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CENTRAL LIMIT THEOREM FOR SEQUENTIAL MONTE CARLO
METHODS AND ITS APPLICATION TO BAYESIAN INFERENCE

BY NICOLAS CHOPIN

Bristol University

The term “sequential Monte Carlo methods” or, equivalently, “particle
filters,” refers to a general class of iterative algorithms that performs Monte
Carlo approximations of a given sequence of distributions of interest(πt ). We
establish in this paper a central limit theorem for the Monte Carlo estimates
produced by these computational methods. This result holds under minimal
assumptions on the distributionsπt , and applies in a general framework
which encompasses most of the sequential Monte Carlo methods that have
been considered in the literature, including the resample-move algorithm of
Gilks and Berzuini [J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001) 127–146]
and the residual resampling scheme. The corresponding asymptotic variances
provide a convenient measurement of the precision of a given particle filter.
We study, in particular, in some typical examples of Bayesian applications,
whether and at which rate these asymptotic variances diverge in time, in order
to assess the long term reliability of the considered algorithm.

1. Introduction. Sequential Monte Carlo methods form an emerging, yet
already very active branch of the Monte Carlo paradigm. Their growing popularity
comes in part from the fact that they are often the only viable computing
techniques in those situations where data must be processed sequentially. Their
range of applicability is consequently very wide, and includes nonexclusively
signal processing, financial modeling, speech recognition, computer vision, neural
networks, molecular biology and genetics, target tracking and geophysics, among
others. A very good introduction to the field has been written by Künsch (2001),
while the edited volume of Doucet, de Freitas and Gordon (2001) provides an
interesting coverage of recent developments in theory and applications.

Specifically, sequential Monte Carlo methods (alternatively termed “particle
filters” or “recursive Monte Carlo filters”) are iterative algorithms that produce
and update recursively a set of weighted simulations (the “particles”) in order
to provide a Monte Carlo approximation of an evolving distribution of interest
πt(dθt ), t being an integer index. In a sequential Bayesian framework,πt(dθt )

will usually represent the posterior distribution of parameterθt given thet first
observations. The term “parameter” must be understood here in a broad sense, in
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thatθt may include any unknown quantity which may be inferred from thet first
observations, and is not necessarily of constant dimension. We denote by�t the
support ofπt(dθt ).

The study of the asymptotic properties of sequential Monte Carlo methods is
admittedly a difficult problem, and some methodological papers [Liu and Chen
(1998), e.g.] simply state some form of the law of large numbers for the most
elaborate algorithms, that is, the Monte Carlo estimates are shown to converge
almost surely to the quantity of interest asH , the number of particles, tends toward
infinity. More refined convergence results have been obtained, such as the central
limit theorem of Del Moral and Guionnet (1999), later completed by Del Moral
and Miclo (2000), or upper bounds for the Monte Carlo error expressed in various
norms [Crisan and Lyons (1997, 1999), Crisan, Gaines and Lyons (1998), Crisan
and Doucet (2000), Del Moral and Guionnet (2001), Künsch (2001) and Le Gland
and Oudjane (2004)]. Unfortunately, it has been, in general, at the expense of
generality [with the exception of Crisan and Doucet (2000)], whether in terms of
computational implementation (only basic algorithms are considered, which may
not be optimal) or of applicability (the sequenceπt has to be generated from some
specific dynamical model that fulfills various conditions).

In this paper we derive a central limit theorem that applies to most of the
sequential Monte Carlo techniques developed recently in the methodological
literature, including the resample-movealgorithm of Gilks and Berzuini (2001),
the auxiliary particle filter of Pitt and Shephard (1999) and the stochastic remainder
resampling scheme [Baker (1985, 1987)], also known as the residual resampling
scheme [Liu and Chen (1998)]. No assumption is made on the model that generates
the sequence of distributions of interest(πt ), so that our theorem equally applies to
those recent algorithms [Chopin (2002), Del Moral and Doucet (2002) and Cappé,
Guillin, Marin and Robert (2004)] that have been developed for contexts that
widely differ from the standard application of sequential Monte Carlo methods,
namely, the sequential analysis of state space models.

The appeal of a central limit theorem is that it provides an (asymptotically) exact
measure of the Monte Carlo error, through the asymptotic variance. This allows for
a rigorous comparison of the relative efficiency of given algorithms. In this way, we
show in this paper, again by comparing the appropriate asymptotic variances, that
the residual resampling scheme always outperforms the multinomial resampling
scheme, and that the Rao–Blackwell variance reduction technique of Doucet,
Godsill and Andrieu (2000) is, indeed, effective.

The most promising application of our central limit theorem is the possibility to
assess the stability of a given particle filter (in terms of precision of the computed
estimates) through the time behavior of the corresponding asymptotic variances.
This is a critical issue since it is well known that sequential Monte Carlo methods
tend to degenerate in a number of cases, sometimes at a very fast rate. We consider
in this paper some typical Bayesian problems, such as the sequential analysis of
state-space models. We will show that under some conditions stability can be
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achieved at least for “filtering” the states, that is, for approximating the marginal
posterior densityπt(xt ), wherext stands for the current state at iterationt .

The paper is organized as follows. Section 2 proposes a generic description
of particle filters, establishes a central limit theorem for computed estimates in
a general framework and draws some conclusions from this result. Section 3
discusses the stability of particle filters through the time behavior of the asymptotic
variances provided by the central limit theorem. Proofs of theorems are put in the
Appendix.

2. Central limit theorem for particle filters.

2.1. General formulation of particle filters. In full generality, a particle
system is a triangular array of random variables in� × R

+,(
θ(j,H),w(j,H))

j≤H,

where � is some space of interest. The variablesθ(j,H) are usually called
“particles,” and their contribution to the sample may vary according to their
weightsw(j,H). We will say that this particle systemtargets a given distributionπ
defined on� if and only if∑H

j=1w(j,H)ϕ(θ(j,H))∑H
j=1w(j,H)

→ Eπ (ϕ)(1)

holds almost surely asH → +∞ for any measurable functionϕ such that the
expectation above exists. A first example of a particle system is a denumerable set
of independent draws fromπ , with unit weights, which obviously targetsπ . In this
simple case, particles and weights do not depend onH , and the particle system is
a sequence rather than a triangular array. This is not the case in general, however,
and, while cumbersome, the dependence inH will be maintained in notation to
allow for a rigorous mathematical treatment.

Now assume a sequence(πt )t∈N of distributions defined on a sequence of
probabilized spaces(�t ). In most, if not all, applications,�t will be a power
of the real line or some subset of it, and, henceforth,πt (·) will also denote the
density ofπt with respect to an appropriate version of the Lebesgue measure.
A sequential Monte Carlo algorithm (or particle filter) is a method for producing
a particle system whose target evolves in time: at iterationt of the algorithm, the
particle system targetsπt , and therefore allows for Monte Carlo approximations
of the distribution of (current) interestπt . Clearly, particle filters do not operate in
practice on infinite triangular arrays but rather manipulate particle vectors of fixed
sizeH . One must keep in mind, however, that the justification of such methods is
essentially asymptotic.

The structure of a particle filter can be decomposed into three basic iterative
operations, that will be referred to hereafter as mutation, correction and selection



2388 N. CHOPIN

steps. At the beginning of iterationt , consider a particle system(θ̂ (j,H)
t−1 ,1)j≤H ,

that is, with unit weights, which targetsπt−1. The mutation step consists in
producing new particles drawn from

θ
(j,H)
t ∼ kt

(
θ̂

(j,H)
t−1 , dθt

)
,

wherekt is a transition kernel which maps�t−1 into P (�t ), the set of probability
measures on�t . The “mutated” particles (with unit weights) target the new
distribution π̃t (·) = ∫

πt−1(θt−1)kt (θt−1, ·) dθt−1. This distributionπ̃t is usually
not relevant to the considered application, but rather serves as an intermediary
stage for practical reasons. To shift the target to the distribution of interestπt ,
particles are assigned weights

w
(j,H)
t ∝ υt

(
θ

(j,H)
t

)
with υt(·) = πt (·)/π̃t (·).

This is the correction step. The particle system(θ
(j,H)
t ,w

(j,H)
t )j≤H targetsπt .

The functionυt is referred to as the weight function. Note that the normalizing
constants of the densitiesπt andπ̃t are intractable in most applications. This is why
weights are defined up to a multiplicative constant, which has no bearing anyway
on the estimates produced by the algorithm, since they are weighted averages.

Finally, the selection step consists in replacing the current vector of particles by
a new, uniformly weighted vector(θ̂ (j,H)

t ,1)j≤H , which contains a numbern(j,H)

of replicates of particleθ(j,H)
t , n(j,H) ≥ 0. Then(j,H)’s are random variables such

that
∑

j n(j,H) = H andE(n(j,H)) = Hρj , where the normalized weights are given
by

ρj = w
(j,H)
t

/ H∑
j=1

w
(j,H)
t ,

and where dependencies inH andt are omitted for convenience. In this way, par-
ticles whose weights are too small are discarded, while particles with important
weights serve as multiple starting points for the next mutation step. There are var-
ious ways of generating then(j,H)’s. Multinomial resampling [Gordon, Salmond
and Smith (1993)] amounts to drawing independently theH new particles from
the multinomial distribution which producesθ(j,H)

t with probabilityρj . Residual
resampling [originally termed “stochastic remainder sampling” in the genetic al-
gorithm literature, Baker (1985, 1987), then rediscovered by Liu and Chen (1998)]
consists in reproducing�Hρj	 times each particleθ(j,H)

t , where�·	 stands for the
integer part. The particle vector is completed byHr = H −∑

j�Hρj	 independent

draws from the multinomial distribution which producesθ
(j,H)
t with probability

(Hρj − �Hρj	)/Hr . Systematic resampling [another method initially proposed
in the genetic algorithm field, Whitley (1994), then rediscovered by Carpenter,
Clifford and Fearnhead (1999); see also Crisan and Lyons (2002) for a slightly
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different algorithm] is another interesting selection scheme, which is such that the
number of replicatesn(j,H) is ensured to differ fromHρj by at most one. We
failed, however, to extend our results to this third selection scheme.

The structure of a particle filter can be summarized as follows:

1. Mutation: Draw forj = 1, . . . ,H,

θ
(j,H)
t ∼ kt

(
θ̂

(j,H)
t−1 , dθt

)
,

wherekt :�t−1 → P (�t ) is a given probability kernel.
2. Correction: Assign weights to particles so that, forj = 1, . . . ,H ,

w
(j,H)
t ∝ υt

(
θ

(j,H)
t

) = πt

(
θ

(j,H)
t

)
/π̃t

(
θ

(j,H)
t

)
,

whereπ̃t (·) = ∫
πt−1(θt−1)kt (θt−1, ·) dθt−1.

3. Selection: Resample, according to a given selection scheme,(
θ

(j,H)
t ,w

(j,H)
t

)
j≤H → (

θ̂
(j,H)
t ,1

)
j≤H .

The first mutation step,t = 0, is assumed to draw independent and identically
distributed particles from some instrumental distributionπ̃0.

It is shown without difficulty that the particle system produced by this generic
algorithm does iteratively target the distributions of interest, that is, the following
convergences hold almost surely:

H−1
H∑

j=1

ϕ
(
θ

(j,H)
t

) → Eπ̃t
(ϕ),

∑H
j=1w

(j,H)
t ϕ(θ

(j,H)
t )∑H

j=1w
(j,H)
t

→ Eπt (ϕ),

H−1
H∑

j=1

ϕ
(
θ̂

(j,H)
t

) → Eπt (ϕ),

as H → +∞, provided these expectations exist. These convergences will be
referred to as the law of large numbers for particle filters.

2.2. Some examples of particle filters. The general formulation given in the
previous section encompasses most of the sequential Monte Carlo algorithms de-
scribed in the literature. By way of illustration, assume first that the distributionsπt

are defined on a common space,�t = �. In a Bayesian framework,πt will usu-
ally be the posterior density ofθ , given thet first observations,πt(θ) = π(θ |y1 : t ),
wherey1 : t denotes the sequence of observationsy1, . . . , yt . If particles are not
mutated,kt being the “identity kernel”kt (θ, ·) = δθ , we haveπ̃t = πt−1 for t > 0,
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and our generic particle filter becomes one of the variations of the sequential im-
portance resampling algorithm [Rubin (1988), Gordon, Salmond and Smith (1993)
and Liu and Chen (1998)]. The weight function simplifies to

υt (θ) = π(θ |y1 : t )/π(θ |y1 : t−1) ∝ p(yt |y1 : t−1, θ)

in a Bayesian model, wherep(yt |y1 : t−1, θ) is the conditional likelihood ofyt ,
given the parameterθ and previous observations.

Gilks and Berzuini (2001) propose a variant of this algorithm, namely, the
resample-move algorithm, in which particles are mutated according to an MCMC
[Markov chain Monte Carlo; see, e.g., Robert and Casella (1999)] kernelkt , which
admitsπt−1 as an invariant density. In that case, we still haveπ̃t = πt−1, and the
expression for the weight functionυt is unchanged. The motivation of this strategy
is to add new particle values along iterations so as to limit the depletion of the
particle system.

Now consider the case whereπt is defined on a space of increasing dimension
of the form �t = Xt . A typical application is the sequential inference of a
dynamical model which involves a latent process(xt ), and πt stands then for
densityπ(x1 : t |y1 : t ). Assumekt can be decomposed as

kt (x
∗
1 : t−1, dx1 : t ) = κt(x

∗
1 : t−1, dx1 : t−1)qt (xt |x1 : t−1) dxt ,

whereκt :Xt−1 → P (Xt−1) is a transition kernel, andqt (·|·) is some conditional
probability density. Ifκt admitsπt−1 as an invariant density, the weight function
is given by

υt(x1 : t ) = πt(x1 : t )

πt−1(x1 : t−1)qt (xt |x1 : t−1)
.(2)

Again, the case whereκt is the identity kernel corresponds to some version of the
sequential importance resampling algorithm, while settingκt to a given MCMC
transition kernel with invariant densityπt−1 leads to the resample-move algorithm
of Gilks and Berzuini (2001). The standard choice forqt (·|·) is the conditional
prior density ofxt , given x1 : t−1, as suggested originally by Gordon, Salmond
and Smith (1993), but this is not always optimal, as pointed out by Pitt and
Shephard (1999) and Doucet, Godsill and Andrieu (2000). In fact, it is generally
more efficient to build some conditional densityqt which takes into account the
information carried byyt in some way, in order to simulate more values compatible
with the observations.

These two previous cases can be combined into one, by considering a dynamical
model which features at the same time a fixed parameterθ and a sequence of latent
variables(xt ), so that�t = � × Xt , andπt stands for the joint posterior density
π(θ, x1 : t |y1 : t ).
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2.3. Central limit theorem. The following quantities will play the role of
asymptotic variances in our central limit theorem. Let, for any measurable
ϕ :�0 → R

d , Ṽ0(ϕ) = Varπ̃0(ϕ), and by induction, for any measurableϕ :
�t → R

d ,

Ṽt (ϕ) = V̂t−1
{
Ekt (ϕ)

} + Eπt−1

{
Varkt (ϕ)

}
, t > 0,(3)

Vt(ϕ) = Ṽt

{
υt · (

ϕ − Eπt ϕ
)}

, t ≥ 0,(4)

V̂t (ϕ) = Vt(ϕ) + Varπt (ϕ), t ≥ 0.(5)

The notationEkt (ϕ) and Varkt (ϕ) is shorthand for the functionsµ(θt−1) =
Ekt (θt−1,·){ϕ(·)} and 	(θt−1) = Varkt (θt−1,·){ϕ(·)}, respectively. Note that these
equations do not necessarily produce finite variances for anyϕ. We now specify the
classes of functions for which the central limit theorem enunciated below will hold,
and, in particular, for which these asymptotic variances exist. Denoting by‖ · ‖ the
Euclidean norm inRd , we define recursively
(d)

t to be the set of measurable
functionsϕ :�t → R

d such that for someδ > 0,

Eπ̃t
‖υt · ϕ‖2+δ < +∞,(6)

and that the functionθt−1 �→ Ekt (θt−1,·){υt(·)ϕ(·)} is in 

(d)
t−1. The initial set
(d)

0
contains all the measurable functions whose moments of order two with respect to
π̃0 are finite.

THEOREM 1. If the selection step consists of multinomial resampling, and
provided that the unit function θt �→ 1 belongs to 


(1)
t for every t , then for

any ϕ ∈ 

(d)
t , Eπt (ϕ), Vt(ϕ) and V̂t (ϕ) are finite quantities, and the following

convergences in distribution hold as H → +∞:

H 1/2

{∑H
j=1w

(j,H)
t ϕ(θ

(j,H)
t )∑H

j=1w
(j,H)
t

− Eπt (ϕ)

}
D→ N {0,Vt(ϕ)},

H 1/2

{
H−1

H∑
j=1

ϕ
(
θ̂

(j,H)
t

) − Eπt (ϕ)

}
D→ N {0, V̂t(ϕ)}.

A proof is given in the Appendix. In the course of the proof an additional
central limit theorem is established for the unweighted particle system(θ

(j,H)
t ,1)

produced by the mutation step, which targetsπ̃t . This result is not given here,
however, for it holds for a slightly different class of functions, and is of less
practical interest. The assumption that the functionθt �→ 1 belongs to


(1)
t

deserves further comment. Qualitatively, it implies that the weight functionυt has
finite moment of order 2+ δ with respect toπ̃t , for someδ > 0, and, therefore,
restricts somehow the dispersion of the particle weights. It also implies that


(d)
t
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contains all bounded functionsϕ. In practice this assumption will be fulfilled, for
instance, whenever each weight functionυt is bounded from above, which occurs
in many practical settings.

A central limit theorem also holds when the selection step follows the residual
sampling scheme of Liu and Chen (1998), but this imposes some change in the
expression for the asymptotic variances. The new expression forV̂t (ϕ) is

V̂t (ϕ) = Vt(ϕ) + Rt(ϕ),(7)

where

Rt(ϕ) = Eπ̃t
{r(υt)ϕϕ′} − 1

Eπ̃t
{r(υt)}

[
Eπ̃t

{r(υt)ϕ}][Eπ̃t
{r(υt)ϕ}]′,(8)

andr(x) is x minus its integer part.

THEOREM 2. The results of Theorem 1 still hold when the selection steps
consists of residual resampling, except that the asymptotic variances are now
defined by equations (3), (4)and (7).

The proofs of Theorems 1 and 2 (given in the Appendix) rely on an induction
argument: conditional on past iterations, each step generates independent (but not
identically distributed) particles, which follow some (conditional) central limit
theorem. In contrast, the systematic resampling scheme is such that, given the
previous particles, the new particle system is entirely determined by a single draw
from a uniform distribution; see Whitley (1994). This is why extending our results
to this third selection scheme seems not straightforward, and possibly requires an
entirely different approach.

The appeal of the recursive formulae (3)–(5) and (7) is that they put forward
the impact of each new step on the asymptotic variance, particularly the additive
effect of the selection and mutation steps. In the multinomial case, an alternative
expression for the asymptotic variance is

Vt(ϕ) =
t∑

k=0

Eπ̃k

[
υ2

kEk+1 : t
{
ϕ − Eπt (ϕ)

}
Ek+1 : t

{
ϕ − Eπt (ϕ)

}′]
,(9)

whereEt is the functional operator which associates toϕ the function

Et (ϕ) : θt−1 �→ Ekt (θt−1,·){υt (·)ϕ(·)},(10)

and Ek+1 : t (ϕ) = Ek+1 ◦ · · · ◦ Et (ϕ) for k + 1 ≤ t , Et+1 : t (ϕ) = ϕ. This closed
form expression is more convenient when studying the stability of the asymptotic
variance over time, as we will illustrate in the next section. A similar formula for
the residual case can be obtained indirectly by deriving the difference between the
multinomial and the residual cases, that is, fort > 0,

V r
t (ϕ) − Vt(ϕ) =

t−1∑
k=0

[
Rk{Ek+1 : t (ϕ)} − Varπk

{Ek+1 : t (ϕ)}],(11)
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whereVt(ϕ), V r
t (ϕ) are defined through the recursions (3)–(5) and (3), (4) and (7),

respectively. In the following, we will similarly distinguish the residual case
through anr-suffix in notation.

2.4. First conclusions. A first application of this central limit theorem is to
provide a rigorous justification for some heuristic principles that have been stated
in the literature, see, for instance, Liu and Chen (1998). Inequalities in this section
refer to the canonical order for symmetric matrices, that is to sayA > B (resp.
A ≥ B) if and only if A − B is positive definite (resp. positive semidefinite).

First, it is preferable to compute any estimate before the selection step, since
the immediate effect of the latter is a net increase in asymptotic variance:V̂t (ϕ) >

Vt(ϕ) for any nonconstant functionϕ. In this respect one may wonder why
selection steps should be performed. We will see that the immediate degradation
of the particle system is often largely compensated for by gains in precision in the
future iterations.

Second, residual sampling always outperforms multinomial resampling. Let
ϕ :�t → R

d andϕ̄ = ϕ − Eπt (ϕ). Then

Rt(ϕ) = Rt(ϕ̄) ≤ Eπ̃t
{r(υt)ϕ̄ϕ̄′} ≤ Varπt (ϕ),

since r(x) ≤ x. It follows from this inequality and (11) thatV r
t (ϕ) ≤ Vt(ϕ).

Actually, a substantial gain should be expected when using the residual scheme
since the inequality above is clearly not sharp.

Our central limit theorem also provides a formal justification for resorting to
“marginalized” particle filters, as explained in the following section.

2.5. Marginalized particle filters. In some specific cases it is possible to
decompose the densityπt (θt ) into πm

t (ξt )π
c
t (λt |ξt ), with θt = (ξt , λt ) lying in

�t = 
t × �t , in such a way that it is possible to implement a particle filter
that targets the marginal densitiesπm

t rather than theπt ’s. When this occurs,
this second algorithm usually produces more precise estimators (in a sense that
we explain below) in theξt -dimension. The idea of resorting to “marginalized”
particle filters has been formalized by Doucet, Godsill and Andrieu (2000), and
implemented in various settings by Chen and Liu (2000), Chopin (2001) and
Andrieu and Doucet (2002), among others.

Doucet, Godsill and Andrieu’s (2000) justification for resorting to “marginal-
ized” particle filters is that they yield importance weights with a smaller vari-
ance than their “unmarginalized” counterpart, which suggests that the produced
estimates are also less variable. This is proven by a Rao–Blackwell decomposi-
tion, and, consequently, “marginalized” particle filters are sometimes referred to
as “Rao–Blackwellized” particle filters. We now extend the argument of these au-
thors by proving that the asymptotic variance of any estimator is, indeed, smaller
in the “marginalized” case. Assume decompositions ofπt andπ̃t of the form

πt(θt ) = πm
t (ξt )π

c
t (λt |ξt ), π̃t (θt ) = π̃m

t (ξt )π̃
c
t (λt |ξt ),
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where(ξt , λt ) identifies toθt , andπm
t , πc

t , π̃m
t , π̃ c

t , are, respectively, marginal
and conditional densities ofξt and λt . Consider two particle filters, tracking,
respectively,(πt ) and (πm

t ). It is assumed that both filters implement the same
selection scheme (whether multinomial or residual), and that their mutation steps
consist in drawing, respectively, from kernelskt andkm

t , which are such that the
following probability measures coincide on�t = 
t × �t ,∫

�t−1

πc
t−1(λt−1|ξt−1)kt {(ξt−1, λt−1), (dξt , dλt)}dλt−1

(12) = km
t (ξt−1, dξt )π̃

c
t (λt |ξt ) dλt ,

for almost everyξt−1 in 
t−1. Note that in full generality it is not always possible
to build a kernelkm

t from a givenkt which satisfies this relation. As illustrated
by the aforementioned references, however, it is feasible in some cases of interest.
This equality implies, in particular, that∫

πm
t−1(ξt−1)k

m
t (ξt−1, ·) dξt−1 = π̃m

t (·).
Asymptotic variances and other quantities are distinguished similarly through the
m-suffix for the marginal case, that is,Vt(ϕ) andV m

t (ϕ), and so on.

THEOREM 3. For any ϕ :
t → R
d such that ϕ ∈ 


(d)
t , we have V m

t (ϕ) ≤
Vt(ϕ) and V

m,r
t (ϕ) ≤ V r

t (ϕ). These inequalities are attained for a nonconstant ϕ

if and only if πc
t (·|ξt ) = π̃ c

t (·|ξt ) for almost every ξt ∈ 
t , for any t ≥ 0.

As suggested by the condition for equality above or more clearly exhibited in the
proof in the Appendix, marginalizing allows for canceling the weight dispersion
due to the discrepancy between conditional densitiesπ̃ c

t andπc
t , while the part due

to the discrepancy between marginal densitiesπm
t andπ̃m

t remains identical.
Beyond the small number of cases where this marginalization technique can be

effectively carried out, this result has also strong qualitative implications. In the
following sections we will study the behavior of the time sequenceVt(ϕ) in order
to measure whether and at which rate a given particle filter “diverges.” In this
respect, we will be able in some cases to build a marginalized particle filter whose
rate of divergence is theoretically known, thus providing a lower bound for the
actual rate of divergence of the considered particle filter.

3. Stability of particle filters.

3.1. Sequential importance sampling. The sequential importance sampling
algorithm is a particle filter that alternates mutation and correction steps, but does
not perform any selection step. Weights are consequently not initialized to one at
each iteration, and are rather updated through

w
(j)
t ∝ w

(j)
t−1υt

(
θ

(j)
t

)
.
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We suppress any notational dependence onH since it is meaningless in such a
case. Due to its specific nature, this algorithm needs to be treated separately. Since
particles are not resampled, they remain independent through iterations. It follows
via the standard central limit theorem that

H 1/2

{∑H
j=1 w

(j)
t ϕ(θ

(j)
t )∑H

j=1w
(j)
t

− Eπt (ϕ)

}
D→ N {0,V sis

t (ϕ)},

where the corresponding asymptotic variance is

V sis
t (ϕ) = Eπ̃t

[
πt

π̃t

{
ϕ − Eπt (ϕ)

}]2

,

andπ̃t denotes this time the generating distribution of particlesθ
(j)
t obtained by

the recursion of mutation kernelskt (·, ·), that is,

π̃t (·) =
∫

π̃t−1(θt−1)kt (θt−1, ·) dθt−1,

the distributionπ̃0 being arbitrary. Sequential importance sampling is rarely an
efficient algorithm, but the value ofV sis

t (ϕ) can serve as a benchmark in some
occasions, as we will see in the following.

3.2. Sequential importance sampling and resampling in the fixed parameter
case. In the fixed parameter case, that is,�t = � andπt(θ) = π(θ |y1 : t ), πt is
expected to become more and more informative onθ , and to eventually converge
to a Dirac mass at some pointθ0. Sequential importance sampling and resampling
algorithms typically diverge in such a situation, since they generate once and for all
the set of particle values from̃π0, a majority of which are presumably far fromθ0.
The following result quantifies this degeneracy effect.

THEOREM 4. Let ϕ :� → R
d , ϕ ∈ 


(d)
t . Then under regularity conditions

given in the Appendix, there exist positive constants c1, c2 and c3 such that

‖V sis
t (ϕ)‖ � c1t

p/2−1, ‖V r
t (ϕ)‖ � c2t

p/2, ‖Vt(ϕ)‖ � c3t
p/2,

as t goes toward infinity, where ‖ · ‖ denotes the Euclidean norm, p is the
dimension of � and V r

t (ϕ), Vt(ϕ) refer here to the sequential importance
resampling case, that is, kt (θ, ·) = δθ .

The conditions mentioned above amount to assuming thatπt is the posterior
density of a model regular enough to ensure the existence and asymptotic
normality of the maximum likelihood estimator. Under such conditions,πt can be
approximated at first order as a Gaussian distribution centered atθ0 with variance
I (θ0)

−1/t , where I (θ0) is the Fisher information matrix evaluated atθ0. The
results above are then derived through the Laplace approximation of integrals;
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see the Appendix. At first glance, it seems paradoxical thatV sis
t (ϕ) converges to

zero whenp = 1. Note, however, that the ratioVt(ϕ)/Varπt (ϕ), which measures
the precision of the algorithm relative to the variation of the considered function,
is likely to diverge even whenp = 1, since typically Varπt (ϕ) � I (θ0)

−1/t as
t → +∞.

That the sequential importance resampling algorithm diverges more quickly
than the sequential importance sampling algorithm in this context is unsurprising:
when particles are not mutated, the only effect of a selection step is to deplete the
particle system. In this respect, we have for any nonconstant functionϕ,

V sis
t (ϕ) < V r

t (ϕ) ≤ Vt(ϕ).

The proof of this inequality is straightforward.
Due to its facility of implementation and the results above, it may be

recommended to use the sequential importance sampling algorithm for studying
short series of observations, provided that the dimension of� is low. But,
in general, one should rather implement a more elaborate particle filter which
includes mutation steps in order to counter the particle depletion. A further
implication of these results is the following. Consider a dynamical model
which involves a fixed parameterθ , and assume that the marginal posterior
distributionsπ(θ |y1 : t ), obtained by marginalizing out latent variablesx1 : t , satisfy
the regularity conditions of Theorem 4. Then, following the argument developed
in Section 2.5, we get that the rate of divergence of the sequential importance
resampling algorithm for this kind of model is at least of orderO(tp/2), where
p is the dimension of this fixed parameter.

3.3. Sequential importance sampling and resampling for Bayesian filtering
and smoothing. For simplicity we assume thatπt (x1 : t ) = π(x1 : t |y1 : t ) is the
posterior density of a state space model with latent Markov process(xt ), xt ∈ X,
and observed process(yt ), yt ∈ Y, which satisfies the equations

yt |xt ∼ f (yt |xt) dyt ,

xt |xt−1 ∼ g(xt |xt−1) dxt .

We distinguish two types of functions: those which are defined on common
dimensions of the spaces�t = Xt , say,ϕ :x1 : t → ϕ(xk), for t ≥ k, and those
which are evaluated on the “last” dimension of�t , that is, ϕ :x1 : t → ϕ(xt).
Evaluating these two types of functions amounts to, respectively, “smoothing” or
“filtering” the states.

The sequential importance sampling algorithm is usually very inefficient in
such a context, whether for smoothing or filtering the states. We illustrate this
phenomenon by a simple example. Assume thet th mutation step consists of
drawingxt from the prior conditional densityg(xt |xt−1), which is usually easy
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to implement. Consider two evolving particlesθ(j)
t = x

(j)
1 : t with weights w

(j)
t ,

j = 1,2. We have

log
w

(1)
t

w
(2)
t

=
t∑

k=1

log
f (yk|x(1)

k )

f (yk|x(2)
k )

.

Assuming that the joint process(yt , x
(1)
t , x

(2)
t ) is stationary, the sum above

typically satisfies some central limit theorem of the form

t−1/2
t∑

k=1

log
f (yk|x(1)

k )

f (yk|x(2)
k )

D→ N (0, σ 2),(13)

where the limiting distribution is centered for symmetry reasons. Note that
this convergence is with respect to the joint probability space of the simulated
processesx(j)

t , j = 1,2 and the observation process(yt ), while all our previous
results were for a given sequence of observations. In this way, (13) yields that
the ratio of weights of the two particles either converges or diverges exponentially
fast. More generally, whenH particles are generated initially, very few of them
will have a prominent weight after some iterations, thus leading to very unreliable
estimates, whether for smoothing or filtering the states. The algorithm suffers from
the curse of dimensionality, in that its degeneracy grows exponentially with the
dimension of the space of interest�t .

We now turn to the sequential importance resampling algorithm, and remark
first that, forϕ :x1 : t → ϕ(x1) andt > 0,

Vt(ϕ) ≥ V r
t (ϕ) > V sis

t (ϕ),

providedϕ is not constant. The proof of this inequality is straightforward. The
sequential importance resampling algorithm is even more inefficient than the
sequential importance sampling algorithm in smoothing the first statex1, because
the successive selection steps only worsen the deterioration of the particle system
in thex1 dimension. This is consistent with our claim in Section 2.4 that a selection
step always degrades the inference on past and current states, but may possibly
improve the inference on future states. In this respect, the algorithm is expected to
show more capability in filtering the states, and we now turn to the study of the
filtering stability.

The functional operatorEt which appears in the expression forVt(ϕ), see (9),
summarizes two antagonistic effects: on one hand, the weight distortion due to
the correction step, and, on the other hand, the rejuvenation of particles due to
the application of the kernelkt . Stability will be achieved provided that these two
effects compensate in some way.

For simplicity, we assume that the state spaceX is included in the real line and
that the studied filtering functionϕ :x1 : t → ϕ(xt) is real-valued. Recall that for
the sequential importance resampling algorithm,kt is given by

kt (x
∗
1 : t−1, dx1 : t ) = δx∗

1 : t−1
qt(xt |x∗

1 : t−1) dxt ,
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for some given conditional probability densityqt(·|·). We assume thatqt only
depends on the previous statext−1, and, therefore, defines a Markov transition.
The ability of qt to “forget the past” is usually expressed through its contraction
coefficient [see Dobrushin (1956)]

ρt = 1
2 sup

x′,x′′∈X
‖qt (·|x′) − qt (·|x′′)‖1,

where‖ · ‖1 stands for theL1-norm. Noteρt ≤ 1, and ifρt < 1, qt is said to be
strictly contractive. Define the variation of a given functionϕ by

�ϕ = sup
x,x′∈X

|ϕ(x) − ϕ(x′)|.

Then the coefficientρt measures the extent to which the applicationqt “contracts”
the variation of the considered function, that is, for anyx′, x′′ ∈ X,∣∣∣∣ ∫ qt(x|x′)ϕ(x) dx −

∫
qt (x|x′′)ϕ(x) dx

∣∣∣∣ ≤ ρt�ϕ.(14)

Furthermore, it is known [Dobrushin (1956)] that ifqt is such that, for all
x, x′, x′′ ∈ X,

qt(x|x′)
qt (x|x′′)

≤ C,

then its contraction coefficient satisfiesρt ≤ 1 − C−1. We therefore make such
assumptions in order to prove the stability of the sequential importance resampling
algorithm.

THEOREM 5. Assume that �ϕ < +∞ and there exist constants C, f and f̄

such that, for any t ≥ 0, x, x′, x′′ ∈ X, y ∈ Y,

g(x|x′)
g(x|x′′)

≤ C,
qt(x|x′)
qt (x|x′′)

≤ C, 0< f ≤ f (y|x) ≤ f̄ .(15)

Then Vt(ϕ) is bounded from above in t (in the sequential importance resampling
case).

This theorem is akin to previous results in the literature [see Del Moral and
Guionnet (2001), Le Gland and Oudjane (2004) and most especially, Künsch
(2001, 2003)], except that these authors rather consider the stability of some
distance (such as the total variation norm of the difference) between the “true”
filtering densityπt (xt ) and the empirical density computed from the particle
system. In fact, Del Moral and Miclo [(2000), page 36] proved that theactual
variance of the Monte Carlo error is bounded from above over time under
similar conditions. Unfortunately, all these results, including ours, require strong
assumptions, such as (15), that are unrealistic whenX is not compact. Further
research will hopefully provide weaker assumptions, but this may prove an
especially arduous problem.
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3.4. Resample-move algorithms, variance estimation. Following Gilks and
Berzuini (2001), we term “resample-move algorithm” any particle filter algorithm
which includes an MCMC step in order to reduce degeneracy, as described in
Section 2.2. It seems difficult to make general statements about such algorithms
and we will rather make informal comments.

The fixed parameter case is especially well behaved. Basic particle filters
diverge only at a polynomial rate, as seen in Section 3.2, in contrast with the
exponential rate for state-space models. Adding (well-calibrated) MCMC mutation
steps should, consequently, lead to stable algorithms in many cases of interest. In
fact, it is doubtful that a mutation step must be performed at each iteration to
achieve stability. Chopin (2002)argues and provides some experimental evidence
that it may be sufficient to perform move steps at a logarithmic rate, that is, thenth
move step should occur at iterationtn ∼ exp(αn).

Situations where a latent process intervenes seem less promising. Smoothing
the states is especially a difficult problem, and we do not think that there is
any solution for circumventing the curse of dimensionality that we have pointed
out in the previous section. Even if mutation steps are performed at every
iteration, the MCMC transition kernels should themselves suffer from the curse of
dimensionality, in that their ability to rejuvenate particles of dimensiont is likely
to decrease witht .

Resample-move algorithms remain an interesting alternative when the consid-
ered dynamical model includes a fixed parameterθ . MCMC mutation steps should
avoid depletion in simulated values ofθ , and make it possible at least to filter the
states and estimate the parameter under reasonable periods of time. Unfortunately,
the corresponding MCMC transition kernels will often depend on the whole past
trajectory, so that long term stability remains uncertain.

In such complicated setups it is necessary to monitor at least numerically the
degeneracy of the considered particle filter algorithm. We propose the following
method. Runk, sayk = 10, parallel independent particle filters of sizeH . For any
quantity to be estimated, compute the average of thek corresponding estimates.
This new estimator is clearly consistent and asymptotically normal. Moreover, the
computational cost of this strategy is identical to that of a single particle filter of
sizekH , while the obtained precision will be also of the same order of magnitude
in both cases, that is to say{Vt(ϕ)/(kH)}1/2. This method does not, therefore,
incur an unnecessary computational load, and allows for assessing the stability of
the algorithm through the evolution of the empirical variance of thesek estimates.

APPENDIX

A.1. Proofs of Theorems 1 and 2. We start by outlining some basic
properties of the sets
(d)

t with respect to linearity. The set

(d)
t is stable through

linear transformations, that is,ϕ ∈ 

(d)
t ⇒ Mϕ ∈ 


(d ′)
t if M is a d ′ × d matrix
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of real numbers. In particular, if the vector functionϕ = (ϕ1, . . . , ϕd)′ belongs to



(d)
t , then each of its coordinates belongs to


(1)
t . The converse proposition is also

true. Finally, we haveVt(Mϕ +λ) = MVt(ϕ)M ′ for any constantλ ∈ R
d , and this

relation also holds for the operatorŝVt and Ṽt . Proving these statements is not
difficult and is left to the reader.

The proof works by induction with Lemmas A.1–A.3 for Theorem 1, and
Lemmas A.1, A.2 and A.4 for Theorem 2. The inductive hypothesis is the
following. For a givent > 0, it is assumed that for allϕ ∈ 


(d)
t−1,

H 1/2

{
1

H

H∑
j=1

ϕ
(
θ̂

(j,H)
t−1

) − Eπt−1(ϕ)

}
D→ N {0, V̂t−1(ϕ)}.(16)

LEMMA A.1 (Mutation). Under the inductive hypothesis, we have

H 1/2

{
1

H

H∑
j=1

ψ
(
θ

(j,H)
t

) − Eπ̃t
(ψ)

}
D→ N {0, Ṽt (ψ)}

for any measurable ψ :�t → R
d such that the function µ : θt−1 �→ Ekt (θt−1,·){ψ(·)−

Eπ̃t
(ψ)} belongs to 


(d)
t−1 and there exists δ > 0 such that Eπ̃t

‖ψ‖2+δ < +∞.

PROOF. We assume thatψ is real-valued (d = 1). The generalization tod > 1
follows directly from the Cramér–Wold theorem and the linearity properties stated
above.

Let ψ̄ = ψ −Eπ̃t
(ψ), µ(θt−1) = Ekt (θt−1,·){ψ̄(·)}, σ 2(θt−1) = Varkt (θt−1,·){ψ̄(·)}

andσ 2
0 = Eπt−1(σ

2). We haveEπt−1(µ) = 0, and by Jensen’s inequality,

σ 2
0 = Eπt−1

[
Varkt (θt−1,·){ψ(·)}] ≤ Eπt−1

[
Ekt (θt−1,·){ψ(·)2}]

≤ {
Eπ̃t

|ψ|(2+δ)
}2/(2+δ)

< +∞,

which makes it possible to apply the law of large numbers for particle filters toσ 2,

H−1
H∑

j=1

σ 2(θ(j,H)
t−1

) → σ 2
0 almost surely.(17)

Defining

ν(θt−1) = Ekt (θt−1,·){|ψ̄(·) − µ(θt−1)|2+δ}(18)

≤ 21+δ
{
Ekt−1(θt−1,·)|ψ̄(·)|2+δ + ∣∣Ekt−1(θt−1,·)ψ̄(·)∣∣2+δ}(19)

≤ 22+δ
{
Ekt−1(θt−1,·)|ψ̄(·)|2+δ

}
,(20)

where (19) comes from theCr inequality and (20) from Jensen’s inequality, we
deduce that

Eπt−1(ν) ≤ 22+δ
Eπ̃t

|ψ|2+δ < +∞.
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This inequality ensures that the expectations definingν in (18) (and, similarly,
those definingµ andσ 2) are finite for almost everyθt−1. It follows that

H−1
H∑

j=1

ν
(
θ

(j,H)
t−1

) → Eπt−1(ν) almost surely,

and combining this result with (17), we obtain the almost sure convergence of

ρH =
∑H

j=1ν(θ
(j,H)
t−1 )

{∑H
j=1σ 2(θ

(j,H)
t−1 )}(2+δ)/2

(21)

= H−δ/2 H−1 ∑H
j=1ν(θ

(j,H)
t−1 )

{H−1 ∑H
j=1 σ 2(θ

(j,H)
t−1 )}(2+δ)/2

→ 0.

Let TH = H−1/2 ∑H
j=1 ψ̄(θ

(j,H)
t ), St−1 denote the sigma-field generated by the

random variables forming the triangular array(θ̂
(j,H)
t−1 )j≤H , that is, the particle

system at timet − 1, andµH = E(TH |St−1). Conditional onSt−1, theψ̄(θ
(j,H)
t )’s

form a triangular array of independent variables which satisfy the Liapunov
condition, see (21), and have variances whose mean converges toσ 2

0 , see (17).
Therefore [Billingsley (1995), page 362], the following central limit theorem for
triangular arrays of independent variables holds:

(TH − µH)|St−1
D→ N (0, σ 2

0 ).(22)

Since Eπt−1(µ) = 0 and µ ∈ 

(d)
t−1, we have also, by applying (16) to the

functionµ,

µH = H−1/2
H∑

j=1

µ
(
θ̂

(j,H)
t−1

) D→ N {0, V̂t−1(µ)}.(23)

The characteristic function ofTH is


TH
(u) = E{exp(iuTH )}

= E[exp(iuµH )E{exp(iuTH − iuµH )|St−1}],
where E{exp(iuTH − iuµH )|St−1} is the characteristic function ofTH − µH

conditional onSt−1, which according to (22) converges to exp(−σ 2
0u2/2). It

follows from (23) that

exp(iuµH )E{exp(iuTH − iuµH )|St−1} D→ exp(−σ 2
0u2/2+ iuZ),

where Z is a random variable distributed according toN {0, V̂t−1(µ)}. The
expectation of the left-hand side term converges to the expectation of the right-
hand side term following the dominated convergence theorem, and this completes
the proof. �
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LEMMA A.2 (Correction). Let ϕ ∈ 

(d)
t , assume the inductive hypothesis

holds and the function θt �→ 1 belongs to 

(1)
t . Then

H 1/2

{∑H
j=1w

(j,H)
t ϕ(θ

(j,H)
t )∑H

j=1w
(j,H)
t

− Eπt (ϕ)

}
D→ N {0,Vt(ϕ)}.

PROOF. Let ϕ̄ = ϕ − Eπt (ϕ). For notational convenience we assume that
d = 1, but the generalization tod ≥ 1 is straightforward. It is clear that the vector
functionψ = (υt · ϕ̄, υt )

′ fulfills the conditions mentioned in Lemma A.1, and as
such satisfies

H 1/2

{
1

H

H∑
j=1

(
υt

(
θ

(j,H)
t

)
ϕ̄

(
θ

(j,H)
t

)
υt

(
θ

(j,H)
t

)
)

−
(

0Rd

1

)}
D→ N {0, Ṽt (ψ)}.

Then, resorting to theδ-method with functiong(x, y) = x/y, we obtain

H 1/2

∑H
j=1υt(θ

(j,H)
t )ϕ̄(θ

(j,H)
t )∑H

j=1υt (θ
(j,H)
t )

D→ N (0,V),

whereV = {(∂g/∂x, ∂g/∂y)(0,1)}Ṽt (ψ){(∂g/∂x, ∂g/∂y)(0,1)}′ = Ṽt {υt · (ϕ −
Eπt ϕ)}. The left-hand side term is unchanged if we replace theυt (θ

(j,H)
t )’s by the

weightsw(j,H)
t , since they are proportional.�

LEMMA A.3 (Selection, multinomial resampling).Let V̂t (ϕ) = Vt(ϕ) +
Varπt (ϕ) and assume the particle system is resampled according to the multinomial
scheme. Then, under the same conditions as in Lemma A.2,

H 1/2

{
1

H

H∑
j=1

ϕ
(
θ̂

(j,H)
t

) − Eπt (ϕ)

}
D→ N {0, V̂t (ϕ)}.

PROOF. The proof is similar to that of Lemma A.1. Assumed = 1, denote
by St the sigma-field generated by the random variables(θ

(j,H)
t ,w

(j,H)
t )j≤H

and let ϕ̄ = ϕ − Eπt (ϕ), TH = H−1/2 ∑H
j=1 ϕ̄(θ̂

(j,H)
t ) and µH = E(TH |St).

Conditional onSt , TH is, up to a factorH−1/2, a sum of independent draws
from the multinomial distribution which produces̄ϕ(θ

(j,H)
t ) with probability

w
(j,H)
t /

∑H
j=1w

(j,H)
t . Then, as in Lemma A.1, we have

(TH − µH)|St
D→ N (0, σ 2

0 ),

where this timeσ 2
0 = Varπt (ϕ), which is the limit asH → +∞ of the variance of

the multinomial distribution mentioned above. The proof is completed along the
same lines as in Lemma A.1.�
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LEMMA A.4 (Selection, residual resampling).Let V̂t (ϕ) take the value given
by (7) and assume the particle system is resampled according to the residual
resampling scheme. Then, under the same conditions as in Lemma A.2,

H 1/2

{
1

H

H∑
j=1

ϕ
(
θ̂

(j,H)
t

) − Eπt (ϕ)

}
D→ N {0, V̂t (ϕ)}.

PROOF. The proof is identical to that of Lemma A.2, except that conditional
on St , TH is H−1/2 times a constant, plus a sum of independent draws from the
multinomial distribution described in Section 2.1. This yields a different value
for σ 2

0 ,

σ 2
0 = Eπ̃t

{r(υt) · ϕ2} − 1

Eπ̃t
{r(υt)}

[
Eπ̃t

{r(υt) · ϕ}]2
.

In addition, we also have to make sure that the number of these independent
drawsHr tends toward infinity. In fact,Hr/H → Eπ̃t

[r(νt )]. To see this, consider

Hr/H − H−1
H∑

j=1

r
{
υt

(
θ

(j,H)
t

)} = H−1
H∑

j=1

[
r(Hρj) − r

{
υt

(
θ

(j,H)
t

)}]
,

where Hρj = υt(θ
(j,H)
t )/{H−1 ∑

j υt (θ
(j,H)
t )}, see Section 2.1, so that the

difference above should eventually be zero asH−1 ∑
j υt (θ

(j,H)
t ) → 1. More

precisely, we have|r(x)− r(y)| ≤ 1, in general, andr(x)− r(y) = x −y provided
|x − y| < ε and r(x) ∈ [ε,1 − ε] for any ε < 1/2. Therefore, assuming that
{H−1 ∑

j υt (θ
(j,H)
t )}−1 ∈ [1− ε′,1+ ε′] for someε′ > 0 andH large enough, we

get that the sum above should be zero plus something bounded from above by the
proportion of particles such thatε′υt (·) > 1/2 or r{υt(·)} /∈ [ε′υt(·),1 − ε′υt(·)].
This proportion can be made as small as necessary.�

A.2. Proof of Theorem 3. Let ϕ :
t → R
d and ϕ̄ = ϕ − Eπt (ϕ) = ϕ −

Eπm
t
(ϕ) for a given t ≥ 0. To simplify notation, it is assumed thatd = 1, but

the adaptation to the general case is straightforward. All quantities related to
the “marginalized” particle filter are distinguished by them-suffix. For instance,
Em

t (ϕ) stands for the functionξt �→ Ekm
t (ξt ,·){υm

t (·)ϕ(·)}, in agreement with the
definition of Et (ϕ) in (10). In this respect, the marginal weight functionυm

t (·)
is π̃m

t (·)/πm
t (·), and if we define the “conditional” weight functionυc

t (λt |ξt ) =
πc

t (λt |ξt )/π̃
c
t (λt |ξt ), we have the identity

υt (θt ) = υm
t (ξt )υ

c
t (λt |ξt ).

It follows from (12) that

Eπc
t−1

{Et (ϕ̄)} = Ekm
t

{
υm

t ϕ̄Eπ̃ c
t
(υc

t )
} = Em

t (ϕ̄),
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sinceEπ̃ c
t
(υc

t ) = 1, and by induction, we show similarly, fork ≤ t , that

Eπc
k
{Ek+1 : t (ϕ̄)} = Em

k+1 : t (ϕ̄).

Hence, fork ≤ t ,

Eπ̃k
[{υkEk+1 : t (ϕ̄)}2] = Eπ̃m

k

[
(υm

k )2
Eπ̃ c

k
{υc

kEk+1 : t ϕ̄}2]
≥ Eπ̃m

k
[{υm

k · Em
k+1 : t (ϕ̄)}2],

by Jensen’s inequality. From the closed form (9) ofVt(ϕ), we deduce the inequality
V m

t (ϕ) ≤ Vt(ϕ) for the case when the selection step follows the multinomial
scheme. Alternatively, if the selection step consists of residual resampling, let
ϕ = ϕ − Eπ̃t

{r(υt)ϕ}/Eπ̃t
{r(υt)}. Then

Rt(ϕ) − Rm
t (ϕ) = Eπ̃t

{r(υt)ϕ
2} − Eπ̃m

t
{r(υm

t )ϕ2} + {Eπ̃m
t
r(υm

t )ϕ}2

Eπ̃m
t
r(υm

t )

≥ Eπ̃m
t

[{
Eπ̃ c

t
r(υt ) − r(υm

t )
}
ϕ2],

and sinceEπ̃ c
t
(υt ) = υm

t , we haveEπ̃ c
t
�υt	 ≤ �υm

t 	, henceEπ̃ c
t
r(υt ) ≥ r(υm

t ), and,
consequently,Rt(ϕ) ≥ Rm

t (ϕ) for anyϕ. It is then easy to show by induction that
the desired inequality is also verified in the residual case.

A.3. Regularity conditions and proof of Theorem 4. Let π0(θ) denote the
prior density andp(y1 : t |θ) the likelihood of thet first observations, so that through
Bayes formula,

πt(θ) = π(θ |y1 : t ) ∝ π0(θ)p(y1 : t |θ).

Let lt (θ) = logp(y1 : t |θ). The following statements are assumed to hold almost
surely:

1. The maximumθ̂t of lt (θ) exists and converges ast → +∞ to θ0 such that
π0(θ0) > 0 andπ̃0(θ0) > 0.

2. The matrix

	t = −
{

1

t

∂2lt (θ)

∂θ∂θ ′
}−1

is positive definite and converges toI (θ0), the Fisher information matrix atθ0.
3. There exists� > 0 such that

0 < δ < � �⇒ lim sup
t→+∞

[
1

t
sup

‖θ−θ̂t‖>δ

{lt (θ) − lt (θ̂t )}
]

< 0.

4. The functionsπ0(θ) and lt (θ) are six-times continuously differentiable, the
partial derivatives of order six oflt (θ)/t are bounded on any compact set
�′ ⊂ �, and the bound does not depend ont and the observations.
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5. ϕ :� → R
d is six-times continuously differentiable,ϕ′(θ0) �= 0.

For convenience, we start with the one-dimensional case (p = 1). The Laplace
approximation of an integral [see, e.g., Tierney, Kass and Kadane (1989)] is∫

ψ(θ)exp{−th(θ)}dθ

= (2π/t)1/2σ exp{−tĥ}
× [

ψ̂ + 1
2

{
σ 2ψ̂ ′′ − σ 4ψ̂ ′ĥ′′′ + 5

12σ
6ψ̂ ĥ′′′ − 1

4σ 4ψ̂ĥiv
}
t−1 + O(t−2)

]
,

where hats onψ , h and their derivatives indicate evaluation at the point which
minimizes h, and σ = −(1/ĥ′′)1/2. This approximation remains valid for a
functionht depending ont , provided that the fluctuations ofht or its derivatives
can be controlled in some way. Conditions above allow, for instance, for applying
this approximation to the functionsht,1(θ) = −lt (θ)/t andht,2(θ) = −2lt (θ)/t ;
see Schervish [(1995), page 446] for technical details. It is necessary, however,
to assume thatψ(θ0) �= 0, so thatψ is either strictly positive or strictly negative
at least in a neighborhood ofθ0. SinceV sis

t (ϕ) = V sis
t (ϕ + λ) for anyλ ∈ R, we

assume without loss of generality thatϕ(θ0) �= 0. V sis
t (ϕ) equals∫

ψ1(θ)p(y1 : t |θ)2 dθ − 2Eπt (ϕ)
∫

ψ2(θ)p(y1 : t |θ)2 dθ

{∫ π(θ)p(y1 : t |θ) dθ}2

(24)

+ {Eπt (ϕ)}2 ∫
ψ3(θ)p(y1 : t |θ)2 dθ

{∫ π(θ)p(y1 : t |θ) dθ}2 ,

where ψ1 = π0(θ)2ϕ(θ)2/π̃0(θ), ψ2 = π0(θ)2ϕ(θ)/π̃0(θ) and ψ3 = π0(θ)2/

π̃0(θ). Combining the appropriate Laplace approximations, we get that

V sis
t (ϕ) = t1/2

2(π	t)
1/2

× [ψ1(θ̂t ) − 2Eπt (ϕ)ψ2(θ̂t ) + {Eπt (ϕ)}2ψ3(θ̂t ) + At−1 + O(t−2)]
{π0(θ̂t ) + Bt−1 + O(t−2)}2

= t1/2

2(π	t)1/2

{ϕ(θ̂t ) − Eπt (ϕ)}2 + Aπ̃0(θ̂t )π0(θ̂t )
−2t−1 + O(t−2)

π̃0(θ̂t ){1+ Bπ0(θ̂t )
−1t−1 + O(t−2)}2

,

whereA is the sum ofO(t−1) terms corresponding to the three Laplace expansions
of the numerator, andB is theO(t−1) term of the denominator. Sinceϕ(θ̂t ) −
Eπt (ϕ) = O(t−1), 	t = I (θ0) + O(t−1) and ψ(θ̂t ) = ψ(θ0) + O(t−1) for any
continuous functionψ , we get through appropriate derivations that

V sis
t (ϕ) = I (θ0)

1/2ϕ′(θ0)
2

2π1/2π̃0(θ0)
t−1/2 + O(t−3/2).



2406 N. CHOPIN

Derivations in multidimensional cases are much the same, except that notation
is more cumbersome. Whenp > 1, the factort−1/2 in the Laplace expansion is
replaced byt−p/2, so that in the ratio (24) we get a factortp/2, and since thetp/2

terms cancel as in the one-dimensional case, the actual rate of divergence istp/2−1,
and this completes the first part of the proof.

In the sequential importance resampling case (multinomial scheme),qt(θ, ·) =
δθ andπ̃t = πt−1, and according to (9),

Vt(ϕ) = V sis
t (ϕ) +

t∑
k=1

Eπk−1

[
πt

πk−1

{
ϕ − Eπt (ϕ)

}]2

.(25)

Then through a direct adaptation of expansions above we obtain a divergence rate
for Vt(ϕ) of order(

∑t
k=0(t − k)p/2−1) = O(tp/2). For the residual case, it follows

from (11) and (25) that

V r
t (ϕ) = V sis

t (ϕ) +
t∑

k=1

Rk−1

[
πt

πk−1

{
ϕ − Eπt (ϕ)

}]
.

The difficulty in this case is that the noncontinuous functionr(·) takes part in
the expression forRk(·), see (8). It is clear, however, that the Laplace expansion
can be generalized to cases where regularity conditions for the likelihood and
other functions are fulfilled only locally aroundθ0. The additional assumption
that πt(θ0)/πt−1(θ0) is not an integer for anyt > 0 allowsr(υt ) to be six-times
continuously differentiable in a neighborhood aroundθ0, and, therefore, makes it
possible to expand the terms of the sum above, which leads to a rate of divergence
of orderO(tp/2) in the same way as in the multinomial case.

A.4. Proof of Theorem 5. As a preliminary, we state without proof the
following inequality. Letϕ,ψ :R → R such thatϕ ≥ 0, supψ ≥ 0 and infψ ≤ 0.
Then

�(ϕψ) ≤ supϕ · �ψ.(26)

Due to particular cancelations, the weight functionυt(x1 : t ) only depends on
xt−1 andxt in the state space case

υt(x1 : t ) = υt (xt−1, xt ) ∝ f (yt |xt)g(xt |xt−1)

qt (xt |xt−1)
.(27)

Straightforward consequences of this expression are the identities

πt (xt |xt−1) = qt(xt |xt−1)υt(xt−1, xt )∫
qt(x|xt−1)υt(xt−1, x) dx

,(28)

πt+1(xt+1|xk) =
∫

πt(xt |xk)qt+1(xt+1|xt )υt+1(xt , xt+1) dxt∫
πt(xt |xk)qt+1(x|xt )υt+1(xt , x) dxt dx

,(29)
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for k < t , whereπt (xt |xk) denotes the conditional posterior density ofxt givenxk

and thet first observations, that is,πt(xt |xk) = π(xt |xk, y1 : t ) = π(xt |xk, yk+1 : t ).
We start by proving some useful lemmas.

LEMMA A.5. The conditional posterior density πt(xt |xk), k < t , defines a
Markov transition from xk to xt whose contraction coefficient is less than or equal
to (1− C−2)t−k .

PROOF. This is adapted from Künsch (2001). Forxk, x
′
k, xk+1 ∈ X, k < t ,

πt(xk+1|xk)

πt(xk+1|x′
k)

= g(xk+1|xk)p(yk+1 : t |x′
k)

g(xk+1|x′
k)p(yk+1 : t |xk)

≤ C2,

sinceg(xk+1|xk) ≤ Cg(xk+1|x′
k) and

p(yk+1 : t |x′
k) =

∫
g(xk+1|x′

k)p(yk+1 : t |xk+1) dxk+1

≤ C

∫
g(xk+1|xk)p(yk+1 : t |xk+1) dxk+1.

Therefore, the contraction coefficients of Markov transitionsπt (xk+1|xk) and
πt(xt |xk) are less than or equal to, respectively,(1 − C−2) and (1 − C−2)t−k .

�

LEMMA A.6. Let λ be a probability density on X and h(x|x′) a conditional
probability density defining a Markov transition on X. Then for any x′ ∈ X, y ∈ Y,∫

f (y|x)h(x|x′) dx

Eλ(x′′){∫ f (y|x)h(x|x′′) dx} ≤ 1+ ρhCf ,

where ρh is the contraction coefficient of h(·|·), and Cf = f̄ /f − 1.

PROOF. It follows from the definition ofρh [see (14)] that forx′, x′′ ∈ X,∣∣∣∣ ∫ f (y|x)h(x|x′) dx −
∫

f (y|x)h(x|x′′) dx

∣∣∣∣ ≤ ρh(f̄ − f )

and therefore,

sup
x′∈X

{∫
f (y|x)h(x|x′) dx

}
≤ Eλ(x′′)

{∫
f (y|x)h(x|x′′) dx

}
+ ρh(f̄ − f ),

so that

supx′∈X{∫ f (y|x)h(x|x′) dx}
Eλ(x′′){∫ f (y|x)h(x|x′′) dx} ≤ 1+ ρh

(f̄ − f )

Eλ(x′′){∫ f (y|x)h(x|x′′) dx}

≤ 1+ ρh

(
f̄

f
− 1

)
. �
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LEMMA A.7. Let ρ = 1− C−1 and ρ2 = 1− C−2. Then for k < t ,

�Ek+1 : t
{
ϕ − Eπt (ϕ)

} ≤
t−k∏
i=1

(1+ ρρi−1
2 Cf )ρt−k

2 �ϕ,

for any real-valued filtering function, ϕ :x1 : t → ϕ(xt).

PROOF. Let ϕ̄ = ϕ − Eπt (ϕ). Note the arguments ofEk+1 : t (ϕ̄) arex1 : k in
general, but in the case considered in Section 3.3 it only depends onxk and is
therefore treated as a functionX → X. For the sake of clarity, we treat the case
k = t − 2, but the reasoning is easily generalized. The following decomposition is
deduced from identity (28):

Et−1 : t (ϕ̄)(xt−2)

= Eqt−1(xt−1|xt−2){υt−1(xt−2, xt−1)Et (ϕ̄)(xt−1)}
= Eqt−1(xt−1|xt−2){υt−1(xt−2, xt−1)}Eπt−1(xt−1|xt−2){Et (ϕ̄)(xt−1)}.

It follows from (27) that the first term satisfies

Eqt−1(xt−1|xt−2){υt−1(xt−2, xt−1)} ∝
∫

f (yt−1|xt−1)g(xt−1|xt−2) dxt−1,

where the proportionality constant can be retrieved by remarking that the
expectation of this term with respect toπt−2 equals one and, therefore,

Eqt−1(xt−1|xt−2){υt−1(xt−2, xt−1)}

=
∫

f (yt−1|xt−1)g(xt−1|xt−2) dxt−1

Eπt−2(xt−2){
∫

f (yt−1|xt−1)g(xt−1|xt−2) dxt−1}
≤ 1+ ρCf

according to Lemma A.6. Noteπt−2(xt−2) denotes theπt−2-marginal density
of xt−2. It follows from the decomposition above and the inequality in (26) that

�Et−1 : t (ϕ̄) ≤ (1+ ρCf )�ψ,

whereψ is the function

ψ(xt−2) = Eπt−1(xt−1|xt−2){Et (ϕ̄)(xt−1)}
= Eπt−1(xt−1|xt−2)

[
Eqt (xt |xt−1){υt(xt−1, xt )ϕ̄(xt )}].

Note thatψ does take positive and negative values, since the expectation of
Et−1 : t (ϕ̄) with respect toπt−2 is null. We now decomposeψ in the same way,

ψ(xt−2) = Eπt−1(xt−1|xt−2)

[
Eqt (xt |xt−1){υt(xt−1, xt )}]Eπt (xt |xt−2){ϕ̄(xt )},
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by consequence of the identity (29). The expectation of the first term with respect
to πt−1(xt−2) equals one, so that

Eπt−1(xt−1|xt−2)

[
Eqt (xt |xt−1){υt(xt−1, xt )}]

=
∫

πt−1(xt−1|xt−2)f (yt |xt)g(xt |xt−1) dxt−1dxt

Eπt−1(xt−2){
∫

πt−1(xt−1|xt−2)f (yt |xt)g(xt |xt−1) dxt−1dxt}
≤ 1+ ρρ2Cf ,

according to Lemmas A.5 and A.6. Resorting again to inequality (26), we get

�ψ ≤ (1+ ρρ2Cf )ρ2
2�ϕ,

which leads to the desired inequality, and this completes the proof of Lemma A.7.
�

To conclude the proof of Theorem 5, remark thatEπ̃k
(υk) = 1. Therefore,

υk(xk−1, xk) = f (yk|xk)g(xk|xk−1)/qk(xk|xk−1)

Eπ̃k(x1 : k){f (yk|xk)g(xk|xk−1)/qk(xk|xk−1)}
≤ C2f̄ /f ,

and since the expectation of the functionEk+1 : t{ϕ − Eπt (ϕ)} with respect toπk

is null, the functionEk+1 : t{ϕ − Eπt (ϕ)} is ensured to take positive and negative
values, so that

sup
xk∈X

∣∣Ek+1 : t
{
ϕ − Eπt (ϕ)

}
(xk)

∣∣ ≤ �Ek+1 : t
{
ϕ − Eπt (ϕ)

}
and, finally,

Eπ̃k

[
υ2

kEk+1 : t
{
ϕ − Eπt (ϕ)

}2]
≤ C4(f̄ /f )2

t−k∏
i=1

(1+ ρρi−1
2 Cf )2ρ

2(t−k)
2 (�ϕ)2

≤ C4(f̄ /f )2 exp

(
2ρCf

t−k∑
i=1

ρi−1
2

)
ρ

2(t−k)
2 (�ϕ)2

≤ C4(f̄ /f )2 exp{2ρCf /(1− ρ2)}ρ2(t−k)
2 (�ϕ)2.

It follows from (9) thatVt(ϕ) is bounded from above by a convergent series.
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