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CENTRAL LIMIT THEOREM FOR SEQUENTIAL MONTE CARLO
METHODS AND ITS APPLICATION TO BAYESIAN INFERENCE
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The term “sequential Monte Carlo methods” or, equivalently, “particle
filters,” refers to a general class of iterative algorithms that performs Monte
Carlo approximations of a given sequence of distributions of intérest\We
establish in this paper a central limit theorem for the Monte Carlo estimates
produced by these computational methods. This result holds under minimal
assumptions on the distributions, and applies in a general framework
which encompasses most of the sequential Monte Carlo methods that have
been considered in the literature, including the resample-move algorithm of
Gilks and BerzuiniJ. R. Sat. Soc. Ser. B Sat. Methodol. 63 (2001) 127-146]
and the residual resampling scheme. The corresponding asymptotic variances
provide a convenient measurement loé fprecision of a given particle filter.

We study, in particular, in some typical examples of Bayesian applications,
whether and at which rate these asymptotic variances diverge in time, in order
to assess the long term reliability of the considered algorithm.

1. Introduction. Sequential Monte Carlo methods form an emerging, yet
already very active branch of the Monte Carlo paradigm. Their growing popularity
comes in part from the fact that they are often the only viable computing
techniques in those situations where data must be processed sequentially. Their
range of applicability is consequently very wide, and includes nonexclusively
signal processing, financial modeling, speech recognition, computer vision, neural
networks, molecular biology and genetics, target tracking and geophysics, among
others. A very good introduction to the field has been written by Kiinsch (2001),
while the edited volume of Doucet, de Freitas and Gordon (2001) provides an
interesting coverage of recent developments in theory and applications.

Specifically, sequential Monte Carlo methods (alternatively termed “particle
filters” or “recursive Monte Carlo filters”) are iterative algorithms that produce
and update recursively a set of weighted simulations (the “particles”) in order
to provide a Monte Carlo approximation of an evolving distribution of interest
;. (d6;), t being an integer index. In a sequential Bayesian framewafido,)
will usually represent the posterior distribution of parametegiven thet first
observations. The term “parameter” must be understood here in a broad sense, in
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that9; may include any unknown quantity which may be inferred fromrtffiest
observations, and is not necessarily of constant dimension. We denéig thg
support ofr; (d6;).

The study of the asymptotic properties of sequential Monte Carlo methods is
admittedly a difficult problem, and some methodological papers [Liu and Chen
(1998), e.g.] simply state some form of the law of large numbers for the most
elaborate algorithms, that is, the Monte Carlo estimates are shown to converge
almost surely to the quantity of interestds the number of particles, tends toward
infinity. More refined convergence results have been obtained, such as the central
limit theorem of Del Moral and Guionnet (1999), later completed by Del Moral
and Miclo (2000), or upper bounds for the Monte Carlo error expressed in various
norms [Crisan and Lyons (1997, 1999), Crisan, Gaines and Lyons (1998), Crisan
and Doucet (2000), Del Moral and Guionnet (2001), Kiinsch (2001) and Le Gland
and Oudjane (2004)]. Unfortunately, it has been, in general, at the expense of
generality [with the exception of Crisan and Doucet (2000)], whether in terms of
computational implementation (only basic algorithms are considered, which may
not be optimal) or of applicability (the sequentehas to be generated from some
specific dynamical model that fulfills various conditions).

In this paper we derive a central limit theorem that applies to most of the
sequential Monte Carlo techniques developed recently in the methodological
literature, including the resample-moségorithm of Gilks ad Berzuini (2001),
the auxiliary particle filter of Pitt and Shephard (1999) and the stochastic remainder
resampling scheme [Baker (1985, 1987)], also known as the residual resampling
scheme [Liu and Chen (1998)]. No assumption is made on the model that generates
the sequence of distributions of interést), so that our theorem equally applies to
those recent algorithms [Chopin (2002), Del Moral and Doucet (2002) and Cappé,
Guillin, Marin and Robert Z004)] that have been developed for contexts that
widely differ from the standard application of sequential Monte Carlo methods,
namely, the sequential analysis of state space models.

The appeal of a central limit theorem is that it provides an (asymptotically) exact
measure of the Monte Carlo error, through the asymptotic variance. This allows for
a rigorous comparison of the relative efficiency of given algorithms. In this way, we
show in this paper, again by comparing the appropriate asymptotic variances, that
the residual resampling scheme always outperforms the multinomial resampling
scheme, and that the Rao—Blackwell variance reduction technique of Doucet,
Godsill and Andrieu (2000) is, indeed, effective.

The most promising application of our central limit theorem is the possibility to
assess the stability of a given particle filter (in terms of precision of the computed
estimates) through the time behavior of the corresponding asymptotic variances.
This is a critical issue since it is well known that sequential Monte Carlo methods
tend to degenerate in a number of cases, sometimes at a very fast rate. We consider
in this paper some typical Bayesian problems, such as the sequential analysis of
state-space models. We will show thander some conditions stability can be
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achieved at least for “filtering” the states, that is, for approximating the marginal
posterior densityr; (x;), wherex, stands for the current state at iteration

The paper is organized as follows. Section 2 proposes a generic description
of particle filters, establishes a central limit theorem for computed estimates in
a general framework and draws some conclusions from this result. Section 3
discusses the stability of particle filters through the time behavior of the asymptotic
variances provided by the central limit theorem. Proofs of theorems are put in the
Appendix.

2. Central limit theorem for particlefilters.

2.1. General formulation of particle filters. In full generality, a particle

system is a triangular array of random variable®ix R,
(Q(j,H) w(j,H)) -
b J_ b

where © is some space of interest. The variablgé ) are usually called
“particles,” and their contribution to the sample may vary according to their
weightsw-f) . We will say that this particle systetargetsa given distributionr
defined or® if and only if

Z;lew(jﬂ)(p(@(jﬂ))
Zj?’:lw(j,H)

holds almost surely a&f — +oo for any measurable functiop such that the
expectation above exists. A first example of a particle system is a denumerable set
of independent draws from, with unit weights, which obviously targets In this
simple case, particles and weights do not depenéoand the particle system is
a sequence rather than a triangular array. This is not the case in general, however,
and, while cumbersome, the dependencé/inwill be maintained in notation to
allow for a rigorous mathematical treatment.

Now assume a sequence;);cny Of distributions defined on a sequence of
probabilized space@?,). In most, if not all, applications®, will be a power
of the real line or some subset of it, and, hencefatly;) will also denote the
density ofr; with respect to an appropriate version of the Lebesgue measure.
A sequential Monte Carlo algorithm (or particle filter) is a method for producing
a particle system whose target evolves in time: at iteratiohthe algorithm, the
particle system targets,, and therefore allows for Monte Carlo approximations
of the distribution of (current) interest. Clearly, particle filters do not operate in
practice on infinite triangular arrays but rather manipulate particle vectors of fixed
size H. One must keep in mind, however, that the justification of such methods is
essentially asymptotic.

The structure of a patrticle filter can be decomposed into three basic iterative
operations, that will be referred to hereafter as mutation, correction and selection

(1)

— Ex(p)
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steps. At the beginning of iteratian consider a particle syste(ﬁ,(f’lH), Dj<n,
that is, with unit weights, which targets,_1. The mutation step consists in
producing new particles drawn from

i, H AU H
et(] ) th(et(il )’det)’

wherek, is a transition kernel which mayg,_1 into #(©,), the set of probability
measures or®,. The “mutated” particles (with unit weights) target the new
distribution 77, (-) = [ 7;-1(6;—1)k; (6;—1, -) d6,_1. This distributions, is usually

not relevant to the considered application, but rather serves as an intermediary
stage for practical reasons. To shift the target to the distribution of intefest
particles are assigned weights

wi ™ ocu(67)  with v () = m (/7 ().

This is the correction step. The particle syst(a?ﬁ”H), w,(J’H))jSH targetss;.

The functionv; is referred to as the weight function. Note that the normalizing

constants of the densities ands, are intractable in most applications. This is why

weights are defined up to a multiplicative constant, which has no bearing anyway

on the estimates produced by the algorithm, since they are weighted averages.
Finally, the selection step consists in replacing the current vector of particles by

a new, uniformly weighted vectaé,”*"’, 1), ;, which contains a numbei-/-#)

of replicates of particl@t(j’H)_, nU-H) > 0. Then-H)'s are random variables such
that)"; n-#) = H andE(n"-*)) = Hp;, where the normalized weights are given
by

pj = wt(/,H)/ Z wt(/,H)’
j=1

and where dependenciesihand: are omitted for convenience. In this way, par-
ticles whose weights are too small are discarded, while particles with important
weights serve as multiple starting points for the next mutation step. There are var-
ious ways of generating the/-#)’s. Multinomial resampling [Gordon, Salmond
and Smith (1993)] amounts to drawing mdependently]thaew particles from

the multinomial distribution which produc@é’ with probability p;. Residual
resampling [originally termed “stochastic remainder sampling” in the genetic al-
gorithm literature, Baker (1985, 1987), then rediscovered by Liu and Chen (1998)]

consists in reproducinpHp; | times each particlé(j’H) where| -] stands for the
integer part. The particle vector is completedidy= H —}_; LHp,J independent

draws from the multinomial distribution which produo@% with probability
(Hp; — |Hpjl)/H". Systematic resampling [another method initially proposed
in the genetic algorithm field, Whitley (1994), then rediscovered by Carpenter,
Clifford and Fearnhead (1999); see also Crisan and Lyons (2002) for a slightly
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different algorithm] is another interesting selection scheme, which is such that the
number of replicatea/-*) is ensured to differ fromHp; by at most one. We
failed, however, to extend our results to this third selection scheme.

The structure of a particle filter can be summarized as follows:

1. Mutation: Draw forj =1,..., H,

i, H A H
et(/ )th(et(il )’det)’

wherek; : ®,_1 — P(0,) is a given probability kernel.
2. Correction: Assign weights to particles so that, fee 1, ..., H,

w,(j’H) o Ut(et(j,H)) _ nt(et(j,H))/ﬁt(et(j,H))’

wherert, () = [ 7t,—1(0—1)k; (01, ) dO; 1.

3. Selection: Resample, according to a given selection scheme,
G.H)  (j.H) A H)
0", w,’ )j<u — (6, 1) icn-

The first mutation step,= 0, is assumed to draw independent and identically
distributed particles from some instrumental distributign

It is shown without difficulty that the particle system produced by this generic
algorithm does iteratively target the distributions of interest, that is, the following
convergences hold almost surely:

H .
H™1Y 0(0") = Bz (9),

j=1

i, H i, H
o0y

aogm k(@)

j=1W:

H .
H™1Y ¢(87) = Ex (9),
j=1

as H — +oo, provided these expectations exist. These convergences will be
referred to as the law of large numbers for particle filters.

2.2. Some examples of particle filters. The general formulation given in the
previous section encompasses most of the sequential Monte Carlo algorithms de-
scribed in the literature. By way of illustration, assume first that the distributipns
are defined on a common spaé®,= ©. In a Bayesian frameworks, will usu-
ally be the posterior density @f given ther first observationsr; (0) = 7 (6]y1:1),
wherey; -, denotes the sequence of observations .., y;. If particles are not
mutated k; being the “identity kernel’k; (0, -) = 89, we haver; = ;1 for ¢t > 0,



2390 N. CHOPIN

and our generic patrticle filter becomes one of the variations of the sequential im-
portance resampling algorithm [Rubin (1988), Gordon, Salmond and Smith (1993)
and Liu and Chen (1998)]. The weight function simplifies to

v (0) =m(Oly1:0)/m@ly1:1-1) X p(Vely1:1-1,6)

in a Bayesian model, where(y;|y1::—1,6) is the conditional likelihood ofy;,
given the parametér and previous observations.

Gilks and Berzuini (2001) propose a variant of this algorithm, namely, the
resample-move algorithm, in which particles are mutated according to an MCMC
[Markov chain Monte Carlo; see, e.g., Robert and Casella (1999)] kiernghich
admitsm;_1 as an invariant density. In that case, we still haye= 7;_1, and the
expression for the weight functian is unchanged. The motivation of this strategy
is to add new particle values along iterations so as to limit the depletion of the
particle system.

Now consider the case whetg is defined on a space of increasing dimension
of the form ®, = X’. A typical application is the sequential inference of a
dynamical model which involves a latent procdss), and =; stands then for
densitym (x1:¢|y1::). Assumek, can be decomposed as

ky (XI;;_l, dxi:1) =kK; (XI:z—l’ dx1:1-1)q; (x¢|x1:1-1) dxg,

wherek, : X'~ — 2 (X'~1) is a transition kernel, ang} (:|-) is some conditional
probability density. Ifx; admitsz;_1 as an invariant density, the weight function
is given by

T (x1:7)
Tr—1(X1:r—1)qr (Xr]X1:7-1)

(2 Ur(x1:4) =

Again, the case where is the identity kernel corresponds to some version of the
sequential importance resampling algorithm, while settingp a given MCMC
transition kernel with invariant density 1 leads to the resample-move algorithm
of Gilks and Berzuini (2001). The standard choice §o¢|-) is the conditional
prior density ofx,, given x1:,_1, as suggested originally by Gordon, Salmond
and Smith (1993), but this is not always optimal, as pointed out by Pitt and
Shephard (1999) and Doucet, Godsill and Andrieu (2000). In fact, it is generally
more efficient to build some conditional densitywhich takes into account the
information carried by, in some way, in order to simulate more values compatible
with the observations.

These two previous cases can be combined into one, by considering a dynamical
model which features at the same time a fixed paranfeded a sequence of latent
variables(x,), so that®, = ® x X', andx, stands for the joint posterior density

(0, x1:¢|y1:1).
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2.3. Central limit theorem. The following quantities will play the role of
asymptotic variances in our central limit theorem. Let, for any measurable
009 > RY, Volp) = Varz,(¢), and by induction, for any measurabie:

0, —> R¢,

©) Vi(p) = Vie1|Eg (9)) + Eq,_, | Van, (9)}, >0,
(4) Vt(‘ﬂ):Vt{Ut'(‘P_Em‘P)}’ t >0,
(5) Vi(p) = Vi(p) + Vary, (¢), t>0.

The notationEy, (¢) and Vag, (¢) is shorthand for the functiong (6,-1) =
Ek, 6, 1,919 ()} and X(6;,—1) = Var, e, ,.){e(-)}, respectively. Note that these
equations do not necessarily produce finite variances fopawe now specify the
classes of functions for which the central limit theorem enunciated below will hold,
and, in particular, for which these asymptotic variances exist. Denotitig hyhe
Euclidean norm inR4, we define recursivelybﬁd) to be the set of measurable
functionsy : ®; — R4 such that for somé > 0,

(6) Ez, |lvr - )T < o0,

and that the functiofl;_1 — Eg, ¢, ,,){v:(e()} is in @E‘i)l. The initial setcpéd)
contains all the measurable functions whose moments of order two with respect to
7o are finite.

THEOREM 1. If the selection step consists of multinomial resampling, and
provided that the unit function 6; — 1 belongs to @,(1) for every ¢, then for
any ¢ € d>§d), Ex, (¢), Vi(p) and V,(go) are finite quantities, and the following
convergencesin distribution hold as H — +o0:

H (J,H) 9(] H))

w,;( D
Hl/z{ = ,j G Emw)} = N0, Vi),
=1Ws

Hl/z[ 1Z<ﬂ Uy Em(@}ﬁw{o,ﬁ«p)}.

A proof is given in the Appendix. In the course of the proof an additional
central limit theorem is established for the unweighted particle sy@é’rﬁ) 1)
produced by the mutation step, which targéts This result is not given here,
however, for it holds for a slightly different class of functions, and is of less
practical interest. The assumption that the functipn— 1 belongs to<I>§l)
deserves further comment. Qualitatively, it implies that the weight funetidras
finite moment of order 2 § with respect tar,, for somes > 0, and, therefore,
restricts somehow the dispersion of the particle weights. It also implieslxﬁ’fét
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contains all bounded functions In practice this assumption will be fulfilled, for
instance, whenever each weight functigrnis bounded from above, which occurs
in many practical settings.

A central limit theorem also holds when the selection step follows the residual
sampling scheme of Liu and Chen (1998), but this imposes some change in the
expression for the asymptotic variances. The new expressian foy is

) V(@) = Vi(e) + R, (9),
where

(8)  Ri(¢) =Ez{r(v)ee’} — [Es, (r )@} ][Ez, {r(w)e}],

Eﬁt {r(vp)}
andr(x) is x minus its integer part.

THEOREM 2. The results of Theorem 1 till hold when the selection steps
consists of residual resampling, except that the asymptotic variances are now
defined by equations (3), (4)and (7).

The proofs of Theorems 1 and 2 (given in the Appendix) rely on an induction
argument: conditional on past iterations, each step generates independent (but not
identically distributed) particles, which follow some (conditional) central limit
theorem. In contrast, the systematic resampling scheme is such that, given the
previous particles, the new particle system is entirely determined by a single draw
from a uniform distribution; see Whityg(1994). This is why extending our results
to this third selection scheme seems not straightforward, and possibly requires an
entirely different approach.

The appeal of the recursive formulae (3)—(5) and (7) is that they put forward
the impact of each new step on the asymptotic variance, particularly the additive
effect of the selection and mutation steps. In the multinomial case, an alternative
expression for the asymptotic variance is

t
9) Vip) = > Bz [Uf6r1:41¢ — Ex, (9)}6ks1:1 {0 — Ex, ()},
k=0

whereg; is the functional operator which associatesgtthe function

(10) 6 () :0;—1 > B0, 1,9 {vi ()},

and &xy1:/(¢) = Erp10---08&(p) for k +1<1t, &41::(¢) = ¢. This closed
form expression is more convenient when studying the stability of the asymptotic
variance over time, as we will illustrate in the next section. A similar formula for
the residual case can be obtained indirectly by deriving the difference between the
multinomial and the residual cases, that is,fer 0,

t—1

(11) V/(p) — Vi(p) = Z [Rk{8k+l:t(<ﬂ)} - Varnk{8k+1:t(<ﬂ)}],
k=0
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whereV;(¢), V/ (¢) are defined through the recursions (3)—(5) and (3), (4) and (7),
respectively. In the following, we will similarly distinguish the residual case
through arr-suffix in notation.

2.4. First conclusions. A first application of this central limit theorem is to
provide a rigorous justification for some heuristic principles that have been stated
in the literature, see, for itasnce, Liu and Chen (1998héqualities in this section
refer to the canonical order for symmetric matrices, that is to4ay B (resp.

A > B)ifandonly if A — B is positive definite (resp. positive semidefinite).

First, it is preferable to compute any estimate before the selection step, since
the immediate effect of the latter is a net increase in asymptotic vari&hge: >
Vi(p) for any nonconstant functiog. In this respect one may wonder why
selection steps should be performed. We will see that the immediate degradation
of the particle system is often largely compensated for by gains in precision in the
future iterations.

Second, residual sampling always outperforms multinomial resampling. Let
0:0; >RYandp = ¢ — Er (). Then

— =

R () = R (¢) < Ez {r(v)@e'} < Varg, (¢),

sincer(x) < x. It follows from this inequality and (11) thaV¥/ (¢) < Vi(¢).
Actually, a substantial gain should be expected when using the residual scheme
since the inequality above is clearly not sharp.

Our central limit theorem also provides a formal justification for resorting to
“marginalized” particle filters, as explained in the following section.

2.5. Marginalized particle filters. In some specific cases it is possible to
decompose the density; (6;) into /" (&) 7/ (A:|&;), with 6; = (&, A;) lying in
®; = E; X A, in such a way that it is possible to implement a particle filter
that targets the marginal densitieg’ rather than ther;,’s. When this occurs,
this second algorithm usually produces more precise estimators (in a sense that
we explain below) in the,-dimension. The idea of resorting to “marginalized”
particle filters has been formalized by Doucet, Godsill and Andrieu (2000), and
implemented in various settings by Chen and Liu (2000), Chopin (2001) and
Andrieu and Doucet (2002), among others.

Doucet, Godsill and Andrieu’s (2000) justification for resorting to “marginal-
ized” particle filters is that they yield importance weights with a smaller vari-
ance than their “unmarginalized” counterpart, which suggests that the produced
estimates are also less variable. This is proven by a Rao—Blackwell decomposi-
tion, and, consequently, “marginalized” particle filters are sometimes referred to
as "Rao-Blackwellized” patrticle filters. We now extend the argument of these au-
thors by proving that the asymptotic variance of any estimator is, indeed, smaller
in the “marginalized” case. Assume decompositions;cinds; of the form

m(6r) = ﬂfl(gz)ﬂf()ﬂft), 7:(6;) = ﬁ?(ft)ﬁ,c()ﬂgz),
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where (&, A;) identifies to6;, andn/", =/, n/", 7rf, are, respectively, marginal
and conditional densities df; and A;. Consider two particle filters, tracking,
respectively,(r;) and (zr;"). It is assumed that both filters implement the same
selection scheme (whether multinomial or residual), and that their mutation steps
consist in drawing, respectively, from kernélsandk;", which are such that the
following probability measures coincide @} = E; x Ay,

/A ﬂf_l()\z—l|§z—l)k1{(§z—l, }Vt—l)7 (dgz, d)»t)} d)\z—l
t—1

(12) .
= k,m (6r-1, dé,)nf(k,lét) dis,
for almost eveng,_; in E,_1. Note that in full generality it is not always possible
to build a kernel;” from a givenk, which satisfies this relation. As illustrated
by the aforementioned references, however, it is feasible in some cases of interest.
This equality implies, in particular, that

/ L (6 DK™ (61, ) dEr1 = 7).

Asymptotic variances and other quantities are distinguished similarly through the
m-suffix for the marginal case, that i%,(¢) and V" (¢), and so on.

THEOREM 3. For any ¢: &, — R such that ¢ d),(d), we have V" (¢) <
Vi(p) and V""" (p) < V/ (). These inequalities are attained for a nonconstant ¢
if and only if 7w/ (&) = 7/ (-|&;) for almost every §; € &;, for anyr > 0.

As suggested by the condition for equality above or more clearly exhibited in the
proof in the Appendix, marginalizing allows for canceling the weight dispersion
due to the discrepancy between conditional densitfesndr;, while the part due
to the discrepancy between marginal densiti¥sand,” remains identical.

Beyond the small number of cases where this marginalization technique can be
effectively carried out, this result has also strong qualitative implications. In the
following sections we will study the behavior of the time sequevice) in order
to measure whether and at which rate a given particle filter “diverges.” In this
respect, we will be able in some cases to build a marginalized particle filter whose
rate of divergence is theoretically known, thus providing a lower bound for the
actual rate of divergence of the considered particle filter.

3. Stability of particlefilters.

3.1. Sequential importance sampling. The sequential importance sampling
algorithm is a particle filter that alternates mutation and correction steps, but does
not perform any selection step. Weights are consequently not initialized to one at
each iteration, and are rather updated through

wt(]) x w,(i)lu, (0,(])).
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We suppress any notational dependenceHdosince it is meaningless in such a
case. Due to its specific nature, this algorithm needs to be treated separately. Since
particles are not resampled, they remain independent through iterations. It follows
via the standard central limit theorem that

) )
H1/2 j=1 wt(] (,0(9[(] )
)3 w)
j=1"t

where the corresponding asymptotic variance is

—E,, (90)} 2 w0, VSS(p)),

sis Ty 2
V; (@):Eﬁ,[ﬁ_{@_Em(@)}] ,
t

and7; denotes this time the generating distribution of partiﬂ,gé obtained by
the recursion of mutation kernets(-, -), that is,

ﬂo=/%Fﬂ&4mthapr

the distributionzo being arbitrary. Sequential importance sampling is rarely an
efficient algorithm, but the value df*S(¢) can serve as a benchmark in some
occasions, as we will see in the following.

3.2. Sequential importance sampling and resampling in the fixed parameter
case. In the fixed parameter case, that®, = © andn;(0) = 7w (0|y1:1), 7, iS
expected to become more and more informatived pand to eventually converge
to a Dirac mass at some po#i. Sequential importance sampling and resampling
algorithms typically diverge in such a situation, since they generate once and for all
the set of particle values frotrp, a majority of which are presumably far frofp.
The following result quantifies this degeneracy effect.

THEOREM 4. Let ¢:0® — R?, ¢ € d),(d). Then under regularity conditions
given in the Appendix, there exist positive constants c1, ¢ and ¢3 such that

IVSS() |l = c1P?7L, WV (@)l = catP, V(@) = cat?/?,

as ¢ goes toward infinity, where | - || denotes the Euclidean norm, p is the
dimension of ® and V/(¢), Vi(p) refer here to the sequential importance
resampling case, that is, k; (6, -) = 8.

The conditions mentioned above amount to assumingstha the posterior
density of a model regular enough to ensure the existence and asymptotic
normality of the maximum likelihood ésator. Under such conditions, can be
approximated at first order as a Gaussian distribution centeggdnath variance
1(60)~1/t, whereI(6p) is the Fisher information matrix evaluated &t The
results above are then derived through the Laplace approximation of integrals;
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see the Appendix. At first glance, it seems paradoxical w,%ﬁnp) converges to
zero whenp = 1. Note, however, that the ratig (¢)/ Vars, (¢), which measures
the precision of the algorithm relative to the variation of the considered function,
is likely to diverge even whemp = 1, since typically Vag, (¢) = I (60) "/t as

t — +o0.

That the sequential importance resampling algorithm diverges more quickly
than the sequential importance sampling algorithm in this context is unsurprising:
when patrticles are not mutated, the only effect of a selection step is to deplete the
particle system. In this respect, we have for any honconstant fungtion

V() < V] (9) < Vi(g).

The proof of this inequality is straightforward.

Due to its facility of implementation and the results above, it may be
recommended to use the sequential importance sampling algorithm for studying
short series of observations, provided that the dimensio® df low. But,
in general, one should rather implement a more elaborate particle filter which
includes mutation steps in order to counter the particle depletion. A further
implication of these results is the following. Consider a dynamical model
which involves a fixed parameteét, and assume that the marginal posterior
distributionsr (6]y1 -;), obtained by marginalizing out latent variablgs;, satisfy
the regularity conditions of Theorem 4. Then, following the argument developed
in Section 2.5, we get that the rate of divergence of the sequential importance
resampling algorithm for this kind of model is at least of ordkw?/2), where
p is the dimension of this fixed parameter.

3.3. Sequential importance sampling and resampling for Bayesian filtering
and smoothing. For simplicity we assume that;(x1:;) = 7w (x1:¢]y1:,) IS the
posterior density of a state space model with latent Markov praaggsr; € X,
and observed process), y; € Y, which satisfies the equations

Yelxe ~ f(yelxe) dyr,

Xelxi—1~ g(xelxi—1) dx;.

We distinguish two types of functions: those which are defined on common
dimensions of the spacé3, = X', say,¢:x1:; — ¢(x;), for t > k, and those
which are evaluated on the “last” dimension ©f, that is, ¢:x1:; — @(x;).
Evaluating these two types of functions amounts to, respectively, “smoothing” or
“filtering” the states.

The sequential importance sampling algorithm is usually very inefficient in
such a context, whether for smoothing or filtering the states. We illustrate this
phenomenon by a simple example. Assume dtie mutation step consists of
drawing x; from the prior conditional density(x;|x;_1), which is usually easy
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to implement. Consider two evolving particl@#’) = xi”, with weights w(’),
j=1,2. We have
(1) t D

X

(2) ZIO S k| 122)).
w” k=1 SOkl
Assuming that the joint procesgy, x; (1) 2)) is stationary, the sum above
typically satisfies some central limit theorem of the form

Iog

@
(13) _1/2Z| S (klx kz)) D N, )
k=1 f(yklxk )
where the limiting distribution is centered for symmetry reasons. Note that
this convergence is with respect to the joint probability space of the simulated
processesf,(’), j = 1,2 and the observation proce§s), while all our previous
results were for a given sequence of observations. In this way, (13) yields that
the ratio of weights of the two particles either converges or diverges exponentially
fast. More generally, whe#/ particles are generated initially, very few of them
will have a prominent weight after some iterations, thus leading to very unreliable
estimates, whether for smoothing or filtering the states. The algorithm suffers from
the curse of dimensionality, in that its degeneracy grows exponentially with the
dimension of the space of interesy.
We now turn to the sequential importance resampling algorithm, and remark
first that, forg: x1-; — ¢(x1) andr > 0,

Vi(p) = VI (¢) > VS¢),

providede is not constant. The proof of this inequality is straightforward. The
sequential importance resampling algorithm is even more inefficient than the
sequential importance sampling algorithm in smoothing the first siateecause

the successive selection steps only worsen the deterioration of the particle system
in thex; dimension. This is consistent with our claim in Section 2.4 that a selection
step always degrades the inference on past and current states, but may possibly
improve the inference on future states. In this respect, the algorithm is expected to
show more capability in filtering the states, and we now turn to the study of the
filtering stability.

The functional operatog, which appears in the expression fgr(e), see (9),
summarizes two antagonistic effects: on one hand, the weight distortion due to
the correction step, and, on the other hand, the rejuvenation of particles due to
the application of the kerné}. Stability will be achieved provided that these two
effects compensate in some way.

For simplicity, we assume that the state spXces included in the real line and
that the studied filtering function:x1-; — ¢(x;) is real-valued. Recall that for
the sequential importance resampling algorittapris given by

k; (xf:z—lv dxy:4) = 5xfzrflqt(xz |XI;;_1) dx;,
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for some given conditional probability densigy(-|-). We assume thag, only
depends on the previous state 1, and, therefore, defines a Markov transition.
The ability of g; to “forget the past” is usually expressed through its contraction
coefficient [see Dobrushin (1956)]
pr=3 sup llg:Clx") —gqiCIx")ll,

x' x"eX
where]|| - |1 stands for thel.;-norm. Notep, < 1, and if p; < 1, ¢; is said to be
strictly contractive. Define the variation of a given functipiy

Ap = sup |p(x) — o).

x,x'eX

Then the coefficient, measures the extent to which the applicagpfcontracts”
the variation of the considered function, that is, for ahy” € X,

(14) ‘ [aeirem dr = [aGix @] < pag.

Furthermore, it is known [Dobrushin (1956)] thatgf is such that, for all
x,x',x"eX,
qr(x|x") <
qr (x|x")
then its contraction coefficient satisfigs < 1 — C~1. We therefore make such

assumptions in order to prove the stability of the sequential importance resampling
algorithm.

THEOREMS. Assumethat Ag < +oo and there exist constants C, f and f
suchthat, foranyr > 0,x,x",x" € X,y € Y,

(15) g(xlx") -c qr(x]x") -c O< f<fion) < f.
g(x|x") q: (x]x") -

Then V;(¢) is bounded from abovein ¢ (in the sequential importance resampling
case).

This theorem is akin to previous results in the literature [see Del Moral and
Guionnet (2001), Le Gland and Oudjane (2004) and most especially, Kiinsch
(2001, 2003)], except that these authors rather consider the stability of some
distance (such as the total variation norm of the difference) between the “true”
filtering density ;(x;) and the empirical density computed from the particle
system. In fact, Del Moral and Miclo [(2000), page 36] proved thatdtieal
variance of the Monte Carlo error is bounded from above over time under
similar conditions. Unfortunately, all these results, including ours, require strong
assumptions, such as (15), that are unrealistic whkeis not compact. Further
research will hopefully provide weaker assumptions, but this may prove an
especially arduous problem.
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3.4. Resample-move algorithms, variance estimation. Following Gilks and
Berzuini (2001), we term “resample-move algorithm” any particle filter algorithm
which includes an MCMC step in order to reduce degeneracy, as described in
Section 2.2. It seems difficult to make general statements about such algorithms
and we will rather make informal comments.

The fixed parameter case is especially well behaved. Basic particle filters
diverge only at a polynomial rate, as seen in Section 3.2, in contrast with the
exponential rate for state-space models. Adding (well-calibrated) MCMC mutation
steps should, consequently, lead to stable algorithms in many cases of interest. In
fact, it is doubtful that a mutation step must be performed at each iteration to
achieve stability. Chopin (2002yrgues and provides some experimental evidence
that it may be sufficient to perform move steps at a logarithmic rate, that istlihe
move step should occur at iteratign~ explan).

Situations where a latent process intervenes seem less promising. Smoothing
the states is especially a difficult problem, and we do not think that there is
any solution for circumventing the curse of dimensionality that we have pointed
out in the previous section. Even if mutation steps are performed at every
iteration, the MCMC transition kernels should themselves suffer from the curse of
dimensionality, in that their ability to rejuvenate particles of dimensialikely
to decrease with.

Resample-move algorithms remain an interesting alternative when the consid-
ered dynamical model includes a fixed parametédCMC mutation steps should
avoid depletion in simulated values ®f and make it possible at least to filter the
states and estimate the parameter under reasonable periods of time. Unfortunately,
the corresponding MCMC transition ketaavill often depend on the whole past
trajectory, so that long term stability remains uncertain.

In such complicated setups it is necessary to monitor at least numerically the
degeneracy of the considered particle filter algorithm. We propose the following
method. Rurk, sayk = 10, parallel independent particle filters of side For any
guantity to be estimated, compute the average ofktherresponding estimates.
This new estimator is clearly consistent and asymptotically normal. Moreover, the
computational cost of this strategy is identical to that of a single particle filter of
sizek H, while the obtained precision will be also of the same order of magnitude
in both cases, that is to sdy,(¢)/(kH)}¥2. This method does not, therefore,
incur an unnecessary computational load, and allows for assessing the stability of
the algorithm through the evolution of the empirical variance of titesstimates.

APPENDIX

A.l. Proofs of Theorems 1 and 2. We start by outlining some basic
properties of the set@,(d) with respect to linearity. The sdiﬁd) is stable through
linear transformations, that ig, € <I>§d) = My € <I>§’” if M is ad’ x d matrix
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of real numbers. In particular, if the vector functipn= (¢1, ..., ¢;)’ belongs to

QJ,(d), then each of its coordinates belongsbtﬁ) The converse proposition is also
true. Finally, we havé, (M + 1) = MV,(<p)M’ for any constant € R?, and this
relation also holds for the operatovs and V;. Proving these statements is not
difficult and is left to the reader.

The proof works by induction with Lemmas A.1-A.3 for Theorem 1, and

Lemmas A.1, A.2 and A.4 for Theorem 2. The inductive hypothesis is the

following. For a giverr > 0, it is assumed that for afl € d)t(’f)l,

(16) Hl/z[ Zqo 6,y En,lw)}ﬂmo,@_l(qo)}.

LEMMA A.1 (Mutation). Under the inductive hypothesis, we have
1 : =
Hl/z{ =2 v(e") ~Ex, <w>} 2 N0, Vi)
j=1

for any measurabley : ©, — R¢ suchthat thefunction r¢ : 6,_1+— Ek, 6, 1,90 () —
Ez (1)} belongsto cD(d)l and there exists § > 0 such that E, ¥ ]12H < 4o0.

PROOF We assume that is real-valuedd = 1). The generalization @ > 1
follows directly from the Cramér—Wold theorem and the linearity properties stated
above.

Lety = —Ez, (¥), w(0r—1) = Ex,6,_1. (¥ ()}, 02(6,-1) = Var, g, 1.1V ()}
andog =E,, ,(0?). We haveE,, (1) =0, and by Jensen’s inequality,
0§ =Er, ;[ Va6, O] < Ba,_y[Ex, 6,101 (3]

2/(2+8
< {Eﬁr|w|(2+8)} /(2+38) < 400,

which makes it possible to apply the law of large numbers for particle filteré to

H .
(17) H Y o?01") > o¢  almostsurely.
Defining
(18)  v(i_1) =FEu 5,y {¥ () — w61 %)
(19) < 25N By 61y [T O+ [Er, s, 00T O
(20) < 22UEy 60,101 ()1FFY,

where (19) comes from th€, inequality and (20) from Jensen’s inequality, we
deduce that

Ey, (1) < 22PE; |y]?T° < 400.
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This inequality ensures that the expectations defining (18) (and, similarly,
those definingt ando2) are finite for aimost ever,_1. It follows that

H
H1 Z U(Q,(i’lH)) — E,,_,(v) almost surely,
j=1

and combining this result with (17), we obtain the almost sure convergence of

i, H

= ',H
(DI o200y @2

PH

(21) .
HAYH v

= I‘I_s/2 H —>
(H-1 Z?:laz(et(fl ))}(2+8)/2

LetTy =H Y2y, v 6,7, s,_1 denote the sigma-field generated by the
random variables forming the triangular arr@f’f))jsﬂ, that is, the particle
system attime — 1, anduy = E(Ty|S;—1). Conditional onS;_1, thex/_/(e,(f’H))’s
form a triangular array of independent variables which satisfy the Liapunov
condition, see (21), and have variances whose mean convergés. see (17).

Therefore [Billingsley (1995), page 362hd following central limit theorem for
triangular arrays of independent variables holds:

D
(22) (T — m)|Si—1= N (0, 0.
Since E;, ,(n) =0 and u € QJE‘i)l, we have also, by applying (16) to the
function u,

H
_ A(7 D o~
(23) wr =H23" u(6,9) 2 N0, Vima)).
j=1

The characteristic function dfy is
&7, (u) =E{expiuTy))}
= E[expliupg)E{expiuTy —iupwy)|S;—1}],

where E{exp(iuTy — iupg)|S;—1} is the characteristic function ofy — uy
conditional onsS;_1, which according to (22) converges to e*prguz/Z). It
follows from (23) that

expliup ) E{expliuTy — iupp)|Si—1} 2 exp(—olu?/2 + iuZ),

where Z is a random variable distributed according 46{0, Vi_1(w)}. The
expectation of the left-hand side term converges to the expectation of the right-
hand side term following the dominated convergence theorem, and this completes
the proof. O
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LEMMA A.2 (Correction). Let ¢ € d>§d), assume the inductive hypothesis
holds and the function 6; — 1 belongsto <I>§1). Then

H i, H)
Hl/Z[ZH 1wt(] )(p(Q(] )

H (j,H)
Z 1wtj

—En,«o)} 2 N{0. Vi(9)).

PROOF Let ¢ = ¢ — E;, (¢). For notational convenience we assume that
d =1, but the generalization > 1 is straightforward. It is clear that the vector
functiony = (v, - ¢, v;)’ fulfills the conditions mentioned in Lemma A.1, and as
such satisfies

1 H U;(Q(]’H))QZ)(Q(]’H)) OR D -
H1/2[ Z( ! r _< ") = N0, V,(¥)).
H = v (69™) 1
Then, resorting to th&-method with functiorg(x, y) = x/y, we obtain
Y o6 ™ee ) 5
ZH 1Ul‘(0(] H))

whereV = {(3g/dx, 3g/3y)(0, )}V, (¥){(dg/dx, dg/dy)(0, 1)) = Vt{Ut (e —
Er0)}. The left-hand side term is unchanged if we replace)me,’ )s by the

welghtSw, ), since they are proportional []

— N(0,V),

LEMMA A.3 (Selection, multinomial resampling).Let ‘7,((,0) = Vi(p) +
Vary, (¢) and assumethe particle systemis resampled according to the multinomial
scheme. Then, under the same conditionsasin Lemma A.2,

1 H N D o~
H1/2 E Z(p(gt(/vH)) - Em (@)t = NM{O, Vi (p)}.
j=1

PrROOF The proof is similar to that of Lemma A.1. Assunde= 1, denote
by S; the sigma-field generated by the random variat(l%(é ) jH)),<H
and letg = ¢ — Er,(p), Ty = H-Y2X1,6607™) and py = E(Ty|S).
Conditional onS;, Ty is, up to a factorH 1/2 a sum of independent draws
from the multinomial distribution which produceﬁ(et(j’H)) with probability
wi Y w ™) Then, as in Lemma A.1, we have

(T — 1)1, 2 N (0,69,

where this timerg = Vary, (¢), which is the limit asH — +oo of the variance of
the multinomial distribution mentioned above. The proof is completed along the
same lines as in Lemma A.1[]
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LEMMA A.4 (Selection, residual resampling)Let V;(¢) take the value given
by (7) and assume the particle system is resampled according to the residual
resampling scheme. Then, under the same conditionsasin Lemma A.2,

1 H Ny o@ o~
HY?1 230 007™) = Ex(0) | 2 N(0. V().
j=1

PrROOF The proof is identical to that of Lemma A.2, except that conditional
onS;, Ty is H~1/2 times a constant, plus a sum of independent draws from the
multinomial distribution described in Section 2.1. This yields a different value
for o,

04 =E, Ir(v) - %) — [Ez {r ) - 0}]*

Eﬁ,{”(Ut)}
In addition, we also have to make sure that the number of these independent
drawsH" tends toward infinity. In facttd” /H — Ez, [ (v;)]. To see this, consider

H H
H'/H = H Y r{u(07)) = HH Y [r(Hp)) = r{u(6))],
j=1 j=1

where Hp; = u,(@,(""H))/{H—lzj u,(e,(j’H))}, see Section 2.1, so that the

difference above should eventually be zero Fas?! > U,(Qt(]’H)) — 1. More
precisely, we have (x) —r(y)| < 1, in general, and(x) — r(y) = x — y provided

lx —y| <e andr(x) € [e,1 — ¢] for any ¢ < 1/2. Therefore, assuming that
(H1Y v O )" e[1— ¢, 1+ ¢'] for somes’ > 0 andH large enough, we

get that the sum above should be zero plus something bounded from above by the
proportion of particles such thatu,(-) > 1/2 orr{v,(-)} ¢ [¢'v,(-), 1 — €'v,()].

This proportion can be made as small as necessaty.

A.2. Proof of Theorem 3. Let ¢: &, — R and g = ¢ — Er,(p) = ¢ —
E,m(¢) for a givenr > 0. To simplify notation, it is assumed thdt= 1, but
the adaptation to the general case is straightforward. All quantities related to
the “marginalized” particle filter are distinguished by thesuffix. For instance,
&/" () stands for the functiod; > Epn g, . {v/" (e ()}, in agreement with the
definition of & (¢) in (10). In this respect, the marginal weight functioff (-)
is 7" (-) /7" (-), and if we define the “conditional” weight functiosf (1;|&;) =
i (A& /7f (A)&), we have the identity

v (0) = v (G vf (1&0).
It follows from (12) that
Ere (6@} =Ew{v]"oEze ()} = € (@),
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sinceEﬁtc(uf) =1, and by induction, we show similarly, far< ¢, that
Enel{k41:4(9)} = &1.,(9).
Hence, fork <,
Ez, [{vr€ir1:1 ()] = Ean [0 Eac{vf €r1:19)]
> Eap[{vf - €041, @),

by Jensen’s inequality. From the closed form (9Yafy), we deduce the inequality
V"(¢) < Vi(p) for the case when the selection step follows the multinomial
scheme. Alternatively, if the selection step consists of residual resampling, let
¢ =¢ —Ez {r(v)e}/Ez {r(v)}. Then

{Eanr(v/)p)?

Rilo) = R (9) = Bz, r(u0g®) —Eaplr 9" + =5 -

> Ban[{Eaer(vr) — r (/)67

and sincel ;¢ (v;) = vy, we haveEz¢ v, ] < [vf" |, henceEzer (vr) > r(vf"), and,
consequentlyR; (¢) > R} (¢) for anye. It is then easy to show by induction that
the desired inequality is also verified in the residual case.

A.3. Regularity conditions and proof of Theorem 4. Let np(0) denote the
prior density angb(y1:¢|6) the likelihood of the first observations, so that through
Bayes formula,

(0) = (0ly1:r) xmwo(0) p(y1:416).
Let [,(0) =log p(y1:,10). The following statements are assumed to hold almost
surely:

1. The maximumd, of /,(6) exists and converges as— +oo to 6y such that
mo(6p) > 0 andmg(6p) > 0.
2. The matrix

102,0)1 1
z,:-{— z()}
t 3006’

is positive definite and convergesi®p), the Fisher information matrix &.
3. There exist\ > 0 such that

1 N
0<s<A —s Iimsup[— sup {ztw)—z,(e,)}}o.
I=+00 LY 9—6,|>8

4. The functionsrg(9) andl; () are six-times continuously differentiable, the
partial derivatives of order six of(0)/t are bounded on any compact set
©®' C ©, and the bound does not dependrand the observations.
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5. ¢:® — R? is six-times continuously differentiable’ (dg) 0.

For convenience, we start with the one-dimensional case {). The Laplace
approximation of an integral [see, e.g., Tierney, Kass and Kadane (1989)] is

/ Y (0)exp{—th(0)}do

= (27 /1)Y%c exp{—th}
« [1/; + %{0‘2&// _ 041&/};/// + 122061&};/// . %041/;}21'11”—1 + 0(1_2)],

where hats on/, & and their derivatives indicate evaluation at the point which
minimizes 4, and o = —(1/2”)1/2. This approximation remains valid for a
function i, depending on, provided that the fluctuations @f or its derivatives

can be controlled in some way. Conditions above allow, for instance, for applying
this approximation to the functions 1(6) = —1;(0)/t andh; 2(0) = —21;(0)/t;

see Schervish [(1995), page 446] for technical details. It is necessary, however,
to assume that (6g) # 0, so thaty is either strictly positive or strictly negative

at least in a neighborhood 6. SinceVSiS(p) = VS'S(p + 1) for any A € R, we

assume without loss of generality tha®p) # 0. VS'S(¢) equals

[910)p(r1:410)2d6 — 2B, () [ ¥2(0) p(y1::10)? d6
(/7@ p(y1:/10)d6}?

(B, (0)}2 [ ¥30) p(y1:/16)%d6
{[7©O)p(y1:/10)d6)2

where Y1 = 70(6)%0(0)%/70(8), Y2 = m0(6)*¢(6)/7o(0) and Y3 = mo(6)?/
70(0). Combining the appropriate Laplace approximations, we get that

(24)

’

112

2(rx,)1/2

y [V1(0r) — 2B, () V2(8)) + (B, (0)}2r3(6)) + At~ + O(t72)]
{mob) + Bt=1+ 0(172))2

Y2 {eB) — Er (0)Y + ARo(0)mo(B) A+ 07
- 2(rz)Y? 701+ Bro(6)~1~1 + 0(172))2

‘/ZSIS((p) —

’

whereA is the sum of0 (+—1) terms corresponding to the three Laplace expansions
of the numerator, an® is the O(+~1) term of the denominator. Sinqa(é,) —

Er () = 0G™Y), T = 1(60) + 0G~Y) and y(6:) = ¥(6o) + O¢~1) for any
continuous functiony, we get through appropriate derivations that

1(60)Y2¢' (60)?

—1/2 —3/2
—_—1 Ot .
21 Y/274(6p) +0( )

VtSiS(gl)) —
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Derivations in multidimensional cases are much the same, except that notation
is more cumbersome. When> 1, the factorr—1/2 in the Laplace expansion is
replaced by —?/2, so that in the ratio (24) we get a factd¥2, and since the?/2
terms cancel as in the one-dimensional case, the actual rate of divergetiéeds
and this completes the first part of the proof.

In the sequential importance resampling case (multinomial schepie);) =
8¢ andn, = m,_1, and according to (9),

. ! T 2
(25) Vilp) = V™) + Y Enk_l[—t{w —Er, (w)}] .
k=1 M1
Then through a direct adaptation of expansions above we obtain a divergence rate
for V, (¢) of order(X4_o(t — k)P/?>~1) = 0(¢P/?). For the residual case, it follows
from (11) and (25) that

t
V@)=V + > Rk—l[l{(/) —E, (w)}]
k=1 M1
The difficulty in this case is that the noncontinuous functigp takes part in
the expression foR(-), see (8). It is clear, however, that the Laplace expansion
can be generalized to cases where regularity conditions for the likelihood and
other functions are fulfilled only locally aroungy. The additional assumption
that r; (6g) /7 —1(6p) is not an integer for any > 0 allowsr(v;) to be six-times
continuously differentiable in a neighborhood arodégdand, therefore, makes it
possible to expand the terms of the sum above, which leads to a rate of divergence
of orderO (t/?) in the same way as in the multinomial case.

A.4. Proof of Theorem 5. As a preliminary, we state without proof the
following inequality. Letg, ¢ : R — R such thatp > 0, supys > 0 and infyy < 0.
Then
(26) Apy) < supp - Ay

Due to particular cancelations, the weight functigtix1.,) only depends on
x;—1 andx; in the state space case
S rlxe) g (xelx—1)

qr (x¢]xs—1) .
Straightforward consequences of this expression are the identities

(27) Ur(x1:¢) = v (X1, X7) X

qr (xelxe—1)vr (X -1, X¢)

(28) Tt (xl‘|xt—1) = fqt(X|xl‘—l)Ul‘(xl—l’ _x) dx ’

fﬂz(xt X)) g1 (e 2lx) V1 (xr, X1) dxy
fnt(xt|xk)Qt+l(x|xt)Ut+l(xt’ x)dx;dx

(29) 41 (X 1lxe) =

’
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for k < t, wherer; (x;|x;) denotes the conditional posterior densitypfjivenx;
and ther first observations, that isg, (x;|xg) = 7 (x¢|xk, ¥1:1) = (X | Xk, Vir1:1)-
We start by proving some useful lemmas.

LEMMA A.5. The conditional posterior density =, (x;|xx), k < ¢, defines a
Markov transition from x; to x, whose contraction coefficient is less than or egqual
to (1— C—2)'~ k.

PrROOFE This is adapted from Kiinsch (2001). Fqr, x;(, Xp+1€ X, k <t

7 (kralxe) 8 Ckal ) p(Vkgea:1Xp) <2
m(Xyalxy) & Cralxy) pkra:elx) ~

sinceg (xiy1lxx) < Cg(xr41/x;) and

’

P Vkt1:¢1x7) :/g(xk+1|x1/<)P(yk+1:t|xk+1) dxps1

< C/g(xk+l|xk)l7()’k+l:t|xk+l) dxiy1.

Therefore, the contraction coefficients of Markov transitiongx;.1|xx) and
7;(x;|xx) are less than or equal to, respectively,— C~2) and (1 — C~2)~k,
O

LEMMA A.6. Let A bea probability density on X and 4 (x|x") a conditional
probability density defining a Markov transition on X.. Thenfor anyx’ € X, y € Y,

I FOIORGI) dx
1 Cr,
Bl SOORG R dx) — P

where p;, isthe contraction coefficient of 2(-|-), and Cy = f/i -1

PROOF. It follows from the definition ofo,, [see (14)] that for’, x” € X,

’/f(yIX)h(XIx/)dx—/f(yIX)h(XIx/’)dx

and therefore,
SUP{/f()’bC)h(Xbc/)dx} EEK(X”){/f(y|X)h(x|x”) d.X} —erh(f—i)’
x'eX

so that

SUQc’ex{f FOlx)h(x|x")dx} <140 (f _i)
Eren{f fI0)h(x]x")dx} — Exan S fylx)h(x|x") dx}

51-1—,0;,(%—1). 0

<on(f = 1)
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LEMMA A.7. Letp=1—Clandp,=1— C2 Thenfor k <1,

t—k

A&is1:t{e —Er (@)} < [+ pob tCr)0b ™ A,
i=1

for any real-valued filtering function, ¢ : x1:; = ¢(x;).

PROOF Let ¢ = ¢ — E; (¢). Note the arguments df1:,(¢) arexy: in
general, but in the case considered in Section 3.3 it only dependg and is
therefore treated as a functi® — X. For the sake of clarity, we treat the case
k=1t — 2, but the reasoning is easily generalized. The following decomposition is
deduced from identity (28):

Er—1:4(9)(x1-2)
=Eq 1 1o Ur—1(—2, x,-1) & (@) (x; 1)}
=Eg 1l {vr—100—2, X DYEr, 3 (g1, (€1 (@) (xs—1)}-

It follows from (27) that the first term satisfies

Eq,_l(x,_1|x,_2){Uz—l(xz—z, Xr-1)} X / S r—alxi—1)g(xr—1lxr—2) dx; -1,

where the proportionality constant can be retrieved by remarking that the
expectation of this term with respecttg_» equals one and, therefore,

Eg, 101l {Vi—1(xr—2, X1 1)}
_ S fOr-alx—1)g(—alx,—2) dx; 1
" En, oy U FOralxi—1)g (o1 lxi—2) dx—1}
<1+ pCy

according to Lemma A.6. Nota;_»(x;_»2) denotes ther;_>-marginal density
of x;_». It follows from the decomposition above and the inequality in (26) that

A&—1:4(9) =1+ pCyp)AY,
whereyr is the function
V(x—2) =Er, e, 115, 1E(@) (x/-1)}
= E”tfl(xrfllxtfﬂ [E%(Xt‘xr—l){ut (xr—1, xt)@(xt)}]'

Note thaty does take positive and negative values, since the expectation of
&:_1-:(¢) with respect tor; _» is null. We now decomposg¢ in the same way,

Y(xi—2) = Err,_l(xt_llx,_z) [Eqr (xtlx,_l){Ut (xr—1, xt)}]Em(xt\xt_z){(/_)(xt)}a
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by consequence of the identity (29). The expectation of the first term with respect
to ;_1(x;_2) equals one, so that

Eﬂr—l(xt—llxr—z) [Eqr (xrlxr—1) {vr(xr-1, xz)}]
_ fﬂt—l(xt—ﬂxt—z)f()’z|xt)g(xt|xz—1) dx;—1dx;
En,_l(x,_z){f -1 (Xr—1lxr—2) f (yelxr) g (xrlxi—1) dx;—1dx;}
<1+ pp2Cy,
according to Lemmas A.5 and A.6. Resorting again to inequality (26), we get
AY < (14 pp2Cp)p5 A0,

which leads to the desired inequality, and this completes the proof of Lemma A.7.
O

To conclude the proof of Theorem 5, remark that (vr) = 1. Therefore,

FOrlxr) g i lxr—1) /g (x| xx—1)
Ezor -0 U Orlxe) g (exlxk—1) /qie (Xic | xk—1) }

<C*f/f,
and since the expectation of the functiép.1:,{¢ — Ex, (¢)} with respect tar,
is null, the function&x41:/{¢ — E, ()} is ensured to take positive and negative
values, so that
sup |Ext1:¢{¢ — En, (©)}(x0)| < A&ki1:41{9 — Ex, ()}

xreX

Uk (Xk—1, Xk) =

and, finally,

2
Ez, [UP€ks1:1{¢ — Ex, (9)}7]
t—k

< CH(f/ T+ ooy tC 125" ™M (Ap)?
i=1

t—k
<C*j/ 17 exp<2pc > plz‘l)p%("k) (Ap)?
i=1
< CHF/ P expi2pC /(- p)lo3" ™ (Ap)?.
It follows from (9) thatV; (¢) is bounded from above by a convergent series.
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