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We study the problem of estimating the coefficients of a diffusion
(X¢,t > 0); the estimation is based on discrete d&tgy,n =0,1,..., N.
The sampling frequency —1 is constant, and asymptotics are taken as the
number N of observations tends to infinity. We prove that the problem
of estimating both the diffusion coefficient (the volatility) and the drift
in a nonparametric setting is ill-posed: the minimax rates of convergence
for Sobolev constraints and squared-error loss coincide with that of a,
respectively, first- and second-order linear inverse problem. To ensure
ergodicity and limit technical diffidties we restrict ourselves to scalar
diffusions living on a compact inteav with reflectingboundary conditions.

Our approach is based on the spectral analysis of the associated Markov
semigroup. A rate-optimal estimation of the coefficients is obtained via
the nonparametric estimation of an eigenvalue—eigenfunction pair of the
transition operator of the discrete time Markov ch@ifya,n=0,1,...,N)
in a suitable Sobolev norm, together with an estimation of its invariant
density.

1. Introduction.

1.1. Overview. Since Feller's celebrated classification, stationary scalar diffu-
sions have served as a representative model for homogeneous Markov processes
in continuous time. Historically, diffusion processes were probably first seen as
approximation models for discrete Markov chains, up to an appropriate rescal-
ing in time and space. More recently, the development of financial mathematics
has argued in favor of genuinely continuous time models, with simple dynamics
governed by a local mean (drift-) and local variance (diffusion coefficient, or
volatility) o (-) on the state space= R or S C R with appropriate boundary con-
dition. The dynamics are usually described by an It6-type stochastic differential
equation in the interior of, which in the time-homogeneous case reads like

dX[=b(X[)dt+O'(Xt)dW[, tZO,
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where the driving procesdV,, ¢ > 0) is standard Brownian motion. The growing
importance of diffusion models progressively raised among the community of
statisticians a vast research program, from both quantitative and theoretical angles.
We outline the main achievements of this program in Section 1.2.

In the late 1970s a statistician was able to characterize qualitatively the
properties of a parametric ergodic diffusion model based on the continuous
observation of a sample path

xT.=(X,,0<r<T)

of the trajectory, ag’" — oo, that is, as the time length of the experiment grows to
infinity, a necessary assumption to assure the growing of information thanks to the
recurrence of the sample path. The 1980s explored various discretization schemes
of the continuous time model: the datd could progressively be replaced by the
more realistic observation

XNAN) .= (X,a,,n=0,1,...,N),

with asymptotics taken a8 — oo. The discretization techniques used at that time
required the high frequency sampling assumptign — 0 whereasVAy — oo
in order to guarantee the closenessXéf'-2¥) and X7, with T = NAy. Soon,
a similar nonparametric program was achieved for both continuous time and high
frequency data.

By the early to mid-1990s, the frontier remained the “fix®dcase,” that is,
the case of low frequency data. This is the topic of the present paper. First, one
must understand the importance and flexibility gained by being able to relax the
assumption that the sampling timebetween two data points is “small”: indeed,
one can hardly deny that, in practice, it may well happen that sampling with
arbitrarily smallA is simply not feasible. Put differently, the asymptotic statistical
theory is a mathematical construct to assess the quality of an estimator based
on discrete observations and it must be decided which asymptotics are adequate
for the data at hand. Second, the statistical nature of the problem drastically
changes when passing from high to low frequency sampling: the approximation
properties of the sample patki¥2~ by XV.4¥) are not valid anymore; the
observationXg, Xa, ..., Xya) becomes a genuine Markov chain, and inference
about the underlying coefficients of the diffusion process must be sought via the
identification of the law of the observatiaxi®¥-4~), In the time-homogeneous
case the mathematical properties of the random vectr®¥) are embodied in
the transition operator

Pp f(x) :=E[f(Xa)|Xo=x],
defined on appropriate test functiogfs Under suitable assumptions, the opera-
tor P, is associated with a Feller semigroup;, + > 0) with a densely defined
infinitesimal generatok on the space of continuous functions given by
o?(x)
2

Lf(x)=Lopf(x):= J" () +bx) f'(x).
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The second-order term(-) is the diffusion coefficient, and the first-order tebih)
is the drift coefficient. Postulating the existence of an invariant density =
1e.b(-), the operatorL is unbounded, but self-adjoint negative @f(u) :=
{f1f | f12u < oo}, and the functional calculus gives the correspondence

(1.1) Pa =exp(AL)

in the operator sense. Therefore, a consistent statistical program can be presumed
to start from the observed Markov chaitV-2), estimate its transition operatBg

and infer about the paii(-), o (-)), via the correspondence (1.1), in other words

via the spectral properties of the operaiyy. Expressed in a diagram, we obtain

the following line:

(1.2) data= xV» L p Do (b(), 0 () = parameter

The efficiency of a given statistical estimation procedure will be measured by the
proficiency in combining the estimation p&#) and the identification part) of

the model.

The works of Hansen, Scheinkman and Touzi (1998) and Chen, Hansen and
Scheinkman (1997) paved the way: they formulated a precise and thorough pro-
gram, proposing and discussing several methods for identifying scalar diffusions
via their spectral properties. Simultaneously, the Danish school, given on impulse
by the works of Kessler and Sgrensen (1999), systematically studied the para-
metric efficiency of spectral methods in the fixadsetting described above. By
constructing estimating functions based on eigenfunctions of the opdratioey
could construct/N-consistent estimators and obtained precise asymptotic prop-
erties.

However, a quantitative study of nonparametric estimation in the fixed
context remained out of reach for some time, for both technical and conceptual
reasons. The purpose of the present paper is to fill in this gap, by trying to
understand and explain why the nonparametric case significantly differs from
its parametric analogue, as well as from the high frequency data framework in
nonparametrics.

We are going to establish minimax rates of convergence over various smooth-
ness classes, characterizing upper and lower bounds for estim@ijirando ()
based on the obervation &f, X4, ..., Xya, With asymptotics taken ag — oo.

The minimax rate of convergence is an index of both accuracy of estimation and
complexity of the model. We will show that in the nonparametric case the com-
plexity of the problems of estimating(-) ando (-) is related to ill-posed inverse
problems. Although we mainly focus on the theoretical aspects of the statistical
model, the estimators we propose are based on feasible nonparametric smoothing
methods: they can be implemented in practice, allowing for adaptivity and finite
sample optimization. Some simulation results were performed by Reil3 (2003).

The estimation problem is exactly formulated in Section 2, where also the
main theoretical results are stated. The spectral estimation method we adopt is
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explained in Section 3, which includes a discussion of related problems and
possible extensions. The proofs of the upper bound for our estimator and its
optimality in a minimax sense are given in Sections 4 and 5, respectively. Results
of rather technical nature are deferred to Section 6.

1.2. Statistical estimation for diffusionsan outlook. We give a brief and
selective summary of the evolution of the area over the last two decades. The
nonparametric identification of diffusion processes from continuous data was
probably first addressed in the reference paper of Banon (1978). More precise
estimation results can be listed as follows:

1.2.1. Continuous or high frequency datde parametric case.Estimation of
a finite-dimensional parametérfrom X7 = (X,,0 <t < T) with asymptotics as
T — oo whenX is a diffusion of the form

(1.3) dX, = be(X;)dt + o (X,)dW,

is classical [Brown and Hewitt (1975) and Kutoyants (1975)]. H&vg, r > 0) is

a standard Wiener process. The diffusion coefficient is perfectly identified from
the data by means of the quadratic variationXofBy assuming the process

to be ergodic (positively recurrent), a sufficiently regular parametrizaties

by (-) implies the local asymptotic normality (LAN) property for the underlying
statistical model, therefore ensuring tkér-consistency and efficiency of the
ML-estimator [see Liptser and Shiryaev (2001)].

In the case of discrete dat&,r,,.n =0,1,..., N, with high frequency
samplingA;1 — 00, but long range observatiohA y — oo asN — oo, various
discretization schemes and estimating procedures had been proposed [Yoshida
(1992) and Kessler (1997)] until Gobet (2002) eventually proved the LAN property
for ergodic diffusions of the form

(1.4) dX; = by, (X,)dt + 09,(X,)dW,

in a general setting, by means of the Malliavin calculus: under suitable regularity
conditions, the finite-dimensional paramedgiin the drift term can be estimated
with optimal rate/N Ay, whereas the finite-dimensional paramedgrin the
diffusion coefficient is estimated with the optimal ratev.

1.2.2. Continuous or high frequency datdne nonparametric case.A similar
program was progressively obtained in nonparametrics: If the drift funétion
is globally unknown in the model given by (1.3), but belongs to a Sobolev ball
S(s, L) (of smoothness order> 0 and radiud.) over a given compact interval
a certain kernel estimata# (-) achieves the following upper bound Irf (1) and
in a root-mean-squared sense:

~ 1/2 — ;
sup E[llbr — bliZy, |72 S T @ D,
beS(s,L)
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This already indicates a formal analogy with the model of nonparametric
regression or “signat white noise” where the same rate holds. (Here and in
the sequel, the symbgf means “up to constants,” possibly depending on the
parameters of the problem, but that are continuous in their arguments.) See
Kutoyants (1984) for precise mathematical results.

Similar extensions to the discrete case with high frequency data sampling
for the model driven by (1.4) were given in Hoffmann (1999), where the rates
(NAN)~S/@+D for the drift function 5(-) and N—/&+D for the diffusion
coefficiento (-) have been obtained and proved to be optimal. See also the
pioneering paper of Pham (1981). Methods of this kind have been successfully
applied to financial data [Ait-Sahalia (1996), Stanton (1997), Chapman and
Pearson (2000) and Fan and Zhang (2003)]. In particular, it is investigated whether
the usual parametric model assumptions are compatible with the data, and the use
of nonparametric methods is advocated.

1.2.3. From high to low frequency data.As soon as the sampling frequency
Ag,l = A~ is not large anymore, the problem of estimating a parameter in the
drift or diffusion coefficient becomes significantly more difficult: the trajectory
properties that can be recovered from the data whenis small are lost. In
particular, there is no evident approximating scheme that can efficiently compute
or mimic the continuous ML-estimator in parametric estimation.

Likewise, the usual nonparametric kernel estimators, based on differencing, do
not provide consistent estimation of the dtift) or the diffusion coefficiens (-).

As a concrete example, consider the standard Nadaraya—Watson estimatof
the drift b(x) in the pointx € R:

by o VDT 50 Kilx = Xua) Xrya = Xna)
N=LY20 Kin(x = Xua)

with a kernel functionk (-) and K, (x) := h~ 1K (h—1x) for h > 0. If we let
N — oo andh — 0, then by the ratio ergodic theorem and by kernel properties
we obtain almost surely the limit

A
E[AY(Xx — X0)|Xo=x] = A—lfo Pib(x)dt.

Hence, this estimator is not consistent. It merely yields a highly blurred version
of b(x), which of course tends ti(x) in the high frequency limih — 0. Note that

the transition operator® involved depend on the unknown functidns) ando (-)

as a whole. The situation for estimatorsoaf) based on the approximation of the
guadratic variation is even worse, because the érift enters directly into the
limit expression.
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1.2.4. Spectral methods for parametric estimatiorikKessler and Sgrensen
(1999) suggested the use of eigenvalugsand eigenvectorspy(-) of the
parametrized infinitesimal generator
a5 (%)

Lo f(x)= Tf”(X) + bo (x) f'(x),
that is, such thakgpg (x) = ke (x). Indeed, since the paiky, ») also satisfies

Proo(Xna) =E[eo (X n+1)a)| Xna] = explcg A)gg (Xna),

whenever it is easy to compute, the knowledge of a @airgy) can be translated

into a set of conditional moment conditions to be used in estimating functions.
With their method, Kessler and Sgrensen can constyiétconsistent estimators

that are nearly efficient. See also the paper of Hansen, Scheinkman and Touzi
(1998) that we already mentioned.

In a sense, in this idea also lies the essence of our method. However, the
strategy of Kessler and Sgrensen is not easily extendable to nonparametrics: there
is no straightforward way to pass from a finite-dimensional parametrization of the
generatorLy with explicit eigenpairgky, g) to a full nonparametric space with
satisfactory approximation properties. Besides, there would be no evident route
to treat the variance of such speculative nonparametric estimators either, because
the behavior of the parametric Fisher information matrix for a growing number of
parameters is too complex to be easily controlled. We will see in Section 3 how to
pass over these objections by estimating directly an eigenpair nonparametrically.

1.2.5. Prospectives. A quick summary yields Table 1 for optimal rates of
convergence.

Table 1 can be interpreted as follows: the difficulty of the estimation problem
is increasing from top to bottom and from left to right. A blank line separates
the continuous—high-fipuency (HF) data domain fno the low-frequency (LF)
data domain. The breach for LF data opened by Kessler and Sgrensen as well as
by Hansen, Scheinkman and Touzi shows t{fat-consistent estimators usually
exist in the parametric case. The remaining case are the rates of convergence for
LF data in the nonparametric cagg for the drift b(-) andvy for the diffusion
coefficiento (-), for which we are aiming.

TABLE 1
Parametric Nonparametric
b o b o
Continuous T-1/2 known T—s/(2s+1) known
HF data (NAN)_]'/Z N—1/2 (NAN)—S/(ZS-'F].) N—S/(ZS-‘:—].)

LF data N—1/2 N—1/2 Uy vy
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2. Main results.

2.1. A diffusion model with boundary reflections/NVe shall restrict ourselves
to reflecting diffusions on a one-dimensional interval to avoid highly nontrivial
technical issues; see the discussion in Section 3.3.

Choosing for convenience the intery@l 1], we suppose the following.

ASSUMPTION2.1. The functionb:[0, 1] — R is measurable and bounded,
the functiono :[0,1] — (0, 00) is continuous and positive and the function
v:[0, 1] — R satisfiesv(0) =1, v(1) = —1.

We consider the stochastic differential equation

dX; =b(X)dt +o(X;)dW; +v(X;)dL(X),

(2.1)
Xo=x9 and X, e][0,1] Vi >0.

The procesgW;, r > 0) is a standard Brownian motion and,(X),z > 0) is

a nonanticipative continuous nondecreasing process that increases only when
X, €{0, 1}. The boundedness 6f-) and the ellipticity ofo () ensure the existence

of a weak solution; see for instance Stroock and Varadhan (1971). Note that the
procesd.(X) is part of the solution and is given by a difference of local timeX of

at the boundary points ¢0, 1].

Due to the compactness ¢0, 1] and the reflecting boundary conditions,
the Markov procesX has a spectral gap, which implies geometric ergodicity;
compare with Lemmas 6.1 and 6.2. In particular, a unique invariant measure
exists and the one-dimensional distributionsXgfconverge exponentially fast to
u ast — oo so that the assumption of stationarity can be made without loss of
generality for asymptotic results.

We denote by, ;, the law of the associated stationary diffusion on the canonical
space = C(R,, [0, 1]) of continuous functions over the positive axis with values
in [0, 1], equipped with the topology of uniform convergence and endowed with its
Borelo-field . We denote b¥, , the corresponding expectation operator. Given
N > 1 andA > 0, we observe the canonical proc€sg,+ > 0) at equidistant
timesnA forn=0,1,..., N. Let £5 denote ther-field generated byX,A|n =
0,...,N}.

DEFINITION 2.2. An estimator of the paiio (-), b(-)) is an Fy-measurable
function on with values inL2([0, 1]) x L2([0, 1]).

To assess the2-risk in a minimax framework, we introduce the nonparametric
set®;, which consists of pairs of functions of regularitands — 1, respectively.
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DEFINITION 2.3. Fors > 1 and given constants > ¢ > 0, we consider the
class®; := (s, C, ¢) defined by

0.6y € 1210, 1) x 17200, Wl = C. 1blos = C. infor ()=
whereH* denotes thd.2-Sobolev space of order
Note that all(o (+), b(-)) € O satisfy Assumption 2.1.

2.2. Minimax rates of convergenceWe are now in position to state the main
theorems. By (3.12) and (3.13) in the next section we define estimatoasd b
using a spectral estimation method based on the obsernv@inX a, ..., Xya).
These estimators, which of course depend on the nuiilodiobservations, satisfy
the following uniform asymptotic upper bounds.

THEOREM2.4. Foralls>1,C>c>0and0<a <b < 1we have

~2 22 1/2 _
SUp E(}',b[”G — 0 ||L2([a,b])] / 5 N s/(25+3)’
(0,b)e®y

A 2 1/2 —s—1)/(2
SUp o p[llb — blIZ 5, 172 S NTOTD/EHI,
(0.b)€®,

Recall thatA < B means tha#d can be bounded by a constant multiple&f
where the constant depends continuously on other parameters involved. Similarly,
A 2 BisequivalenttaB < A andA ~ B holds if both relationst < B andA 2 B
are true.

As the following lower bounds prove, the rates of convergence of our estimators
are optimal in a minimax sense oves.

THEOREM 2.5. Let Exn denote the set of all estimators according to
Definition2.2. Then for all0 < a < b < 1 ands > 1 the following hold

2.2 inf  sup E,,[l16% — 0?2 12 5 ns/@5+3),
22 62€EN (o,b)ep@)_; !l 0] %

beEy (0,b)€0®y ’

If we sets; = s — 1 andso = s, then the driftb (1) € ®; with regularitys; can be
estimated with the minimax rate of convergemge= N —51/(21+5 \whereas the
diffusion coefficients (-) € ®; has regularityso and the corresponding minimax
rate of convergence isy = N —%2/(2t3 Hence, Table 1 in Section 1.2.5 can be
filled with two rather unexpected rates of convergemgeandvy . In Section 3.3
the rates are explained in the terminology of ill-posed problems and reasons are
given why the tight connection between the regularity assumptiohs pando (-)
is needed.
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3. Spectral estimation method.

3.1. The basic idea. We shall base our estimator of the diffusion coeffi-
ciento (-) and of the drift coefficienb(-) on spectral methods for passing from
the transition operatoP,, which is approximately known to us, to the infinitesi-
mal generatof., which more explicitly encodes the functiong) andb(-). In the
sequel, we shall rely on classical results for scalar diffusions; for example, consult
Bass [(1998), Chapter 4]. We use the specific form of the invariant density

(3.1) 1(x) = 2Co0~2(x) exp( [ 2072 dy)

and the functiors(-) = 1/s’(-), derived from the scale functio-),

G2 s =heonw = Cooxp(~ [ 200 dy).

with the normalizing constar@p > 0 depending o (-) andb(-). The action of
the generator in divergence form is given by

1 1 /
(8.3) Lf(x)=Lopf(x)=20%x)f"(x) +b(x)f(x) = ——(Sx) f' (),
2 p(x)

where the domain of this unbounded operatoZ8qu) is given by the subspace
of the L2-Sobolev spacé/? with Neumann boundary conditions

dom(L) = {f € H?([0,1])| f'(0) = f'(1) =0}.

The generatot. is a self-adjoint elliptic operator ah?(x) with compact resolvent
so that it has nonpositive point spectrum onlyv{fdenotes the largest negative
eigenvalue of. with eigenfunction:1, then due to the reflecting boundary{6f 1]
the Neumann boundary condition$(0) = u’;(1) = 0 hold and thus

34) Lup=p Y(Su})) =vius =  S@)uy(0) =1 /0 w1 (@) dy.

From (3.2) we can derive an explicit expression for the diffusion coefficient:

_ 2v1 o mi)p(y)dy
ug () p(x)
The corresponding expression for the drift coefficient is

(3.5) o?(x)

ur(0)uf (O p(x) —uf(x) fo ur(yp(y)dy

uy ()2 (x) '
Hence, if we knew the invariant measurethe eigenvalue; and the eigenfunc-
tion u1 (including its first two derivatives), we could exactly determine the drift and

diffusion coefficient. Of course, these identities are valid for any eigenfungtion
with eigenvaluey, but for better numerical stability we shall use only the largest

(3.6) b(x)=11
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nondegenerate eigenvalug Moreover, it is known that only the eigenfunction
does not have a vanishing derivative in the interior of the interval (cf. Proposi-
tion 6.5) so that by this choice indeterminacy at interior points is avoided.

Using semigroup theory [Engel and Nagel (2000), Theorem 1V.3.7] we know
thatu; is also an eigenfunction o with eigenvaluec; = e®V1, Our procedure
consists of determining estimatoys of u and P, of P, to calculate the
corresponding eigenpail, 1) and to use (3.5) and (3.6) to build a plug-in
estimator ofo (-) andb(-).

3.2. Construction of the estimatorsWe use projection methods, taking
advantage of approximating properties of abstract operators by finite-dimensional
matrices, for which the spectrum is easy to calculate numerically. A similar
approach was already suggested by Chen, Hansen and Scheinkman (1997). More
specifically, we make use of wavelets on the intef@al]. For the construction of
wavelet bases and their properties we refer to Cohen (2000).

DEFINITION 3.1. Let(y;) with multiindicesA = (j, k) be a compactly sup-
portedL2-orthonormal wavelet basis @£([0, 1]). The approximation spac€g;)
are defined a%2-closed linear spans of the wavelets up to the frequency level

Vy=spaiy,llal < J}  where|(j, k)| := .
The L2-orthogonal projection ontoV; is called 7;; the L?(u)-orthogonal
projection ontoV; is callednj“.
In the sequel we shall regularly use the Jackson and Bernstein inequalities with
respect to the.2-Sobolev spacel* ([0, 1]) of regularitys:
ld =7 fllae S277 PN fllgs, 0=t
VoreVy o luglle S27°Nogllg, 0=t

The canonical projection estimate @fbased on( X, A)o<n<n IS given by

=s,

A

S.

N
(3.7) f= ) s With = 1 D U (Xua).
M=J N+1=
By the ergodicity ofX it follows that /i, is a consistent estimate oft, v, ) for
N — oo. To estimate the action of the transition operator on the wavelet basis
(Pg)m, = (PaY, ¥/)u, We introduce the symmetrized matrix estimaﬁx
with entries
. 1 X
(3.8) (Pa)ry = oN D (W (X-na) ¥ (Xna) + ¥ (X-1)a) ¥ (Xna)).
n=1
This yields an approximation ofPav,, ¥;.),, that is, of the action of the
transition operator orV; with respect to the unknown scalar produgt-),
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in L2(). We therefore introduce a third statis®, which approximates the
dim(Vy) x dim(V;)-dimensional Gram matri6 with entriesG;_; = (¥, ¥a/) s
and which is given by

A 1/1

G = N (EWA(XO)%'(XO)
(3.9) -
+ 5 %(XNA)%'(XNA) +> WA(XnA)W)\’(XnA)>

n=1

The particular treatment of the boundary terms will be explained later. If we

put X = (wp¥a(Xn))jaj<s, n<ny With wo = wy = % and w, = 1 otherwise, we

haveG = N1z x7, =7 being the transpose &. Our construction can thus be
regarded as a least squares type estimator, as in a usual regression setting; see the
argument developed in Section 3.3.1.

We combine the last two estimators in order to determine estimates for the
eigenvaluex; and the eigenfunctiom; of Pa. As will be made precise in
Proposition 4.5, the operators, andnl P are close for large values df. Note
that all eigenvectors of} P, lie in V,, the range ofrf Po. The eigenfunction
corresponding to the second largest eigenvaﬂjef nﬁ‘ P is characterized by

(3.10) (Pauf, ¥a)u=rf (i, ¥i) VA<

We pass to vector-matrix notation and use from now on bold letters to define for
a functionv € V; the corresponding coefficient column vectes ((v, Y1) <J-
Observe carefully the differert?-scalar products used; here they are with respect
to the Lebesgue measure. Thus, we can rewrite (3.10) as

(3.11) Pluf =«{Guj.

As vIGv = (v,v), > 0 holds forv € V; \ {0}, the matrixG is invertible and
(ki , uf) is an eigenpair o6 1P . This matrix is self-adjoint with respect to the
scalar product induced b3:

(GPLv.w)G := (G IPiv)TGw
=vIPiw = (v, G IPiw)e.

Similarly, v Gv = N~1(Z7v)" £7v > 0 holds and the matri& can be shown
to be even strictly positive definite with high probability (see Lemma 4.12). In
this case, we similarly infer thad 1P is self- adjoint with respect to th@-scalar
product. The Cauchy-Schwarz inequality and the inequality between geometric
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and arithmetic mean yield the estimate

N
(GTIPAV, Vg -NEZ (X(n-1)a)v(Xpna)
1 . _ 12, N 1/2
N(ch&m) (ij&mﬂ
n=0 n=1

ZIH
o~

N-1
a&+vamﬂ+2w&m)
n=1

We infer that all eigenvalues dﬁ—lPA are real and not larger than 1. Hence,
the second largest eigenvalie of G~1P, is well defined, which is why we
downweighted the boundary terms Gf The eigenvalug; of G~1P, and its
corresponding eigenvectas yield estimators ofclf andu{.

Plugging the estimatqi as well asc; andiiq into (3.5) and (3.6), we obtain our
estimators of2(-) andb(-):

2A7tog(ky) [§ i1 () A(Y) dy
i (x)a(x)

(3.12) 6%(x):= ,
ay(x)iy (x)fa(x) — g (x) fo ﬁl(y)u(y)dy

M]_(x)zlu(x)
To avoid indeterminacy, the denominators of the estimators are forced to remain

above a certain minimal level, which depends on the subintéryal c [0, 1] for
which the loss function is taken. See (4.5) for the exact formulation in the case

of 62(-) and proceed analogously fa¢-).

(3.13)  b(x):= A" tlog(ky)

3.3. Discussion.

3.3.1. Least squares approachThe estimator matrixG 1P, is built as in
the least squares approach for projection methods in classical regression. To
estimatePa vV, (x) = Eq p[¥1,(Xa)| X0 = x], the least squares method consists
of minimizing
2

Yao(Xna) — Y oy (Xm—1a)| —> min!
[Al<J

N

(3.14) >

n=1

over all real coefficienteag), leading to the normal equations

N N
Z ( Z WSWA(X(n—l)A)>WA'(X(n—l)A) = Z V(X n—1)a) ¥ag (Xna)

A <J n=1
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for all |A’| < J. Up to the special treatment of the boundary terms, we thus obtain
the vector(ozf) as the column with indexg in G~ 1P,.

3.3.2. Other than wavelet methodsFor our projection estimates to work,
we merely need approximation spaces satisfying the Jackson and Bernstein
inequalities. Hence, other finite element bases could serve as well.

The invariant density and the transition density could also be estimated using
kernel methods, but the numerical calculation of the eigen@aiti1) would then
involve an additional discretization step.

3.3.3. Diffusions over the real line. Using a wavelet basis df2(R), it is still
possible to estimatg. and P, over the real line; in particular the eigenvalue
characterization (3.10) extends to this case. Hansen, Scheinkman and Touzi (1998)
derive the same formulae as (3.5) and (3.6) under ergodicity and boundary
conditions so that a plug-in approach is feasible. However, a theoretical study
seems to require much more demanding theoretical tools. If the uniform separation
of the spectral value; and a polynomial growth bound for the eigenfunction
u1(+) are ensured, we expect that the same minimax results hold with respect to
an L?(u)-loss function, where the invariant density-) is of course parameter-
dependent. However, all spectral approximation results have to be reconsidered
with extra care, in particular because /& 1)-norms are in general not equivalent
for different parameters.

3.3.4. Adaptation to unknown smoothnes3he knowledge of the smooth-
nesss that is needed for the construction of our estimators is not realistic in
practice. An adaptive estimation of the eigengai(-), 1) and u(-) that yields
adaptive estimators fa (+), b(-)) could be obtained by the following modifica-
tions: First, the adaptive estimation gf(-) in a classical mixing framework is
fairly well known [e.g., Tribouley and Viennet (1998)]. Second, taking advan-
tage of the multiresolution structure provided by wavelets, the adaptive estima-
tion of Po could be obtained by introducing an appropriate thresholding in the
estimated matrices on a large approximation space.

3.3.5. Interpretation as an ill-posed problemOne can make the link with ill-
posed inverse problems by saying that estimation @f is well-posed (i.e., with
achievable rate/ —*/(2+D) put for S(-) we need an estimate of the derivativg-)
yielding an ill-posedness degree of & (*/(%+9). Observe that the regularity
conditionso € H* and b € H*~! are translated intqw € H*, S € H*. The
transformation of i1, S) to o2(-) = 25(-)/(-) is stable L2-continuous forS(-) >
so > 0], whereas irb(-) = §’(-)/(-) another ill-posed operation (differentiation)
occurs with degree 1.

A brief stepwise explanation reads as follows. Step 1, the natural parametriza-
tion (i, Pa) is well-posed (forP, in the strong operator norm sense). Step 2, the
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calculation of the spectral paiky, 1) is well-posed. Step 3, the differentiation
of u1 that determines has an ill-posedness of degree 1. Step 4, the calculation
of o2 from (u, S) is well-posed. Step 5, the calculation bffrom (u, S) is ill-
posed of degree 1.

3.3.6. Regularity restrictions orb(-) and o (-). It is noteworthy that in the
continuous time or high frequency observation case, the paramgtaetoes not
influence the asymptotic behavior of the estimatow@f) and vice versa. The
estimation problems are separated. In our low frequency regime we had to suppose
tight regularity connections betweert(-) andb(-). This stems from the fact that
for the underlying Markov chaix (V-2 the parameterg(-) and S(-) are more
natural and the regularity of these functions depends on the regularity bbath of
and ofo (+).

At a different level, in nonparametric regression, different smoothness con-
straints are needed between the mean and the variance function. Recommended
references are Muller and Stadtmuller (1987) and Fan and Yao (1998).

Finally, although we ask for the tight connection= s> — 1 for the regularity
s1 of the driftb(-) ands» of the diffusion coefficient (), our results readily carry
over to the milder constraint > so — 1.

3.3.7. Estimation when one parameter is knowtf o(-) is known, an
estimatel of the invariant density yields an estimatehgf), since

(@2 ()px))
21 (x)
Estimation ofu € H*, s > 1, in H1-norm can be achieved with rapg—¢—1/(2s+1)

and this rate is thus also valid for estimatihg) in L2-norm. Given the drift
coefficients(.), we find

b(x) , x €10, 1].

Jo by dy+C
m(x) ’

where C is a suitable constant. If we knew?(0), we would obtain the rate
N—3/@+D for u e HS.

Using a preliminary nonparametric estimé@ depending on the parametér
and then fitting a parametric model f6r, we are likely to find the same rate. In
any case, the assumption of knowing one parameter seems rather artificial and no
further investigations have been performed.

oz(x) =2 x €10, 1],

3.3.8. Estimation at the boundary.Our plug-in estimators can only be defined
on the open subintervall, 1). Estimation at the boundary points leads to a
risk increase due t6~1(0) = v1u1(0)u(0)/u’(0) by de I'Hspital’s rule applied
to (3.4). Thus, estimating (0) and »(0) involves taking the second and third
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derivative, respectively, when using plug-in estimators. A pointwise lower bound
result—along the lines of the2-lower bound proof—shows that this deterioration
cannot be avoided.

4. Proof of the upper bound.

4.1. Convergence ofi. First, we recall the proof for the risk bound in
estimating the invariant measure:

PROPOSITION4.1. With the choic@’ ~ N1/(Z+D the following uniform risk
estimate holds fofi based onV observations

N 2 11/2 — 1
sup Eop[ll — pll?,]"% < N7/ @HD),
(0,b)e®y

ProOOF The explicit formula (3.1) foru shows that| | gs is uniformly
bounded ove®;. This implies that the bias term satisfies

e =7 ypllpe S 27 el s ~ N7S/@HD,

uniformly over®;,. Sincefi; is an unbiased estimator ¢, v; ), we can apply the
variance estimates of Lemma 6.2 to obtain

Eou[ld —myullés]= Y Var ] <2/ N1
Al<J

which—in combination with the uniformity of the constants involved—gives the
announced upper bound

4.2. Spectral approximation.We shall rely on the spectral approximation
results given in Chatelin (1983); compare also Kato (1995). Sincé {or we
have to estimate not only the eigenvalug but also its derivative/}, we will
be working in theL2-Sobolev spacéfl. The general idea is that the error in the
eigenvalue and in the eigenfunction can be controlled by the error of the operator
on the eigenspace, once the overall error measured in the operator norm is small.
Let R(T, z) = (T — z1d)~! denote the resolvent map of the operafor (T) its
spectrum and(x, r) the closed ball of radius aroundx.

PrROPOSITION4.2. Suppose a bounded linear operaion a Hilbert space
has a simple eigenvalue such thato(T) N B(x, p) = {«} holds for some
o > 0. Let T, be a second linear operator with7, — T'|| < %, where R =
(SURcB (k. p) IR(T, 2)|)~L. Then the operatoff, has a simple eigenvalue. in
B(k, p) and there are eigenvectoisandu, with Tu = xu, Tou, = k. u, satisfying

(4.1) lue — ull < v8RY(Te — Tul.
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PrROOF We use the resolvent identity and the Cauchy integral representation
of the spectral projectio®, on the eigenspace df, contained inB(k, p) [see
Chatelin (1983), Lemma 6.4]. By the usual Neumann series argument we find
formally for an eigenvectat corresponding ta,

1 R(T,
f Te:2) o (T — Ty
B(x,p)

u— Pul|=—
e = Peul] = o -

1 _
< —21p sup [R(T.,2)lp (T, — T)u]
2m z€B(k,p)
IR(T, 2)||

< sup I(Te — T)ul|
weBup) L= IIR(T, DINT: =T °

= (R —|T: =TI (T: — Tul.

Hence, for||T, — T| < % this calculation is a posteriori justified and yields
lu — Peull < 2R7Y(Te — T)ull. Applying [|(T. — T)u|l < % |lu| once again, we
see that the projectio®, cannot be zero. Consequently there must be a part of
the spectrum of’; in B(k, p). By the argument in the proof of Theorem 5.22 in
Chatelin (1983) this part consists of a simple eigenvalue

It remains to find eigenvectors that are close, too. Observe that, for arbitrary
Hilbert space elemenig & with ||g|| = ||#] =1 and{g, h) >0,

lg —hl2=2—2(g, h) <21+ (g, ) (L — (g, h)) = 2||g — (g, h)h|?

holds. We substitute fog and # the normalized eigenvectots and u, with
(u, us) > 0; note that oblique projections only enlarge the right-hand side and thus
infer (4.1). O

CoROLLARY 4.3. Under the conditions of Propositigh2there is a constant
C=C(R,|T|) suchthatix, — k| < C||(T; — T)u]|.
PrROOF The inverse triangle inequality yields
ke — k| = [IITeuell = I Tulll < 175 (e —u) + (Tz — Tu||
<UTI+ITe = TIDNue — ull + 1(Te — Tull
< ((1rn+ ) VBR 1)t — Toul

where the last line follows from Proposition 4.2]

4.3. Bias estimates. In a first estimation step, we bound the deterministic error
due to the finite-dimensional projectiOﬂj‘PA of PA. We start with a lemma
stating thatrﬁ“ andsm; have similar approximation properties.
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LEMMA 4.4. Letm:[0, 1] — [mg, m1] be a measurable function with, >
mg > 0. Denote byr}' the L?(m)-orthogonal projection onto the multiresolution
spaceV,. Then there is a constaiit = C (mg, m1) such that

lad =™ fllgr < ClAd —m) fllgr Y f € HY(O, 1)).

PROOF The norm equivalenceo||gll; 2 < lIglln < m1lgll 2 implies

-1 -1
77 22 < mimg ||7771”L2(m)—>L2(m) =mimg"~.

On the other hand, the Bernstein inequalitylip and the Jackson inequality for
Id— 7 in H andL? yield, for f € HY,

1 —75) fll g2 = 10 — ) (1d — 7)) f | g
< Ad =) fllga + o (Ad = 77) £l g2
SIAd =) fllgr+ 27 I (ad =) £l 2
SNAd =) fllga + w2 21l 0d = 700) £ 1,

where the constants depend only on the approximation spalces.

PROPOSITION 4.5. Uniformly over ®; we have||nj‘PA — PAllgi g S
2775,

PROOF The transition densityp, is the kernel of the operataP,. Hence,
from Lemma 6.7 it follows thatP : H1 — HS*t1 is continuous with a uniform
norm bound ove®,. Lemma 4.4 yields

I(Pa =7y Pa) fll g SN =507l gssas gl f 1l 2

The Jackson inequality iff* gives the result. O

COROLLARY 4.6. Letk] be the largest eigenvalue smaller thaof 7/ with
eigenfunctiom{. Then uniformly ove®; the following estimate holds

J J —Js
ki — kol + llug —uallgr S277°.

PROOFE We are going to apply Proposition 4.2 on the spate and its
Corollary 4.3. In view of Proposition 4.5, it remains to establish the existence
of uniformly strictly positive values fop and R over®;. The uniform separation
of k1 from the rest of the spectrum is the content of Proposition 6.5.

For the choice ofp in Proposition 6.5 we search a uniform bouRd If
we regard P on L2(u), then P, is self-adjoint and satisfie§R(Pa, 2)|| =
dist(z, o (P»))~! [see Chatelin (1983), Proposition 2.32].
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By Lemma 6.3 and the commutativity betweBr and L we conclude
IR(Pa,2) fll gt ~ 10 = L)Y2R(Pa, 2) f I
< IR(Pa, DIl = L)Y? 1],
~ dist(z. o (Pa)) Il ll 1.
Hence, |[R(Pa.2)lgi g1 < p~t holds uniformly overz € B(k,p) and

(o,b) e ®;. O

REMARK 4.7. The Kato—Temple inequality [Chatelin (1983), Theorem 6.21]
on L2(u) even establishes the so-called superconvergb'qfce k1] <2725,

4.4. Variance estimates.To bound the stochastic error on the finite-
dimensional spac¥®;,, we return to vector-matrix notation and look for a bound
on the error involved in the estimato@&andP,. The Euclidean norm is denoted

by 1| - Iz

LEMMA 4.8. For any vectowv e R!V/I we haveuniformly over®;,

Eo5[I(G— G)VI%] S IVIEN 127

PROOF We obtain, by (6.1) in Lemma 6.2,
Eos[(G — G)VII%]

1 1
=, Eo,b[ﬁ (Eo,b[lﬁx(Xo)v(Xo)]— 5 ¥ (Xo)v(Xo)

|Al<J

1 N-1 2
— SV (Xna)v(Xna) - > wan)v(XnA)) }

n=1

<Y N s[(0a (Xow(X0)]

|Al<J

_1 2 —15J 2
SN liZ2llnlloe S N 727V,

o0

3 y?

[Al=J

as asserted.[d

LEMMA 4.9. For any vectowv we haveuniformly over®y,

Eop[|(Pa — PaWIIZ] S IVIZN 27
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PROOF We obtain, by (6.2) in Lemma 6.2,
Eos[I(Pa — Pa)vlZ]
1y 2
=> Ea,b[(ﬁ > V(X p—pa)v(Xna) — Ea,b[%(Xo)v(XA)]) }
Al<J n=1

< N7E, [ (0 (Xo)u(X1))?]

[Al=J

-1 2 2 —1nJ \,112
SN Indlizzlivliszllwpalloe S N7227VIIE,
Al<J

as asserted.[d
DEFINITION 4.10. We introduce the random set
R=Ryn={IG-Gll <3G

REMARK 4.11. SinceG is invertible, so isG on R with |G™1| < 2G|
by the usual Neumann series argument.

LEMMA 4.12. Uniformly over®; we haveP, ,(Q2\ R) < N—1227,

PROOF By the classical Hilbert—Schmidt norm inequality,

IG=GlZ < Y IG-GelZ e
[Al=J

holds with unit vectorge, ). Then Lemma 4.8 gives uniformly
Eos[IG—Gli%, 2] SN2,

Since the spaceb?([0, 1]) and L2(w) are isomorphic with uniform isomorphism
constants)|G~1| ~ 1 holds uniformly over®, and the assertion follows from
Chebyshev’s inequality.

ProOPOSITION4.13. For anye > 0 we haveuniformly over®y,

Py p(RN{IGPr — G IPAl = eh) SN 12272,

PROOFE First, we separate the different error terms:
G WPA -G WP =GP, —Pa) + (G -G P,
=G H(Pa —Pa) + (G- G)GIP,).
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On the setR we obtain, by Remark 4.11,
IG™PA — G7IPAll < IGTL(IPA — Pall + IIG — GIIIGHlIIPAD
< 2IG7Y(IPa — Pall + IG = GIIGTHIIIPAID
<|IPa —Pall + 1IG - GJ.

By Lemmas 4.8 and 4.9 and the Hilbert—Schmidt norm estimate (cf. the proof of
Lemma 4.12) we obtain the uniform norm bound o&gt

Eop[|GPA — G P4 |210] S N 7122/,

It remains to apply Chebyshev’s inequality.]

Having established the weak consistency of the estimators in matrix norm, we
now bound the error on the eigenspace.

PROPOSITION 4.14. Let u] be the vector associated with the normalized
eigenfunctionu{ of 7/ Po with eigenvalue/clj. Then uniformly over®; the
following risk bound holds

Eou[(GPa — GTPOU] IZ1R] S N 712,

PROOF By the same separation of the error terms®ras in the preceding
proof and by Lemmas 4.8 and 4.9 we find

Eob[I(GPa — GTPOUT 1515]
<8IGHZ(E[II(Pa — PAUT I1%] + E[I(G — G){ uf IZ]) S N2
The uniformity over®; follows from the respective statements in the lemmas.
CoROLLARY 4.15. Let k1 be the second largest eigenvalue of the matrix
G~1P, with eigenvectofi;. If G is not invertible or if[|G1ll2 > 2supy_ [luall,2

holds put 01 := 0, #1 := 0. If N=122/ — 0 holds then uniformly ove®, the
following bounds hold fov, J — oo:

(4.2) Eop[(1f1 — &7 [P+ 01— uf |%)1] S N 7127,
(4.3) Eop[lis —ufll3:] S N7H2%.

PROOF  For the proof of (4.2) we apply Proposition 4.2 using the Euclidean
Hilbert spaceR"” and Corollary 4.3. Then Proposition 4.14 in connection with

Proposition 4.13 (using < R/2 andN ~122/ — 0) yields the correct asymptotic
rate on the eventR. For the uniform choice ofp and R for G~IP{ in
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Proposition 4.2 just use the corresponding result far and the convergence
|7 Pa — Pall = O.

The precaution taken for undefined or too latfgeis necessary for the event
Q\ R. Since the estimators, anduj are now kept artificially bounded, the rate
P, 5(Q2\ R) < N~122/ established in Lemma 4.12 suffices to bound the risk on
Q\ R. Hence, the second estimate (4.3) is a consequence of (4.2) and the Bernstein
inequality i1 — ui | g1 <27l — ufll 2. O

REMARK 4.16. The main result of this section, namely (4.3), can be extended
to pth moments for alp € (1, c0):

A 1 _
(4.4) Eopllliy —uf|00]Y? S NTY22312,

Indeed, tracing back the steps, it suffices to obtain bounds on the moments of
orderp in Lemmas 4.8 and 4.9, which on their part rely on the mixing statement
in Lemma 6.2. By arguments based on the Riesz convexity theorem this last
lemma generalizes to the corresponding boundsptormoments, as derived in
Section VII.4 of Rosenblatt (1971). For the sake of clarity we have restricted
ourselves to the cage= 2 here.

4.5. Upper bound foro (). By Corollary 4.15 and our choice of, 2/ ~
Nl/(2S+3)’

Sup By p[lk1 — i 1P+ llig — uf 5] S N2 ~ NT2/HY

(0,b)€0;
holds. Using this estimate and the estimate/oin Proposition 4.1, the risk of
the plug-in estimato62(-) in (3.12) is bounded as asserted in the theorem. We
only have to ensure that the stochastic error does not increase from the plug-in and
that the denominator is uniformly bounded away from zero. Using the Cauchy—
Schwarz inequality and Remark 4.16 on the higher moments of our estimators, we
encounter no problem in the first case. The second issue is dealt with by using the
lower bound:, ; > 0 in Proposition 6.5 so that an improvement of the estimate for
the denominator by using

(4.5) iy := Max(jiii1, cq,p)

instead offiiz; guarantees the uniform lower bound away from zero.

4.6. Upper bound fo (). Sinceb(-) = S’(-)/u(-) holds, it suffices to discuss
how to estimateS’(-), which amounts to estimating the eigenfunctiop in
H?-norm; compare with (3.6). Substituting? for H1 in Proposition 4.5 and its
proof, we obtain the bound

7Y Pa — Pall gz gz 277670,



2244 E. GOBET, M. HOFFMANN AND M. REIR

becausd|Id — ;|| ;s+1_, 2 IS Of this order. As in Corollary 4.6 this is also the
rate for the bias estimate. The only fine point is the uniform norm equivalence
Il fllg2 ~ II(ld—=L) fll, for f € dom(L), which follows by the methodology of
perturbation and similarity arguments given in Section VI.4b of Engel and Nagel
(2000). We omit further details.

The variance estimate is exactly the same. From (4.2) we infer, by Bernstein’s
inequality for H? and the estimate d, ,(Q \ R),

. 7p2 —157
Eop[llis — uyll52] S NT2%7.

Therefore balancing the bias and variance part of the risk by the chdiee 2
NY/Z+3__as before—yields the asserted rate of convergaficg—D/(>+3),

5. Proof of the lower bounds. First, the usual Bayes prior technique is
applied for the reduction to a problem of bounding certain likelihood ratios. Then
the problem is reduced to that of bounding ftfedistance between the transition
probabilities, which is finally accomplished using Hilbert—Schmidt norm estimates
and the explicit form of the inverse of the generator.

5.1. The least favorable prior. The idea is to perturb the drift and diffusion
coefficients of the reflected Brownian motion in such a way that the invariant
measure remains unchanged. Let us assumethet a compactly supported
wavelet inH* with one vanishing moment. Without loss of generality we suppose
C > 1> ¢ > 0 such that(1,0) € ®, holds. We puty;x = 2//2y(2/ - —k) and
denote byK; C Z a maximal set of indices such that sup@ ;i) C [a, b] and
SUPAY k) N SUPAY jx) = @ holds for allk, k" € K ;, k # k’. Furthermore, we set
y ~ 2716412 gych that, for alk = ¢(j) € {—1, +1}/Ki!,

-1
(V2S..(Se)) €©5  With Se(x) := Se(j, x) == <2+ y Y ekwjk(x)) .

kGKj
We consider the corresponding diffusions with generator
Ls, f (x) := (Se f) (x) := Se (x) " (x) + S, (x) £/ (%), f e dom(L).

Hence, the invariant measure is the Lebesgue measufk bh
The usual Assouad cube techniques [e.g., see Korostelev and Tsybakov (1993)]
give, for any estimatoé (-) and forN € N, p > 0, the lower bounds

(5.1) S Eob[16% = 021221000 2 2/822¢ 7 po,
(5.2) Sup Eo b (16— b1z, )] 2 285" po.

(0,b)€By
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/ H / _ 1 -
where, for alle, &’ with ||e — &’||,2 = 2 and withP, := Pm,sg’
dPy

& —p)
> e .
dP; |7y

852 < ||128¢r — 2S¢]| 2, & < 1ISL — Sill .2, po < IP’8<

We choosé, 2 ~ y since, forx € supyjx) with g = —¢,
Ser(x) — Se(x) = £2y ¥ (x) Ser (x) S (x)

and S;, S,y — % holds uniformly so that thel.2-norm is indeed of ordey.
Equivalently, we finds, ~ 2/y. Due toy ~ 2-76+1/2 the proof of the theorem
is accomplished, once we have shown that a strictly posjijvean be chosen for
fixed p > 0 and the asymptotics 2« N1/ (&+3),

5.2. Reduction to the convergence of transition densitiébwe denote the
transition probability densitie®. (XA € dy|Xo = x) by p.(x, y)dy and the
transition density of reflected Brownian motion Ipgy, then we infer, from
Proposition 6.4,

lim sup  [lpe — pBMIlcc =0

I (=1 41K
due to || S, — —||C1 ~ y23f/2 — 0 for s > 1. We are now gomg to use the
estimate— Iog(l + x) < x2 — x, which is valid for allx > ——. For j so large
that||1 — ||Oo < holds the Kullback—Leibler distance can be bounded from

above (note that the invariant measure is Lebesgue measure):

dP,
Ee[_log<dﬂ” }')]
=—%E |:|Og<Ps’(Xk—l, X@)}
— pe(Xk—1, Xi)
__ pe (X, y)
N// <Pe( y)>p8(x’y)dydx

L (per(x,y) — pe(x, y))?
SN/O /o pe(x,y) — (per(x,y) — pe(x, y)) dydx

Ll (per(x,y) — pelx, ¥))?
=N dyd
/o/o De(x, y) yer

< Nlp ool per = pell? 2o 10
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The square root of the Kullback—Leibler distance bounds the total variation
distance in order, which by the Chebyshev inequality yields

d]P)/ d]P/
]P’8< £ >e_'0)=1—]P’g( £ —15e—ﬂ—1)
dIPg FN dﬂ)s Fn
dP,
zl—IEg[ £ —1“(1—e—ﬂ)—1
dP; |5,

=1-1—e ") Py — Py lITv
>1— CNY?|py — pell 2oy

whereC > 0 is some constant independent)af N, ¢ and j. Summarizing, we
need the estimate
(5.3)  limsupNY2|py — pell2qoa2) <C  for 2/ ~ NY&+3,

N,j—o0

5.3. Convergence of the transition densitie®©bserve first that|p, —
Pell12(0.152) IS exactly the Hilbert-Schmidt norm distan|¢:9§ — P} |lns between
the transition operators derived frofs, and L, acting on the Hilbert space
L2([0, 1]). If we introduce

V= {f e L([0, 1])‘ / f= 0} and V=t :={fe L%]0,1])|f constant,

then the transition operators coincide Brt and leave the spacé invariant so
that|| P§ — P§ llns = ll(P% — P&)Ivlks.

We take advantage of the key result that for Lipschitz functipmsth Lipschitz
constantA on the union of the spectra of two self-adjoint bounded operators
Ty andT5 the continuous functional calculus satisfies

(5.4) I f(Ty) — f(T2)llns < AlITL — T2|lks;

see Kittaneh (1985). We proceed by bounding the Hilbert—Schmidt norm of the
difference of the inverses of the generators and by then transferring this bound to
the transition operators via (5.4). By the functional calculus for operatovs time
function f (z) = exp(A(z~1)) sendS(L.|y) 1 to P%|y. Moreover, f is uniformly
Lipschitz continuous orf—oo, 0) due to A := sup_q|f'(z)| = 4A~1e™2 < .

Thus, we arrive at

Iper — Pell2qoap = | (P& — P&y s < AlLely) ™ = (Lelv) Hins.

The inverse of the generatfg on V has forg € V the explicit form

1 1
65) L e = [ ( /y S;lw)(v—1[x,1]<v))dv)g(y)dy.
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Using |S€‘,1 — S;1| = 2y, for somek € K; and denoting by the primitive
of ¥ with compact support, we obtain

I(Lelv) ™ = (Lelv) 7 LiAs

1 ,1 1 5
:/0 /0 (/y ZV‘//‘jk(v)(v—1[x,1](v))dv> dxdy

1ol .
:4)/22_]/ / (-w(zfy—k)y
0 JO

1 ) , 2
—/ W(Z’v—k)dv+\lf(2](xVy)—k)) dxdy
y

Sy227w (@212, ~ p2274

Consequently|| por — p |12, ~ 27/@*3 holds with an arbitrarily small constant
if 2/+1/2) is chosen sufficiently small. Hence, the estimate (5.3) is valid for this
choice and the asymptotidé2—/(%+3 — 1, which remained to be proved.

6. Technical results. We shall need several technical results, mainly to de-
scribe the dependence of certain quantities on the underlying diffusion parameters.
The following result is in close analogy with Section IV.5 in Bass (1998).

LEMMA 6.1. The second largest eigenvalugof the infinitesimal generator
L » can be bounded away from zero

v1 < — inf S(&)=:—sp.
1= x€[0,1] ) 0

This eigenvalue is simple and the corresponding eigenfungtiosimonotone

PROOF The variational characterization of [Davies (1995), Section 4.5]
and partial integration yield

1
vp= sup (Lf f)y=— inf /S(X)f/(x)zdx.
I fll=1 Ifl.=1Jo
(f,1)u=0 (f.1)u=0

Given the derivativef’, the function f € dom(L) with (f,1),, = 0 is uniquely
determined. Setting/ (x) := 1 ([0, x]), this function f satisfies

o= [ ' (r@+ [ rordy)uwdx=ro+ [ ' o)— M) dy.
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For f, g € L?(u) with (f, 1), = (g, 1),, = 0 we find

1 x X
(o= (f<0>+ [ f’(y)dy)(g<0>+ [ g’(z)dz)u(X)dx
1
= £(0)5(0) — f(0) fo ¢ (L — M@2)dz
1
— 4(0) /0 F L= M(y)dy
1 r1
[ [ rog@a-mov o)y
1 ,1
= /O fo (M(y A2) — MOYM@E) f (g (@) dy dz

1 ,1
— / f m(y,2) ' (g @) dydz.
0 JoO

The kerneln(y, z) is positive on(0, 1)2 and bounded by 1, whence we obtain, by
regardingy = f/,

1 2 2
—U]_:inf . 1[0 S(X)M(.X') dx > SO”u!LZ
“ o Jom(y, Du(uz)dydz — lullf

If the derivative of an eigenfunctiofy changed sign, we could writg = u™ —u~

with two nonnegative functions™, «~ that are nontrivial. However, this would
entail that the antiderivativg, of fé :=uT +u~ satisfieg Lo, folu = (Lf1, f1)u,
while || foll,, would be strictly greater thalhf1||,, due to the positivity ofn(u, v).
This contradicts the variational characterizationvgfso that all eigenfunctions
corresponding ta; are monotone. Consequently, for any two eigenfunctions
f1 andgs the integrand in

1 ,1
(f1 g1 = /o /0 m(y.2) f{()8L () dydz

does not change sign and the whole integral does not vanish. We infer that
the eigenspace of; cannot contain two orthogonal functions and is thus one-
dimensional. O

> 50-

LEMMA 6.2. For Hq, Ho € L%([0, 1]) we have the following two uniform
variance estimates ové;:

1N
(6.1) Vary, i [ﬁ > Hl(XnA):| < N 'Eop[H1(X0)%),
n=1

1 N
(6.2) Var,, [ﬁ > Hl(X(n_m)Hz(XnA)} < N7YE, 5 [H1(X0)?Ha(X1)?].
n=1
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ProOOF Due to the uniform spectral gagp over ®; (Proposition 6.1),
Py satisfies||Pafll, <yl fll, with y :=e~1l8 <1 for all f e L?(w) with
(£, 1) =0.

We obtain the first estimate by considering the centered random variables
J1(Xka) = H1(Xra) — Eo p[H1(Xka)], k € N

N N N
Vara,b[zlmx,m)}= Y Eeul AXma) A= Y (. P A1),
n=1 m,n=1 m,n=1

N
< YY" IANE S NEe sl Hi(Xo0)%].

m,n=1

The second estimate follows along the same lines. Merely observe that for
m > n, by the projection property of conditional expectations

Eop[ H1(X (n—1)a) H2(XnA) HU(X gn—1)a) H2(X ) |
=(Hy- (PaHy), P ™" Y(Hy- (PaHD))),

holds, where *” is the usual multiplication operator.]

LEMMA 6.3. Uniformly over®, the following norm equivalence hotds

Ifllgs~Ilad—L)Y2f),  forall fe H

PROOFE The invariant measurg and the functionS are uniformly bounded
away from zero and infinity so that we obtain, with uniform constantsffer

dom(L),
LW = Y+ S Y~ s P+ (SE f)
=((d—L)f, f)u=0d = D)2 f|I7.

By an approximation argument this extends tofat H1 = dom(L/?). O

PROPOSITIONG6.4. Supposé(o,(-), b,(-)) € O, n >0,and

lim loy —oolls =0, lim b, — bolloo = 0.
n—oo n—oo
Then the corresponding transition probabilitieﬁ,(")) converge uniformly
; (n) © —

PROOF An application of the results by Stroock and Varadhan (1971) yields
that the corresponding diffusion processe€® converge weakly tox (@ for any
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fixed initial valueX ™ (0) = x. This implies in particular

W o
im_ [ pi" (e () dy = /O PO, Vo) dy

n—oo

for all test functionsy € L*°([0, 1]) and allx € [0, 1].

On the other hand, the functiompf”))n form a relatively compact subset of
€ ([0, 11%) by Proposition 6.7 and Sobolev embeddings. Any point of accumulation
of (p,(”))n in €([0, 1]%) must equa]nt(o), which follows from testing with suitable
functionsg € L*°([0, 1]). ConsequentMpt(”)),, is a relatively compact sequence
with only one point of accumulation and thus convergéds.

PROPOSITIONG.5. Forthe clas®d, there is a constant > 0 such that for all
parameterso (-), b(+)) the eigenvalue; = «1(o, b) of P, is uniformly separated
o (Pa) N B(k1, 2p) = {k1}.

Furthermore for all 0 < a < b < 1 there is a uniform constant, , > 0 such
that the associated first eigenfunction= u1(o, b) satisfiesfor all (o, b) € Oy,

min [uy(x)| > cap.
x€la,b]

PrROOF Proceeding indirectly, assume that there is a sequencé,) € O;
such that the corresponding eigenvalues sabtéﬂ)/ — 1 (or Kf’) — Ké”) — 0,
resp.). By the compactness of the Sobolev embeddingbinto C° we can
pass to a uniformly converging subsequence. Hence, Proposition 6.4 yields
that the corresponding transition densities converge uniformly, which implies
that the transition operatong”) converge in operator norm oh?([0, 1]). By
Proposition 5.6 and Theorem 5.20 in Chatelin (1983), this entails the convergence
of their eigenvalues with preservation of the multiplicities. Since the limiting
operator is again associated with an elliptic reflected diffusion, the fact that the
eigenvaluec; = "1 is always simple (Lemma 6.1) gives the contradiction.

By the same indirect arguments, we construct transition operzﬂﬁ‘r)son
the spaceC([0,1]) and infer that the eigenfunctiom;(l”) [Chatelin (1983),
Theorem 5.10], the invariant measure®’ [see (3.1)] and the inverses of the
functions S™ [see (3.2)] converge in supremum norm. Thereford") =
v{”)(S(”))‘lfu(ln)u(”) also converges in supremum norm. Dueutgy, 5 # O

(Lemma 6.1) this implies tha(u(ln))/ cannot converge to zero ¢a, b]. O

LEMMA 6.6. The L2(u)-normalized eigenfunctiom; of the generatorL
corresponding to thek + 1)st largest eigenvalue, satisfies

-1
lugll sz < C (s, 500 1S~ g llells—2) il T,

whereC is a continuous function of its arguments



NONPARAMETRIC ESTIMATION OF SCALAR DIFFUSIONS 2251
ProOOE We know thaw—l(Sugc)/ = vruy andu) (0) = 0 holds, which imply
X
() =500 [ et du

Supposes; € H't1 with r € [0, s]. Then the functionu is in HA¢~D due
to u; € C” (Sobolev embeddings). Hence, the antiderivative isHifi+1"s,
As S~1 e H* holds, the right-hand side is an elementrf " +1 We conclude
that the regularity of uy is larger by 1, which implies thai is in H*+1.

In quantitative terms we obtain for € [1, s], where we use the seminorm

|fls = 1Dl 2,
il <l ) (1574, /O'ukuHoo + ||S—1||oo] [ )
< il COMNS™ e (ol 20y + relr—1)
< il COMNS s L+ lugelr—all oo + Nl ool llr—1)
< [l CONS s L+ 2fuelly—2ll lls—)-

By applying this estimatefu|,+1 < [velllS™ s (1 + [lugll-—1llnlls—1) Succes-
sivelyforr =1,2, ..., |s] and finally, forr = s — 1, the estimate follows. [J

PROPOSITIONG.7. For (o, b) € O the corresponding transition probability
densitypa = pa o.p Satisfies

SUp [|pallgstixpys < 0o.
(0,b)€By

PROOFE The spectral decomposition &, : L2(i) — L2(w) yields

o
pat.y) =pu( Y e*furur(y),  x,y€[0,1].
k=0
Due to the uniform ellipticity and unifon boundedness of the coefficients, we
havevy € [—C1k?, —C2k?] with uniform constant€’1, C» > 0 on®, [see Davies
(1995), adapting Example 4.6.1, page 93, to our situation]. From the preceding
Lemma 6.6 and the Sobolev embeddiigt! c C* we infer

0
—CoAk?
IIPAIIHs+1ng§§ e 27 Nlugllsallmurlls
k=0

0
— _ 2
<" Cs,50, 1S ls, lells—1)%e 22 (C1k?) el
k=0

which gives the desired uniform estimate.]
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