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We are deriving optimal rank-based tests for the adequacy of a vector
autoregressive-moving average (VARMA) model with elliptically contoured
innovation density. These tests are based on the ranjseoflo-Mahalanobis
distancesand on normed residuals computed from TyleAsfi. Statist15
(1987) 234-251] scatter matrix; they generalize the univariate signed rank
procedures proposed by Hallin and Puti Multivariate Anal.39 (1991)
1-29]. Two types of optimality propertieseeconsidered, both in the local and
asymptotic sense, a la Le Cam: (a) (fixed-score procedures) local asymptotic
minimaxity at selected radial densities, and (b) (estimated-score procedures)
local asymptotic minimaxity uniform over a class of radial densities.
Contrary to their classical counterparts, based on cross-covariance matrices,
these tests remain valid under arbiyralliptically symmetric innovation
densities, including those with infinite variance and heavy-tails. We show
that the AREs of our fixed-score procedures, with respect to traditional
(Gaussian) methods, are the same as for the tests of randomness proposed
in Hallin and PaindaveineBernoulli 8 (2002b) 787-815]. The multivariate
serial extensions of the classical Chernoff-Savage and Hodges—Lehmann
results obtained there thus also hold here; in particular, the van der Waerden
versions of our tests are uniformly more powerful than those based on cross-
covariances. As for our estimated-score procedures, they are fully adaptive,
hence, uniformly optimal over the class of innovation densities satisfying the
required technical assumptions.

1. Introduction.

1.1. Multivariate signs and ranks.Much attention has been given recently to
the development of invariant, distribom-free and robust methods in the context
of multivariate analysis. Whereas such concepts as medians, quantiles, ranks or
signs have been present in the classical toolkit of univariate statistical inference
for about half a century, the emergence of their multivariate counterparts has been
considerably slower.
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A fairly complete theory of rank and sign methods for multivariate analysis was
elaborated in the sixties, culminating in the monograph by Puri and Sen (1971).
This theory however suffers the major weakness of being based on componentwise
definitions of ranks and signs, yielding procedures that heavily depend on the
choice of a particular coordinate system. It took about twenty years to see
the emergence of a systematic development of coordinate-free, affine-invariant
competitors to these componentwise sign and rank methods.

This development, initiated in the late eighties, essentially expanded along two
distinct lines of research. The first one, based on the so-dajkedigns and ranks
is due to Oja, Hettmansperger and their collaborators [Métténen and Oja (1995),
Mottonen, Oja and Tienari (1997), Méttonen, Hettmansperger, Oja and Tienari
(1998), Hettmansperger, Nyblom and Oja (1994) and Hettmansperger, Métténen
and Oja (1997); see Oja (1999) for a review]. The second one is associated
with Randles’ concept of interdirections, and was developed by Randles and his
coauthors [Randles (1989), Peters and Randles (1990), Jan and Randles (1994)
and Um and Randles (1998)]. For both groups of methods, only location problems
(one- and two-sample problems, analysis of variance, were considered, and
optimality issues were not investigated. This problem of optimality has been
addressed for the first time in Hallin and Paindaveine (2002a) who, still for
the location problem, are constructing fully affine-invariant methods based on
Randles’ interdirections and the so-called pseudo-Mahalanobis ranks that are also
fully efficient (in the Le Cam sense) for the multivariate one-sample location
model. Invariance and robustness on one side, efficiency on the other, thus, should
not be perceived as totally irreconcilable objectives.

The case of multivariate time series problems, in this respect, is much worse,
despite the recognized need for invarjagistribution-free and robust methods
in the area. The univariate context has been systematically explored, with a
series of papers by Han, Ingenbleek and Puri (1985), Hallin and Mélard
(1988) and Hallin and Puf1988, 1991, 1994) on rank and signed rank methods
for autoregressive-moving average (ARMA) and a few other [see, e.g., Hallin
and Werker (2003)] time series models. But, except for a componentwise rank
approach [Hallin Ingenbleek and Puri (1989), Hia and Puri (1995)] to the
problem of testing multivariate white noise against vector autoregressive-moving
average (VARMA) dependence—suffering the same lack of affine-invariance as
its nonserial counterparts—and an affine-invariant approach to the same problem
based on interdirections and pseudo-Mahalanobis ranks [Hallin and Paindaveine
(2002b)], the multivariate situation so far remains virtually unexplored from this
point of view.

Our objective is to develop a complete, fully operational theory of optimal
signed rank tests for linear restrictions on the parameters of multiresponse linear
models with VARMA errors and unspecified elliptically symmetric innovation
densities. These tests are based on the ranseafdo-Mahalanobis distancasd
on normed standardized residuals computed from Tyler's (1987) scatter matrix.
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They generalize the univariate signed rank procedures proposed by Hallin and Puri
(1991, 1994) (Tyler-normed residuals playing the role of multivariate signs). Two
types of optimality properties are considered, both in the local and asymptotic
sense, a la Le Cam: (a) (fixed-score procedures) local asymptotic minimaxity at
selected radial densities, and (b) (estimated-score procedures) local asymptotic
minimaxity, uniform over the set of all radial densities (satisfying adequate
regularity assumptions).

Fulfilling such an objective requires a series of steps, each of which plays an
essential role in the construction of the final methods:

(i) defining the adequate (asymptotically sufficient, in the Le Cam sense)
rank-based measures of serial dependence, establishing the required asymptotic
representation and central-limit results and constructing the optimal tests for fully
specified values of the parameters; this is the aim of the present paper, which
also works out the algebraic problems related with the singularity of information
matrices;

(i) characterizing the class of linear hypotheses that are invariant under linear
transformations, and for which affine-invariant multivariate rank tests make sense
(a problem that does not appear in one-dimensional setting); this characterization
is obtained in Hallin and Paindaveine (2003);

(i) establishing the asymptotic linearity of the test statistics we are obtaining
in this paper [see (i) above]; this linearity is required if estimated residuals are
to be substituted for the exact ones in the computation of multivariate ranks and
signs, and is the subject of Hallin and Paindaveine (2004a);

(iv) finally, obtaining the optimal aligned sign and rank tests for linear
restrictions, with a detailed and explicit description of some important special
cases such as testing for the orders of a VARMA error or a rank-based solution
to the multivariate Durbin—Watson problem; see Hallin and Paindaveine (2005).

1.2. The benefits of a rank-based approacintroducing ranks in multivariate
time series problems is not just a mathematically challenging exercise, or a matter
of theoretical aesthetics. The benefits of rank-based methods indeed are multiple
and “mutually orthogonal” in the sense that none of them is obtained at the expense
of the others.

If efficiency is the main objective, the generalized Chernoff-Savage and
Hodges—Lehmann results of Section 7.2 are important selling points: the fact that
asymptotic relative efficiencies with respect to daily-practice methods are never
less than one, for instance, is not a small advantage.

But there is much more. The tools we are using here were first developed
(in the simpler context of independent observations) in the robustness literature.
Robustness (in the vague but reasonably well-understood sense of “resistance
to outliers”) and efficiency objectives, to a large extent, thus can be attained
simultaneously. Invariance—whether strict (with respect to affine transformations)
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or approximate (with respect to order-preserving radial transformations: see
Section 4 for precise statements)—is another fundamental feature of the methods
we are proposing. A major consequence of invariance indeed is distribution-
freeness, hence exact, similar, unbiased tests, even in the presence of heavy-tailed
distributions. The methods we are developing thus remain valid under a very broad
class of densities, whereas everyday practice requires finite second-order moments,
often fourth-order ones.

Due to the need for consistent estimation of nuisance parameters, some of these
benefits of invariance (such as heavy-tail validity) unavoidably have to be tuned
down when testing for linear restrictions on the parameters. One way around this
problem would consist in modeling median or quantile (auto)regressions, but this
is much beyond the scope of the present paper. Most of the nice consequences of
invariance however remain, under approximate or asymptotic form.

Finally, the methods proposed are fully applicable; see Hallin and Paindaveine
(2004b) for an application to VAR order identification.

1.3. Outline of he paper. The starting point in this paper is a local asymptotic
normality (LAN) result by Garel and Hih (1995). This LAN result allows for
deriving testing procedures that are locally and asymptotically optimal under a
given innovation density’, based on a non-Gaussian form of cross-covariances,
theresidual f-cross-covariance matrices

However, due to the possibility of singular local information matrices [such
singularities occur as soon as the VARMA, ¢g1) neighborhood of a null
VARMA (po, go) model with pg < p1 andgp < ¢1 is considered], the optimal test
statistics involve unpleasant generalized inverses, which darkens their asymptotic
behavior. Therefore, we first restate the LAN property by rewriting the central
seqguence in a way that explicitly involves the ranks (in the algebraic sense) of
local information matrices, and allows for “generalized inverse-free” locally and
asymptotically optimal procedures (see the comments after Proposition 1). Next,
we show how to replace the “parametric” residyatross-covariance matrices
appearing in the central sequences with “nonparametric” versions, based on the
ranks of the Mahalanobis distances and the estimated standardized residuals
computed from Tyler’'s scatter matrix.

Tyler's scatter matrix enjoys highly desirable equivariance/invariance prop-
erties. These properties extend to our test statistics; in particular, they are
asymptotically invariant under monotone radial transformations of the residu-
als, hence, asymptoticalljistribution-free with respct to the underlying radial
density. They also are asymptotically distribution-free with respect to the scatter
parameter; it should be stressed, however, that this latter property does not follow
from any affine-invariance property. Unlike the null hypotheses of location or ran-
domness considered in Hallin and Paindaveine (2002a, b), hypotheses involving
general VARMA dependence, as a rule, are not affine-invariant: see Hallin and
Paindaveine (2003) for a precise characterization. Actually, our test statistics are
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strictly affine-invariant whenever the underlying testing problems are, which is of
course the most sensible affine-invariance property we can hope for.

We conclude the paper by computing the asymptotic relative efficiencies of the
proposed nonparametric procedures with respect to the Gaussian ones, showing
that the AREs, as well as the generalized Chernoff-Savage and Hodges—Lehmann
theorems obtained in Hallin and Paindaveine (2002b), are still valid here.

The paper is organized as follows. In Section 2 we describe the testing problem
under study, and state the main assumptions to be made. The LAN structure of
the model is established in Section 3, with a central sequence that exploits the
assumptions of elliptical symmetry. The multivariate counterparts of traditional
ranks and signs are based on Tyler's scatter matrix, the correspoiidieg
residualsand the so-calledseudo-Mahalanobis rankEhese concepts are defined
in Section 4, where their consistency and invariance properties are also derived.
They are used, in Section 5, in the definition of a concept of nonparametric
residual cross-covariance matrices, extending to the multivariate context the notion
of rank-based autocorrelations developed in Hallin and Puri (1988, 1991). These
matrices allow for a reconstruction of central sequences, hence, for nonparametric
locally asymptotically optimal procedures. Two types of optimality properties are
considered in Section 6, both in the local and asymptotic sense, a la Le Cam
(we use the term “minimaxity” even though the tests are “maximin” rather than
“minimax”):

(a) (fixed-score procedures) local asymptotic minimaxity at selected radial
densities, and

(b) (estimated-score procedures) local asymptotic minimaxity, uniform over a
broad class of radial densities.

In both cases the proposed tests remain valid under arbitrary elliptically symmetric
innovation densities, including those with infinite variance. In Section 7 the
asymptotic relative efficiencies of the proposed procedures, with respect to their
Gaussian counterparts (based on classical cross-covariances), are derived. Proofs
are concentrated in the Appendix.

2. Notation and main assumptions. Consider the VARMAp1, g1) model
defined by the stochastic difference equation

P1 q1
(1) (Ik—ZA,-L’)X,:(Ik+ZBiLi>et, teZ,
i=1 i=1
where Ay, ...,A,,,B1,...,B,, are k x k real matrices I stands for the
k-dimensional identity matrix),.. denotes the lag operator an@;|: € Z}

is an absolutely continuouk-variate white noise process. The parameter of
interest isf := ((vecA1)’, ..., (vecA,,)’, (vecBy)', ..., (vecBy,)")’, with values

in RF(pitan)
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Fixing some value

. / I~
00 := ((vecAy), ..., (vecA,,), 2 p1—poyx 1

/ ! / '
(vecBy)', ..., (vecBy,) , k2(111_(10)X1)

of the parametef that satisfies Assumption (A) below, we want to test the null
hypothesi® = 0y against the alternativ# 6o. Choosingpg < p1 and/orgg < g1
allows one to test the adequacy of the specified VARMA coefficiengg, imvhile
contemplating the possibility of possibly higher-order VARMA models. If the
order is not an issue, one can just pgt= p1 andgo = g1.

The null VARMA model must satisfy the usual causality and invertibility
conditions. More precisely, we assume the followingfgn

ASSUMPTION (A). All solutions of detl;, — >-/°; A;z)) =0, z € C, and
det(ly + X7 Biz') =0,z € C (JA | # 0 |By), lie outside the unit ball irC.
Moreover, the greatest common left divisongf- >-7°; A;z" andl + Y7 B;z!

is k.

Write A(L) andB(L) for the difference operatorlg — >-7°, A; L and 1, +
Zl‘fil B;L!, respectively. LettingBg := I, recall that the Green’s matricés,,
u € N, associated withB(L) are defined by the linear recursion™o 7 B; x

H,_; = d,0lk, whered, o =1 if u =0, and§,o = O otherwise. Assumption (A)
also allows for defining these Green’s matrices by
+00 90 . -1
(2 D Huz" = <|k+ZBiz’) : z€C, |zl <1
u=0 i=1
H i (qo.u) sy q/ _
as a consequence, the same matrices also s&shy BiH),_; = duolk.

Assumption (A), moreover, ensures the existence of serse0 such that the
series in (2) is absolutely and uniformly convergent in the closed b&ll with
center 0 and radius * ¢. Consequently||H, ||(1 + ¢)* goes to 0 ast goes to
infinity. This exponential decrease ensures tiiat,, ||, « € N) belongs to/? (N)
for all p > 0, wherel? (N) denotes the set of all sequendeg, u € N) for which
Yoo lxul? < oo. Of course, the same remarks also hold, with obvious changes,
for Green’s matrice&,,, u € N, associated with the operat&L). For simplicity,
we do not indicate the strong dependencdlgrof G, andH,, which of course
are associated with the null operatér€l) andB(L).

Under Assumption (A), the white noide,} is {X;}’s innovation process. The
set of Assumptions (B) deals with the density of this innovation. As indicated, we
restrict ourselves to a class of elliptically symmetric densities.

ASSUMPTION (B1). Denote byX¥ a symmetric positive definitd x k
matrix, and byf:IRar — R a nonnegative function, such th#t> 0 a.e. and
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JE& =1 (r)dr < co. We will assume throughout tha!™ . ..., e} is a finite
realization of an elliptic white noise process with scatter maEiand radial
density f, that is, such that its probability density @, . .., z,) € R"¥ is of the

form ]"[;’zli(zg”); X, ), where

®3) f@uZ, ) i=cr p([detD) Y2 f(Jzalls),  z1eRE

Here||z||x := (Z X ~12)1/2 denotes the norm of in the metric associated with.

The constanty, ¢ is the normalization factofw; [/Lk_]_;f)_l, wherewy stands for
the (k — 1)-dimensional Lebesgue measure of the unit sptéret ¢ R¥, and
wip = Joor' f(r)dr.

Note that the scatter matriX in (3) need not be (a multiple of) the covariance
matrix of the observations, which may not exist, and th&t not, strictly speaking,
a probability density; see Hallin dnPaindaveine (2002a) for a discussion.
Moreover,X and f are identified up to an arbitrary scale transformation only.
More precisely, for any: > 0, letting X, := ¢2X and f,(r) := f(ar), we have
X, f) = f(X; X4, fo). This will be harmless in the sequel since cross-
covariances, central sequences, as well as all statistics considered, are insensitive
to a variation ofa.

We will denote by X~%/2 the unique upper-triangulak x k array with
positive diagonal elements that satis#s! = (X ~1/2)x ~1/2, With this notation,

2126 /1226, 2 Y26 /22| are iid., and uniformly
distributed overs¥—1. Similarly, |Z~Y2e{|,..., [E"Y2\"| are i.i.d. with
probability density function

4) Fe@) = (=1 )" ) s,

where Iz denotes the indicator function associated with the BorelE&eThe
terminologyradial densitywill be used forf and f; indifferently (though onlyf;,
of course, is a genuine probability density). We denoteFpythe distribution
function associated witlf..

Write #™ (0o, X, f) for the hypothesis under which an observatif :=
X, ., XMy is generated by the VARMA{, go) model (1) with parameter
value fy satisfying Assumption (A) and innovation process satisfying Assump-
tion (B1) with “scatter parameterZ and radial densityf. Our objective is to
test 7™ (0o) := Uz Uy H™ (B0, Z. f) againstUyy, #™ (#). Consequently,
¥ and f play the role of nuisance parameters; note that the unions, in the defi-
nition of #" (@), are taken oveall possible values of and f.

The methodology we will adopt in the derivation of optimality results is
based on Le Cam’s asymptotic theory of experiments. This requires the model
(characterized by some fixed value Bf and f) at which optimality is sought
to be locally and asymptotically normal (LAN). LAN, of course, does not hold
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without a few, rather mild, regularity conditions: finite second-order moments and
finite Fisher information forf, and quadratic mean differentiability ¢f/. These
technical assumptions are taken into account in Assumption$ éBdl (B2), in a

form that is adapted to the elliptical context. We insist, however, on the fact that
these assumptions are made on the density at which optimality is desired, not on
the actual density.

AsSSUMPTION(B1'). Same as Assumption (B1), but we further assume that
Mk+1; f < OQ.

Note that Assumption (Blis also required when Gaussian procedures are to be
considered, since these also require the second-order moments of the underlying
distribution to be finite.

Assumption (B2) is strictly equivalent to the assumption tji&f? is differ-
entiable in quadratic mean [see Hallin and Paindaveine (2002a), Proposition 1].
However, it has the important advantage of involving univariate quadratic mean
differentiability only. LetLZ(]Rar, wu;) denote the space of all functions that are
square-integrable with respect to the Lebesgue measure with wé'rghRg , that
is, the space of measurable functign®RJ — R satisfying /5 [ (r)1?r! dr < oo.

ASSUMPTION (B2). The square rootf'/? of the radial densityf is in
WE2(RE, ur—1), whereW2(R{, ux—1) denotes the subspace BF(RS, 1x—1)
containing all functions admitting a weak derivative that also belongs to
L*(Rg, e—1).

Denoting by(f%/?)" the weak derivative off /2 in L2(R{, ix—1), let gy ==

—2“}1//2) Assumption (B2) ensures the finiteness ofhdial Fisher information

e s o= ez )L fo [ (I L f () dr.

In the last set of assumptions, we describe the score fundkipnk’; to be used
when building rank-based statistics in this serial context.

AsSsSUMPTION(C). The score functiong,: 10, 1[ — R, £ =1, 2, are contin-
uous differences of two monotone increasing functions, and sgf@we(u)]?du <
oo (£ =1,2).

The score functions yielding locally and asymptotlcally optlmal procedures, as
we shall see, are of the forkiy := ¢,.F;* and K, := F*, for some radial
density f,. Assumption (C) then takes the form of an assumptiorf,on
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AssumMPTION (C). The radial densityf, is such thatey, is the con-
tinuous difference of two monotone increasing functiopg, 1., < oo and

[2le s, (DR f(r) dr < oo

The assumption being the difference of two monotone functions, which
characterizes the functions with bounded variation, is extremely mild. In most
cases f, normal, double exponential..), ¢, itself is monotone increasing,
and, without loss of generality, this will be assumed to hold for the proofs. The
multivariate ¢-distributions, however, provide examples of nonmonotone score
functionsy , satisfying Assumption (§.

3. Local asymptotic normality. Let A(L) andB(L) be such thaf\; := 0 for
i=po+1,...,p1,andB; :=0fori =¢go+1,...,q1, and consider the sequences
of linear difference operators

r1 )
AML) =1 =Y (A +n"Y2™M)L! and
i=1

q1
BMW(L) =l + Z(Bi + n_1/23§n))Ll,
i=1

where the vectot ™ := ((vecy!"), ..., (vecy WY, (vecs\"Y, ..., (vecs\wy) e

RK(r1+41) is such that syt ™)' t™ < 0. These operators define a sequence of
VARMA models

AM(LYX, =B™(L)e,, teZ,

hence, in the notation of Section 2, the sequence of local alterna\/8$0 o +
n~ Y2t % ).

Let (zg")(ao),...,z,ﬁ")(ao)) be then-tuple of residuals computed from the
initial values e_g+1,...,€0 and X" ..,Xg‘) and the observed series

—po+l-
(X(l"), ..., XY via the relation
t—1 po
Z00) =33 HAX",
i=0j=0
8 0
B, Iy ... o]f(fft
+ (Ht+qo—1"’Ht) .
Byo-1 Bg—2 .- Ik €0

Assumption (A) ensures that neither the (generally unobserved) values

(e_got1, - - - » €0) Of the innovation, nor the initial value{s((_”;OH, . X§), have
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an influence on asymptotic results, so that they all safely can be set to zero in the
sequel. Decomposg™ (6) into

Z"00) =d™ 00, ) ZY2U" (0, %),

where 4" (00,%) = 11Z" @)z and U@, %) = =-Y22{"©@0)/
d™ (00, ). Writing gy :=—2DfY?)/ fY2, whereD f/? denotes the quadratic
mean gradient ofl/z define, as in Garel and Hallin (1995), the residgiatross
covariance matriof lagi as

(5) I 00 :=n-0"Y ¢/(2"00)Z"; O0).
t=i+1

Due to the elliptical structure cj , these cross-covariance matrices take the form

1
r(n) f(00) E/ 1/2( Z €0f dt(n)(GOv Z))d(n) (00’ Z)
(6) t=i+1

x U™ B0, Z)U"); (B0, z))z/l/z

Hallin and Paindaviee (2002b) are developing optah procedures based on
nonparametric versions of the cross-covariances (5) or (6) for the problem of
testing elliptic white noise against VARMA dependence.

Garel and Hallin (1995) established LAN in this setting (in fact, in a more
general, possibly nonelliptical, context). The quadratic form in their second-order
approximation of local log-likelihoods (hence, also in ours) is not of full rank, due
to the well-known singularity of the information matrix for ARMA models. This
singularity, quite understandably, has to be taken into account in the derivation of
locally optimal inference procedures; in hypothesis testing, this can be achieved in
a straightforward way provided the information matrix is factorized in an adequate
way (see the comments after Proposition 1 for details). This factorization is not
provided by Garel and Hallin (1995), sintdeey just deal with LAN, and not with
optimal inference, but it is needed here. Therefore, in Proposition 1, we first restate
LAN under a slightly different form, in the spirit of the univariate results of Hallin
and Puri (1994). As usual, though, the multivariate case is a bit more intricate, and
requires some notational and algebraic preparation.

Associated with anyk-dimensional linear difference operator of the form
C(L) :=Y72,C; L' (letting C; = 0 for i > s, this includes, of course, operators
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of finite orders), define for any integers andv thek?u x k%v matrices

Co® Iy 0 0

Ci1®lg Co®lr ... 0
v Ci1®lr Cp2®lx ... Co®lg

Cu—l®|k Cu—2®|k Cu—v®|k

and

lx ®Co 0 0

Iy ®Cq I, ® Co 0
S el
’ Ik ®Cyor 1k ®Cy2 ... 1(k®Co

Ik®Cu—l Ik®Cu—2 Ik®Cu—v

respectively; writeC” for C,S’,)u andC" for C,([, ) With this notation, note that
GY, G HP andH{” are the inverses &t AL, BY andB{”, respectively.
Denoting byCiffﬂ and C/u(,rv) the matrices associated with the transposed operator
C/(L) := Y2, C/L!, we also haves,” = (A")~1, H/P = B/")~1, and so on.

Let = := max(p1 — po,q1 — go) and mg := m + po + go, and define the
k2o x k2(p1+ q1) matrix Mg, := (GAL) . Hﬁﬁé),ql): under Assumption (AMy,
is of full rank.

Finally, consider the operat®(L) := I + Y279 D; L’ [just asMg,, D(L)
and most quantities defined below dependgnfor simplicity, however, we are

dropping this reference ], where, puttingG_1 =G_2=---=G_,,411=0=
Hoi=H o=---=H_41,
Gyo Gyp-1 - Gopgr1\ *
Gyot1 Gyo o Gopor2 Gyot1
D] :
: - Gpotao—1 Gpotgo-2 - Go G portao
D’ ' H po Hpo-1 -0 Hegora Hpot+1
po+qo Hpo+1 Hpo oo Hogoeo .
: : HPo+qo
Hpotgo-1 Hpotgo—2 - Ho

Note thatD(L)G, =0 for r =go+ 1,..., po + g0, and D(L)H; = 0 for ¢t =
po+1,.... po+qo.

Let (WY, ..., w7099} phe a set ofk x k matrices forming a fundamental
system of solutions of the homogeneous linear difference equation associated
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with D(L). Such a system can be obtained, for instance, from Green’s matrices
of the operatoD(L) [see, e.g., Hallin (1986)]. Defining

D (po+qo)
v, el

_ €8] (po+qo0)

¥,,00 = Y2 o Ve g, s,
vy oL et

the Casorati matrixCy associated witlb(L) is \il,,o. Putting

(5 ) o oionni( L)

let
S B0) := ((n — D¥2(vecI' 'y, ,(80))'.
(n—i)Y?(vecI'{y (00))..... (vecI'"” 5 .(80)))'.
2T 00) = Qqr)'Sy (80)
and
™ Jooz = lim Qp[i-1® (E® 2 HIQy

[convergence in (7) follows from the exponential decrease,-asoco, of Green’s
matricesG, andH,; see the comment after Assumption (A)]. Local asymptotic
normality, for fixedX and f, of the model described in Section 2 then can be
stated in the following way.

PROPOSITION 1. Assume that Assumptiofs), (B1') and (B2) hold. Then
the Ioganttha n-1/220 5. ©f the likelihood ratio ofH™ (09 4+ n~Y2¢™,

¥, f) with respect ta# ™ (0o, X, f) is such that
Lg:))-kn—l/zr(")/oo;Z,f(x(n)) — (T(”))/A({”)f(ﬁ’o) _ %(T(n))/r):,f(oo)f(n) + op(1),

asn — oo, under#™ (0o, X, f), with thecentral sequence

8) A B0) == nPMy Py T3 (60),

and with the asymptotinformation matrixI's; ;(6o) := MN 9.x, Where

9 No.> :=M;,0P§,OJ90,);P00M00.

MoreoverA(,?’)f(Oo), still under #™ @g, X, f), is asymptotically,/vkz(pl+ql)(O,
Ty ((00).
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For the proof see the Appendix.

The benefits of expressingg“?f andTIy r as in (8) and (9) stem from the
following elementary facts. Sequences of local experiments under LAN con-
verge, in the Le Cam sense, to Gaussian shift experiments, so that optimal tests
for the limit Gaussian shifts determine the form of locally asymptotically opti-
mal tests for the original problem. Consider the problem of tes#ifggt =0
against#f1:t # 0 in the single-observatior-variate Gaussian shift experi-
ment under whichA ~ N,(I't,T). Let m := rankT). If m = ¢, the optimal
(a-level maximin) test consists in rejectint for large values oA’T 1A, the
null distribution of which isxez. Whenevem < ¢, T is singular, and this does not
hold anymore. However, if we succeed in writidgandTI in the form

(10) A=MA and T=M'TM,

where both the: x £ matrixM and then x m matrixi)" have full rank, the problem
of testing #:7 = 0 in the singular¢-variate Gaussian shift experiment for
A ~ Ny(T7,T) is strictly the same as that of testldgg Mr =0i in the full-rank

m-variate Gaussian shift experiment under whmhv N (FMr F) It follows
that the optimal ¢-level maximin) test for#p rejects the null hypothesis for

large values o I-1A, which is x2 under#o. Now, cIearIy,Xi“lzz A'T™A,
whereI' ~ denotes an arbitrary generalized inversd oo that, if we succeed in
writing A andr in the form (10), the somewhat unpleasant recourse to generalized
inverses is not required anymore. This is exactly what expressions (8) and (9) are
allowing for. As a consequence, the degeneracy of the information matrix is kind of
hidden in the explicit forms of the optimal test statistics in Propositions 4, 6 and 7.

4. Multivariate ranksand signs:. invariance and equivariance.

4.1. Pseudo-Mahalanobis distances and Tyler residualskelihoods—hence,
the central sequences (8)—are measurable, jointly, with respect to two types of sta-
tistics:
(i) the distances!™ (8o, =) between standardized residudls/2z™ (9,)
and the origin inR¥, and
(i) the normalized standardized residuald™ (8o, X) := £-22" (9y)/
(1)
dl‘ (007 Z)

The (univariate) distanced,(")(ao, ¥) are i.i.d. over the positive real line,
with density (4); their ranks thus have the same distribution-freeness and
maximal invariance properties as those of the absolute values of any univariate
symmetrically distributea-tuple. The normed standardized residtldiﬁ’é)(oo, %)
under#™ @9, X, f) are uniformly distributed over the unit sphere, and, hence,
can be viewed as multivariate generalizations of signs.
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Unfortunately, bothi™ (6o, £) andU™ (8¢, %) involve, in a crucial way, the
shape paramete, which, in practice, is never specified, and has to be estimated
from the observations. If the actual underlying distribution has finite second-
order moments [i.e., under Assumption (B.la “natural” consistent candidate
for estimatingX is the empirical covariance matni»(lz;’:lzﬁn) (6o) (Z,(”)(()o))/.
Finite second-order moments, however, are too strong a requirement, as we
would like to build testing procedures that are optimal under the assumptions of
Proposition 1, but remain valid under much milder conditions, including the case
of infinite variances. This rules out the empirical covariance as an estimae of
and, under the weaker Assumption (B1), which does not require anything about
the moments of the underlying distribution, we propose to use Tyler’s estimator of
scatter [see Tyler (1987)].

This estimator is defined as follows. For amtuple Z™ := (Z(ln), Zé”), o,
z\) of k-dimensional vectors, denote lfb}(;)l = C{11(Z™) the [unique fom > k
(k — D] upper triangulatk x k matrix with positive diagonal elements and a “1”
in the upper left corner that satisfies

" 1 ChE i 1
=1 Tyl <t Tyl <t

Tyler's estimator of scatter is defined 8§"” := CcHrchn

When computed from the-tuple of residuaIsZt(”)(eo), t=1,...,n, Tylers
estimator is rook consistent, up to a multiplicative factor, for the shape maxrix
More precisely, there exists a positive realsuch thatﬁ(f(") —aX) is
Op(1) asn — oo under ; #™ (8o, X, f). Tylers estimator is clearly invariant

under permutations of the residuai[é")(oo). Moreover,C(T';)I is strictly affine-
equivariant, since

(12) CH(MZ®) =doc M1

for some orthogonal matri® and some scalatthat depends oA . See Randles
(2000) for a proof.

The corresponding distances from the origiﬁ”)(ao,f(")) will be called
pseudoMahalanobis distances, in order to stress the fact that Tyler's estimator
of scatter is used instead of the usual sample covariance matrix. The normed
standardized residua®/ ™ 8¢) := U™ (9o, ™) _call themTyler residuals—
will be used as a multivariate concept of signs.

4.2. The pseudo-Mahalanobis ranksAs usual in rank-based nonparametric

inference, the pseudo-Mahalanobis distand;fé’é(oo, f(")) will be replaced by
their ranks. This idea, in the multivariate context, actually goes back to Peters
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and Randles (1990), who (in a one-sample location context) proved a consistency
result, which in the present situation can be stated as follows. Deno@é"ﬁﬁo)

the rank of ™ (8o, ") among d" (8o, T, .. d™ 00, ™), and by

R™ (8o, ) the rank ofd"” (8o, =) amongd.” 8o, %), ..., d\" (00, X).

LEMMA 1 [Peters and Randles (1990)]For all ¢, R™ (60) — R™ (80, X)
is op(n) asn — oo under{J ; #™ (0o, X, f).

For each ¥ and n, consider the group ofontinuous monotone radial
transformationg ¥ = {¢."}, acting on(R¥)", characterized by

Mz (@0), ..., Z" (00))
= (g(d\” B0, £))ZY2U 00, %), ..., g(d™ B0, £)) YU (00, X)),

whereg :R™ — R* is continuous, monotone increasing, and such i@y = 0

and lim._, o, g(r) = co. The groupgg’) is a generating group for the submodel
Uy H™ (0o, X, f), where the union is taken with respect to the set of all possible
nonvanishing radial densities. The raﬂk,gl)(eo, ¥),r=1,...,n, are a maximal
invariant forg(;). Lemma 1 thusis an indication that statistics based on the pseudo-
Mahalanobis rankﬁ,(”)(ao) may be asymptotically invariant, in the sense of being
asymptotically equivalent to their counterparts based on the unobservable, strictly

invariant rankskR"™ (8o, ). This will indeed be the case with the test statistics we
are proposing (see Propositions 2 and 4).

Note also that the equivariance property (121?(5@)I under affine transforma-

tions is sufficient to make the pseudo-Mahalanobis ra‘ﬁﬁ@(ao) strictly affine-
invariant.

4.3. Tyler residuals. The transformatiorC(T’;)l characterized in (11) actually

sphericizesthe problem, in the sense that it transforms elliptically distributed
residuals into spherically distributed ones, estimalij)(@)(ao, ¥) by means of
the Tyler residualav™ := W%’)(ao) = c%’;)lzﬁ")(oo)/||c$;>|z§”>(00)||, with the
following consistency property.

LEMMA 2. Under U, #®™ @0, X, f), max< < {IW{"@0) — U™ @o,
D)} = Op(n~Y2) asn — .

For the proof see the Appendix.
It is clear from (11) thaIC(T’;,)I @z™, ..., a,2") = C(T’;)I z", ..., zMy for
any real numberssy, ..., a,, SO that(:(T’;,)I and, therefore, the Tyler residuam,(")
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themselves, are strictly invariant under radial monotone transformations. Inci-
dently, it readily follows from (12) that the Tyler residuals enjoy the following
strict equivariance property:

LEMMA 3. Denote byWﬁ”)(M) the Tyler residuals computed from the
transformed residualM(Z(l”), 2y, ThenW,(”)(M) = OWE”), whereO is
the orthogonal matrix ir{12).

For the proof see the Appendix.

Note that Lemma 3 implies that any orthogonally invariant function of the Tyler
residuals is strictly affine-invariant. In particular, statistics that are measurable
with respect to the cosines of the Euclidean angles betweeNVl{ﬁ?és—that
is, measurable with respect to the scalar prodt(kfté”)’wgn))—turn out to
be affine-invariant. This shows that the Tyler residuals could be used with the
same success (consistency, invariance properties) as Randles’ interdirections in
the construction of the locally asymptotically optimal affine-invariant tests for
randomness proposed in Hallin and Paindaveine (2002b). This “angle-based”
approach (as opposed to the “interdirection”-based one adopted there) is discussed,
for the one-sample location problem, in Hallin and Paindaveine (2002c).

Fork = 1, the Tyler residuals and pseudo-Mahalanobis ranks reduce to the signs
and the ranks of absolute values of the residuals, respectively. The statistics we are
considering in Sections 5 and 6 thus are multivariate generalizations of the serial
signed-rank statistics considered in Hallin and Puri (1991).

5. Rank-based cross-covariance matrices. The rank-based versions of the
cross-covariance matrices (6) we are proposing are of the form

5 (1) p(n)
(n) wf 1 < R, (00) R, (00)
x (00) :==Cy (— > Kl( K>
13) y n—i o n+1 n+1

x w<")<0o>w(")’<0o>)( w7

whereK1, K»:10, 1] — R are two score functions as in Assumption (C); call (13)

a K-cross-covariance matrix. Let us shortly review some examples of score
functions extending those which are classically considered in univariate rank-
based inference. The simplest scores are the constant Enes & Ko(u) = 1),

and yield multivariate sign cross-covariance matrices

1 _
(5 3 wireown ) g
t=i+1
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leading to serial versions of Randles’ multivariate sign test statistic [Randles
(2000)]. Linear scoresK1(u) = K2(u) = u) Yyield cross-covariance matrices of
the Spearman (or Wilcoxon, as only the ranks themselves are involved) type,

(n)y 1 ) g+ p)
Cyi (—(n “DntDE, X}rlR (00)R,”(00)
(14) l

x WE”)wo)w(”)’wo))( W

The score functions allowing for ¢@l asymptotic optimality under radial
density f, are K1 := ¢,.F;} and K = F' (see Proposition 4). The most
familiar example is that of the van der Waerden scores, associated with normal
radial densities f.(r) := ¢ (r) = exp(—r?2/2)), yielding the van der Waerden
cross-covariance matrices

1 & R™(00)
(n) -1 0
(it 5 ()

t=i+1

(15)

p (1)
_ R _(00) n n —
R G T

whereW, stands for the chi-square distribution function witblegrees of freedom.
The Laplace scores, associated with double-exponential radial dengjties: &
exp(—r)), are another classical example.

In order to study the asymptotic behavior of tikecross-covariance matri-
ces (13) associated with general score functions, under the sequence of null
hypotheses as well as under sequences of local alternatives, we first establish the
following asymptotic representation and joint normality results; see the Appendix
for the proofs.

PROPOSITION2. Let Assumption@B1) and(C) hold. Then writing
z(n1)< ) f(00)

1 Z ~
- ):/_1/2<T > K1(Fi(d” 8o, %))
n—i t=i+1

x Ka(Fi(d™ (80, 2)))U" (80, £)U™ (8o, z))zﬂ/z

ved ('} (00) — T\'x.5 ;(80)) is op(n~Y/?) under.#™ @y, X, f) asn — oo
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For the proof see the Appendix.
For any square-integrable score functirefined ovel0, 1[, let K 2(U)] :=

Jo K2 du, Di(K; f) == Jg K@) F M@y du, and Cy(K f) = [§ K ey
Fk_l(u)du. Then we have the following:

PrRoOPOSITION 3. Let AssumptiongA), (B1'), (B2) and (C) hold. For any
integerm, the vector

S k.5, 7 (00) := ((n = HY?(vecT '} 5 +(00))',
(n —m)*?(vecT V. » +(#0)))'

is asymptotically normal unde#¢™ 0o, X, ) and under#™ 0g + n~2z,
¥, f), with mear0 under#™ (0o, ¥, f) and mean

(16)

1
5 Du(K2: fCL(KL: )l @ (2 ® EH1Qg0 ™ PogMoyr

under#™ 9o +n~127, X, f), and with covariance matrix
10 2 1
kZE[Kl(U)]E[Kz(U)][lm R(ERXT )]

under both

For the proof see the Appendix.
In order to compare Proposition 3 and the corresponding univariate results in
Hallin and Puri (19911994) note that

Q(m+1)P My T ((a(ln) +b(n)) ., (af,r,l) +b§rrll))/)/’

with
min(p1,i) i—j mMin(go,i—j—k)
> S Y GijuiBi®H)) vecy
j=1 k=0 1=0
and
min(q1.i)
b(”) > (k®H;_ ,)vecs(”)
j=1

Propositions 2 and 3 show tha& -cross-covariance matrices, while based
on multivariate generalizations of signs and ranks, enjoy the same intuitive
interpretation and inferential properties as their (traditional) parametric Gaussian
counterpartsl"(”) (00). Proposition 3, for instance, immediately allows for
constructing non- Gaussian portmanteau test statistics and deriving their local
powers. Just as their classical versions (based on the clai‘#@%’s), such
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portmanteau tests, however, fail to exploit the information available on the serial
dependence structure of the observations, hence, are not optimal. Section 6 is
devoted to the construction of locally asymptotically optimal tests based on
K -cross-covariances.

6. Optimal tests. We are now ready to state the main results of this paper:
the optimal testing procedures for the problem under study, their invariance
and distribution-freeness features, as well as their local powers and optimality
properties. Optimality here means local asymptotic minimaxity, either based on
fixed-score test statistics, at some selected radial defisity, based on estimated
scores, uniformly over some clagsof densities.

6.1. Fixed-score test statistics Letting
S 00) := ((n — DY2(vecT % (00))', ..
(n — )Y?(vecT{'x (00))', .. omd*ﬁkw@n
define
n2T 00) == Qy'S¢’ (o) and

17)
(n) . )1 n) o sm-1 (n)
105 = Qe (B @ £7Q).

whereZ ™ denotes Tyler's estimator of scatter (see Section 4.1). Finally, let
k%n
E[KZ(U)IE[K5(U)]

= n —1=(n
0%’ (B0) == Tx00)(3y5) Tk 00).
The test statistic@_(f’f) (o) allowing for local asymptotic optimality under radial

density f, are obtained with the score functioks := ¢,.F_* and Ky := F*
We then have the following proposition.

PROPOSITION 4. Assume that Assumptio8), (Bl) (B2) and (C) hold.
Consider the sequence of rank tesﬁ%) (resp qb ) that reject the null
hypothesis# ™ (8o) wheneverQ @o) [resp Q(”)(()o)] exceeds thex-upper
quantile szzno,l—oc of a chi-square distribution WItHcZJTo degrees of freedom
whereng is defined in Sectio. Then

() the test statistichﬁ?)(oo) do not depend on the particular choice of the

fundamental systemlrﬁl), cee, \P§p°+q°)} (see Sectio); for given values ofpg
andgqo, they depend op1 andgy only throughr = max(p1 — po, 91 — qo);

(i) QE?) (0o) is asymptotically invariant with respect to the group of continu-
ous monotone radial transformations
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(iii) Q(”)(ao) is asymptotically chi-square wittfro degrees of freedom under
H™(00) (so thatp | has asymptotic level), and
(iv) Q%‘)(ao) is asymptotically noncentral chi-squargtill with k27g degrees
of freedombut with noncentrality parameter
1 DA(Ka; /) CR(K1; f)
k2 E[KZ(U)] EIK5(U)]

00, 2T

under #™ (09 + n~Y27, %, f), provided however that (B1) is reinforced
into (B1'), whereNy, 5 is defined in(9);

(v) if we assume thatf, satifies Assumption§B1’), (B2) and (C'), the
sequence of testﬁ(”) is locally asymptotically maximin fos#¢™ (6¢) against

Use, Us #™ (0, X, £.), at probability levekr.

For the proof see the Appendix.

Again, there is no reason to expect the test statistic to be affine-invariant, since
the testing problem itself, in general, is not; see Hallin and Paindaveine (2003).
Nevertheless, the following proposition establishes that whenever the testing
problem under study is affine-invariant (e.g., the problem of testing randomness
against VARMA dependence), then the test statisQf,? (#p) also are affine-
invariant.

PROPOSITION5. (i) The null hypothesis#™ (8) is invariant under affine
transformations if and only g is such thatA; = q;l; forall i =1, ..., po and
B;=bjlforall j=1,...,qo.

(i) When the null hypothesi&™ (8o) is affine-invariantthenQ' (8) also is

For the proof see the Appendix.

6.2. Estimated-score test statisticsThe testsj)(”) considered in Proposition 4
achieve parametric efficiency at radial density ARMA models, though, under
adequate assumptions, are adaptive; this has been shown formally in the univariate
case only [without even requiring symmetric innovation densities; see, e.g., Drost,
Klaassen and Werker (1997)], but is very likely to hold also in higher dimensions.
Adaptiveoptimality property—that is, parametric optimality at @lthus can be
expected, provided thasstimated scoregre considered. Proposition 6 shows that
this, indeed, is the case.

An adaptive procedure could be based on the score funct;passomated
with an adequate estimatgrof the radial density. While being uniformly locally
asymptotically maximin, such a procedure, however, would not have the very
desirable properties of rank-based procedures. This is why we rather propose,
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in the spirit of Hallin and Werker (2003), an adaptive version of the rank-based
procedures described in Proposition 4.

Let us first assume tha@ is known, so that the genuine distanae(é) =
d,(”)(ao, ¥) can be computed from the observations. DenoteRB%)/ = R,(”)(eo,
) the rank ofd™ amongd(”) .., d: under#™ 9o, T, f) the R™s are the
ranks of i.i.d. random variables with probability density functitnNext consider
any continuous kernel density estimaﬁf” of f; that is measurable with respect
to the order statistic of thé,(”)’s and satisfies

(n) (n)
) ~mn—1( R v —1( Ri—i )
E[[(pfk(n)<(Fk ) (n+1))(Fk ) (n+1
1 Fn) | _
o (R () i ()] i o

under#™ @o, X, f) asn — oo, whereFk(") denotes the cumulative distribution
function associated W|t!7f(”).

A possible choice fof(”) satisfying (18) is given in Hajek and Sidak [(1967),
(1.5.7) of Chapter VII]. Another one, specifically constructed for radial densities,
is proposed in Liebscher (2005). An adaptive (still, under specifigdersion
of (13) is then

L 12 1 & v mmn-1 R"
N ) _
Fix(00):=% /<n—_i 2 9 <(Fk ) <n—+1))

t=i+1

(19) wy-1( R
]‘;Gn - t—l)
x (R (2

(18)

x U" (80, 2)U") (6o, z))zw

where we let3" (r) := @ o0 (1) + (k= D/r [sinceg (r) = ¢ (r) + (k= D/r].
of course in practic& is not known, and onIy the estimated distan&,é”é =

d,(”)(ao, i‘ ) can be computed: instead Bf (8p) given in (19), we therefore
rather use (with the notation of Section 4)

(n)(o) o 1 i (1) (ﬁ(n))—l R™
O P s k n+1

t=i+1

)
n+1

x Wi 0o)W;" (60 ))( o
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where £ F™ and "™ have been replaced by their counterpaft®, F™
k k b p y p k

and @}”) computed from the order statistic of tlﬁé”)’s. Using the multivariate
Slutsky theorem and working as in the proof of Proposition 2, we obtain that
the difference between (19) and (20)ds(n~*/?) underJ,; #™ (0o, X, f) as

n — oo. A direct adaptation of the proof of Proposition 3.4 in Hallin and Werker
(2003) then yields a multivariate generalization of the (symmetric version of)
Proposition 64 in Hallin and Werker (1999). This adaptation, however, requires
the Fisher information for location associated wjthto be finite. Denote byF

the set of all radial densitieg for which this condition is satisfied: clearly,
{1k, r <ocand f5° rk=3 £ (r)dr < o0} C F and, in the univariate cagke = 1),

F = {f|11’f < OO}

LEMMA 4. Let Assumption@B1) and(B2) hold, and assume that € ¥ sat-
isfies Assumptio(C’). Then both/eo(lv"gn)(oo) - Fg%’f(oo)) andveo(ff")(oo) —
Iy ;(00)) areop(n~Y/2) underst™ (Bo, X, f) asn — oo.

In order to construct adaptive procedures, we still need to estimate the
asymptotic variance—covariance matrices of either (19) or (20). More precisely, we
need consistent estimates bf ; and v, == i1 £/ k-1 f = E[(F H(U))2).

Such estimates are provided by

. 10 . R(n) 2
jom._ 2 <v<n)o £ —1< t ))

n

=1
and 10 R™ \\2
v (n) T I},(n) —1( t ))
v : nZ(( k ) n+l ?
=1
. 1. R 1 R™ 2
jo . 2 (wn)o X0 (r_))
and 10 R \\2
~(n) — ﬁ,(n) —1( t ))
= (ED ()

respectively. Note that the produd™v™ (resp. ™ ™) depends on the
estimated radial densitfk(”) (resp. fAk(”)) only through itsdensity type-namely,
the scale family{afk(”)(ar), a > 0} [resp.{af" (ar),a > 0}]. By the way, the
same property holds true for the adaptive rank-based cross-covariances (19)
and (20); consequently, without any loss of generality, we may assumgi?ﬁat
and /" are such thab™ = ™ =1.

Defining

8§ @0) := & (B0) := ((n — DY3(veck 5 00)) . ... (vecF 1 5 00)))’
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and
2T (00) := n*2TE (00) := Q}'S™ (Bo).

let

v . k2n n) \—1%(n
@) 000 = 0% 00 = 5T 00 (O55) TV 00,

whereJé’Sz is defined in (17). The same quantities, when computed from the
ff”)(ao)’s, are denoted byB™ (0g) and T™ (0y), respectively, yielding the test
statistic

0™ (80) := T 00) (35 5) T 00) = 0L 0.

NOHQ)

The test statistic (21) has the very desirable property of being conditionally
distribution-free. Conditional upon the-algebraD™ generated by the order
statlstlch”)) of theexactdistancesl™ := (d(”) ..,d"™), indeed:

(a) the vector of rank®™ := (R{"”, ..., R{") is uniformly distributed over
then! permutations ofl, ..., n),

(b) the normalized residualﬂﬁ”) are i.i.d. and uniformly distributed over the
unit hypersphere, and

(c) the rankR™ and the residuald™ are mutually independent.

The situation is thus entirely parallel to the classical case of univariate signed
ranks: conditional onD™, Q™ (@) is distribution-free. Denote b%(d(”))
its uppera quantile, and byp™ := ¢&" the indicator of the even@(”)(oo) >
c}a(d ) This test actually has Neymamstructure with respect td(”) and,
consequently, is a permutation test. Proposition 6 and Lemma 4 moreover,
imply that the sequencg™ is asymptotically optimal, uniformly inf, against
Uy #™ 0. 2, ).

Unfortunately, unlike univariate adaptive signed rank tests, this permutation
test cannot be implemented, sinEg in practice, is unspecified. Insteadqvﬁ)?’),

based orQ™ (), we therefore recommenid™ = qvbi_") based on the test statistic

0™ (8), which rejects the null hypothesi®™ (8) wheneverQ™ (8¢) exceeds

the a-upper quantile)(kzzn0 1, Of a chi-square distribution witlt?mg degrees

of freedom. In view of Lemma 40™ @g) and Q™ (8p) are asymptotically
equivalent undetJ ; #™ (6o, X, f) and contiguous alternativeg") and ¢
thus share the same asymptotic optimality properties. On the othergidhihses

the attractive finite-sample Neymanstructure ofp ™.
Summing up, the following proposition is a direct consequence of Lemma 4.
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PROPOSITIONG. Let Assumptiond), (B1') and(B2) hold, and assume that
f € F satisfies Assumptiqi€’). Then

() statement§)—iii) of Propositiord hold for ¢™; statemen(iv) also holds
with asymptotic noncentrality parameter

SE(F W) IE(0r (FH(©))) ]2 Ngo 5

under#™ 0o+ n~2¢, X, f);

(i) the sequence of tesfg” is locally asymptotically maximin fa# ™ (6¢)
against Upp, Uy U, H™ (0. X, f), at probability levela, where the third
union is taken over all radial densitieg € F satisfying AssumptiongB1'),
(B2) and(C).

Proposition 5 readily extends to this adaptive procedure.

6.3. The Gaussian procedureWe now briefly describe the parametric
Gaussian procedure for the problem treated in Propositions 4 and 6. This Gaussian
test will serve as a benchmark in Section 7 for the computation of asymptotic rel-
ative efficiencies.

Under Gaussian assumptions the empirical covariaBé8 = n~1 x

" ZM00)2"(0) is a consistent estimator undt™ (8o, X, f) of the in-
novation covarianceE[(F, 1(U))?1/k)X. Let

A (n)
353)00 = Q(n)/[ lhi-1® Ty, ]Q(")

A( ) — n n n
where Iy = (n — D11, vedZ{" (00)Z\"] (00)) (ved Z;" (B0)Z\"} (80))) -
In view of the ergodic theorem [see Hannan (1970), Theorem 2, pagel?ﬁé]s

consistent unde#™ (0o, =, f) for (E[(F, X(U))?]/k)?*E @ T~L. The following
proposition then follows along the same lines as Proposition 4.

PROPOSITION7. Let Assumptiond), (B1') and (B2) hold. Define
(22) 0% 00) :=nTE B0 5,) " TL)00).

Consider the sequence of parametric Gaussian teéﬁé rejecting the null
hypothesis#™ (80) wheneverQ{ (8o) exceeds the-upper quantilexkzzn0 Lw
of a chi-square distribution with?rg degrees of freedoriThen

(i) statementgi) and (iii) in Proposition4 hold for¢>(”) statemen(iv) also
holds with asymptotic noncentrality paramet(zEZ[F (U)gof(Fk‘l(U))]/kz) X
'Npo.x 7T undet# ™ @o +n~12z, %, f);

(ii)y the sequence of teﬁ) is locally asymptotically maximin fo# ™ (6)
against the Gaussian alternativgy # (09, X, ¢), at probability leveks.
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The test statisticQﬁ(’/)(eo) is not (not even asymptotically) invariant un-

der continuous monotone radial transformations. However, it is asymptotically
distribution-free. On the other haanﬁ)(oo), just like Q%’)(ao) and Q(”)(Oo),
is affine-invariant whenever the null hypothesis is.

7. Asymptotic performance.

7.1. Asymptotic relative efficienciesComputing the ratios of the noncentral-
ity parameters in the asymptotic distributions@r), Q(f’i) and O™ with respect

to QSG) (see Propositions 4, 6 and 7) yields the asymptotic relative efficiencies of
these tests with respect to their parametric Gaussian counterparts.

PROPOSITIONS. Let Assumptionfd), (B1'), (B2) and(C) hold. Then
(i) the asymptotic relative efficiency under radial densjtyof ¢§?) with

respect taj)%) is

_ 1 DKz f) CR(K1; ).

(n) ; . (n)
ARE; f(og /o) = k2 E[K2(U)] E[KZ(U)]’

(i) assuming thatC’) holds instead ofC),

_ 1D ) CRfe )
kZ Dk(f*) Ck(f*) '

where we WriteDy ( f1, f2) andCy(f1, f2) for Dy (Fi%; f2) and Ci(p o Fs £2),

reSpeCtiVEIVand Ietck(f*) = Ck(f*v f*) and Dk(f*) = Dk(f*v f*)1
(iii) assumingmoreoverthat f € F satisfies Assumptigi€’), the asymptotic

relative efficiency of the adaptive tepf” with respect to¢f}}) under the radial
densityf is

AREy 1 (¢ /0%)

. I |
ARE; 1 (8" /9() = 7 Di()ICh ().

The AREs for the fixed-score procedures obtained in Proposition 8 coincide
with those obtained in Hallin and Paindaveine (2002b) for the related problem of
testing randomness against VARMA dependence. The numerical values of AREs
of several versions of the proposed procedures (van der Waerden and Laplace score
tests, sign test, Spearman-type test) with respect to the Gaussian procedure, under
multivariater-distributions with various degrees of freedom, are reported there. As
usual in rank-based inference, the gain of efficiency over paranietpcocedures
increases with the tail weight [see Hallin and Paindaveine (2002b)].

In this section, we thus concentrate on the adaptive procedure described in
Proposition 6. As in Randles (1989), consider the family of power-exponential
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TABLE 1
Asymptotic relative efficiencies of the adaptive &t w.r.t. the Gaussian
testq)(") in the ellipticdly symmetric power-exponential fam{23),
for various values of the tail indexand the space dimensidn

v

k 0.1 0.2 0.3 0.5 1 2 5 10
1 — — 2840 200 100 137 318 643
3 26124 808 277 133 100 122 230 426
4 5963 477 216 125 100 118 208 371
6 1481 284 169 117 100 113 181 303
8 751 219 148 113 100 110 165 263
10 502 188 137 110 100 109 154 236
00 1.00 100 100 100 100 100 100 100

distributions with density

1 / — Vv

with

kT (k/2v) vI'(k/2)
=———— a k= L
C((k+2)/2v) I (k/2v) (7 co)*/
This family corresponds to radial densities of the fofpir) := expl—(r2/co)"1,
and allows for considering a variety of tail weights indexedvbyl he k-variate
normal case correspondsitc= 1, while, for 0O< v < 1 (resp.v > 1), the tails are

heavier (resp. lighter) than in the normal case.
Provided that 4 + k — 2 > 0, Proposition 8 yields

M2 T ((k+2)/20)T((4v + k — 2) /2v)
ra I'2(k/2v)
Table 1 above provides some numerical values of (24).

(24)  ARE;,(8"/0y)) =

7.2. A multivariate version of two classical univariate resultSince the AREs
obtained in Proposition 8 for éhfixed-score procedur@é() and ¢(”) coincide
with those in Hallin and Paindaveine (2002b), the generallzatlons obtained there
of the famous Chernoff-Savage and Hodges—Lehmann results still hold here. In
view of their importance, we adapt these results to the present context, referring to
Hallin and Paindaviee (2002b) for proofs and details.

A multivariate serial Chernoff-Savage resulfs in the univariate case, the
van der Waerden version of the proposed rank-based procedure is uniformly more
efficient than the corresponding parametric Gaussian procedure. More precisely,
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the following generalization of the results of Chernoff and Savage (1958) and
Hallin (1994) holds.

PROPOSITION9. Let AssumptiofA) hold. Denote by;b\(,’c’,{,v andcp(N”) the van
der Waerden tesbased on the cross-covariance matri¢#s), and the Gaussian
test based on the test statis(R?), respectivelyFor any f satisfying Assumptions
(B1) and(B2),

ARE; ; (daw/o%) =

where equality holds if and only if is normal

A multivariate serial Hodges—Lehmann resulDenote by Q(”)(ao) the

Spearman-type version of the test statistiQég’)(ao), based on the cross-
covariances (14) associated with linear scores. This statistic can be considered as
the angle-based serial version of Peters and Randles’ Wilcoxon-type test statistic
[see Hallin and Paindaveine (2002c) and Peters and Randles (1990)].

Although the resulting test;b(”) is never optimal [there is nof, such

that Q(”) (#p) coincides WIthQ(")(Go)] the resulting Spearman-type procedure
exhlblts excellent asymptotic efficiency properties, especially for relatively small
dimensions. To show this, we extend Hodges and Lehmann’s (1956) celebrated
“0.864 result” by computing, for any dimensiadn the lower bound for the
asymptotic relative efficiency café”g with respect to the Gaussian procedaﬁi{é? :

More precisely, we have the following proposition [see Hallin and Paindaveine
(2002b) for the proof].

PROPOSITION10. Let AssumptiofA) hold. Define

cx :=inf{x > O|(ﬁJm/2(x))/ =0},

whereJ, denotes the Bessel function of the first kind of ordérhe lower bound

for the asymptotic relative efﬁciency@fg with respect toﬁi{}) is

(25) ir}fARE (08 /) = 92c? + k — )%/ 22 %3¢,

where the infimum is taken over all radial densitigssatisfying Assumptions
(B1) and(B2).

Some numerical values are given in Table 2. Note that the sequence of lower
bounds (25) is monotonically decreasingrfor k > 2, and tends to A6 =
0.5625 ask — oo.
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TABLE 2
Some numerical valugfor various valuesk of the space
dimensionof the lower bound for the asymptotic relative efficiency

(n)

of the Spearman te with respect to the Gaussian otzbé{,)

k infyARE (@S0 /%) k  infrAREg (@3 /%)

1 0.856 5 0818

2 0913 6 0797

3 0878 10 0742

4 0.845 +o0 0.563
APPENDIX

A.l. Proofsof Proposition 1 and Lemmas 2 and 3.

PROOF OFPROPOSITION1. Garel and Hallin (1995) show that the linear part

in the quadratic approximation ah‘( Dosn-L2em g5, f CON be written as

T™'AS;(80) = Zm DY tr(d 60Ty, ;©00)],

where
min(p1,i) i—j mMin(gg,i—j—k) min(g1,i)
d”®00:= Y. > > H"Gi Bt Yy Hijs).
j=1 k=0 1=0 j=1

Using tAB) = (vecA’)’(vecB) and ve€¢ABC) = (C' ® A) vecB yields
(26) Z(n HY2tr[d" @)y B0)] = : Sy’ (00).

(n) (n)
a, 1 1

with 2 andb!™ defined at the end of Section 5.
SinceH;(f) B%)Hf,f?ql = H;S{)ql, (26) can be written as

AL 00 = [(H2,B2,60, M, ) TSE) 60
) I )
=[(G,” 1.p] H2 )1,41)7('1)] (Hy4B; )Sgl)f(ﬁ’ )
(27) (1) | F() \ 7
a" + by

!
= : (HY18,1)'SY (60,
ér(vn)l + bi")l
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where a(n) : Zf/nin(m t)(G i ® Ik)(veCy(”)) and b(n) Zr/nln(m t)(H
Ik)(vecé(”)) the sequence(saﬁ”)) and(b\™) clearly satisfy

(nyr | gy =
(28) (A" +by", ... Al + b)) =MgyTr™
Note that, forr > pg+qo + 1,

D(L)G, = D(L)(%G;_iAg) = %(D(L)G;_,.)A; =0.
i=1 i=1
Therefore,D(L)G; = 0 for all + > go + 1. In the same way, we obtain that
D(L)H/ —Ofor ¢ > po+ 1. Now, consider thé?-dimensional operatd®® (L) :=
l2 + ZP°+‘1°(D ® lx)L. This operator is such that, far— p1 > go + 1,
DO (L)a™ = pl L, DWG]_;® Ik)(vec;z(”)) = 0. Similarly, one can check that
for t — g1 > po + 1, D(l)(L)b(") Z‘“ 1DH;_; ® Ik)(veca(")) = 0. This
implies thata™ + b\™ satisfiesD® (L)(a(") + b(")) 0 for all + > max(p1 +

do0+1.q1+po+D) =7+ (po+40)+ 1 Since(¥” @ It ..., ¥ @ 1)
is a fundamental system of solutions of the homogeneous difference equation
associated witlD” (L), we have

z(n) (n) =(n) (n)
841+ by ) . 841+ b
(29) = \I’n—lCE; :
&, +b", &% 4 p%
[see, e.g., Hallin (1986)]. Combining (28) and (29), we obtain
=(n) | m(ny ~(n)/ (n)/ IkZﬂ B 0 ) )

which, together with (27), establishes the resulil

PROOF OFLEMMA 2. Under, H™ (@9, X, f), the residual€1(8o), ...,
Z,(6p), from which CTyI is computed, are i.i.d. and elliptically symmetric, with
mean 0 and scatter matrixx. Tyler (1987) showed tha(:({)’,)I then is rootx
consistent folCq := ¢~ 1X~1/2, wherec denotes the upper left elementi /2.
The result follows, since for any random veckor

(n) _

]

Xy IE7Y3X|

1 ‘ (n) (n)
— Cw X| + Ciy X — CoX
‘nc%’?lxn icoxil 15w e, XII I |
ICTIX = CoXll Iy = Coll ,IXI

<2|Cfy - Col ICo -

=
ICoX] ICoX]
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where || T, := sud||Tx||||Ix]| = 1} denotes the operator norm of the square
matrix T. [

PROOF OFLEMMA 3. The definition oNV,(”)(M) and (12) directly yield

(n) () (n) - (n)
Wy = MM A0z,
ICHIMIMZ | [ld0CHZ" | 0

A.2. Proofs of Propositions 2 and 3. The following lemma, which follows
along the same lines as Lemma 4 in Hallin and Paindaveine (2002b), will be used
in the proof of Proposition 2.

LEMMA 5. Letie{l,...,n—1}andt,7€{i +1,...,n} be suchthat #1.
Assume thag :R* = RF x ... x R¥ - R is even in all its argumentsind such
that the expectation below exishen under(J HM 00, T, f),

E[g(2{" ®0)..... 2 (00) (P,Q)(R;_;S;_)] =0,
whereP;, Q;,R; andS; are any four statistics amoﬂg/ﬁ")(oo) andWS”)(oo) —
U% 8o, 3).

PROOF OF PROPOSITION 2. Throughout, we write™, R™, R™, w™
and U™ for d™ (00, %), R™(00,%), R™(00), W™ (00) and U™ (60, %),
respectively; all convergences and mathematical expectations are taken as,
under#™ (o, X, f). Decompose

(n—DY?[(C) @ (CR)) ) vecT 'k (B0) — (572 @ Y2 vecT '} 5 +(00)]

into vec(T(”) + T(") + T(”)), where

5 (1) 5 (1)
R R,
(n) 12 Z r\g ( t—z)
- ( ( +1) 2 n+1

t=i+1
(n) @
R R"
- K1< ! >K2< ))W(”)Wt(”)/,
+1 n+1 !

™. 2 R" R, )y )y ()
n —i)” 1/ Z ( ) 2( )(ann Utn U;’ii)
+1
and
T(n) — — 1/2 ( ( )K ( t—i )
3 ) z;—l +1 ’ n+l

Ka(Fu () Kl Fu(d ) ) U UL,
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We proceed by proving that v&¢", vecTS” and vedry” all converge to0 in

gquadratic mean, as— oco. Slutsky’s classical argument then concludes the proof.
Let us start Witth’). Using the fact thatvecA)’(vecB) = tr(A’B) and the
independence between tligs and theU,’s, we obtain

veers 2 = 37 (el (120 o )
3 IIL . t;i n4+1 n+1

t=i+1

B B 2
- Ka(Fuld") Ko@) |

Wherec(”) (n—i~Y2forallr =i+ 1,...,n. Hajek’s projection result thus

implies that|| vech‘) ||i2 =o0(1) asn — oo. The same result also implies that, for
alr=i+1,...,n

(30) E[<K1< R )1<2< R ) Kl(Fk(d<")))K2(ﬁk(d§3)))2} —o(1).

n+1 n+1

For T3, decomposingv{"w"” — u”u™’ into (W™ — U)W’ +

r—1
U(”)(W(") U(”) ), then using the identityvecA)’(vecB) = tr(A’B) again and
Lemma 5, one obtalns

[veeTs” |72

oy =200 3 () e -]

t=i+1

n (n) (’l)
R R, ) 12
w7t 3 (k2 ) Bo)) e, -~ ]

t=i+1

Consider the first term in the right-hand side of (31) (the second term can be
dealt with in the same way). Let") := K1(R{"/(n + 1)) K2(R{" /(n + 1)) and

Bt(;”l.) = Kl(ﬁk(dt(”)))l(z(ﬁk(d(”))) Using (30) and the independence between the
d™’s and theU™’s, we obtain

2 2 2 2
E[(ar)) Wi — U] =E[(B))* Wi = U]+ o(D)
= K112, K22, |W( = U |2 +0(D),

whereU is uniformly distributed ovelO, 1[. Lemma 2 thus implies that vé’t(z”)
converges t@ in quadratic mean.
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Finally, using Lemma 5 again,
n Ié(n) Ié(n)-
vecT™ (2, = (n —i)~2 (K( L )K( H)
| 12 =0-D"" 3 (K n+1) 2\ur1

t=i+1
R el B
— K1 K> .
n+1 n+1

This entails that vef(l") also isogm(1), provided that

A Q) RM R\ 12
32) Ki(— )K( ’—’)—K( L )K( ) 0 as .
(32) 1<n+l 2n—i—l 1n-i—l 2n+1_> "o

Now, Lemma 1 establishes the same convergence as in (32), but in probabil-
ity. On the other hand, it follows from (30) tha&1(R;/(n + 1)K2(R,—;/
(n + 1))1? is uniformly integrable, which (in view of the invariance of Tyler's
estimator of scatter under permutations of the residuals) impliemhaﬁt/(n +
1))K2(R;—_; /(n + 1))]? also is. TheL2 convergence in (32) follows.

Summing up, we have shown th@at— ‘)1/2[(C(T’)‘/)| ® (C(T’;)I’) D) vecl"(”) 00) —
(7 12g 312 vecl“l(”,l 5./ (00)1iS 0gm(1) asn — oc. This concludes the proof,
since, from a multivariate appllcatlon of Slutsky’s theorem,

(n =DV} @ (Cf) " vecT 'k 00
— (5712 @ £%2) vecT{'} (00)] = op(D).

under# ™ (0o, X, ). O

PROOF OF PROPOSITION 3. Under#™ (6o, X, f), one can use the same
argument as in Lemma 4.12 in Garel and Hallin (1995). The result under the
sequence of alternatives is obtained as usual, first establishing the joint normality
of sf,’j}“mf(ao) and Lg:))—&-n‘l/zrwo;):,f under #™ (09, X, f), then applying
Le Cam’s third Lemma; the required joint normality easily follows from a routine
application of the classical Cramér—Wold devicél

A.3. Proofsof Propositions4 and 5.

PROOF OF PROPOSITION 4. (i) Let {¥V, ... w70} ang (P .
<I>§”°+q°)} be two fundamental systems of solutions associated With). The
vector structure of the space of solutionsfL)x; = 0, x; € R* implies that,
forall j =1,..., po+ qo, there exists &(po + go) x k matrix A; such that
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o) = (Wl WP Letting A = (A1, ..., A pyigo), this implies that

(@h] (po+q0) @ (p +q )
q)?ﬁl <I>,(,+°1 O) ‘I’fffl ‘I’< 0 0)
potq po+q
(I)TH-Z T (I)rr—EZ ° _ ‘I’n+2 T ‘I’n—|?2 ° A
TR q>,gfo+qo> v L gpoteo

o) tha’@m =W, (A ® ), whered,, is the equivalent o¥,,, but computed from
the ’"’s. Thus, with obvious notatiorQy", = Q4" A for all m, whereA :=

((;kz Aol ) yielding (note that since thw(])’s and <I>(])’s constitute fundamental

systemsA, and hence\, are nonsingular)

TL0055.0) T 00 = [T 00 AIR Y5 AT AT, 00)

_TS?)\II(G )(‘Jén)z \p) lf%;)\ll(oo)’

as was to be proved. The statement about the dependengeanty; is trivial,

sincef%‘)(oo), J;’g)f, as well astg, depend orp; andgs only throughsr.

(i) Letting
2785 00) == Qp ((n — DYP(vecT k.5 (00)) . ... (vecFy 1. 4.5 (00))) .
with

n (n) (n)
g0 oy 1 (Rt (Ao, 2)) (R (0o, E))
0o :=C E K2 "2 2 Vg =2 7
Lz (00 Tyl(”_iz:i+1 AR AT

x Wf")wo)W(")’(oo))( w7

one can verify (proceeding as for the first term in the decomposition argument
in the proof of Proposition 2) that™2(T% (9g) — T%;)z (6p)) tends to zero in
quadratic mean as— oo underlJ H™ (0o, X, ). This entails that

k2

(n) _
Ok B0 E[K2(U)]E[K2(U)]

X (nl/zfyg;)z (00))/(\];’32)_1(111/2T5’<132 (00)) + op(1)

is asymptotically invariant with respect @(,f’) underJ s H™ (0o, T, f), since
nt/ 2'?%‘;)2 ) andJ;’;)’i are strictly invariant with respect to the same group.

(iii), (iv) Proposition 2 and the multariate Slutsky theorem show tt‘@%’)(ao)
has the same asymptotic behavior [undéf” (09, =, f), as well as under the
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sequence of local alternativéé™ (0o + n~/?z, £, f)] as

k? 1
/2 () 00) J 1 l/ZT(n) 00)
E[K%(U)]E[K%(U)]( K X f ) ( K2, f )
where nl/ZT(”)Z @o) := Q(")’S(")1 x.x.7(00) [see (16)]. Now, Proposition 3
and a classical result on trlangular arrays [Brockwell and Davis (1987), Proposi-
tion 6.3.9] imply that: 1/ ZTE?;),; +(00) is asymptoticallyk2ro-variate normal, with
mean0 under#™ (0o, X, f), and mean
1
ksz(Kz, FCk(K1; [)Igo, =P Me,T
under #™ (@9 + n~Y?7, X, f), and with covariance matrixE[KZ(U)] x

E[K3(U)1/k?)Jp, 5 under both. The result follows.
(v) It follows from Le Cam [(1986), Section 11.9] and the LAN property in

Proposition 1 that the tegt({)f* rejecting the null hypothesis whenever

AL 00)(Ts. £, (00) A, (B0) > %214

whereA™ denotes any arbitrary generalized invers@@inds := rankT'x ¢, (00)),
is locally and asymptotically maximin, at probability levelfor # (09, X, f.)
against g, #™ (0. X, f,). Note that rand's f,(00)) = rankMj Pj  x

J00.2PoMay) = min(k?(p1 + q1), k?m0) = k%o, SinceMg,, Py, andJg, 5 have
maximal rank. Of course, the same optimality property holds for the asymptoti-
cally equivalent [unde™ (0, X, f.), as well as under contiguous alternatives]

testg(ﬁ) that rejects the null hypothesis whenever

ALY (00)(T " 00) AL )00 > Xfor 1o
WhereAS?) (00) :=n'/’M), P T(n)(ao),With K1:=gyF; and[(zzﬁ*;l,and

(n) Mic+1; £, Ik, f,
I 00): —#_ffM 13 PaoMag = T's 1, (80) + 0p(1)

under# ™ (0o, X, f,). But, in view of Lemma 2.2.5(c) of Rao and Mitra (1971),
A (1) —
ALY 80)(T, (00)) " A} (80)

k nk—1; f, T(n)/

(00)Pg, Mg, (M) Py 3V _Py.Mg,) "M, P TV (00)
//Lk—i—l f*‘lk 1 0 0( 0o 00 0 0) [0s) 00

00,
B k2n
El(ps, (FHUN)2IENFLHU))?

¢>(”) and¢§lj), thus, are the same test. The result follows]

T 0005 5) T Bo);
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PROOF OFPROPOSITIONS. (i) Model (1) under# ™ (8o) can be written in
the form

MALM~IMX, = MB(L)M Me,,

whereM is an arbitrary full-rank x k£ matrix. This null hypothesis is thus invariant
under the group of affine transformatiosjs— Me, if and only if MA;M~1 = A;
foralli=1,..., poandMB;M~1 =B, forall j =1,..., qo, thatis, iff eachA,
and eaclB; commutes W|th any |nvert|ble matrid, which holds true iff they are
proportlonal to th& x k identity matrix.

(i) Let M be some nonsingularx k matrix. For any statisti@” = T(X(";OH,

XY write T(M) = T(MX(_”I),OH, . MX™). It follows from Lemma 3

and from the equivariance propertleﬂﬁ(} thatl“(") M)=M ’—11:5?’,)( M’. Hence,
SOM)=[1,_1® M oM ~HI1S?. In the same way,

1@ EP M) @ (£ M) Y]

=1 MM H[,_10E™ @ E™) Y10 MM HY.

Now, A; = q;1; clearly implies that the Green matrices of the operétat) all
are proportional to the identity matrix. The same property holdB{dr). It is then
easy to verify that the operatbr(L) also is scalar (meaning thB@t is proportional
to the identity matrix forali =1, ..., po+ qo). This implies that the fundamental
system of solutions provided by Green’s matrice®¢f.) contains only matrices
that are proportional to the identity matrix. Hen@é’(’)) =W® ® I,2 for some

(n — 1) x 7o matrix W™ _ It follows that
[li1® MM Q) =Qp I, ® MM ],

which entailsTy’ (M) = [, ® (M ® M"HIT§ and
Is M) =[l,@ MOM DI 1@ MM D]

Consequently0'” (M) = 0. O
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