �s� and finally, forr = s − 1, the estimate follows.�

PROPOSITION6.7. For (σ, b) ∈ �s the corresponding transition probability
densityp� = p�,σ,b satisfies

sup
(σ,b)∈�s

‖p�‖Hs+1×Hs < ∞.

PROOF. The spectral decomposition ofP� :L2(µ) → L2(µ) yields

p�(x, y) = µ(y)

∞∑
k=0

eνk�uk(x)uk(y), x, y ∈ [0,1].

Due to the uniform ellipticity and uniform boundedness of the coefficients, we
haveνk ∈ [−C1k

2,−C2k
2] with uniform constantsC1,C2 > 0 on�s [see Davies

(1995), adapting Example 4.6.1, page 93, to our situation]. From the preceding
Lemma 6.6 and the Sobolev embeddingHs+1 ⊂ Cs we infer

‖p�‖Hs+1×Hs ≤
∞∑

k=0

e−C2�k2‖uk‖s+1‖µuk‖s

≤
∞∑

k=0

C(s, s0,‖S−1‖s,‖µ‖s−1)
2e−C2�k2

(C1k
2)s+1‖µ‖s ,

which gives the desired uniform estimate.�
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